The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/vmm/vmm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2011 NetApp, Inc.
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  * $FreeBSD: releng/11.0/sys/amd64/vmm/vmm.c 296103 2016-02-26 16:18:47Z marcel $
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/11.0/sys/amd64/vmm/vmm.c 296103 2016-02-26 16:18:47Z marcel $");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/kernel.h>
   35 #include <sys/module.h>
   36 #include <sys/sysctl.h>
   37 #include <sys/malloc.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/proc.h>
   42 #include <sys/rwlock.h>
   43 #include <sys/sched.h>
   44 #include <sys/smp.h>
   45 #include <sys/systm.h>
   46 
   47 #include <vm/vm.h>
   48 #include <vm/vm_object.h>
   49 #include <vm/vm_page.h>
   50 #include <vm/pmap.h>
   51 #include <vm/vm_map.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/vm_param.h>
   54 
   55 #include <machine/cpu.h>
   56 #include <machine/pcb.h>
   57 #include <machine/smp.h>
   58 #include <x86/psl.h>
   59 #include <x86/apicreg.h>
   60 
   61 #include <machine/vmm.h>
   62 #include <machine/vmm_dev.h>
   63 #include <machine/vmm_instruction_emul.h>
   64 
   65 #include "vmm_ioport.h"
   66 #include "vmm_ktr.h"
   67 #include "vmm_host.h"
   68 #include "vmm_mem.h"
   69 #include "vmm_util.h"
   70 #include "vatpic.h"
   71 #include "vatpit.h"
   72 #include "vhpet.h"
   73 #include "vioapic.h"
   74 #include "vlapic.h"
   75 #include "vpmtmr.h"
   76 #include "vrtc.h"
   77 #include "vmm_stat.h"
   78 #include "vmm_lapic.h"
   79 
   80 #include "io/ppt.h"
   81 #include "io/iommu.h"
   82 
   83 struct vlapic;
   84 
   85 /*
   86  * Initialization:
   87  * (a) allocated when vcpu is created
   88  * (i) initialized when vcpu is created and when it is reinitialized
   89  * (o) initialized the first time the vcpu is created
   90  * (x) initialized before use
   91  */
   92 struct vcpu {
   93         struct mtx      mtx;            /* (o) protects 'state' and 'hostcpu' */
   94         enum vcpu_state state;          /* (o) vcpu state */
   95         int             hostcpu;        /* (o) vcpu's host cpu */
   96         int             reqidle;        /* (i) request vcpu to idle */
   97         struct vlapic   *vlapic;        /* (i) APIC device model */
   98         enum x2apic_state x2apic_state; /* (i) APIC mode */
   99         uint64_t        exitintinfo;    /* (i) events pending at VM exit */
  100         int             nmi_pending;    /* (i) NMI pending */
  101         int             extint_pending; /* (i) INTR pending */
  102         int     exception_pending;      /* (i) exception pending */
  103         int     exc_vector;             /* (x) exception collateral */
  104         int     exc_errcode_valid;
  105         uint32_t exc_errcode;
  106         struct savefpu  *guestfpu;      /* (a,i) guest fpu state */
  107         uint64_t        guest_xcr0;     /* (i) guest %xcr0 register */
  108         void            *stats;         /* (a,i) statistics */
  109         struct vm_exit  exitinfo;       /* (x) exit reason and collateral */
  110         uint64_t        nextrip;        /* (x) next instruction to execute */
  111 };
  112 
  113 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
  114 #define vcpu_lock_init(v)       mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
  115 #define vcpu_lock(v)            mtx_lock_spin(&((v)->mtx))
  116 #define vcpu_unlock(v)          mtx_unlock_spin(&((v)->mtx))
  117 #define vcpu_assert_locked(v)   mtx_assert(&((v)->mtx), MA_OWNED)
  118 
  119 struct mem_seg {
  120         size_t  len;
  121         bool    sysmem;
  122         struct vm_object *object;
  123 };
  124 #define VM_MAX_MEMSEGS  3
  125 
  126 struct mem_map {
  127         vm_paddr_t      gpa;
  128         size_t          len;
  129         vm_ooffset_t    segoff;
  130         int             segid;
  131         int             prot;
  132         int             flags;
  133 };
  134 #define VM_MAX_MEMMAPS  4
  135 
  136 /*
  137  * Initialization:
  138  * (o) initialized the first time the VM is created
  139  * (i) initialized when VM is created and when it is reinitialized
  140  * (x) initialized before use
  141  */
  142 struct vm {
  143         void            *cookie;                /* (i) cpu-specific data */
  144         void            *iommu;                 /* (x) iommu-specific data */
  145         struct vhpet    *vhpet;                 /* (i) virtual HPET */
  146         struct vioapic  *vioapic;               /* (i) virtual ioapic */
  147         struct vatpic   *vatpic;                /* (i) virtual atpic */
  148         struct vatpit   *vatpit;                /* (i) virtual atpit */
  149         struct vpmtmr   *vpmtmr;                /* (i) virtual ACPI PM timer */
  150         struct vrtc     *vrtc;                  /* (o) virtual RTC */
  151         volatile cpuset_t active_cpus;          /* (i) active vcpus */
  152         int             suspend;                /* (i) stop VM execution */
  153         volatile cpuset_t suspended_cpus;       /* (i) suspended vcpus */
  154         volatile cpuset_t halted_cpus;          /* (x) cpus in a hard halt */
  155         cpuset_t        rendezvous_req_cpus;    /* (x) rendezvous requested */
  156         cpuset_t        rendezvous_done_cpus;   /* (x) rendezvous finished */
  157         void            *rendezvous_arg;        /* (x) rendezvous func/arg */
  158         vm_rendezvous_func_t rendezvous_func;
  159         struct mtx      rendezvous_mtx;         /* (o) rendezvous lock */
  160         struct mem_map  mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
  161         struct mem_seg  mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
  162         struct vmspace  *vmspace;               /* (o) guest's address space */
  163         char            name[VM_MAX_NAMELEN];   /* (o) virtual machine name */
  164         struct vcpu     vcpu[VM_MAXCPU];        /* (i) guest vcpus */
  165 };
  166 
  167 static int vmm_initialized;
  168 
  169 static struct vmm_ops *ops;
  170 #define VMM_INIT(num)   (ops != NULL ? (*ops->init)(num) : 0)
  171 #define VMM_CLEANUP()   (ops != NULL ? (*ops->cleanup)() : 0)
  172 #define VMM_RESUME()    (ops != NULL ? (*ops->resume)() : 0)
  173 
  174 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
  175 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \
  176         (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
  177 #define VMCLEANUP(vmi)  (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
  178 #define VMSPACE_ALLOC(min, max) \
  179         (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
  180 #define VMSPACE_FREE(vmspace) \
  181         (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
  182 #define VMGETREG(vmi, vcpu, num, retval)                \
  183         (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
  184 #define VMSETREG(vmi, vcpu, num, val)           \
  185         (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
  186 #define VMGETDESC(vmi, vcpu, num, desc)         \
  187         (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
  188 #define VMSETDESC(vmi, vcpu, num, desc)         \
  189         (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
  190 #define VMGETCAP(vmi, vcpu, num, retval)        \
  191         (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
  192 #define VMSETCAP(vmi, vcpu, num, val)           \
  193         (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
  194 #define VLAPIC_INIT(vmi, vcpu)                  \
  195         (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
  196 #define VLAPIC_CLEANUP(vmi, vlapic)             \
  197         (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
  198 
  199 #define fpu_start_emulating()   load_cr0(rcr0() | CR0_TS)
  200 #define fpu_stop_emulating()    clts()
  201 
  202 static MALLOC_DEFINE(M_VM, "vm", "vm");
  203 
  204 /* statistics */
  205 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
  206 
  207 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
  208 
  209 /*
  210  * Halt the guest if all vcpus are executing a HLT instruction with
  211  * interrupts disabled.
  212  */
  213 static int halt_detection_enabled = 1;
  214 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
  215     &halt_detection_enabled, 0,
  216     "Halt VM if all vcpus execute HLT with interrupts disabled");
  217 
  218 static int vmm_ipinum;
  219 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
  220     "IPI vector used for vcpu notifications");
  221 
  222 static int trace_guest_exceptions;
  223 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
  224     &trace_guest_exceptions, 0,
  225     "Trap into hypervisor on all guest exceptions and reflect them back");
  226 
  227 static int vmm_force_iommu = 0;
  228 TUNABLE_INT("hw.vmm.force_iommu", &vmm_force_iommu);
  229 SYSCTL_INT(_hw_vmm, OID_AUTO, force_iommu, CTLFLAG_RDTUN, &vmm_force_iommu, 0,
  230     "Force use of I/O MMU even if no passthrough devices were found.");
  231 
  232 static void vm_free_memmap(struct vm *vm, int ident);
  233 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
  234 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
  235 
  236 #ifdef KTR
  237 static const char *
  238 vcpu_state2str(enum vcpu_state state)
  239 {
  240 
  241         switch (state) {
  242         case VCPU_IDLE:
  243                 return ("idle");
  244         case VCPU_FROZEN:
  245                 return ("frozen");
  246         case VCPU_RUNNING:
  247                 return ("running");
  248         case VCPU_SLEEPING:
  249                 return ("sleeping");
  250         default:
  251                 return ("unknown");
  252         }
  253 }
  254 #endif
  255 
  256 static void
  257 vcpu_cleanup(struct vm *vm, int i, bool destroy)
  258 {
  259         struct vcpu *vcpu = &vm->vcpu[i];
  260 
  261         VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
  262         if (destroy) {
  263                 vmm_stat_free(vcpu->stats);     
  264                 fpu_save_area_free(vcpu->guestfpu);
  265         }
  266 }
  267 
  268 static void
  269 vcpu_init(struct vm *vm, int vcpu_id, bool create)
  270 {
  271         struct vcpu *vcpu;
  272 
  273         KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU,
  274             ("vcpu_init: invalid vcpu %d", vcpu_id));
  275           
  276         vcpu = &vm->vcpu[vcpu_id];
  277 
  278         if (create) {
  279                 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
  280                     "initialized", vcpu_id));
  281                 vcpu_lock_init(vcpu);
  282                 vcpu->state = VCPU_IDLE;
  283                 vcpu->hostcpu = NOCPU;
  284                 vcpu->guestfpu = fpu_save_area_alloc();
  285                 vcpu->stats = vmm_stat_alloc();
  286         }
  287 
  288         vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
  289         vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
  290         vcpu->reqidle = 0;
  291         vcpu->exitintinfo = 0;
  292         vcpu->nmi_pending = 0;
  293         vcpu->extint_pending = 0;
  294         vcpu->exception_pending = 0;
  295         vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
  296         fpu_save_area_reset(vcpu->guestfpu);
  297         vmm_stat_init(vcpu->stats);
  298 }
  299 
  300 int
  301 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
  302 {
  303 
  304         return (trace_guest_exceptions);
  305 }
  306 
  307 struct vm_exit *
  308 vm_exitinfo(struct vm *vm, int cpuid)
  309 {
  310         struct vcpu *vcpu;
  311 
  312         if (cpuid < 0 || cpuid >= VM_MAXCPU)
  313                 panic("vm_exitinfo: invalid cpuid %d", cpuid);
  314 
  315         vcpu = &vm->vcpu[cpuid];
  316 
  317         return (&vcpu->exitinfo);
  318 }
  319 
  320 static void
  321 vmm_resume(void)
  322 {
  323         VMM_RESUME();
  324 }
  325 
  326 static int
  327 vmm_init(void)
  328 {
  329         int error;
  330 
  331         vmm_host_state_init();
  332 
  333         vmm_ipinum = lapic_ipi_alloc(&IDTVEC(justreturn));
  334         if (vmm_ipinum < 0)
  335                 vmm_ipinum = IPI_AST;
  336 
  337         error = vmm_mem_init();
  338         if (error)
  339                 return (error);
  340         
  341         if (vmm_is_intel())
  342                 ops = &vmm_ops_intel;
  343         else if (vmm_is_amd())
  344                 ops = &vmm_ops_amd;
  345         else
  346                 return (ENXIO);
  347 
  348         vmm_resume_p = vmm_resume;
  349 
  350         return (VMM_INIT(vmm_ipinum));
  351 }
  352 
  353 static int
  354 vmm_handler(module_t mod, int what, void *arg)
  355 {
  356         int error;
  357 
  358         switch (what) {
  359         case MOD_LOAD:
  360                 vmmdev_init();
  361                 if (vmm_force_iommu || ppt_avail_devices() > 0)
  362                         iommu_init();
  363                 error = vmm_init();
  364                 if (error == 0)
  365                         vmm_initialized = 1;
  366                 break;
  367         case MOD_UNLOAD:
  368                 error = vmmdev_cleanup();
  369                 if (error == 0) {
  370                         vmm_resume_p = NULL;
  371                         iommu_cleanup();
  372                         if (vmm_ipinum != IPI_AST)
  373                                 lapic_ipi_free(vmm_ipinum);
  374                         error = VMM_CLEANUP();
  375                         /*
  376                          * Something bad happened - prevent new
  377                          * VMs from being created
  378                          */
  379                         if (error)
  380                                 vmm_initialized = 0;
  381                 }
  382                 break;
  383         default:
  384                 error = 0;
  385                 break;
  386         }
  387         return (error);
  388 }
  389 
  390 static moduledata_t vmm_kmod = {
  391         "vmm",
  392         vmm_handler,
  393         NULL
  394 };
  395 
  396 /*
  397  * vmm initialization has the following dependencies:
  398  *
  399  * - iommu initialization must happen after the pci passthru driver has had
  400  *   a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
  401  *
  402  * - VT-x initialization requires smp_rendezvous() and therefore must happen
  403  *   after SMP is fully functional (after SI_SUB_SMP).
  404  */
  405 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
  406 MODULE_VERSION(vmm, 1);
  407 
  408 static void
  409 vm_init(struct vm *vm, bool create)
  410 {
  411         int i;
  412 
  413         vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
  414         vm->iommu = NULL;
  415         vm->vioapic = vioapic_init(vm);
  416         vm->vhpet = vhpet_init(vm);
  417         vm->vatpic = vatpic_init(vm);
  418         vm->vatpit = vatpit_init(vm);
  419         vm->vpmtmr = vpmtmr_init(vm);
  420         if (create)
  421                 vm->vrtc = vrtc_init(vm);
  422 
  423         CPU_ZERO(&vm->active_cpus);
  424 
  425         vm->suspend = 0;
  426         CPU_ZERO(&vm->suspended_cpus);
  427 
  428         for (i = 0; i < VM_MAXCPU; i++)
  429                 vcpu_init(vm, i, create);
  430 }
  431 
  432 int
  433 vm_create(const char *name, struct vm **retvm)
  434 {
  435         struct vm *vm;
  436         struct vmspace *vmspace;
  437 
  438         /*
  439          * If vmm.ko could not be successfully initialized then don't attempt
  440          * to create the virtual machine.
  441          */
  442         if (!vmm_initialized)
  443                 return (ENXIO);
  444 
  445         if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
  446                 return (EINVAL);
  447 
  448         vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
  449         if (vmspace == NULL)
  450                 return (ENOMEM);
  451 
  452         vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
  453         strcpy(vm->name, name);
  454         vm->vmspace = vmspace;
  455         mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
  456 
  457         vm_init(vm, true);
  458 
  459         *retvm = vm;
  460         return (0);
  461 }
  462 
  463 static void
  464 vm_cleanup(struct vm *vm, bool destroy)
  465 {
  466         struct mem_map *mm;
  467         int i;
  468 
  469         ppt_unassign_all(vm);
  470 
  471         if (vm->iommu != NULL)
  472                 iommu_destroy_domain(vm->iommu);
  473 
  474         if (destroy)
  475                 vrtc_cleanup(vm->vrtc);
  476         else
  477                 vrtc_reset(vm->vrtc);
  478         vpmtmr_cleanup(vm->vpmtmr);
  479         vatpit_cleanup(vm->vatpit);
  480         vhpet_cleanup(vm->vhpet);
  481         vatpic_cleanup(vm->vatpic);
  482         vioapic_cleanup(vm->vioapic);
  483 
  484         for (i = 0; i < VM_MAXCPU; i++)
  485                 vcpu_cleanup(vm, i, destroy);
  486 
  487         VMCLEANUP(vm->cookie);
  488 
  489         /*
  490          * System memory is removed from the guest address space only when
  491          * the VM is destroyed. This is because the mapping remains the same
  492          * across VM reset.
  493          *
  494          * Device memory can be relocated by the guest (e.g. using PCI BARs)
  495          * so those mappings are removed on a VM reset.
  496          */
  497         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  498                 mm = &vm->mem_maps[i];
  499                 if (destroy || !sysmem_mapping(vm, mm))
  500                         vm_free_memmap(vm, i);
  501         }
  502 
  503         if (destroy) {
  504                 for (i = 0; i < VM_MAX_MEMSEGS; i++)
  505                         vm_free_memseg(vm, i);
  506 
  507                 VMSPACE_FREE(vm->vmspace);
  508                 vm->vmspace = NULL;
  509         }
  510 }
  511 
  512 void
  513 vm_destroy(struct vm *vm)
  514 {
  515         vm_cleanup(vm, true);
  516         free(vm, M_VM);
  517 }
  518 
  519 int
  520 vm_reinit(struct vm *vm)
  521 {
  522         int error;
  523 
  524         /*
  525          * A virtual machine can be reset only if all vcpus are suspended.
  526          */
  527         if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
  528                 vm_cleanup(vm, false);
  529                 vm_init(vm, false);
  530                 error = 0;
  531         } else {
  532                 error = EBUSY;
  533         }
  534 
  535         return (error);
  536 }
  537 
  538 const char *
  539 vm_name(struct vm *vm)
  540 {
  541         return (vm->name);
  542 }
  543 
  544 int
  545 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
  546 {
  547         vm_object_t obj;
  548 
  549         if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
  550                 return (ENOMEM);
  551         else
  552                 return (0);
  553 }
  554 
  555 int
  556 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
  557 {
  558 
  559         vmm_mmio_free(vm->vmspace, gpa, len);
  560         return (0);
  561 }
  562 
  563 /*
  564  * Return 'true' if 'gpa' is allocated in the guest address space.
  565  *
  566  * This function is called in the context of a running vcpu which acts as
  567  * an implicit lock on 'vm->mem_maps[]'.
  568  */
  569 bool
  570 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
  571 {
  572         struct mem_map *mm;
  573         int i;
  574 
  575 #ifdef INVARIANTS
  576         int hostcpu, state;
  577         state = vcpu_get_state(vm, vcpuid, &hostcpu);
  578         KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
  579             ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
  580 #endif
  581 
  582         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  583                 mm = &vm->mem_maps[i];
  584                 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
  585                         return (true);          /* 'gpa' is sysmem or devmem */
  586         }
  587 
  588         if (ppt_is_mmio(vm, gpa))
  589                 return (true);                  /* 'gpa' is pci passthru mmio */
  590 
  591         return (false);
  592 }
  593 
  594 int
  595 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
  596 {
  597         struct mem_seg *seg;
  598         vm_object_t obj;
  599 
  600         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  601                 return (EINVAL);
  602 
  603         if (len == 0 || (len & PAGE_MASK))
  604                 return (EINVAL);
  605 
  606         seg = &vm->mem_segs[ident];
  607         if (seg->object != NULL) {
  608                 if (seg->len == len && seg->sysmem == sysmem)
  609                         return (EEXIST);
  610                 else
  611                         return (EINVAL);
  612         }
  613 
  614         obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
  615         if (obj == NULL)
  616                 return (ENOMEM);
  617 
  618         seg->len = len;
  619         seg->object = obj;
  620         seg->sysmem = sysmem;
  621         return (0);
  622 }
  623 
  624 int
  625 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
  626     vm_object_t *objptr)
  627 {
  628         struct mem_seg *seg;
  629 
  630         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  631                 return (EINVAL);
  632 
  633         seg = &vm->mem_segs[ident];
  634         if (len)
  635                 *len = seg->len;
  636         if (sysmem)
  637                 *sysmem = seg->sysmem;
  638         if (objptr)
  639                 *objptr = seg->object;
  640         return (0);
  641 }
  642 
  643 void
  644 vm_free_memseg(struct vm *vm, int ident)
  645 {
  646         struct mem_seg *seg;
  647 
  648         KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
  649             ("%s: invalid memseg ident %d", __func__, ident));
  650 
  651         seg = &vm->mem_segs[ident];
  652         if (seg->object != NULL) {
  653                 vm_object_deallocate(seg->object);
  654                 bzero(seg, sizeof(struct mem_seg));
  655         }
  656 }
  657 
  658 int
  659 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
  660     size_t len, int prot, int flags)
  661 {
  662         struct mem_seg *seg;
  663         struct mem_map *m, *map;
  664         vm_ooffset_t last;
  665         int i, error;
  666 
  667         if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
  668                 return (EINVAL);
  669 
  670         if (flags & ~VM_MEMMAP_F_WIRED)
  671                 return (EINVAL);
  672 
  673         if (segid < 0 || segid >= VM_MAX_MEMSEGS)
  674                 return (EINVAL);
  675 
  676         seg = &vm->mem_segs[segid];
  677         if (seg->object == NULL)
  678                 return (EINVAL);
  679 
  680         last = first + len;
  681         if (first < 0 || first >= last || last > seg->len)
  682                 return (EINVAL);
  683 
  684         if ((gpa | first | last) & PAGE_MASK)
  685                 return (EINVAL);
  686 
  687         map = NULL;
  688         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  689                 m = &vm->mem_maps[i];
  690                 if (m->len == 0) {
  691                         map = m;
  692                         break;
  693                 }
  694         }
  695 
  696         if (map == NULL)
  697                 return (ENOSPC);
  698 
  699         error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
  700             len, 0, VMFS_NO_SPACE, prot, prot, 0);
  701         if (error != KERN_SUCCESS)
  702                 return (EFAULT);
  703 
  704         vm_object_reference(seg->object);
  705 
  706         if (flags & VM_MEMMAP_F_WIRED) {
  707                 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
  708                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
  709                 if (error != KERN_SUCCESS) {
  710                         vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
  711                         return (EFAULT);
  712                 }
  713         }
  714 
  715         map->gpa = gpa;
  716         map->len = len;
  717         map->segoff = first;
  718         map->segid = segid;
  719         map->prot = prot;
  720         map->flags = flags;
  721         return (0);
  722 }
  723 
  724 int
  725 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
  726     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
  727 {
  728         struct mem_map *mm, *mmnext;
  729         int i;
  730 
  731         mmnext = NULL;
  732         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  733                 mm = &vm->mem_maps[i];
  734                 if (mm->len == 0 || mm->gpa < *gpa)
  735                         continue;
  736                 if (mmnext == NULL || mm->gpa < mmnext->gpa)
  737                         mmnext = mm;
  738         }
  739 
  740         if (mmnext != NULL) {
  741                 *gpa = mmnext->gpa;
  742                 if (segid)
  743                         *segid = mmnext->segid;
  744                 if (segoff)
  745                         *segoff = mmnext->segoff;
  746                 if (len)
  747                         *len = mmnext->len;
  748                 if (prot)
  749                         *prot = mmnext->prot;
  750                 if (flags)
  751                         *flags = mmnext->flags;
  752                 return (0);
  753         } else {
  754                 return (ENOENT);
  755         }
  756 }
  757 
  758 static void
  759 vm_free_memmap(struct vm *vm, int ident)
  760 {
  761         struct mem_map *mm;
  762         int error;
  763 
  764         mm = &vm->mem_maps[ident];
  765         if (mm->len) {
  766                 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
  767                     mm->gpa + mm->len);
  768                 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
  769                     __func__, error));
  770                 bzero(mm, sizeof(struct mem_map));
  771         }
  772 }
  773 
  774 static __inline bool
  775 sysmem_mapping(struct vm *vm, struct mem_map *mm)
  776 {
  777 
  778         if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
  779                 return (true);
  780         else
  781                 return (false);
  782 }
  783 
  784 static vm_paddr_t
  785 sysmem_maxaddr(struct vm *vm)
  786 {
  787         struct mem_map *mm;
  788         vm_paddr_t maxaddr;
  789         int i;
  790 
  791         maxaddr = 0;
  792         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  793                 mm = &vm->mem_maps[i];
  794                 if (sysmem_mapping(vm, mm)) {
  795                         if (maxaddr < mm->gpa + mm->len)
  796                                 maxaddr = mm->gpa + mm->len;
  797                 }
  798         }
  799         return (maxaddr);
  800 }
  801 
  802 static void
  803 vm_iommu_modify(struct vm *vm, boolean_t map)
  804 {
  805         int i, sz;
  806         vm_paddr_t gpa, hpa;
  807         struct mem_map *mm;
  808         void *vp, *cookie, *host_domain;
  809 
  810         sz = PAGE_SIZE;
  811         host_domain = iommu_host_domain();
  812 
  813         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  814                 mm = &vm->mem_maps[i];
  815                 if (!sysmem_mapping(vm, mm))
  816                         continue;
  817 
  818                 if (map) {
  819                         KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
  820                             ("iommu map found invalid memmap %#lx/%#lx/%#x",
  821                             mm->gpa, mm->len, mm->flags));
  822                         if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
  823                                 continue;
  824                         mm->flags |= VM_MEMMAP_F_IOMMU;
  825                 } else {
  826                         if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
  827                                 continue;
  828                         mm->flags &= ~VM_MEMMAP_F_IOMMU;
  829                         KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
  830                             ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
  831                             mm->gpa, mm->len, mm->flags));
  832                 }
  833 
  834                 gpa = mm->gpa;
  835                 while (gpa < mm->gpa + mm->len) {
  836                         vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
  837                                          &cookie);
  838                         KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
  839                             vm_name(vm), gpa));
  840 
  841                         vm_gpa_release(cookie);
  842 
  843                         hpa = DMAP_TO_PHYS((uintptr_t)vp);
  844                         if (map) {
  845                                 iommu_create_mapping(vm->iommu, gpa, hpa, sz);
  846                                 iommu_remove_mapping(host_domain, hpa, sz);
  847                         } else {
  848                                 iommu_remove_mapping(vm->iommu, gpa, sz);
  849                                 iommu_create_mapping(host_domain, hpa, hpa, sz);
  850                         }
  851 
  852                         gpa += PAGE_SIZE;
  853                 }
  854         }
  855 
  856         /*
  857          * Invalidate the cached translations associated with the domain
  858          * from which pages were removed.
  859          */
  860         if (map)
  861                 iommu_invalidate_tlb(host_domain);
  862         else
  863                 iommu_invalidate_tlb(vm->iommu);
  864 }
  865 
  866 #define vm_iommu_unmap(vm)      vm_iommu_modify((vm), FALSE)
  867 #define vm_iommu_map(vm)        vm_iommu_modify((vm), TRUE)
  868 
  869 int
  870 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
  871 {
  872         int error;
  873 
  874         error = ppt_unassign_device(vm, bus, slot, func);
  875         if (error)
  876                 return (error);
  877 
  878         if (ppt_assigned_devices(vm) == 0)
  879                 vm_iommu_unmap(vm);
  880 
  881         return (0);
  882 }
  883 
  884 int
  885 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
  886 {
  887         int error;
  888         vm_paddr_t maxaddr;
  889 
  890         /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
  891         if (ppt_assigned_devices(vm) == 0) {
  892                 KASSERT(vm->iommu == NULL,
  893                     ("vm_assign_pptdev: iommu must be NULL"));
  894                 maxaddr = sysmem_maxaddr(vm);
  895                 vm->iommu = iommu_create_domain(maxaddr);
  896                 vm_iommu_map(vm);
  897         }
  898 
  899         error = ppt_assign_device(vm, bus, slot, func);
  900         return (error);
  901 }
  902 
  903 void *
  904 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
  905             void **cookie)
  906 {
  907         int i, count, pageoff;
  908         struct mem_map *mm;
  909         vm_page_t m;
  910 #ifdef INVARIANTS
  911         /*
  912          * All vcpus are frozen by ioctls that modify the memory map
  913          * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
  914          * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
  915          */
  916         int state;
  917         KASSERT(vcpuid >= -1 || vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d",
  918             __func__, vcpuid));
  919         for (i = 0; i < VM_MAXCPU; i++) {
  920                 if (vcpuid != -1 && vcpuid != i)
  921                         continue;
  922                 state = vcpu_get_state(vm, i, NULL);
  923                 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
  924                     __func__, state));
  925         }
  926 #endif
  927         pageoff = gpa & PAGE_MASK;
  928         if (len > PAGE_SIZE - pageoff)
  929                 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
  930 
  931         count = 0;
  932         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  933                 mm = &vm->mem_maps[i];
  934                 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
  935                     gpa < mm->gpa + mm->len) {
  936                         count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
  937                             trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
  938                         break;
  939                 }
  940         }
  941 
  942         if (count == 1) {
  943                 *cookie = m;
  944                 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
  945         } else {
  946                 *cookie = NULL;
  947                 return (NULL);
  948         }
  949 }
  950 
  951 void
  952 vm_gpa_release(void *cookie)
  953 {
  954         vm_page_t m = cookie;
  955 
  956         vm_page_lock(m);
  957         vm_page_unhold(m);
  958         vm_page_unlock(m);
  959 }
  960 
  961 int
  962 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
  963 {
  964 
  965         if (vcpu < 0 || vcpu >= VM_MAXCPU)
  966                 return (EINVAL);
  967 
  968         if (reg >= VM_REG_LAST)
  969                 return (EINVAL);
  970 
  971         return (VMGETREG(vm->cookie, vcpu, reg, retval));
  972 }
  973 
  974 int
  975 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
  976 {
  977         struct vcpu *vcpu;
  978         int error;
  979 
  980         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
  981                 return (EINVAL);
  982 
  983         if (reg >= VM_REG_LAST)
  984                 return (EINVAL);
  985 
  986         error = VMSETREG(vm->cookie, vcpuid, reg, val);
  987         if (error || reg != VM_REG_GUEST_RIP)
  988                 return (error);
  989 
  990         /* Set 'nextrip' to match the value of %rip */
  991         VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
  992         vcpu = &vm->vcpu[vcpuid];
  993         vcpu->nextrip = val;
  994         return (0);
  995 }
  996 
  997 static boolean_t
  998 is_descriptor_table(int reg)
  999 {
 1000 
 1001         switch (reg) {
 1002         case VM_REG_GUEST_IDTR:
 1003         case VM_REG_GUEST_GDTR:
 1004                 return (TRUE);
 1005         default:
 1006                 return (FALSE);
 1007         }
 1008 }
 1009 
 1010 static boolean_t
 1011 is_segment_register(int reg)
 1012 {
 1013         
 1014         switch (reg) {
 1015         case VM_REG_GUEST_ES:
 1016         case VM_REG_GUEST_CS:
 1017         case VM_REG_GUEST_SS:
 1018         case VM_REG_GUEST_DS:
 1019         case VM_REG_GUEST_FS:
 1020         case VM_REG_GUEST_GS:
 1021         case VM_REG_GUEST_TR:
 1022         case VM_REG_GUEST_LDTR:
 1023                 return (TRUE);
 1024         default:
 1025                 return (FALSE);
 1026         }
 1027 }
 1028 
 1029 int
 1030 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
 1031                 struct seg_desc *desc)
 1032 {
 1033 
 1034         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 1035                 return (EINVAL);
 1036 
 1037         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1038                 return (EINVAL);
 1039 
 1040         return (VMGETDESC(vm->cookie, vcpu, reg, desc));
 1041 }
 1042 
 1043 int
 1044 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
 1045                 struct seg_desc *desc)
 1046 {
 1047         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 1048                 return (EINVAL);
 1049 
 1050         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1051                 return (EINVAL);
 1052 
 1053         return (VMSETDESC(vm->cookie, vcpu, reg, desc));
 1054 }
 1055 
 1056 static void
 1057 restore_guest_fpustate(struct vcpu *vcpu)
 1058 {
 1059 
 1060         /* flush host state to the pcb */
 1061         fpuexit(curthread);
 1062 
 1063         /* restore guest FPU state */
 1064         fpu_stop_emulating();
 1065         fpurestore(vcpu->guestfpu);
 1066 
 1067         /* restore guest XCR0 if XSAVE is enabled in the host */
 1068         if (rcr4() & CR4_XSAVE)
 1069                 load_xcr(0, vcpu->guest_xcr0);
 1070 
 1071         /*
 1072          * The FPU is now "dirty" with the guest's state so turn on emulation
 1073          * to trap any access to the FPU by the host.
 1074          */
 1075         fpu_start_emulating();
 1076 }
 1077 
 1078 static void
 1079 save_guest_fpustate(struct vcpu *vcpu)
 1080 {
 1081 
 1082         if ((rcr0() & CR0_TS) == 0)
 1083                 panic("fpu emulation not enabled in host!");
 1084 
 1085         /* save guest XCR0 and restore host XCR0 */
 1086         if (rcr4() & CR4_XSAVE) {
 1087                 vcpu->guest_xcr0 = rxcr(0);
 1088                 load_xcr(0, vmm_get_host_xcr0());
 1089         }
 1090 
 1091         /* save guest FPU state */
 1092         fpu_stop_emulating();
 1093         fpusave(vcpu->guestfpu);
 1094         fpu_start_emulating();
 1095 }
 1096 
 1097 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
 1098 
 1099 static int
 1100 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 1101     bool from_idle)
 1102 {
 1103         struct vcpu *vcpu;
 1104         int error;
 1105 
 1106         vcpu = &vm->vcpu[vcpuid];
 1107         vcpu_assert_locked(vcpu);
 1108 
 1109         /*
 1110          * State transitions from the vmmdev_ioctl() must always begin from
 1111          * the VCPU_IDLE state. This guarantees that there is only a single
 1112          * ioctl() operating on a vcpu at any point.
 1113          */
 1114         if (from_idle) {
 1115                 while (vcpu->state != VCPU_IDLE) {
 1116                         vcpu->reqidle = 1;
 1117                         vcpu_notify_event_locked(vcpu, false);
 1118                         VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
 1119                             "idle requested", vcpu_state2str(vcpu->state));
 1120                         msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
 1121                 }
 1122         } else {
 1123                 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
 1124                     "vcpu idle state"));
 1125         }
 1126 
 1127         if (vcpu->state == VCPU_RUNNING) {
 1128                 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
 1129                     "mismatch for running vcpu", curcpu, vcpu->hostcpu));
 1130         } else {
 1131                 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
 1132                     "vcpu that is not running", vcpu->hostcpu));
 1133         }
 1134 
 1135         /*
 1136          * The following state transitions are allowed:
 1137          * IDLE -> FROZEN -> IDLE
 1138          * FROZEN -> RUNNING -> FROZEN
 1139          * FROZEN -> SLEEPING -> FROZEN
 1140          */
 1141         switch (vcpu->state) {
 1142         case VCPU_IDLE:
 1143         case VCPU_RUNNING:
 1144         case VCPU_SLEEPING:
 1145                 error = (newstate != VCPU_FROZEN);
 1146                 break;
 1147         case VCPU_FROZEN:
 1148                 error = (newstate == VCPU_FROZEN);
 1149                 break;
 1150         default:
 1151                 error = 1;
 1152                 break;
 1153         }
 1154 
 1155         if (error)
 1156                 return (EBUSY);
 1157 
 1158         VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
 1159             vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
 1160 
 1161         vcpu->state = newstate;
 1162         if (newstate == VCPU_RUNNING)
 1163                 vcpu->hostcpu = curcpu;
 1164         else
 1165                 vcpu->hostcpu = NOCPU;
 1166 
 1167         if (newstate == VCPU_IDLE)
 1168                 wakeup(&vcpu->state);
 1169 
 1170         return (0);
 1171 }
 1172 
 1173 static void
 1174 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1175 {
 1176         int error;
 1177 
 1178         if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
 1179                 panic("Error %d setting state to %d\n", error, newstate);
 1180 }
 1181 
 1182 static void
 1183 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1184 {
 1185         int error;
 1186 
 1187         if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
 1188                 panic("Error %d setting state to %d", error, newstate);
 1189 }
 1190 
 1191 static void
 1192 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
 1193 {
 1194 
 1195         KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
 1196 
 1197         /*
 1198          * Update 'rendezvous_func' and execute a write memory barrier to
 1199          * ensure that it is visible across all host cpus. This is not needed
 1200          * for correctness but it does ensure that all the vcpus will notice
 1201          * that the rendezvous is requested immediately.
 1202          */
 1203         vm->rendezvous_func = func;
 1204         wmb();
 1205 }
 1206 
 1207 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt)                                \
 1208         do {                                                            \
 1209                 if (vcpuid >= 0)                                        \
 1210                         VCPU_CTR0(vm, vcpuid, fmt);                     \
 1211                 else                                                    \
 1212                         VM_CTR0(vm, fmt);                               \
 1213         } while (0)
 1214 
 1215 static void
 1216 vm_handle_rendezvous(struct vm *vm, int vcpuid)
 1217 {
 1218 
 1219         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
 1220             ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
 1221 
 1222         mtx_lock(&vm->rendezvous_mtx);
 1223         while (vm->rendezvous_func != NULL) {
 1224                 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
 1225                 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
 1226 
 1227                 if (vcpuid != -1 &&
 1228                     CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
 1229                     !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
 1230                         VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
 1231                         (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
 1232                         CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
 1233                 }
 1234                 if (CPU_CMP(&vm->rendezvous_req_cpus,
 1235                     &vm->rendezvous_done_cpus) == 0) {
 1236                         VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
 1237                         vm_set_rendezvous_func(vm, NULL);
 1238                         wakeup(&vm->rendezvous_func);
 1239                         break;
 1240                 }
 1241                 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
 1242                 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
 1243                     "vmrndv", 0);
 1244         }
 1245         mtx_unlock(&vm->rendezvous_mtx);
 1246 }
 1247 
 1248 /*
 1249  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
 1250  */
 1251 static int
 1252 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
 1253 {
 1254         struct vcpu *vcpu;
 1255         const char *wmesg;
 1256         int t, vcpu_halted, vm_halted;
 1257 
 1258         KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
 1259 
 1260         vcpu = &vm->vcpu[vcpuid];
 1261         vcpu_halted = 0;
 1262         vm_halted = 0;
 1263 
 1264         vcpu_lock(vcpu);
 1265         while (1) {
 1266                 /*
 1267                  * Do a final check for pending NMI or interrupts before
 1268                  * really putting this thread to sleep. Also check for
 1269                  * software events that would cause this vcpu to wakeup.
 1270                  *
 1271                  * These interrupts/events could have happened after the
 1272                  * vcpu returned from VMRUN() and before it acquired the
 1273                  * vcpu lock above.
 1274                  */
 1275                 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
 1276                         break;
 1277                 if (vm_nmi_pending(vm, vcpuid))
 1278                         break;
 1279                 if (!intr_disabled) {
 1280                         if (vm_extint_pending(vm, vcpuid) ||
 1281                             vlapic_pending_intr(vcpu->vlapic, NULL)) {
 1282                                 break;
 1283                         }
 1284                 }
 1285 
 1286                 /* Don't go to sleep if the vcpu thread needs to yield */
 1287                 if (vcpu_should_yield(vm, vcpuid))
 1288                         break;
 1289 
 1290                 /*
 1291                  * Some Linux guests implement "halt" by having all vcpus
 1292                  * execute HLT with interrupts disabled. 'halted_cpus' keeps
 1293                  * track of the vcpus that have entered this state. When all
 1294                  * vcpus enter the halted state the virtual machine is halted.
 1295                  */
 1296                 if (intr_disabled) {
 1297                         wmesg = "vmhalt";
 1298                         VCPU_CTR0(vm, vcpuid, "Halted");
 1299                         if (!vcpu_halted && halt_detection_enabled) {
 1300                                 vcpu_halted = 1;
 1301                                 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
 1302                         }
 1303                         if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
 1304                                 vm_halted = 1;
 1305                                 break;
 1306                         }
 1307                 } else {
 1308                         wmesg = "vmidle";
 1309                 }
 1310 
 1311                 t = ticks;
 1312                 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1313                 /*
 1314                  * XXX msleep_spin() cannot be interrupted by signals so
 1315                  * wake up periodically to check pending signals.
 1316                  */
 1317                 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
 1318                 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1319                 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
 1320         }
 1321 
 1322         if (vcpu_halted)
 1323                 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
 1324 
 1325         vcpu_unlock(vcpu);
 1326 
 1327         if (vm_halted)
 1328                 vm_suspend(vm, VM_SUSPEND_HALT);
 1329 
 1330         return (0);
 1331 }
 1332 
 1333 static int
 1334 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
 1335 {
 1336         int rv, ftype;
 1337         struct vm_map *map;
 1338         struct vcpu *vcpu;
 1339         struct vm_exit *vme;
 1340 
 1341         vcpu = &vm->vcpu[vcpuid];
 1342         vme = &vcpu->exitinfo;
 1343 
 1344         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1345             __func__, vme->inst_length));
 1346 
 1347         ftype = vme->u.paging.fault_type;
 1348         KASSERT(ftype == VM_PROT_READ ||
 1349             ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
 1350             ("vm_handle_paging: invalid fault_type %d", ftype));
 1351 
 1352         if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
 1353                 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
 1354                     vme->u.paging.gpa, ftype);
 1355                 if (rv == 0) {
 1356                         VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
 1357                             ftype == VM_PROT_READ ? "accessed" : "dirty",
 1358                             vme->u.paging.gpa);
 1359                         goto done;
 1360                 }
 1361         }
 1362 
 1363         map = &vm->vmspace->vm_map;
 1364         rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
 1365 
 1366         VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
 1367             "ftype = %d", rv, vme->u.paging.gpa, ftype);
 1368 
 1369         if (rv != KERN_SUCCESS)
 1370                 return (EFAULT);
 1371 done:
 1372         return (0);
 1373 }
 1374 
 1375 static int
 1376 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
 1377 {
 1378         struct vie *vie;
 1379         struct vcpu *vcpu;
 1380         struct vm_exit *vme;
 1381         uint64_t gla, gpa, cs_base;
 1382         struct vm_guest_paging *paging;
 1383         mem_region_read_t mread;
 1384         mem_region_write_t mwrite;
 1385         enum vm_cpu_mode cpu_mode;
 1386         int cs_d, error, fault;
 1387 
 1388         vcpu = &vm->vcpu[vcpuid];
 1389         vme = &vcpu->exitinfo;
 1390 
 1391         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1392             __func__, vme->inst_length));
 1393 
 1394         gla = vme->u.inst_emul.gla;
 1395         gpa = vme->u.inst_emul.gpa;
 1396         cs_base = vme->u.inst_emul.cs_base;
 1397         cs_d = vme->u.inst_emul.cs_d;
 1398         vie = &vme->u.inst_emul.vie;
 1399         paging = &vme->u.inst_emul.paging;
 1400         cpu_mode = paging->cpu_mode;
 1401 
 1402         VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
 1403 
 1404         /* Fetch, decode and emulate the faulting instruction */
 1405         if (vie->num_valid == 0) {
 1406                 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
 1407                     cs_base, VIE_INST_SIZE, vie, &fault);
 1408         } else {
 1409                 /*
 1410                  * The instruction bytes have already been copied into 'vie'
 1411                  */
 1412                 error = fault = 0;
 1413         }
 1414         if (error || fault)
 1415                 return (error);
 1416 
 1417         if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
 1418                 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
 1419                     vme->rip + cs_base);
 1420                 *retu = true;       /* dump instruction bytes in userspace */
 1421                 return (0);
 1422         }
 1423 
 1424         /*
 1425          * Update 'nextrip' based on the length of the emulated instruction.
 1426          */
 1427         vme->inst_length = vie->num_processed;
 1428         vcpu->nextrip += vie->num_processed;
 1429         VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
 1430             "decoding", vcpu->nextrip);
 1431  
 1432         /* return to userland unless this is an in-kernel emulated device */
 1433         if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
 1434                 mread = lapic_mmio_read;
 1435                 mwrite = lapic_mmio_write;
 1436         } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
 1437                 mread = vioapic_mmio_read;
 1438                 mwrite = vioapic_mmio_write;
 1439         } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
 1440                 mread = vhpet_mmio_read;
 1441                 mwrite = vhpet_mmio_write;
 1442         } else {
 1443                 *retu = true;
 1444                 return (0);
 1445         }
 1446 
 1447         error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
 1448             mread, mwrite, retu);
 1449 
 1450         return (error);
 1451 }
 1452 
 1453 static int
 1454 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
 1455 {
 1456         int i, done;
 1457         struct vcpu *vcpu;
 1458 
 1459         done = 0;
 1460         vcpu = &vm->vcpu[vcpuid];
 1461 
 1462         CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
 1463 
 1464         /*
 1465          * Wait until all 'active_cpus' have suspended themselves.
 1466          *
 1467          * Since a VM may be suspended at any time including when one or
 1468          * more vcpus are doing a rendezvous we need to call the rendezvous
 1469          * handler while we are waiting to prevent a deadlock.
 1470          */
 1471         vcpu_lock(vcpu);
 1472         while (1) {
 1473                 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
 1474                         VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
 1475                         break;
 1476                 }
 1477 
 1478                 if (vm->rendezvous_func == NULL) {
 1479                         VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
 1480                         vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1481                         msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
 1482                         vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1483                 } else {
 1484                         VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
 1485                         vcpu_unlock(vcpu);
 1486                         vm_handle_rendezvous(vm, vcpuid);
 1487                         vcpu_lock(vcpu);
 1488                 }
 1489         }
 1490         vcpu_unlock(vcpu);
 1491 
 1492         /*
 1493          * Wakeup the other sleeping vcpus and return to userspace.
 1494          */
 1495         for (i = 0; i < VM_MAXCPU; i++) {
 1496                 if (CPU_ISSET(i, &vm->suspended_cpus)) {
 1497                         vcpu_notify_event(vm, i, false);
 1498                 }
 1499         }
 1500 
 1501         *retu = true;
 1502         return (0);
 1503 }
 1504 
 1505 static int
 1506 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
 1507 {
 1508         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 1509 
 1510         vcpu_lock(vcpu);
 1511         KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
 1512         vcpu->reqidle = 0;
 1513         vcpu_unlock(vcpu);
 1514         *retu = true;
 1515         return (0);
 1516 }
 1517 
 1518 int
 1519 vm_suspend(struct vm *vm, enum vm_suspend_how how)
 1520 {
 1521         int i;
 1522 
 1523         if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
 1524                 return (EINVAL);
 1525 
 1526         if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
 1527                 VM_CTR2(vm, "virtual machine already suspended %d/%d",
 1528                     vm->suspend, how);
 1529                 return (EALREADY);
 1530         }
 1531 
 1532         VM_CTR1(vm, "virtual machine successfully suspended %d", how);
 1533 
 1534         /*
 1535          * Notify all active vcpus that they are now suspended.
 1536          */
 1537         for (i = 0; i < VM_MAXCPU; i++) {
 1538                 if (CPU_ISSET(i, &vm->active_cpus))
 1539                         vcpu_notify_event(vm, i, false);
 1540         }
 1541 
 1542         return (0);
 1543 }
 1544 
 1545 void
 1546 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
 1547 {
 1548         struct vm_exit *vmexit;
 1549 
 1550         KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
 1551             ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
 1552 
 1553         vmexit = vm_exitinfo(vm, vcpuid);
 1554         vmexit->rip = rip;
 1555         vmexit->inst_length = 0;
 1556         vmexit->exitcode = VM_EXITCODE_SUSPENDED;
 1557         vmexit->u.suspended.how = vm->suspend;
 1558 }
 1559 
 1560 void
 1561 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
 1562 {
 1563         struct vm_exit *vmexit;
 1564 
 1565         KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
 1566 
 1567         vmexit = vm_exitinfo(vm, vcpuid);
 1568         vmexit->rip = rip;
 1569         vmexit->inst_length = 0;
 1570         vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
 1571         vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
 1572 }
 1573 
 1574 void
 1575 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
 1576 {
 1577         struct vm_exit *vmexit;
 1578 
 1579         vmexit = vm_exitinfo(vm, vcpuid);
 1580         vmexit->rip = rip;
 1581         vmexit->inst_length = 0;
 1582         vmexit->exitcode = VM_EXITCODE_REQIDLE;
 1583         vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
 1584 }
 1585 
 1586 void
 1587 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
 1588 {
 1589         struct vm_exit *vmexit;
 1590 
 1591         vmexit = vm_exitinfo(vm, vcpuid);
 1592         vmexit->rip = rip;
 1593         vmexit->inst_length = 0;
 1594         vmexit->exitcode = VM_EXITCODE_BOGUS;
 1595         vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
 1596 }
 1597 
 1598 int
 1599 vm_run(struct vm *vm, struct vm_run *vmrun)
 1600 {
 1601         struct vm_eventinfo evinfo;
 1602         int error, vcpuid;
 1603         struct vcpu *vcpu;
 1604         struct pcb *pcb;
 1605         uint64_t tscval;
 1606         struct vm_exit *vme;
 1607         bool retu, intr_disabled;
 1608         pmap_t pmap;
 1609 
 1610         vcpuid = vmrun->cpuid;
 1611 
 1612         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1613                 return (EINVAL);
 1614 
 1615         if (!CPU_ISSET(vcpuid, &vm->active_cpus))
 1616                 return (EINVAL);
 1617 
 1618         if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
 1619                 return (EINVAL);
 1620 
 1621         pmap = vmspace_pmap(vm->vmspace);
 1622         vcpu = &vm->vcpu[vcpuid];
 1623         vme = &vcpu->exitinfo;
 1624         evinfo.rptr = &vm->rendezvous_func;
 1625         evinfo.sptr = &vm->suspend;
 1626         evinfo.iptr = &vcpu->reqidle;
 1627 restart:
 1628         critical_enter();
 1629 
 1630         KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
 1631             ("vm_run: absurd pm_active"));
 1632 
 1633         tscval = rdtsc();
 1634 
 1635         pcb = PCPU_GET(curpcb);
 1636         set_pcb_flags(pcb, PCB_FULL_IRET);
 1637 
 1638         restore_guest_fpustate(vcpu);
 1639 
 1640         vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
 1641         error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
 1642         vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
 1643 
 1644         save_guest_fpustate(vcpu);
 1645 
 1646         vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
 1647 
 1648         critical_exit();
 1649 
 1650         if (error == 0) {
 1651                 retu = false;
 1652                 vcpu->nextrip = vme->rip + vme->inst_length;
 1653                 switch (vme->exitcode) {
 1654                 case VM_EXITCODE_REQIDLE:
 1655                         error = vm_handle_reqidle(vm, vcpuid, &retu);
 1656                         break;
 1657                 case VM_EXITCODE_SUSPENDED:
 1658                         error = vm_handle_suspend(vm, vcpuid, &retu);
 1659                         break;
 1660                 case VM_EXITCODE_IOAPIC_EOI:
 1661                         vioapic_process_eoi(vm, vcpuid,
 1662                             vme->u.ioapic_eoi.vector);
 1663                         break;
 1664                 case VM_EXITCODE_RENDEZVOUS:
 1665                         vm_handle_rendezvous(vm, vcpuid);
 1666                         error = 0;
 1667                         break;
 1668                 case VM_EXITCODE_HLT:
 1669                         intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
 1670                         error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
 1671                         break;
 1672                 case VM_EXITCODE_PAGING:
 1673                         error = vm_handle_paging(vm, vcpuid, &retu);
 1674                         break;
 1675                 case VM_EXITCODE_INST_EMUL:
 1676                         error = vm_handle_inst_emul(vm, vcpuid, &retu);
 1677                         break;
 1678                 case VM_EXITCODE_INOUT:
 1679                 case VM_EXITCODE_INOUT_STR:
 1680                         error = vm_handle_inout(vm, vcpuid, vme, &retu);
 1681                         break;
 1682                 case VM_EXITCODE_MONITOR:
 1683                 case VM_EXITCODE_MWAIT:
 1684                         vm_inject_ud(vm, vcpuid);
 1685                         break;
 1686                 default:
 1687                         retu = true;    /* handled in userland */
 1688                         break;
 1689                 }
 1690         }
 1691 
 1692         if (error == 0 && retu == false)
 1693                 goto restart;
 1694 
 1695         VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
 1696 
 1697         /* copy the exit information */
 1698         bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
 1699         return (error);
 1700 }
 1701 
 1702 int
 1703 vm_restart_instruction(void *arg, int vcpuid)
 1704 {
 1705         struct vm *vm;
 1706         struct vcpu *vcpu;
 1707         enum vcpu_state state;
 1708         uint64_t rip;
 1709         int error;
 1710 
 1711         vm = arg;
 1712         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1713                 return (EINVAL);
 1714 
 1715         vcpu = &vm->vcpu[vcpuid];
 1716         state = vcpu_get_state(vm, vcpuid, NULL);
 1717         if (state == VCPU_RUNNING) {
 1718                 /*
 1719                  * When a vcpu is "running" the next instruction is determined
 1720                  * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
 1721                  * Thus setting 'inst_length' to zero will cause the current
 1722                  * instruction to be restarted.
 1723                  */
 1724                 vcpu->exitinfo.inst_length = 0;
 1725                 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
 1726                     "setting inst_length to zero", vcpu->exitinfo.rip);
 1727         } else if (state == VCPU_FROZEN) {
 1728                 /*
 1729                  * When a vcpu is "frozen" it is outside the critical section
 1730                  * around VMRUN() and 'nextrip' points to the next instruction.
 1731                  * Thus instruction restart is achieved by setting 'nextrip'
 1732                  * to the vcpu's %rip.
 1733                  */
 1734                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
 1735                 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
 1736                 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
 1737                     "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
 1738                 vcpu->nextrip = rip;
 1739         } else {
 1740                 panic("%s: invalid state %d", __func__, state);
 1741         }
 1742         return (0);
 1743 }
 1744 
 1745 int
 1746 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
 1747 {
 1748         struct vcpu *vcpu;
 1749         int type, vector;
 1750 
 1751         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1752                 return (EINVAL);
 1753 
 1754         vcpu = &vm->vcpu[vcpuid];
 1755 
 1756         if (info & VM_INTINFO_VALID) {
 1757                 type = info & VM_INTINFO_TYPE;
 1758                 vector = info & 0xff;
 1759                 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
 1760                         return (EINVAL);
 1761                 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
 1762                         return (EINVAL);
 1763                 if (info & VM_INTINFO_RSVD)
 1764                         return (EINVAL);
 1765         } else {
 1766                 info = 0;
 1767         }
 1768         VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
 1769         vcpu->exitintinfo = info;
 1770         return (0);
 1771 }
 1772 
 1773 enum exc_class {
 1774         EXC_BENIGN,
 1775         EXC_CONTRIBUTORY,
 1776         EXC_PAGEFAULT
 1777 };
 1778 
 1779 #define IDT_VE  20      /* Virtualization Exception (Intel specific) */
 1780 
 1781 static enum exc_class
 1782 exception_class(uint64_t info)
 1783 {
 1784         int type, vector;
 1785 
 1786         KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
 1787         type = info & VM_INTINFO_TYPE;
 1788         vector = info & 0xff;
 1789 
 1790         /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
 1791         switch (type) {
 1792         case VM_INTINFO_HWINTR:
 1793         case VM_INTINFO_SWINTR:
 1794         case VM_INTINFO_NMI:
 1795                 return (EXC_BENIGN);
 1796         default:
 1797                 /*
 1798                  * Hardware exception.
 1799                  *
 1800                  * SVM and VT-x use identical type values to represent NMI,
 1801                  * hardware interrupt and software interrupt.
 1802                  *
 1803                  * SVM uses type '3' for all exceptions. VT-x uses type '3'
 1804                  * for exceptions except #BP and #OF. #BP and #OF use a type
 1805                  * value of '5' or '6'. Therefore we don't check for explicit
 1806                  * values of 'type' to classify 'intinfo' into a hardware
 1807                  * exception.
 1808                  */
 1809                 break;
 1810         }
 1811 
 1812         switch (vector) {
 1813         case IDT_PF:
 1814         case IDT_VE:
 1815                 return (EXC_PAGEFAULT);
 1816         case IDT_DE:
 1817         case IDT_TS:
 1818         case IDT_NP:
 1819         case IDT_SS:
 1820         case IDT_GP:
 1821                 return (EXC_CONTRIBUTORY);
 1822         default:
 1823                 return (EXC_BENIGN);
 1824         }
 1825 }
 1826 
 1827 static int
 1828 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
 1829     uint64_t *retinfo)
 1830 {
 1831         enum exc_class exc1, exc2;
 1832         int type1, vector1;
 1833 
 1834         KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
 1835         KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
 1836 
 1837         /*
 1838          * If an exception occurs while attempting to call the double-fault
 1839          * handler the processor enters shutdown mode (aka triple fault).
 1840          */
 1841         type1 = info1 & VM_INTINFO_TYPE;
 1842         vector1 = info1 & 0xff;
 1843         if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
 1844                 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
 1845                     info1, info2);
 1846                 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
 1847                 *retinfo = 0;
 1848                 return (0);
 1849         }
 1850 
 1851         /*
 1852          * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
 1853          */
 1854         exc1 = exception_class(info1);
 1855         exc2 = exception_class(info2);
 1856         if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
 1857             (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
 1858                 /* Convert nested fault into a double fault. */
 1859                 *retinfo = IDT_DF;
 1860                 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1861                 *retinfo |= VM_INTINFO_DEL_ERRCODE;
 1862         } else {
 1863                 /* Handle exceptions serially */
 1864                 *retinfo = info2;
 1865         }
 1866         return (1);
 1867 }
 1868 
 1869 static uint64_t
 1870 vcpu_exception_intinfo(struct vcpu *vcpu)
 1871 {
 1872         uint64_t info = 0;
 1873 
 1874         if (vcpu->exception_pending) {
 1875                 info = vcpu->exc_vector & 0xff;
 1876                 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1877                 if (vcpu->exc_errcode_valid) {
 1878                         info |= VM_INTINFO_DEL_ERRCODE;
 1879                         info |= (uint64_t)vcpu->exc_errcode << 32;
 1880                 }
 1881         }
 1882         return (info);
 1883 }
 1884 
 1885 int
 1886 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
 1887 {
 1888         struct vcpu *vcpu;
 1889         uint64_t info1, info2;
 1890         int valid;
 1891 
 1892         KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
 1893 
 1894         vcpu = &vm->vcpu[vcpuid];
 1895 
 1896         info1 = vcpu->exitintinfo;
 1897         vcpu->exitintinfo = 0;
 1898 
 1899         info2 = 0;
 1900         if (vcpu->exception_pending) {
 1901                 info2 = vcpu_exception_intinfo(vcpu);
 1902                 vcpu->exception_pending = 0;
 1903                 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
 1904                     vcpu->exc_vector, info2);
 1905         }
 1906 
 1907         if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
 1908                 valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
 1909         } else if (info1 & VM_INTINFO_VALID) {
 1910                 *retinfo = info1;
 1911                 valid = 1;
 1912         } else if (info2 & VM_INTINFO_VALID) {
 1913                 *retinfo = info2;
 1914                 valid = 1;
 1915         } else {
 1916                 valid = 0;
 1917         }
 1918 
 1919         if (valid) {
 1920                 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
 1921                     "retinfo(%#lx)", __func__, info1, info2, *retinfo);
 1922         }
 1923 
 1924         return (valid);
 1925 }
 1926 
 1927 int
 1928 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
 1929 {
 1930         struct vcpu *vcpu;
 1931 
 1932         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1933                 return (EINVAL);
 1934 
 1935         vcpu = &vm->vcpu[vcpuid];
 1936         *info1 = vcpu->exitintinfo;
 1937         *info2 = vcpu_exception_intinfo(vcpu);
 1938         return (0);
 1939 }
 1940 
 1941 int
 1942 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
 1943     uint32_t errcode, int restart_instruction)
 1944 {
 1945         struct vcpu *vcpu;
 1946         uint64_t regval;
 1947         int error;
 1948 
 1949         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1950                 return (EINVAL);
 1951 
 1952         if (vector < 0 || vector >= 32)
 1953                 return (EINVAL);
 1954 
 1955         /*
 1956          * A double fault exception should never be injected directly into
 1957          * the guest. It is a derived exception that results from specific
 1958          * combinations of nested faults.
 1959          */
 1960         if (vector == IDT_DF)
 1961                 return (EINVAL);
 1962 
 1963         vcpu = &vm->vcpu[vcpuid];
 1964 
 1965         if (vcpu->exception_pending) {
 1966                 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
 1967                     "pending exception %d", vector, vcpu->exc_vector);
 1968                 return (EBUSY);
 1969         }
 1970 
 1971         if (errcode_valid) {
 1972                 /*
 1973                  * Exceptions don't deliver an error code in real mode.
 1974                  */
 1975                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
 1976                 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
 1977                 if (!(regval & CR0_PE))
 1978                         errcode_valid = 0;
 1979         }
 1980 
 1981         /*
 1982          * From section 26.6.1 "Interruptibility State" in Intel SDM:
 1983          *
 1984          * Event blocking by "STI" or "MOV SS" is cleared after guest executes
 1985          * one instruction or incurs an exception.
 1986          */
 1987         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
 1988         KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
 1989             __func__, error));
 1990 
 1991         if (restart_instruction)
 1992                 vm_restart_instruction(vm, vcpuid);
 1993 
 1994         vcpu->exception_pending = 1;
 1995         vcpu->exc_vector = vector;
 1996         vcpu->exc_errcode = errcode;
 1997         vcpu->exc_errcode_valid = errcode_valid;
 1998         VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
 1999         return (0);
 2000 }
 2001 
 2002 void
 2003 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
 2004     int errcode)
 2005 {
 2006         struct vm *vm;
 2007         int error, restart_instruction;
 2008 
 2009         vm = vmarg;
 2010         restart_instruction = 1;
 2011 
 2012         error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
 2013             errcode, restart_instruction);
 2014         KASSERT(error == 0, ("vm_inject_exception error %d", error));
 2015 }
 2016 
 2017 void
 2018 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
 2019 {
 2020         struct vm *vm;
 2021         int error;
 2022 
 2023         vm = vmarg;
 2024         VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
 2025             error_code, cr2);
 2026 
 2027         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
 2028         KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
 2029 
 2030         vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
 2031 }
 2032 
 2033 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
 2034 
 2035 int
 2036 vm_inject_nmi(struct vm *vm, int vcpuid)
 2037 {
 2038         struct vcpu *vcpu;
 2039 
 2040         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2041                 return (EINVAL);
 2042 
 2043         vcpu = &vm->vcpu[vcpuid];
 2044 
 2045         vcpu->nmi_pending = 1;
 2046         vcpu_notify_event(vm, vcpuid, false);
 2047         return (0);
 2048 }
 2049 
 2050 int
 2051 vm_nmi_pending(struct vm *vm, int vcpuid)
 2052 {
 2053         struct vcpu *vcpu;
 2054 
 2055         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2056                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2057 
 2058         vcpu = &vm->vcpu[vcpuid];
 2059 
 2060         return (vcpu->nmi_pending);
 2061 }
 2062 
 2063 void
 2064 vm_nmi_clear(struct vm *vm, int vcpuid)
 2065 {
 2066         struct vcpu *vcpu;
 2067 
 2068         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2069                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2070 
 2071         vcpu = &vm->vcpu[vcpuid];
 2072 
 2073         if (vcpu->nmi_pending == 0)
 2074                 panic("vm_nmi_clear: inconsistent nmi_pending state");
 2075 
 2076         vcpu->nmi_pending = 0;
 2077         vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
 2078 }
 2079 
 2080 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
 2081 
 2082 int
 2083 vm_inject_extint(struct vm *vm, int vcpuid)
 2084 {
 2085         struct vcpu *vcpu;
 2086 
 2087         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2088                 return (EINVAL);
 2089 
 2090         vcpu = &vm->vcpu[vcpuid];
 2091 
 2092         vcpu->extint_pending = 1;
 2093         vcpu_notify_event(vm, vcpuid, false);
 2094         return (0);
 2095 }
 2096 
 2097 int
 2098 vm_extint_pending(struct vm *vm, int vcpuid)
 2099 {
 2100         struct vcpu *vcpu;
 2101 
 2102         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2103                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2104 
 2105         vcpu = &vm->vcpu[vcpuid];
 2106 
 2107         return (vcpu->extint_pending);
 2108 }
 2109 
 2110 void
 2111 vm_extint_clear(struct vm *vm, int vcpuid)
 2112 {
 2113         struct vcpu *vcpu;
 2114 
 2115         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2116                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2117 
 2118         vcpu = &vm->vcpu[vcpuid];
 2119 
 2120         if (vcpu->extint_pending == 0)
 2121                 panic("vm_extint_clear: inconsistent extint_pending state");
 2122 
 2123         vcpu->extint_pending = 0;
 2124         vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
 2125 }
 2126 
 2127 int
 2128 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
 2129 {
 2130         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 2131                 return (EINVAL);
 2132 
 2133         if (type < 0 || type >= VM_CAP_MAX)
 2134                 return (EINVAL);
 2135 
 2136         return (VMGETCAP(vm->cookie, vcpu, type, retval));
 2137 }
 2138 
 2139 int
 2140 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
 2141 {
 2142         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 2143                 return (EINVAL);
 2144 
 2145         if (type < 0 || type >= VM_CAP_MAX)
 2146                 return (EINVAL);
 2147 
 2148         return (VMSETCAP(vm->cookie, vcpu, type, val));
 2149 }
 2150 
 2151 struct vlapic *
 2152 vm_lapic(struct vm *vm, int cpu)
 2153 {
 2154         return (vm->vcpu[cpu].vlapic);
 2155 }
 2156 
 2157 struct vioapic *
 2158 vm_ioapic(struct vm *vm)
 2159 {
 2160 
 2161         return (vm->vioapic);
 2162 }
 2163 
 2164 struct vhpet *
 2165 vm_hpet(struct vm *vm)
 2166 {
 2167 
 2168         return (vm->vhpet);
 2169 }
 2170 
 2171 boolean_t
 2172 vmm_is_pptdev(int bus, int slot, int func)
 2173 {
 2174         int found, i, n;
 2175         int b, s, f;
 2176         char *val, *cp, *cp2;
 2177 
 2178         /*
 2179          * XXX
 2180          * The length of an environment variable is limited to 128 bytes which
 2181          * puts an upper limit on the number of passthru devices that may be
 2182          * specified using a single environment variable.
 2183          *
 2184          * Work around this by scanning multiple environment variable
 2185          * names instead of a single one - yuck!
 2186          */
 2187         const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
 2188 
 2189         /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
 2190         found = 0;
 2191         for (i = 0; names[i] != NULL && !found; i++) {
 2192                 cp = val = kern_getenv(names[i]);
 2193                 while (cp != NULL && *cp != '\0') {
 2194                         if ((cp2 = strchr(cp, ' ')) != NULL)
 2195                                 *cp2 = '\0';
 2196 
 2197                         n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
 2198                         if (n == 3 && bus == b && slot == s && func == f) {
 2199                                 found = 1;
 2200                                 break;
 2201                         }
 2202                 
 2203                         if (cp2 != NULL)
 2204                                 *cp2++ = ' ';
 2205 
 2206                         cp = cp2;
 2207                 }
 2208                 freeenv(val);
 2209         }
 2210         return (found);
 2211 }
 2212 
 2213 void *
 2214 vm_iommu_domain(struct vm *vm)
 2215 {
 2216 
 2217         return (vm->iommu);
 2218 }
 2219 
 2220 int
 2221 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 2222     bool from_idle)
 2223 {
 2224         int error;
 2225         struct vcpu *vcpu;
 2226 
 2227         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2228                 panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
 2229 
 2230         vcpu = &vm->vcpu[vcpuid];
 2231 
 2232         vcpu_lock(vcpu);
 2233         error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
 2234         vcpu_unlock(vcpu);
 2235 
 2236         return (error);
 2237 }
 2238 
 2239 enum vcpu_state
 2240 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
 2241 {
 2242         struct vcpu *vcpu;
 2243         enum vcpu_state state;
 2244 
 2245         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2246                 panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
 2247 
 2248         vcpu = &vm->vcpu[vcpuid];
 2249 
 2250         vcpu_lock(vcpu);
 2251         state = vcpu->state;
 2252         if (hostcpu != NULL)
 2253                 *hostcpu = vcpu->hostcpu;
 2254         vcpu_unlock(vcpu);
 2255 
 2256         return (state);
 2257 }
 2258 
 2259 int
 2260 vm_activate_cpu(struct vm *vm, int vcpuid)
 2261 {
 2262 
 2263         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2264                 return (EINVAL);
 2265 
 2266         if (CPU_ISSET(vcpuid, &vm->active_cpus))
 2267                 return (EBUSY);
 2268 
 2269         VCPU_CTR0(vm, vcpuid, "activated");
 2270         CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
 2271         return (0);
 2272 }
 2273 
 2274 cpuset_t
 2275 vm_active_cpus(struct vm *vm)
 2276 {
 2277 
 2278         return (vm->active_cpus);
 2279 }
 2280 
 2281 cpuset_t
 2282 vm_suspended_cpus(struct vm *vm)
 2283 {
 2284 
 2285         return (vm->suspended_cpus);
 2286 }
 2287 
 2288 void *
 2289 vcpu_stats(struct vm *vm, int vcpuid)
 2290 {
 2291 
 2292         return (vm->vcpu[vcpuid].stats);
 2293 }
 2294 
 2295 int
 2296 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
 2297 {
 2298         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2299                 return (EINVAL);
 2300 
 2301         *state = vm->vcpu[vcpuid].x2apic_state;
 2302 
 2303         return (0);
 2304 }
 2305 
 2306 int
 2307 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
 2308 {
 2309         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2310                 return (EINVAL);
 2311 
 2312         if (state >= X2APIC_STATE_LAST)
 2313                 return (EINVAL);
 2314 
 2315         vm->vcpu[vcpuid].x2apic_state = state;
 2316 
 2317         vlapic_set_x2apic_state(vm, vcpuid, state);
 2318 
 2319         return (0);
 2320 }
 2321 
 2322 /*
 2323  * This function is called to ensure that a vcpu "sees" a pending event
 2324  * as soon as possible:
 2325  * - If the vcpu thread is sleeping then it is woken up.
 2326  * - If the vcpu is running on a different host_cpu then an IPI will be directed
 2327  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
 2328  */
 2329 static void
 2330 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
 2331 {
 2332         int hostcpu;
 2333 
 2334         hostcpu = vcpu->hostcpu;
 2335         if (vcpu->state == VCPU_RUNNING) {
 2336                 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
 2337                 if (hostcpu != curcpu) {
 2338                         if (lapic_intr) {
 2339                                 vlapic_post_intr(vcpu->vlapic, hostcpu,
 2340                                     vmm_ipinum);
 2341                         } else {
 2342                                 ipi_cpu(hostcpu, vmm_ipinum);
 2343                         }
 2344                 } else {
 2345                         /*
 2346                          * If the 'vcpu' is running on 'curcpu' then it must
 2347                          * be sending a notification to itself (e.g. SELF_IPI).
 2348                          * The pending event will be picked up when the vcpu
 2349                          * transitions back to guest context.
 2350                          */
 2351                 }
 2352         } else {
 2353                 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
 2354                     "with hostcpu %d", vcpu->state, hostcpu));
 2355                 if (vcpu->state == VCPU_SLEEPING)
 2356                         wakeup_one(vcpu);
 2357         }
 2358 }
 2359 
 2360 void
 2361 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
 2362 {
 2363         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 2364 
 2365         vcpu_lock(vcpu);
 2366         vcpu_notify_event_locked(vcpu, lapic_intr);
 2367         vcpu_unlock(vcpu);
 2368 }
 2369 
 2370 struct vmspace *
 2371 vm_get_vmspace(struct vm *vm)
 2372 {
 2373 
 2374         return (vm->vmspace);
 2375 }
 2376 
 2377 int
 2378 vm_apicid2vcpuid(struct vm *vm, int apicid)
 2379 {
 2380         /*
 2381          * XXX apic id is assumed to be numerically identical to vcpu id
 2382          */
 2383         return (apicid);
 2384 }
 2385 
 2386 void
 2387 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
 2388     vm_rendezvous_func_t func, void *arg)
 2389 {
 2390         int i;
 2391 
 2392         /*
 2393          * Enforce that this function is called without any locks
 2394          */
 2395         WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
 2396         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
 2397             ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
 2398 
 2399 restart:
 2400         mtx_lock(&vm->rendezvous_mtx);
 2401         if (vm->rendezvous_func != NULL) {
 2402                 /*
 2403                  * If a rendezvous is already in progress then we need to
 2404                  * call the rendezvous handler in case this 'vcpuid' is one
 2405                  * of the targets of the rendezvous.
 2406                  */
 2407                 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
 2408                 mtx_unlock(&vm->rendezvous_mtx);
 2409                 vm_handle_rendezvous(vm, vcpuid);
 2410                 goto restart;
 2411         }
 2412         KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
 2413             "rendezvous is still in progress"));
 2414 
 2415         RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
 2416         vm->rendezvous_req_cpus = dest;
 2417         CPU_ZERO(&vm->rendezvous_done_cpus);
 2418         vm->rendezvous_arg = arg;
 2419         vm_set_rendezvous_func(vm, func);
 2420         mtx_unlock(&vm->rendezvous_mtx);
 2421 
 2422         /*
 2423          * Wake up any sleeping vcpus and trigger a VM-exit in any running
 2424          * vcpus so they handle the rendezvous as soon as possible.
 2425          */
 2426         for (i = 0; i < VM_MAXCPU; i++) {
 2427                 if (CPU_ISSET(i, &dest))
 2428                         vcpu_notify_event(vm, i, false);
 2429         }
 2430 
 2431         vm_handle_rendezvous(vm, vcpuid);
 2432 }
 2433 
 2434 struct vatpic *
 2435 vm_atpic(struct vm *vm)
 2436 {
 2437         return (vm->vatpic);
 2438 }
 2439 
 2440 struct vatpit *
 2441 vm_atpit(struct vm *vm)
 2442 {
 2443         return (vm->vatpit);
 2444 }
 2445 
 2446 struct vpmtmr *
 2447 vm_pmtmr(struct vm *vm)
 2448 {
 2449 
 2450         return (vm->vpmtmr);
 2451 }
 2452 
 2453 struct vrtc *
 2454 vm_rtc(struct vm *vm)
 2455 {
 2456 
 2457         return (vm->vrtc);
 2458 }
 2459 
 2460 enum vm_reg_name
 2461 vm_segment_name(int seg)
 2462 {
 2463         static enum vm_reg_name seg_names[] = {
 2464                 VM_REG_GUEST_ES,
 2465                 VM_REG_GUEST_CS,
 2466                 VM_REG_GUEST_SS,
 2467                 VM_REG_GUEST_DS,
 2468                 VM_REG_GUEST_FS,
 2469                 VM_REG_GUEST_GS
 2470         };
 2471 
 2472         KASSERT(seg >= 0 && seg < nitems(seg_names),
 2473             ("%s: invalid segment encoding %d", __func__, seg));
 2474         return (seg_names[seg]);
 2475 }
 2476 
 2477 void
 2478 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
 2479     int num_copyinfo)
 2480 {
 2481         int idx;
 2482 
 2483         for (idx = 0; idx < num_copyinfo; idx++) {
 2484                 if (copyinfo[idx].cookie != NULL)
 2485                         vm_gpa_release(copyinfo[idx].cookie);
 2486         }
 2487         bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
 2488 }
 2489 
 2490 int
 2491 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
 2492     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
 2493     int num_copyinfo, int *fault)
 2494 {
 2495         int error, idx, nused;
 2496         size_t n, off, remaining;
 2497         void *hva, *cookie;
 2498         uint64_t gpa;
 2499 
 2500         bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
 2501 
 2502         nused = 0;
 2503         remaining = len;
 2504         while (remaining > 0) {
 2505                 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
 2506                 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
 2507                 if (error || *fault)
 2508                         return (error);
 2509                 off = gpa & PAGE_MASK;
 2510                 n = min(remaining, PAGE_SIZE - off);
 2511                 copyinfo[nused].gpa = gpa;
 2512                 copyinfo[nused].len = n;
 2513                 remaining -= n;
 2514                 gla += n;
 2515                 nused++;
 2516         }
 2517 
 2518         for (idx = 0; idx < nused; idx++) {
 2519                 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
 2520                     copyinfo[idx].len, prot, &cookie);
 2521                 if (hva == NULL)
 2522                         break;
 2523                 copyinfo[idx].hva = hva;
 2524                 copyinfo[idx].cookie = cookie;
 2525         }
 2526 
 2527         if (idx != nused) {
 2528                 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
 2529                 return (EFAULT);
 2530         } else {
 2531                 *fault = 0;
 2532                 return (0);
 2533         }
 2534 }
 2535 
 2536 void
 2537 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
 2538     size_t len)
 2539 {
 2540         char *dst;
 2541         int idx;
 2542         
 2543         dst = kaddr;
 2544         idx = 0;
 2545         while (len > 0) {
 2546                 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
 2547                 len -= copyinfo[idx].len;
 2548                 dst += copyinfo[idx].len;
 2549                 idx++;
 2550         }
 2551 }
 2552 
 2553 void
 2554 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
 2555     struct vm_copyinfo *copyinfo, size_t len)
 2556 {
 2557         const char *src;
 2558         int idx;
 2559 
 2560         src = kaddr;
 2561         idx = 0;
 2562         while (len > 0) {
 2563                 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
 2564                 len -= copyinfo[idx].len;
 2565                 src += copyinfo[idx].len;
 2566                 idx++;
 2567         }
 2568 }
 2569 
 2570 /*
 2571  * Return the amount of in-use and wired memory for the VM. Since
 2572  * these are global stats, only return the values with for vCPU 0
 2573  */
 2574 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
 2575 VMM_STAT_DECLARE(VMM_MEM_WIRED);
 2576 
 2577 static void
 2578 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2579 {
 2580 
 2581         if (vcpu == 0) {
 2582                 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
 2583                     PAGE_SIZE * vmspace_resident_count(vm->vmspace));
 2584         }       
 2585 }
 2586 
 2587 static void
 2588 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2589 {
 2590 
 2591         if (vcpu == 0) {
 2592                 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
 2593                     PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
 2594         }       
 2595 }
 2596 
 2597 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
 2598 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);

Cache object: 8dcc9199cf66953bd93de28d2e84bf36


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.