The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/vmm/vmm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2011 NetApp, Inc.
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  * $FreeBSD: releng/11.2/sys/amd64/vmm/vmm.c 331722 2018-03-29 02:50:57Z eadler $
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/11.2/sys/amd64/vmm/vmm.c 331722 2018-03-29 02:50:57Z eadler $");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/kernel.h>
   35 #include <sys/module.h>
   36 #include <sys/sysctl.h>
   37 #include <sys/malloc.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/proc.h>
   42 #include <sys/rwlock.h>
   43 #include <sys/sched.h>
   44 #include <sys/smp.h>
   45 #include <sys/systm.h>
   46 
   47 #include <vm/vm.h>
   48 #include <vm/vm_object.h>
   49 #include <vm/vm_page.h>
   50 #include <vm/pmap.h>
   51 #include <vm/vm_map.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/vm_param.h>
   54 
   55 #include <machine/cpu.h>
   56 #include <machine/pcb.h>
   57 #include <machine/smp.h>
   58 #include <machine/md_var.h>
   59 #include <x86/psl.h>
   60 #include <x86/apicreg.h>
   61 
   62 #include <machine/vmm.h>
   63 #include <machine/vmm_dev.h>
   64 #include <machine/vmm_instruction_emul.h>
   65 
   66 #include "vmm_ioport.h"
   67 #include "vmm_ktr.h"
   68 #include "vmm_host.h"
   69 #include "vmm_mem.h"
   70 #include "vmm_util.h"
   71 #include "vatpic.h"
   72 #include "vatpit.h"
   73 #include "vhpet.h"
   74 #include "vioapic.h"
   75 #include "vlapic.h"
   76 #include "vpmtmr.h"
   77 #include "vrtc.h"
   78 #include "vmm_stat.h"
   79 #include "vmm_lapic.h"
   80 
   81 #include "io/ppt.h"
   82 #include "io/iommu.h"
   83 
   84 struct vlapic;
   85 
   86 /*
   87  * Initialization:
   88  * (a) allocated when vcpu is created
   89  * (i) initialized when vcpu is created and when it is reinitialized
   90  * (o) initialized the first time the vcpu is created
   91  * (x) initialized before use
   92  */
   93 struct vcpu {
   94         struct mtx      mtx;            /* (o) protects 'state' and 'hostcpu' */
   95         enum vcpu_state state;          /* (o) vcpu state */
   96         int             hostcpu;        /* (o) vcpu's host cpu */
   97         int             reqidle;        /* (i) request vcpu to idle */
   98         struct vlapic   *vlapic;        /* (i) APIC device model */
   99         enum x2apic_state x2apic_state; /* (i) APIC mode */
  100         uint64_t        exitintinfo;    /* (i) events pending at VM exit */
  101         int             nmi_pending;    /* (i) NMI pending */
  102         int             extint_pending; /* (i) INTR pending */
  103         int     exception_pending;      /* (i) exception pending */
  104         int     exc_vector;             /* (x) exception collateral */
  105         int     exc_errcode_valid;
  106         uint32_t exc_errcode;
  107         struct savefpu  *guestfpu;      /* (a,i) guest fpu state */
  108         uint64_t        guest_xcr0;     /* (i) guest %xcr0 register */
  109         void            *stats;         /* (a,i) statistics */
  110         struct vm_exit  exitinfo;       /* (x) exit reason and collateral */
  111         uint64_t        nextrip;        /* (x) next instruction to execute */
  112 };
  113 
  114 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
  115 #define vcpu_lock_init(v)       mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
  116 #define vcpu_lock(v)            mtx_lock_spin(&((v)->mtx))
  117 #define vcpu_unlock(v)          mtx_unlock_spin(&((v)->mtx))
  118 #define vcpu_assert_locked(v)   mtx_assert(&((v)->mtx), MA_OWNED)
  119 
  120 struct mem_seg {
  121         size_t  len;
  122         bool    sysmem;
  123         struct vm_object *object;
  124 };
  125 #define VM_MAX_MEMSEGS  3
  126 
  127 struct mem_map {
  128         vm_paddr_t      gpa;
  129         size_t          len;
  130         vm_ooffset_t    segoff;
  131         int             segid;
  132         int             prot;
  133         int             flags;
  134 };
  135 #define VM_MAX_MEMMAPS  4
  136 
  137 /*
  138  * Initialization:
  139  * (o) initialized the first time the VM is created
  140  * (i) initialized when VM is created and when it is reinitialized
  141  * (x) initialized before use
  142  */
  143 struct vm {
  144         void            *cookie;                /* (i) cpu-specific data */
  145         void            *iommu;                 /* (x) iommu-specific data */
  146         struct vhpet    *vhpet;                 /* (i) virtual HPET */
  147         struct vioapic  *vioapic;               /* (i) virtual ioapic */
  148         struct vatpic   *vatpic;                /* (i) virtual atpic */
  149         struct vatpit   *vatpit;                /* (i) virtual atpit */
  150         struct vpmtmr   *vpmtmr;                /* (i) virtual ACPI PM timer */
  151         struct vrtc     *vrtc;                  /* (o) virtual RTC */
  152         volatile cpuset_t active_cpus;          /* (i) active vcpus */
  153         int             suspend;                /* (i) stop VM execution */
  154         volatile cpuset_t suspended_cpus;       /* (i) suspended vcpus */
  155         volatile cpuset_t halted_cpus;          /* (x) cpus in a hard halt */
  156         cpuset_t        rendezvous_req_cpus;    /* (x) rendezvous requested */
  157         cpuset_t        rendezvous_done_cpus;   /* (x) rendezvous finished */
  158         void            *rendezvous_arg;        /* (x) rendezvous func/arg */
  159         vm_rendezvous_func_t rendezvous_func;
  160         struct mtx      rendezvous_mtx;         /* (o) rendezvous lock */
  161         struct mem_map  mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
  162         struct mem_seg  mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
  163         struct vmspace  *vmspace;               /* (o) guest's address space */
  164         char            name[VM_MAX_NAMELEN];   /* (o) virtual machine name */
  165         struct vcpu     vcpu[VM_MAXCPU];        /* (i) guest vcpus */
  166 };
  167 
  168 static int vmm_initialized;
  169 
  170 static struct vmm_ops *ops;
  171 #define VMM_INIT(num)   (ops != NULL ? (*ops->init)(num) : 0)
  172 #define VMM_CLEANUP()   (ops != NULL ? (*ops->cleanup)() : 0)
  173 #define VMM_RESUME()    (ops != NULL ? (*ops->resume)() : 0)
  174 
  175 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
  176 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \
  177         (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
  178 #define VMCLEANUP(vmi)  (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
  179 #define VMSPACE_ALLOC(min, max) \
  180         (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
  181 #define VMSPACE_FREE(vmspace) \
  182         (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
  183 #define VMGETREG(vmi, vcpu, num, retval)                \
  184         (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
  185 #define VMSETREG(vmi, vcpu, num, val)           \
  186         (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
  187 #define VMGETDESC(vmi, vcpu, num, desc)         \
  188         (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
  189 #define VMSETDESC(vmi, vcpu, num, desc)         \
  190         (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
  191 #define VMGETCAP(vmi, vcpu, num, retval)        \
  192         (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
  193 #define VMSETCAP(vmi, vcpu, num, val)           \
  194         (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
  195 #define VLAPIC_INIT(vmi, vcpu)                  \
  196         (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
  197 #define VLAPIC_CLEANUP(vmi, vlapic)             \
  198         (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
  199 
  200 #define fpu_start_emulating()   load_cr0(rcr0() | CR0_TS)
  201 #define fpu_stop_emulating()    clts()
  202 
  203 static MALLOC_DEFINE(M_VM, "vm", "vm");
  204 
  205 /* statistics */
  206 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
  207 
  208 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
  209 
  210 /*
  211  * Halt the guest if all vcpus are executing a HLT instruction with
  212  * interrupts disabled.
  213  */
  214 static int halt_detection_enabled = 1;
  215 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
  216     &halt_detection_enabled, 0,
  217     "Halt VM if all vcpus execute HLT with interrupts disabled");
  218 
  219 static int vmm_ipinum;
  220 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
  221     "IPI vector used for vcpu notifications");
  222 
  223 static int trace_guest_exceptions;
  224 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
  225     &trace_guest_exceptions, 0,
  226     "Trap into hypervisor on all guest exceptions and reflect them back");
  227 
  228 static void vm_free_memmap(struct vm *vm, int ident);
  229 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
  230 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
  231 
  232 #ifdef KTR
  233 static const char *
  234 vcpu_state2str(enum vcpu_state state)
  235 {
  236 
  237         switch (state) {
  238         case VCPU_IDLE:
  239                 return ("idle");
  240         case VCPU_FROZEN:
  241                 return ("frozen");
  242         case VCPU_RUNNING:
  243                 return ("running");
  244         case VCPU_SLEEPING:
  245                 return ("sleeping");
  246         default:
  247                 return ("unknown");
  248         }
  249 }
  250 #endif
  251 
  252 static void
  253 vcpu_cleanup(struct vm *vm, int i, bool destroy)
  254 {
  255         struct vcpu *vcpu = &vm->vcpu[i];
  256 
  257         VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
  258         if (destroy) {
  259                 vmm_stat_free(vcpu->stats);     
  260                 fpu_save_area_free(vcpu->guestfpu);
  261         }
  262 }
  263 
  264 static void
  265 vcpu_init(struct vm *vm, int vcpu_id, bool create)
  266 {
  267         struct vcpu *vcpu;
  268 
  269         KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU,
  270             ("vcpu_init: invalid vcpu %d", vcpu_id));
  271           
  272         vcpu = &vm->vcpu[vcpu_id];
  273 
  274         if (create) {
  275                 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
  276                     "initialized", vcpu_id));
  277                 vcpu_lock_init(vcpu);
  278                 vcpu->state = VCPU_IDLE;
  279                 vcpu->hostcpu = NOCPU;
  280                 vcpu->guestfpu = fpu_save_area_alloc();
  281                 vcpu->stats = vmm_stat_alloc();
  282         }
  283 
  284         vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
  285         vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
  286         vcpu->reqidle = 0;
  287         vcpu->exitintinfo = 0;
  288         vcpu->nmi_pending = 0;
  289         vcpu->extint_pending = 0;
  290         vcpu->exception_pending = 0;
  291         vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
  292         fpu_save_area_reset(vcpu->guestfpu);
  293         vmm_stat_init(vcpu->stats);
  294 }
  295 
  296 int
  297 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
  298 {
  299 
  300         return (trace_guest_exceptions);
  301 }
  302 
  303 struct vm_exit *
  304 vm_exitinfo(struct vm *vm, int cpuid)
  305 {
  306         struct vcpu *vcpu;
  307 
  308         if (cpuid < 0 || cpuid >= VM_MAXCPU)
  309                 panic("vm_exitinfo: invalid cpuid %d", cpuid);
  310 
  311         vcpu = &vm->vcpu[cpuid];
  312 
  313         return (&vcpu->exitinfo);
  314 }
  315 
  316 static void
  317 vmm_resume(void)
  318 {
  319         VMM_RESUME();
  320 }
  321 
  322 static int
  323 vmm_init(void)
  324 {
  325         int error;
  326 
  327         vmm_host_state_init();
  328 
  329         vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
  330             &IDTVEC(justreturn));
  331         if (vmm_ipinum < 0)
  332                 vmm_ipinum = IPI_AST;
  333 
  334         error = vmm_mem_init();
  335         if (error)
  336                 return (error);
  337         
  338         if (vmm_is_intel())
  339                 ops = &vmm_ops_intel;
  340         else if (vmm_is_amd())
  341                 ops = &vmm_ops_amd;
  342         else
  343                 return (ENXIO);
  344 
  345         vmm_resume_p = vmm_resume;
  346 
  347         return (VMM_INIT(vmm_ipinum));
  348 }
  349 
  350 static int
  351 vmm_handler(module_t mod, int what, void *arg)
  352 {
  353         int error;
  354 
  355         switch (what) {
  356         case MOD_LOAD:
  357                 vmmdev_init();
  358                 error = vmm_init();
  359                 if (error == 0)
  360                         vmm_initialized = 1;
  361                 break;
  362         case MOD_UNLOAD:
  363                 error = vmmdev_cleanup();
  364                 if (error == 0) {
  365                         vmm_resume_p = NULL;
  366                         iommu_cleanup();
  367                         if (vmm_ipinum != IPI_AST)
  368                                 lapic_ipi_free(vmm_ipinum);
  369                         error = VMM_CLEANUP();
  370                         /*
  371                          * Something bad happened - prevent new
  372                          * VMs from being created
  373                          */
  374                         if (error)
  375                                 vmm_initialized = 0;
  376                 }
  377                 break;
  378         default:
  379                 error = 0;
  380                 break;
  381         }
  382         return (error);
  383 }
  384 
  385 static moduledata_t vmm_kmod = {
  386         "vmm",
  387         vmm_handler,
  388         NULL
  389 };
  390 
  391 /*
  392  * vmm initialization has the following dependencies:
  393  *
  394  * - VT-x initialization requires smp_rendezvous() and therefore must happen
  395  *   after SMP is fully functional (after SI_SUB_SMP).
  396  */
  397 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
  398 MODULE_VERSION(vmm, 1);
  399 
  400 static void
  401 vm_init(struct vm *vm, bool create)
  402 {
  403         int i;
  404 
  405         vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
  406         vm->iommu = NULL;
  407         vm->vioapic = vioapic_init(vm);
  408         vm->vhpet = vhpet_init(vm);
  409         vm->vatpic = vatpic_init(vm);
  410         vm->vatpit = vatpit_init(vm);
  411         vm->vpmtmr = vpmtmr_init(vm);
  412         if (create)
  413                 vm->vrtc = vrtc_init(vm);
  414 
  415         CPU_ZERO(&vm->active_cpus);
  416 
  417         vm->suspend = 0;
  418         CPU_ZERO(&vm->suspended_cpus);
  419 
  420         for (i = 0; i < VM_MAXCPU; i++)
  421                 vcpu_init(vm, i, create);
  422 }
  423 
  424 int
  425 vm_create(const char *name, struct vm **retvm)
  426 {
  427         struct vm *vm;
  428         struct vmspace *vmspace;
  429 
  430         /*
  431          * If vmm.ko could not be successfully initialized then don't attempt
  432          * to create the virtual machine.
  433          */
  434         if (!vmm_initialized)
  435                 return (ENXIO);
  436 
  437         if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
  438                 return (EINVAL);
  439 
  440         vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
  441         if (vmspace == NULL)
  442                 return (ENOMEM);
  443 
  444         vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
  445         strcpy(vm->name, name);
  446         vm->vmspace = vmspace;
  447         mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
  448 
  449         vm_init(vm, true);
  450 
  451         *retvm = vm;
  452         return (0);
  453 }
  454 
  455 static void
  456 vm_cleanup(struct vm *vm, bool destroy)
  457 {
  458         struct mem_map *mm;
  459         int i;
  460 
  461         ppt_unassign_all(vm);
  462 
  463         if (vm->iommu != NULL)
  464                 iommu_destroy_domain(vm->iommu);
  465 
  466         if (destroy)
  467                 vrtc_cleanup(vm->vrtc);
  468         else
  469                 vrtc_reset(vm->vrtc);
  470         vpmtmr_cleanup(vm->vpmtmr);
  471         vatpit_cleanup(vm->vatpit);
  472         vhpet_cleanup(vm->vhpet);
  473         vatpic_cleanup(vm->vatpic);
  474         vioapic_cleanup(vm->vioapic);
  475 
  476         for (i = 0; i < VM_MAXCPU; i++)
  477                 vcpu_cleanup(vm, i, destroy);
  478 
  479         VMCLEANUP(vm->cookie);
  480 
  481         /*
  482          * System memory is removed from the guest address space only when
  483          * the VM is destroyed. This is because the mapping remains the same
  484          * across VM reset.
  485          *
  486          * Device memory can be relocated by the guest (e.g. using PCI BARs)
  487          * so those mappings are removed on a VM reset.
  488          */
  489         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  490                 mm = &vm->mem_maps[i];
  491                 if (destroy || !sysmem_mapping(vm, mm))
  492                         vm_free_memmap(vm, i);
  493         }
  494 
  495         if (destroy) {
  496                 for (i = 0; i < VM_MAX_MEMSEGS; i++)
  497                         vm_free_memseg(vm, i);
  498 
  499                 VMSPACE_FREE(vm->vmspace);
  500                 vm->vmspace = NULL;
  501         }
  502 }
  503 
  504 void
  505 vm_destroy(struct vm *vm)
  506 {
  507         vm_cleanup(vm, true);
  508         free(vm, M_VM);
  509 }
  510 
  511 int
  512 vm_reinit(struct vm *vm)
  513 {
  514         int error;
  515 
  516         /*
  517          * A virtual machine can be reset only if all vcpus are suspended.
  518          */
  519         if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
  520                 vm_cleanup(vm, false);
  521                 vm_init(vm, false);
  522                 error = 0;
  523         } else {
  524                 error = EBUSY;
  525         }
  526 
  527         return (error);
  528 }
  529 
  530 const char *
  531 vm_name(struct vm *vm)
  532 {
  533         return (vm->name);
  534 }
  535 
  536 int
  537 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
  538 {
  539         vm_object_t obj;
  540 
  541         if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
  542                 return (ENOMEM);
  543         else
  544                 return (0);
  545 }
  546 
  547 int
  548 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
  549 {
  550 
  551         vmm_mmio_free(vm->vmspace, gpa, len);
  552         return (0);
  553 }
  554 
  555 /*
  556  * Return 'true' if 'gpa' is allocated in the guest address space.
  557  *
  558  * This function is called in the context of a running vcpu which acts as
  559  * an implicit lock on 'vm->mem_maps[]'.
  560  */
  561 bool
  562 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
  563 {
  564         struct mem_map *mm;
  565         int i;
  566 
  567 #ifdef INVARIANTS
  568         int hostcpu, state;
  569         state = vcpu_get_state(vm, vcpuid, &hostcpu);
  570         KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
  571             ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
  572 #endif
  573 
  574         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  575                 mm = &vm->mem_maps[i];
  576                 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
  577                         return (true);          /* 'gpa' is sysmem or devmem */
  578         }
  579 
  580         if (ppt_is_mmio(vm, gpa))
  581                 return (true);                  /* 'gpa' is pci passthru mmio */
  582 
  583         return (false);
  584 }
  585 
  586 int
  587 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
  588 {
  589         struct mem_seg *seg;
  590         vm_object_t obj;
  591 
  592         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  593                 return (EINVAL);
  594 
  595         if (len == 0 || (len & PAGE_MASK))
  596                 return (EINVAL);
  597 
  598         seg = &vm->mem_segs[ident];
  599         if (seg->object != NULL) {
  600                 if (seg->len == len && seg->sysmem == sysmem)
  601                         return (EEXIST);
  602                 else
  603                         return (EINVAL);
  604         }
  605 
  606         obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
  607         if (obj == NULL)
  608                 return (ENOMEM);
  609 
  610         seg->len = len;
  611         seg->object = obj;
  612         seg->sysmem = sysmem;
  613         return (0);
  614 }
  615 
  616 int
  617 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
  618     vm_object_t *objptr)
  619 {
  620         struct mem_seg *seg;
  621 
  622         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  623                 return (EINVAL);
  624 
  625         seg = &vm->mem_segs[ident];
  626         if (len)
  627                 *len = seg->len;
  628         if (sysmem)
  629                 *sysmem = seg->sysmem;
  630         if (objptr)
  631                 *objptr = seg->object;
  632         return (0);
  633 }
  634 
  635 void
  636 vm_free_memseg(struct vm *vm, int ident)
  637 {
  638         struct mem_seg *seg;
  639 
  640         KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
  641             ("%s: invalid memseg ident %d", __func__, ident));
  642 
  643         seg = &vm->mem_segs[ident];
  644         if (seg->object != NULL) {
  645                 vm_object_deallocate(seg->object);
  646                 bzero(seg, sizeof(struct mem_seg));
  647         }
  648 }
  649 
  650 int
  651 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
  652     size_t len, int prot, int flags)
  653 {
  654         struct mem_seg *seg;
  655         struct mem_map *m, *map;
  656         vm_ooffset_t last;
  657         int i, error;
  658 
  659         if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
  660                 return (EINVAL);
  661 
  662         if (flags & ~VM_MEMMAP_F_WIRED)
  663                 return (EINVAL);
  664 
  665         if (segid < 0 || segid >= VM_MAX_MEMSEGS)
  666                 return (EINVAL);
  667 
  668         seg = &vm->mem_segs[segid];
  669         if (seg->object == NULL)
  670                 return (EINVAL);
  671 
  672         last = first + len;
  673         if (first < 0 || first >= last || last > seg->len)
  674                 return (EINVAL);
  675 
  676         if ((gpa | first | last) & PAGE_MASK)
  677                 return (EINVAL);
  678 
  679         map = NULL;
  680         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  681                 m = &vm->mem_maps[i];
  682                 if (m->len == 0) {
  683                         map = m;
  684                         break;
  685                 }
  686         }
  687 
  688         if (map == NULL)
  689                 return (ENOSPC);
  690 
  691         error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
  692             len, 0, VMFS_NO_SPACE, prot, prot, 0);
  693         if (error != KERN_SUCCESS)
  694                 return (EFAULT);
  695 
  696         vm_object_reference(seg->object);
  697 
  698         if (flags & VM_MEMMAP_F_WIRED) {
  699                 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
  700                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
  701                 if (error != KERN_SUCCESS) {
  702                         vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
  703                         return (EFAULT);
  704                 }
  705         }
  706 
  707         map->gpa = gpa;
  708         map->len = len;
  709         map->segoff = first;
  710         map->segid = segid;
  711         map->prot = prot;
  712         map->flags = flags;
  713         return (0);
  714 }
  715 
  716 int
  717 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
  718     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
  719 {
  720         struct mem_map *mm, *mmnext;
  721         int i;
  722 
  723         mmnext = NULL;
  724         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  725                 mm = &vm->mem_maps[i];
  726                 if (mm->len == 0 || mm->gpa < *gpa)
  727                         continue;
  728                 if (mmnext == NULL || mm->gpa < mmnext->gpa)
  729                         mmnext = mm;
  730         }
  731 
  732         if (mmnext != NULL) {
  733                 *gpa = mmnext->gpa;
  734                 if (segid)
  735                         *segid = mmnext->segid;
  736                 if (segoff)
  737                         *segoff = mmnext->segoff;
  738                 if (len)
  739                         *len = mmnext->len;
  740                 if (prot)
  741                         *prot = mmnext->prot;
  742                 if (flags)
  743                         *flags = mmnext->flags;
  744                 return (0);
  745         } else {
  746                 return (ENOENT);
  747         }
  748 }
  749 
  750 static void
  751 vm_free_memmap(struct vm *vm, int ident)
  752 {
  753         struct mem_map *mm;
  754         int error;
  755 
  756         mm = &vm->mem_maps[ident];
  757         if (mm->len) {
  758                 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
  759                     mm->gpa + mm->len);
  760                 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
  761                     __func__, error));
  762                 bzero(mm, sizeof(struct mem_map));
  763         }
  764 }
  765 
  766 static __inline bool
  767 sysmem_mapping(struct vm *vm, struct mem_map *mm)
  768 {
  769 
  770         if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
  771                 return (true);
  772         else
  773                 return (false);
  774 }
  775 
  776 static vm_paddr_t
  777 sysmem_maxaddr(struct vm *vm)
  778 {
  779         struct mem_map *mm;
  780         vm_paddr_t maxaddr;
  781         int i;
  782 
  783         maxaddr = 0;
  784         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  785                 mm = &vm->mem_maps[i];
  786                 if (sysmem_mapping(vm, mm)) {
  787                         if (maxaddr < mm->gpa + mm->len)
  788                                 maxaddr = mm->gpa + mm->len;
  789                 }
  790         }
  791         return (maxaddr);
  792 }
  793 
  794 static void
  795 vm_iommu_modify(struct vm *vm, boolean_t map)
  796 {
  797         int i, sz;
  798         vm_paddr_t gpa, hpa;
  799         struct mem_map *mm;
  800         void *vp, *cookie, *host_domain;
  801 
  802         sz = PAGE_SIZE;
  803         host_domain = iommu_host_domain();
  804 
  805         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  806                 mm = &vm->mem_maps[i];
  807                 if (!sysmem_mapping(vm, mm))
  808                         continue;
  809 
  810                 if (map) {
  811                         KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
  812                             ("iommu map found invalid memmap %#lx/%#lx/%#x",
  813                             mm->gpa, mm->len, mm->flags));
  814                         if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
  815                                 continue;
  816                         mm->flags |= VM_MEMMAP_F_IOMMU;
  817                 } else {
  818                         if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
  819                                 continue;
  820                         mm->flags &= ~VM_MEMMAP_F_IOMMU;
  821                         KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
  822                             ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
  823                             mm->gpa, mm->len, mm->flags));
  824                 }
  825 
  826                 gpa = mm->gpa;
  827                 while (gpa < mm->gpa + mm->len) {
  828                         vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
  829                                          &cookie);
  830                         KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
  831                             vm_name(vm), gpa));
  832 
  833                         vm_gpa_release(cookie);
  834 
  835                         hpa = DMAP_TO_PHYS((uintptr_t)vp);
  836                         if (map) {
  837                                 iommu_create_mapping(vm->iommu, gpa, hpa, sz);
  838                                 iommu_remove_mapping(host_domain, hpa, sz);
  839                         } else {
  840                                 iommu_remove_mapping(vm->iommu, gpa, sz);
  841                                 iommu_create_mapping(host_domain, hpa, hpa, sz);
  842                         }
  843 
  844                         gpa += PAGE_SIZE;
  845                 }
  846         }
  847 
  848         /*
  849          * Invalidate the cached translations associated with the domain
  850          * from which pages were removed.
  851          */
  852         if (map)
  853                 iommu_invalidate_tlb(host_domain);
  854         else
  855                 iommu_invalidate_tlb(vm->iommu);
  856 }
  857 
  858 #define vm_iommu_unmap(vm)      vm_iommu_modify((vm), FALSE)
  859 #define vm_iommu_map(vm)        vm_iommu_modify((vm), TRUE)
  860 
  861 int
  862 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
  863 {
  864         int error;
  865 
  866         error = ppt_unassign_device(vm, bus, slot, func);
  867         if (error)
  868                 return (error);
  869 
  870         if (ppt_assigned_devices(vm) == 0)
  871                 vm_iommu_unmap(vm);
  872 
  873         return (0);
  874 }
  875 
  876 int
  877 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
  878 {
  879         int error;
  880         vm_paddr_t maxaddr;
  881 
  882         /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
  883         if (ppt_assigned_devices(vm) == 0) {
  884                 KASSERT(vm->iommu == NULL,
  885                     ("vm_assign_pptdev: iommu must be NULL"));
  886                 maxaddr = sysmem_maxaddr(vm);
  887                 vm->iommu = iommu_create_domain(maxaddr);
  888                 if (vm->iommu == NULL)
  889                         return (ENXIO);
  890                 vm_iommu_map(vm);
  891         }
  892 
  893         error = ppt_assign_device(vm, bus, slot, func);
  894         return (error);
  895 }
  896 
  897 void *
  898 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
  899             void **cookie)
  900 {
  901         int i, count, pageoff;
  902         struct mem_map *mm;
  903         vm_page_t m;
  904 #ifdef INVARIANTS
  905         /*
  906          * All vcpus are frozen by ioctls that modify the memory map
  907          * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
  908          * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
  909          */
  910         int state;
  911         KASSERT(vcpuid >= -1 && vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d",
  912             __func__, vcpuid));
  913         for (i = 0; i < VM_MAXCPU; i++) {
  914                 if (vcpuid != -1 && vcpuid != i)
  915                         continue;
  916                 state = vcpu_get_state(vm, i, NULL);
  917                 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
  918                     __func__, state));
  919         }
  920 #endif
  921         pageoff = gpa & PAGE_MASK;
  922         if (len > PAGE_SIZE - pageoff)
  923                 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
  924 
  925         count = 0;
  926         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  927                 mm = &vm->mem_maps[i];
  928                 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
  929                     gpa < mm->gpa + mm->len) {
  930                         count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
  931                             trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
  932                         break;
  933                 }
  934         }
  935 
  936         if (count == 1) {
  937                 *cookie = m;
  938                 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
  939         } else {
  940                 *cookie = NULL;
  941                 return (NULL);
  942         }
  943 }
  944 
  945 void
  946 vm_gpa_release(void *cookie)
  947 {
  948         vm_page_t m = cookie;
  949 
  950         vm_page_lock(m);
  951         vm_page_unhold(m);
  952         vm_page_unlock(m);
  953 }
  954 
  955 int
  956 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
  957 {
  958 
  959         if (vcpu < 0 || vcpu >= VM_MAXCPU)
  960                 return (EINVAL);
  961 
  962         if (reg >= VM_REG_LAST)
  963                 return (EINVAL);
  964 
  965         return (VMGETREG(vm->cookie, vcpu, reg, retval));
  966 }
  967 
  968 int
  969 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
  970 {
  971         struct vcpu *vcpu;
  972         int error;
  973 
  974         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
  975                 return (EINVAL);
  976 
  977         if (reg >= VM_REG_LAST)
  978                 return (EINVAL);
  979 
  980         error = VMSETREG(vm->cookie, vcpuid, reg, val);
  981         if (error || reg != VM_REG_GUEST_RIP)
  982                 return (error);
  983 
  984         /* Set 'nextrip' to match the value of %rip */
  985         VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
  986         vcpu = &vm->vcpu[vcpuid];
  987         vcpu->nextrip = val;
  988         return (0);
  989 }
  990 
  991 static boolean_t
  992 is_descriptor_table(int reg)
  993 {
  994 
  995         switch (reg) {
  996         case VM_REG_GUEST_IDTR:
  997         case VM_REG_GUEST_GDTR:
  998                 return (TRUE);
  999         default:
 1000                 return (FALSE);
 1001         }
 1002 }
 1003 
 1004 static boolean_t
 1005 is_segment_register(int reg)
 1006 {
 1007         
 1008         switch (reg) {
 1009         case VM_REG_GUEST_ES:
 1010         case VM_REG_GUEST_CS:
 1011         case VM_REG_GUEST_SS:
 1012         case VM_REG_GUEST_DS:
 1013         case VM_REG_GUEST_FS:
 1014         case VM_REG_GUEST_GS:
 1015         case VM_REG_GUEST_TR:
 1016         case VM_REG_GUEST_LDTR:
 1017                 return (TRUE);
 1018         default:
 1019                 return (FALSE);
 1020         }
 1021 }
 1022 
 1023 int
 1024 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
 1025                 struct seg_desc *desc)
 1026 {
 1027 
 1028         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 1029                 return (EINVAL);
 1030 
 1031         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1032                 return (EINVAL);
 1033 
 1034         return (VMGETDESC(vm->cookie, vcpu, reg, desc));
 1035 }
 1036 
 1037 int
 1038 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
 1039                 struct seg_desc *desc)
 1040 {
 1041         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 1042                 return (EINVAL);
 1043 
 1044         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1045                 return (EINVAL);
 1046 
 1047         return (VMSETDESC(vm->cookie, vcpu, reg, desc));
 1048 }
 1049 
 1050 static void
 1051 restore_guest_fpustate(struct vcpu *vcpu)
 1052 {
 1053 
 1054         /* flush host state to the pcb */
 1055         fpuexit(curthread);
 1056 
 1057         /* restore guest FPU state */
 1058         fpu_stop_emulating();
 1059         fpurestore(vcpu->guestfpu);
 1060 
 1061         /* restore guest XCR0 if XSAVE is enabled in the host */
 1062         if (rcr4() & CR4_XSAVE)
 1063                 load_xcr(0, vcpu->guest_xcr0);
 1064 
 1065         /*
 1066          * The FPU is now "dirty" with the guest's state so turn on emulation
 1067          * to trap any access to the FPU by the host.
 1068          */
 1069         fpu_start_emulating();
 1070 }
 1071 
 1072 static void
 1073 save_guest_fpustate(struct vcpu *vcpu)
 1074 {
 1075 
 1076         if ((rcr0() & CR0_TS) == 0)
 1077                 panic("fpu emulation not enabled in host!");
 1078 
 1079         /* save guest XCR0 and restore host XCR0 */
 1080         if (rcr4() & CR4_XSAVE) {
 1081                 vcpu->guest_xcr0 = rxcr(0);
 1082                 load_xcr(0, vmm_get_host_xcr0());
 1083         }
 1084 
 1085         /* save guest FPU state */
 1086         fpu_stop_emulating();
 1087         fpusave(vcpu->guestfpu);
 1088         fpu_start_emulating();
 1089 }
 1090 
 1091 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
 1092 
 1093 static int
 1094 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 1095     bool from_idle)
 1096 {
 1097         struct vcpu *vcpu;
 1098         int error;
 1099 
 1100         vcpu = &vm->vcpu[vcpuid];
 1101         vcpu_assert_locked(vcpu);
 1102 
 1103         /*
 1104          * State transitions from the vmmdev_ioctl() must always begin from
 1105          * the VCPU_IDLE state. This guarantees that there is only a single
 1106          * ioctl() operating on a vcpu at any point.
 1107          */
 1108         if (from_idle) {
 1109                 while (vcpu->state != VCPU_IDLE) {
 1110                         vcpu->reqidle = 1;
 1111                         vcpu_notify_event_locked(vcpu, false);
 1112                         VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
 1113                             "idle requested", vcpu_state2str(vcpu->state));
 1114                         msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
 1115                 }
 1116         } else {
 1117                 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
 1118                     "vcpu idle state"));
 1119         }
 1120 
 1121         if (vcpu->state == VCPU_RUNNING) {
 1122                 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
 1123                     "mismatch for running vcpu", curcpu, vcpu->hostcpu));
 1124         } else {
 1125                 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
 1126                     "vcpu that is not running", vcpu->hostcpu));
 1127         }
 1128 
 1129         /*
 1130          * The following state transitions are allowed:
 1131          * IDLE -> FROZEN -> IDLE
 1132          * FROZEN -> RUNNING -> FROZEN
 1133          * FROZEN -> SLEEPING -> FROZEN
 1134          */
 1135         switch (vcpu->state) {
 1136         case VCPU_IDLE:
 1137         case VCPU_RUNNING:
 1138         case VCPU_SLEEPING:
 1139                 error = (newstate != VCPU_FROZEN);
 1140                 break;
 1141         case VCPU_FROZEN:
 1142                 error = (newstate == VCPU_FROZEN);
 1143                 break;
 1144         default:
 1145                 error = 1;
 1146                 break;
 1147         }
 1148 
 1149         if (error)
 1150                 return (EBUSY);
 1151 
 1152         VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
 1153             vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
 1154 
 1155         vcpu->state = newstate;
 1156         if (newstate == VCPU_RUNNING)
 1157                 vcpu->hostcpu = curcpu;
 1158         else
 1159                 vcpu->hostcpu = NOCPU;
 1160 
 1161         if (newstate == VCPU_IDLE)
 1162                 wakeup(&vcpu->state);
 1163 
 1164         return (0);
 1165 }
 1166 
 1167 static void
 1168 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1169 {
 1170         int error;
 1171 
 1172         if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
 1173                 panic("Error %d setting state to %d\n", error, newstate);
 1174 }
 1175 
 1176 static void
 1177 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1178 {
 1179         int error;
 1180 
 1181         if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
 1182                 panic("Error %d setting state to %d", error, newstate);
 1183 }
 1184 
 1185 static void
 1186 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
 1187 {
 1188 
 1189         KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
 1190 
 1191         /*
 1192          * Update 'rendezvous_func' and execute a write memory barrier to
 1193          * ensure that it is visible across all host cpus. This is not needed
 1194          * for correctness but it does ensure that all the vcpus will notice
 1195          * that the rendezvous is requested immediately.
 1196          */
 1197         vm->rendezvous_func = func;
 1198         wmb();
 1199 }
 1200 
 1201 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt)                                \
 1202         do {                                                            \
 1203                 if (vcpuid >= 0)                                        \
 1204                         VCPU_CTR0(vm, vcpuid, fmt);                     \
 1205                 else                                                    \
 1206                         VM_CTR0(vm, fmt);                               \
 1207         } while (0)
 1208 
 1209 static void
 1210 vm_handle_rendezvous(struct vm *vm, int vcpuid)
 1211 {
 1212 
 1213         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
 1214             ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
 1215 
 1216         mtx_lock(&vm->rendezvous_mtx);
 1217         while (vm->rendezvous_func != NULL) {
 1218                 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
 1219                 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
 1220 
 1221                 if (vcpuid != -1 &&
 1222                     CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
 1223                     !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
 1224                         VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
 1225                         (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
 1226                         CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
 1227                 }
 1228                 if (CPU_CMP(&vm->rendezvous_req_cpus,
 1229                     &vm->rendezvous_done_cpus) == 0) {
 1230                         VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
 1231                         vm_set_rendezvous_func(vm, NULL);
 1232                         wakeup(&vm->rendezvous_func);
 1233                         break;
 1234                 }
 1235                 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
 1236                 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
 1237                     "vmrndv", 0);
 1238         }
 1239         mtx_unlock(&vm->rendezvous_mtx);
 1240 }
 1241 
 1242 /*
 1243  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
 1244  */
 1245 static int
 1246 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
 1247 {
 1248         struct vcpu *vcpu;
 1249         const char *wmesg;
 1250         int t, vcpu_halted, vm_halted;
 1251 
 1252         KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
 1253 
 1254         vcpu = &vm->vcpu[vcpuid];
 1255         vcpu_halted = 0;
 1256         vm_halted = 0;
 1257 
 1258         vcpu_lock(vcpu);
 1259         while (1) {
 1260                 /*
 1261                  * Do a final check for pending NMI or interrupts before
 1262                  * really putting this thread to sleep. Also check for
 1263                  * software events that would cause this vcpu to wakeup.
 1264                  *
 1265                  * These interrupts/events could have happened after the
 1266                  * vcpu returned from VMRUN() and before it acquired the
 1267                  * vcpu lock above.
 1268                  */
 1269                 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
 1270                         break;
 1271                 if (vm_nmi_pending(vm, vcpuid))
 1272                         break;
 1273                 if (!intr_disabled) {
 1274                         if (vm_extint_pending(vm, vcpuid) ||
 1275                             vlapic_pending_intr(vcpu->vlapic, NULL)) {
 1276                                 break;
 1277                         }
 1278                 }
 1279 
 1280                 /* Don't go to sleep if the vcpu thread needs to yield */
 1281                 if (vcpu_should_yield(vm, vcpuid))
 1282                         break;
 1283 
 1284                 /*
 1285                  * Some Linux guests implement "halt" by having all vcpus
 1286                  * execute HLT with interrupts disabled. 'halted_cpus' keeps
 1287                  * track of the vcpus that have entered this state. When all
 1288                  * vcpus enter the halted state the virtual machine is halted.
 1289                  */
 1290                 if (intr_disabled) {
 1291                         wmesg = "vmhalt";
 1292                         VCPU_CTR0(vm, vcpuid, "Halted");
 1293                         if (!vcpu_halted && halt_detection_enabled) {
 1294                                 vcpu_halted = 1;
 1295                                 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
 1296                         }
 1297                         if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
 1298                                 vm_halted = 1;
 1299                                 break;
 1300                         }
 1301                 } else {
 1302                         wmesg = "vmidle";
 1303                 }
 1304 
 1305                 t = ticks;
 1306                 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1307                 /*
 1308                  * XXX msleep_spin() cannot be interrupted by signals so
 1309                  * wake up periodically to check pending signals.
 1310                  */
 1311                 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
 1312                 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1313                 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
 1314         }
 1315 
 1316         if (vcpu_halted)
 1317                 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
 1318 
 1319         vcpu_unlock(vcpu);
 1320 
 1321         if (vm_halted)
 1322                 vm_suspend(vm, VM_SUSPEND_HALT);
 1323 
 1324         return (0);
 1325 }
 1326 
 1327 static int
 1328 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
 1329 {
 1330         int rv, ftype;
 1331         struct vm_map *map;
 1332         struct vcpu *vcpu;
 1333         struct vm_exit *vme;
 1334 
 1335         vcpu = &vm->vcpu[vcpuid];
 1336         vme = &vcpu->exitinfo;
 1337 
 1338         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1339             __func__, vme->inst_length));
 1340 
 1341         ftype = vme->u.paging.fault_type;
 1342         KASSERT(ftype == VM_PROT_READ ||
 1343             ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
 1344             ("vm_handle_paging: invalid fault_type %d", ftype));
 1345 
 1346         if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
 1347                 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
 1348                     vme->u.paging.gpa, ftype);
 1349                 if (rv == 0) {
 1350                         VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
 1351                             ftype == VM_PROT_READ ? "accessed" : "dirty",
 1352                             vme->u.paging.gpa);
 1353                         goto done;
 1354                 }
 1355         }
 1356 
 1357         map = &vm->vmspace->vm_map;
 1358         rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
 1359 
 1360         VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
 1361             "ftype = %d", rv, vme->u.paging.gpa, ftype);
 1362 
 1363         if (rv != KERN_SUCCESS)
 1364                 return (EFAULT);
 1365 done:
 1366         return (0);
 1367 }
 1368 
 1369 static int
 1370 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
 1371 {
 1372         struct vie *vie;
 1373         struct vcpu *vcpu;
 1374         struct vm_exit *vme;
 1375         uint64_t gla, gpa, cs_base;
 1376         struct vm_guest_paging *paging;
 1377         mem_region_read_t mread;
 1378         mem_region_write_t mwrite;
 1379         enum vm_cpu_mode cpu_mode;
 1380         int cs_d, error, fault;
 1381 
 1382         vcpu = &vm->vcpu[vcpuid];
 1383         vme = &vcpu->exitinfo;
 1384 
 1385         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1386             __func__, vme->inst_length));
 1387 
 1388         gla = vme->u.inst_emul.gla;
 1389         gpa = vme->u.inst_emul.gpa;
 1390         cs_base = vme->u.inst_emul.cs_base;
 1391         cs_d = vme->u.inst_emul.cs_d;
 1392         vie = &vme->u.inst_emul.vie;
 1393         paging = &vme->u.inst_emul.paging;
 1394         cpu_mode = paging->cpu_mode;
 1395 
 1396         VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
 1397 
 1398         /* Fetch, decode and emulate the faulting instruction */
 1399         if (vie->num_valid == 0) {
 1400                 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
 1401                     cs_base, VIE_INST_SIZE, vie, &fault);
 1402         } else {
 1403                 /*
 1404                  * The instruction bytes have already been copied into 'vie'
 1405                  */
 1406                 error = fault = 0;
 1407         }
 1408         if (error || fault)
 1409                 return (error);
 1410 
 1411         if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
 1412                 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
 1413                     vme->rip + cs_base);
 1414                 *retu = true;       /* dump instruction bytes in userspace */
 1415                 return (0);
 1416         }
 1417 
 1418         /*
 1419          * Update 'nextrip' based on the length of the emulated instruction.
 1420          */
 1421         vme->inst_length = vie->num_processed;
 1422         vcpu->nextrip += vie->num_processed;
 1423         VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
 1424             "decoding", vcpu->nextrip);
 1425  
 1426         /* return to userland unless this is an in-kernel emulated device */
 1427         if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
 1428                 mread = lapic_mmio_read;
 1429                 mwrite = lapic_mmio_write;
 1430         } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
 1431                 mread = vioapic_mmio_read;
 1432                 mwrite = vioapic_mmio_write;
 1433         } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
 1434                 mread = vhpet_mmio_read;
 1435                 mwrite = vhpet_mmio_write;
 1436         } else {
 1437                 *retu = true;
 1438                 return (0);
 1439         }
 1440 
 1441         error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
 1442             mread, mwrite, retu);
 1443 
 1444         return (error);
 1445 }
 1446 
 1447 static int
 1448 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
 1449 {
 1450         int i, done;
 1451         struct vcpu *vcpu;
 1452 
 1453         done = 0;
 1454         vcpu = &vm->vcpu[vcpuid];
 1455 
 1456         CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
 1457 
 1458         /*
 1459          * Wait until all 'active_cpus' have suspended themselves.
 1460          *
 1461          * Since a VM may be suspended at any time including when one or
 1462          * more vcpus are doing a rendezvous we need to call the rendezvous
 1463          * handler while we are waiting to prevent a deadlock.
 1464          */
 1465         vcpu_lock(vcpu);
 1466         while (1) {
 1467                 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
 1468                         VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
 1469                         break;
 1470                 }
 1471 
 1472                 if (vm->rendezvous_func == NULL) {
 1473                         VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
 1474                         vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1475                         msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
 1476                         vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1477                 } else {
 1478                         VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
 1479                         vcpu_unlock(vcpu);
 1480                         vm_handle_rendezvous(vm, vcpuid);
 1481                         vcpu_lock(vcpu);
 1482                 }
 1483         }
 1484         vcpu_unlock(vcpu);
 1485 
 1486         /*
 1487          * Wakeup the other sleeping vcpus and return to userspace.
 1488          */
 1489         for (i = 0; i < VM_MAXCPU; i++) {
 1490                 if (CPU_ISSET(i, &vm->suspended_cpus)) {
 1491                         vcpu_notify_event(vm, i, false);
 1492                 }
 1493         }
 1494 
 1495         *retu = true;
 1496         return (0);
 1497 }
 1498 
 1499 static int
 1500 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
 1501 {
 1502         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 1503 
 1504         vcpu_lock(vcpu);
 1505         KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
 1506         vcpu->reqidle = 0;
 1507         vcpu_unlock(vcpu);
 1508         *retu = true;
 1509         return (0);
 1510 }
 1511 
 1512 int
 1513 vm_suspend(struct vm *vm, enum vm_suspend_how how)
 1514 {
 1515         int i;
 1516 
 1517         if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
 1518                 return (EINVAL);
 1519 
 1520         if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
 1521                 VM_CTR2(vm, "virtual machine already suspended %d/%d",
 1522                     vm->suspend, how);
 1523                 return (EALREADY);
 1524         }
 1525 
 1526         VM_CTR1(vm, "virtual machine successfully suspended %d", how);
 1527 
 1528         /*
 1529          * Notify all active vcpus that they are now suspended.
 1530          */
 1531         for (i = 0; i < VM_MAXCPU; i++) {
 1532                 if (CPU_ISSET(i, &vm->active_cpus))
 1533                         vcpu_notify_event(vm, i, false);
 1534         }
 1535 
 1536         return (0);
 1537 }
 1538 
 1539 void
 1540 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
 1541 {
 1542         struct vm_exit *vmexit;
 1543 
 1544         KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
 1545             ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
 1546 
 1547         vmexit = vm_exitinfo(vm, vcpuid);
 1548         vmexit->rip = rip;
 1549         vmexit->inst_length = 0;
 1550         vmexit->exitcode = VM_EXITCODE_SUSPENDED;
 1551         vmexit->u.suspended.how = vm->suspend;
 1552 }
 1553 
 1554 void
 1555 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
 1556 {
 1557         struct vm_exit *vmexit;
 1558 
 1559         KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
 1560 
 1561         vmexit = vm_exitinfo(vm, vcpuid);
 1562         vmexit->rip = rip;
 1563         vmexit->inst_length = 0;
 1564         vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
 1565         vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
 1566 }
 1567 
 1568 void
 1569 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
 1570 {
 1571         struct vm_exit *vmexit;
 1572 
 1573         vmexit = vm_exitinfo(vm, vcpuid);
 1574         vmexit->rip = rip;
 1575         vmexit->inst_length = 0;
 1576         vmexit->exitcode = VM_EXITCODE_REQIDLE;
 1577         vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
 1578 }
 1579 
 1580 void
 1581 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
 1582 {
 1583         struct vm_exit *vmexit;
 1584 
 1585         vmexit = vm_exitinfo(vm, vcpuid);
 1586         vmexit->rip = rip;
 1587         vmexit->inst_length = 0;
 1588         vmexit->exitcode = VM_EXITCODE_BOGUS;
 1589         vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
 1590 }
 1591 
 1592 int
 1593 vm_run(struct vm *vm, struct vm_run *vmrun)
 1594 {
 1595         struct vm_eventinfo evinfo;
 1596         int error, vcpuid;
 1597         struct vcpu *vcpu;
 1598         struct pcb *pcb;
 1599         uint64_t tscval;
 1600         struct vm_exit *vme;
 1601         bool retu, intr_disabled;
 1602         pmap_t pmap;
 1603 
 1604         vcpuid = vmrun->cpuid;
 1605 
 1606         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1607                 return (EINVAL);
 1608 
 1609         if (!CPU_ISSET(vcpuid, &vm->active_cpus))
 1610                 return (EINVAL);
 1611 
 1612         if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
 1613                 return (EINVAL);
 1614 
 1615         pmap = vmspace_pmap(vm->vmspace);
 1616         vcpu = &vm->vcpu[vcpuid];
 1617         vme = &vcpu->exitinfo;
 1618         evinfo.rptr = &vm->rendezvous_func;
 1619         evinfo.sptr = &vm->suspend;
 1620         evinfo.iptr = &vcpu->reqidle;
 1621 restart:
 1622         critical_enter();
 1623 
 1624         KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
 1625             ("vm_run: absurd pm_active"));
 1626 
 1627         tscval = rdtsc();
 1628 
 1629         pcb = PCPU_GET(curpcb);
 1630         set_pcb_flags(pcb, PCB_FULL_IRET);
 1631 
 1632         restore_guest_fpustate(vcpu);
 1633 
 1634         vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
 1635         error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
 1636         vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
 1637 
 1638         save_guest_fpustate(vcpu);
 1639 
 1640         vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
 1641 
 1642         critical_exit();
 1643 
 1644         if (error == 0) {
 1645                 retu = false;
 1646                 vcpu->nextrip = vme->rip + vme->inst_length;
 1647                 switch (vme->exitcode) {
 1648                 case VM_EXITCODE_REQIDLE:
 1649                         error = vm_handle_reqidle(vm, vcpuid, &retu);
 1650                         break;
 1651                 case VM_EXITCODE_SUSPENDED:
 1652                         error = vm_handle_suspend(vm, vcpuid, &retu);
 1653                         break;
 1654                 case VM_EXITCODE_IOAPIC_EOI:
 1655                         vioapic_process_eoi(vm, vcpuid,
 1656                             vme->u.ioapic_eoi.vector);
 1657                         break;
 1658                 case VM_EXITCODE_RENDEZVOUS:
 1659                         vm_handle_rendezvous(vm, vcpuid);
 1660                         error = 0;
 1661                         break;
 1662                 case VM_EXITCODE_HLT:
 1663                         intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
 1664                         error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
 1665                         break;
 1666                 case VM_EXITCODE_PAGING:
 1667                         error = vm_handle_paging(vm, vcpuid, &retu);
 1668                         break;
 1669                 case VM_EXITCODE_INST_EMUL:
 1670                         error = vm_handle_inst_emul(vm, vcpuid, &retu);
 1671                         break;
 1672                 case VM_EXITCODE_INOUT:
 1673                 case VM_EXITCODE_INOUT_STR:
 1674                         error = vm_handle_inout(vm, vcpuid, vme, &retu);
 1675                         break;
 1676                 case VM_EXITCODE_MONITOR:
 1677                 case VM_EXITCODE_MWAIT:
 1678                         vm_inject_ud(vm, vcpuid);
 1679                         break;
 1680                 default:
 1681                         retu = true;    /* handled in userland */
 1682                         break;
 1683                 }
 1684         }
 1685 
 1686         if (error == 0 && retu == false)
 1687                 goto restart;
 1688 
 1689         VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
 1690 
 1691         /* copy the exit information */
 1692         bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
 1693         return (error);
 1694 }
 1695 
 1696 int
 1697 vm_restart_instruction(void *arg, int vcpuid)
 1698 {
 1699         struct vm *vm;
 1700         struct vcpu *vcpu;
 1701         enum vcpu_state state;
 1702         uint64_t rip;
 1703         int error;
 1704 
 1705         vm = arg;
 1706         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1707                 return (EINVAL);
 1708 
 1709         vcpu = &vm->vcpu[vcpuid];
 1710         state = vcpu_get_state(vm, vcpuid, NULL);
 1711         if (state == VCPU_RUNNING) {
 1712                 /*
 1713                  * When a vcpu is "running" the next instruction is determined
 1714                  * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
 1715                  * Thus setting 'inst_length' to zero will cause the current
 1716                  * instruction to be restarted.
 1717                  */
 1718                 vcpu->exitinfo.inst_length = 0;
 1719                 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
 1720                     "setting inst_length to zero", vcpu->exitinfo.rip);
 1721         } else if (state == VCPU_FROZEN) {
 1722                 /*
 1723                  * When a vcpu is "frozen" it is outside the critical section
 1724                  * around VMRUN() and 'nextrip' points to the next instruction.
 1725                  * Thus instruction restart is achieved by setting 'nextrip'
 1726                  * to the vcpu's %rip.
 1727                  */
 1728                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
 1729                 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
 1730                 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
 1731                     "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
 1732                 vcpu->nextrip = rip;
 1733         } else {
 1734                 panic("%s: invalid state %d", __func__, state);
 1735         }
 1736         return (0);
 1737 }
 1738 
 1739 int
 1740 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
 1741 {
 1742         struct vcpu *vcpu;
 1743         int type, vector;
 1744 
 1745         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1746                 return (EINVAL);
 1747 
 1748         vcpu = &vm->vcpu[vcpuid];
 1749 
 1750         if (info & VM_INTINFO_VALID) {
 1751                 type = info & VM_INTINFO_TYPE;
 1752                 vector = info & 0xff;
 1753                 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
 1754                         return (EINVAL);
 1755                 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
 1756                         return (EINVAL);
 1757                 if (info & VM_INTINFO_RSVD)
 1758                         return (EINVAL);
 1759         } else {
 1760                 info = 0;
 1761         }
 1762         VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
 1763         vcpu->exitintinfo = info;
 1764         return (0);
 1765 }
 1766 
 1767 enum exc_class {
 1768         EXC_BENIGN,
 1769         EXC_CONTRIBUTORY,
 1770         EXC_PAGEFAULT
 1771 };
 1772 
 1773 #define IDT_VE  20      /* Virtualization Exception (Intel specific) */
 1774 
 1775 static enum exc_class
 1776 exception_class(uint64_t info)
 1777 {
 1778         int type, vector;
 1779 
 1780         KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
 1781         type = info & VM_INTINFO_TYPE;
 1782         vector = info & 0xff;
 1783 
 1784         /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
 1785         switch (type) {
 1786         case VM_INTINFO_HWINTR:
 1787         case VM_INTINFO_SWINTR:
 1788         case VM_INTINFO_NMI:
 1789                 return (EXC_BENIGN);
 1790         default:
 1791                 /*
 1792                  * Hardware exception.
 1793                  *
 1794                  * SVM and VT-x use identical type values to represent NMI,
 1795                  * hardware interrupt and software interrupt.
 1796                  *
 1797                  * SVM uses type '3' for all exceptions. VT-x uses type '3'
 1798                  * for exceptions except #BP and #OF. #BP and #OF use a type
 1799                  * value of '5' or '6'. Therefore we don't check for explicit
 1800                  * values of 'type' to classify 'intinfo' into a hardware
 1801                  * exception.
 1802                  */
 1803                 break;
 1804         }
 1805 
 1806         switch (vector) {
 1807         case IDT_PF:
 1808         case IDT_VE:
 1809                 return (EXC_PAGEFAULT);
 1810         case IDT_DE:
 1811         case IDT_TS:
 1812         case IDT_NP:
 1813         case IDT_SS:
 1814         case IDT_GP:
 1815                 return (EXC_CONTRIBUTORY);
 1816         default:
 1817                 return (EXC_BENIGN);
 1818         }
 1819 }
 1820 
 1821 static int
 1822 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
 1823     uint64_t *retinfo)
 1824 {
 1825         enum exc_class exc1, exc2;
 1826         int type1, vector1;
 1827 
 1828         KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
 1829         KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
 1830 
 1831         /*
 1832          * If an exception occurs while attempting to call the double-fault
 1833          * handler the processor enters shutdown mode (aka triple fault).
 1834          */
 1835         type1 = info1 & VM_INTINFO_TYPE;
 1836         vector1 = info1 & 0xff;
 1837         if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
 1838                 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
 1839                     info1, info2);
 1840                 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
 1841                 *retinfo = 0;
 1842                 return (0);
 1843         }
 1844 
 1845         /*
 1846          * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
 1847          */
 1848         exc1 = exception_class(info1);
 1849         exc2 = exception_class(info2);
 1850         if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
 1851             (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
 1852                 /* Convert nested fault into a double fault. */
 1853                 *retinfo = IDT_DF;
 1854                 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1855                 *retinfo |= VM_INTINFO_DEL_ERRCODE;
 1856         } else {
 1857                 /* Handle exceptions serially */
 1858                 *retinfo = info2;
 1859         }
 1860         return (1);
 1861 }
 1862 
 1863 static uint64_t
 1864 vcpu_exception_intinfo(struct vcpu *vcpu)
 1865 {
 1866         uint64_t info = 0;
 1867 
 1868         if (vcpu->exception_pending) {
 1869                 info = vcpu->exc_vector & 0xff;
 1870                 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1871                 if (vcpu->exc_errcode_valid) {
 1872                         info |= VM_INTINFO_DEL_ERRCODE;
 1873                         info |= (uint64_t)vcpu->exc_errcode << 32;
 1874                 }
 1875         }
 1876         return (info);
 1877 }
 1878 
 1879 int
 1880 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
 1881 {
 1882         struct vcpu *vcpu;
 1883         uint64_t info1, info2;
 1884         int valid;
 1885 
 1886         KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
 1887 
 1888         vcpu = &vm->vcpu[vcpuid];
 1889 
 1890         info1 = vcpu->exitintinfo;
 1891         vcpu->exitintinfo = 0;
 1892 
 1893         info2 = 0;
 1894         if (vcpu->exception_pending) {
 1895                 info2 = vcpu_exception_intinfo(vcpu);
 1896                 vcpu->exception_pending = 0;
 1897                 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
 1898                     vcpu->exc_vector, info2);
 1899         }
 1900 
 1901         if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
 1902                 valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
 1903         } else if (info1 & VM_INTINFO_VALID) {
 1904                 *retinfo = info1;
 1905                 valid = 1;
 1906         } else if (info2 & VM_INTINFO_VALID) {
 1907                 *retinfo = info2;
 1908                 valid = 1;
 1909         } else {
 1910                 valid = 0;
 1911         }
 1912 
 1913         if (valid) {
 1914                 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
 1915                     "retinfo(%#lx)", __func__, info1, info2, *retinfo);
 1916         }
 1917 
 1918         return (valid);
 1919 }
 1920 
 1921 int
 1922 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
 1923 {
 1924         struct vcpu *vcpu;
 1925 
 1926         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1927                 return (EINVAL);
 1928 
 1929         vcpu = &vm->vcpu[vcpuid];
 1930         *info1 = vcpu->exitintinfo;
 1931         *info2 = vcpu_exception_intinfo(vcpu);
 1932         return (0);
 1933 }
 1934 
 1935 int
 1936 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
 1937     uint32_t errcode, int restart_instruction)
 1938 {
 1939         struct vcpu *vcpu;
 1940         uint64_t regval;
 1941         int error;
 1942 
 1943         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 1944                 return (EINVAL);
 1945 
 1946         if (vector < 0 || vector >= 32)
 1947                 return (EINVAL);
 1948 
 1949         /*
 1950          * A double fault exception should never be injected directly into
 1951          * the guest. It is a derived exception that results from specific
 1952          * combinations of nested faults.
 1953          */
 1954         if (vector == IDT_DF)
 1955                 return (EINVAL);
 1956 
 1957         vcpu = &vm->vcpu[vcpuid];
 1958 
 1959         if (vcpu->exception_pending) {
 1960                 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
 1961                     "pending exception %d", vector, vcpu->exc_vector);
 1962                 return (EBUSY);
 1963         }
 1964 
 1965         if (errcode_valid) {
 1966                 /*
 1967                  * Exceptions don't deliver an error code in real mode.
 1968                  */
 1969                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
 1970                 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
 1971                 if (!(regval & CR0_PE))
 1972                         errcode_valid = 0;
 1973         }
 1974 
 1975         /*
 1976          * From section 26.6.1 "Interruptibility State" in Intel SDM:
 1977          *
 1978          * Event blocking by "STI" or "MOV SS" is cleared after guest executes
 1979          * one instruction or incurs an exception.
 1980          */
 1981         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
 1982         KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
 1983             __func__, error));
 1984 
 1985         if (restart_instruction)
 1986                 vm_restart_instruction(vm, vcpuid);
 1987 
 1988         vcpu->exception_pending = 1;
 1989         vcpu->exc_vector = vector;
 1990         vcpu->exc_errcode = errcode;
 1991         vcpu->exc_errcode_valid = errcode_valid;
 1992         VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
 1993         return (0);
 1994 }
 1995 
 1996 void
 1997 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
 1998     int errcode)
 1999 {
 2000         struct vm *vm;
 2001         int error, restart_instruction;
 2002 
 2003         vm = vmarg;
 2004         restart_instruction = 1;
 2005 
 2006         error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
 2007             errcode, restart_instruction);
 2008         KASSERT(error == 0, ("vm_inject_exception error %d", error));
 2009 }
 2010 
 2011 void
 2012 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
 2013 {
 2014         struct vm *vm;
 2015         int error;
 2016 
 2017         vm = vmarg;
 2018         VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
 2019             error_code, cr2);
 2020 
 2021         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
 2022         KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
 2023 
 2024         vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
 2025 }
 2026 
 2027 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
 2028 
 2029 int
 2030 vm_inject_nmi(struct vm *vm, int vcpuid)
 2031 {
 2032         struct vcpu *vcpu;
 2033 
 2034         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2035                 return (EINVAL);
 2036 
 2037         vcpu = &vm->vcpu[vcpuid];
 2038 
 2039         vcpu->nmi_pending = 1;
 2040         vcpu_notify_event(vm, vcpuid, false);
 2041         return (0);
 2042 }
 2043 
 2044 int
 2045 vm_nmi_pending(struct vm *vm, int vcpuid)
 2046 {
 2047         struct vcpu *vcpu;
 2048 
 2049         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2050                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2051 
 2052         vcpu = &vm->vcpu[vcpuid];
 2053 
 2054         return (vcpu->nmi_pending);
 2055 }
 2056 
 2057 void
 2058 vm_nmi_clear(struct vm *vm, int vcpuid)
 2059 {
 2060         struct vcpu *vcpu;
 2061 
 2062         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2063                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2064 
 2065         vcpu = &vm->vcpu[vcpuid];
 2066 
 2067         if (vcpu->nmi_pending == 0)
 2068                 panic("vm_nmi_clear: inconsistent nmi_pending state");
 2069 
 2070         vcpu->nmi_pending = 0;
 2071         vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
 2072 }
 2073 
 2074 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
 2075 
 2076 int
 2077 vm_inject_extint(struct vm *vm, int vcpuid)
 2078 {
 2079         struct vcpu *vcpu;
 2080 
 2081         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2082                 return (EINVAL);
 2083 
 2084         vcpu = &vm->vcpu[vcpuid];
 2085 
 2086         vcpu->extint_pending = 1;
 2087         vcpu_notify_event(vm, vcpuid, false);
 2088         return (0);
 2089 }
 2090 
 2091 int
 2092 vm_extint_pending(struct vm *vm, int vcpuid)
 2093 {
 2094         struct vcpu *vcpu;
 2095 
 2096         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2097                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2098 
 2099         vcpu = &vm->vcpu[vcpuid];
 2100 
 2101         return (vcpu->extint_pending);
 2102 }
 2103 
 2104 void
 2105 vm_extint_clear(struct vm *vm, int vcpuid)
 2106 {
 2107         struct vcpu *vcpu;
 2108 
 2109         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2110                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2111 
 2112         vcpu = &vm->vcpu[vcpuid];
 2113 
 2114         if (vcpu->extint_pending == 0)
 2115                 panic("vm_extint_clear: inconsistent extint_pending state");
 2116 
 2117         vcpu->extint_pending = 0;
 2118         vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
 2119 }
 2120 
 2121 int
 2122 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
 2123 {
 2124         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 2125                 return (EINVAL);
 2126 
 2127         if (type < 0 || type >= VM_CAP_MAX)
 2128                 return (EINVAL);
 2129 
 2130         return (VMGETCAP(vm->cookie, vcpu, type, retval));
 2131 }
 2132 
 2133 int
 2134 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
 2135 {
 2136         if (vcpu < 0 || vcpu >= VM_MAXCPU)
 2137                 return (EINVAL);
 2138 
 2139         if (type < 0 || type >= VM_CAP_MAX)
 2140                 return (EINVAL);
 2141 
 2142         return (VMSETCAP(vm->cookie, vcpu, type, val));
 2143 }
 2144 
 2145 struct vlapic *
 2146 vm_lapic(struct vm *vm, int cpu)
 2147 {
 2148         return (vm->vcpu[cpu].vlapic);
 2149 }
 2150 
 2151 struct vioapic *
 2152 vm_ioapic(struct vm *vm)
 2153 {
 2154 
 2155         return (vm->vioapic);
 2156 }
 2157 
 2158 struct vhpet *
 2159 vm_hpet(struct vm *vm)
 2160 {
 2161 
 2162         return (vm->vhpet);
 2163 }
 2164 
 2165 boolean_t
 2166 vmm_is_pptdev(int bus, int slot, int func)
 2167 {
 2168         int found, i, n;
 2169         int b, s, f;
 2170         char *val, *cp, *cp2;
 2171 
 2172         /*
 2173          * XXX
 2174          * The length of an environment variable is limited to 128 bytes which
 2175          * puts an upper limit on the number of passthru devices that may be
 2176          * specified using a single environment variable.
 2177          *
 2178          * Work around this by scanning multiple environment variable
 2179          * names instead of a single one - yuck!
 2180          */
 2181         const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
 2182 
 2183         /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
 2184         found = 0;
 2185         for (i = 0; names[i] != NULL && !found; i++) {
 2186                 cp = val = kern_getenv(names[i]);
 2187                 while (cp != NULL && *cp != '\0') {
 2188                         if ((cp2 = strchr(cp, ' ')) != NULL)
 2189                                 *cp2 = '\0';
 2190 
 2191                         n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
 2192                         if (n == 3 && bus == b && slot == s && func == f) {
 2193                                 found = 1;
 2194                                 break;
 2195                         }
 2196                 
 2197                         if (cp2 != NULL)
 2198                                 *cp2++ = ' ';
 2199 
 2200                         cp = cp2;
 2201                 }
 2202                 freeenv(val);
 2203         }
 2204         return (found);
 2205 }
 2206 
 2207 void *
 2208 vm_iommu_domain(struct vm *vm)
 2209 {
 2210 
 2211         return (vm->iommu);
 2212 }
 2213 
 2214 int
 2215 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 2216     bool from_idle)
 2217 {
 2218         int error;
 2219         struct vcpu *vcpu;
 2220 
 2221         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2222                 panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
 2223 
 2224         vcpu = &vm->vcpu[vcpuid];
 2225 
 2226         vcpu_lock(vcpu);
 2227         error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
 2228         vcpu_unlock(vcpu);
 2229 
 2230         return (error);
 2231 }
 2232 
 2233 enum vcpu_state
 2234 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
 2235 {
 2236         struct vcpu *vcpu;
 2237         enum vcpu_state state;
 2238 
 2239         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2240                 panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
 2241 
 2242         vcpu = &vm->vcpu[vcpuid];
 2243 
 2244         vcpu_lock(vcpu);
 2245         state = vcpu->state;
 2246         if (hostcpu != NULL)
 2247                 *hostcpu = vcpu->hostcpu;
 2248         vcpu_unlock(vcpu);
 2249 
 2250         return (state);
 2251 }
 2252 
 2253 int
 2254 vm_activate_cpu(struct vm *vm, int vcpuid)
 2255 {
 2256 
 2257         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2258                 return (EINVAL);
 2259 
 2260         if (CPU_ISSET(vcpuid, &vm->active_cpus))
 2261                 return (EBUSY);
 2262 
 2263         VCPU_CTR0(vm, vcpuid, "activated");
 2264         CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
 2265         return (0);
 2266 }
 2267 
 2268 cpuset_t
 2269 vm_active_cpus(struct vm *vm)
 2270 {
 2271 
 2272         return (vm->active_cpus);
 2273 }
 2274 
 2275 cpuset_t
 2276 vm_suspended_cpus(struct vm *vm)
 2277 {
 2278 
 2279         return (vm->suspended_cpus);
 2280 }
 2281 
 2282 void *
 2283 vcpu_stats(struct vm *vm, int vcpuid)
 2284 {
 2285 
 2286         return (vm->vcpu[vcpuid].stats);
 2287 }
 2288 
 2289 int
 2290 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
 2291 {
 2292         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2293                 return (EINVAL);
 2294 
 2295         *state = vm->vcpu[vcpuid].x2apic_state;
 2296 
 2297         return (0);
 2298 }
 2299 
 2300 int
 2301 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
 2302 {
 2303         if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
 2304                 return (EINVAL);
 2305 
 2306         if (state >= X2APIC_STATE_LAST)
 2307                 return (EINVAL);
 2308 
 2309         vm->vcpu[vcpuid].x2apic_state = state;
 2310 
 2311         vlapic_set_x2apic_state(vm, vcpuid, state);
 2312 
 2313         return (0);
 2314 }
 2315 
 2316 /*
 2317  * This function is called to ensure that a vcpu "sees" a pending event
 2318  * as soon as possible:
 2319  * - If the vcpu thread is sleeping then it is woken up.
 2320  * - If the vcpu is running on a different host_cpu then an IPI will be directed
 2321  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
 2322  */
 2323 static void
 2324 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
 2325 {
 2326         int hostcpu;
 2327 
 2328         hostcpu = vcpu->hostcpu;
 2329         if (vcpu->state == VCPU_RUNNING) {
 2330                 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
 2331                 if (hostcpu != curcpu) {
 2332                         if (lapic_intr) {
 2333                                 vlapic_post_intr(vcpu->vlapic, hostcpu,
 2334                                     vmm_ipinum);
 2335                         } else {
 2336                                 ipi_cpu(hostcpu, vmm_ipinum);
 2337                         }
 2338                 } else {
 2339                         /*
 2340                          * If the 'vcpu' is running on 'curcpu' then it must
 2341                          * be sending a notification to itself (e.g. SELF_IPI).
 2342                          * The pending event will be picked up when the vcpu
 2343                          * transitions back to guest context.
 2344                          */
 2345                 }
 2346         } else {
 2347                 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
 2348                     "with hostcpu %d", vcpu->state, hostcpu));
 2349                 if (vcpu->state == VCPU_SLEEPING)
 2350                         wakeup_one(vcpu);
 2351         }
 2352 }
 2353 
 2354 void
 2355 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
 2356 {
 2357         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 2358 
 2359         vcpu_lock(vcpu);
 2360         vcpu_notify_event_locked(vcpu, lapic_intr);
 2361         vcpu_unlock(vcpu);
 2362 }
 2363 
 2364 struct vmspace *
 2365 vm_get_vmspace(struct vm *vm)
 2366 {
 2367 
 2368         return (vm->vmspace);
 2369 }
 2370 
 2371 int
 2372 vm_apicid2vcpuid(struct vm *vm, int apicid)
 2373 {
 2374         /*
 2375          * XXX apic id is assumed to be numerically identical to vcpu id
 2376          */
 2377         return (apicid);
 2378 }
 2379 
 2380 void
 2381 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
 2382     vm_rendezvous_func_t func, void *arg)
 2383 {
 2384         int i;
 2385 
 2386         /*
 2387          * Enforce that this function is called without any locks
 2388          */
 2389         WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
 2390         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
 2391             ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
 2392 
 2393 restart:
 2394         mtx_lock(&vm->rendezvous_mtx);
 2395         if (vm->rendezvous_func != NULL) {
 2396                 /*
 2397                  * If a rendezvous is already in progress then we need to
 2398                  * call the rendezvous handler in case this 'vcpuid' is one
 2399                  * of the targets of the rendezvous.
 2400                  */
 2401                 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
 2402                 mtx_unlock(&vm->rendezvous_mtx);
 2403                 vm_handle_rendezvous(vm, vcpuid);
 2404                 goto restart;
 2405         }
 2406         KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
 2407             "rendezvous is still in progress"));
 2408 
 2409         RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
 2410         vm->rendezvous_req_cpus = dest;
 2411         CPU_ZERO(&vm->rendezvous_done_cpus);
 2412         vm->rendezvous_arg = arg;
 2413         vm_set_rendezvous_func(vm, func);
 2414         mtx_unlock(&vm->rendezvous_mtx);
 2415 
 2416         /*
 2417          * Wake up any sleeping vcpus and trigger a VM-exit in any running
 2418          * vcpus so they handle the rendezvous as soon as possible.
 2419          */
 2420         for (i = 0; i < VM_MAXCPU; i++) {
 2421                 if (CPU_ISSET(i, &dest))
 2422                         vcpu_notify_event(vm, i, false);
 2423         }
 2424 
 2425         vm_handle_rendezvous(vm, vcpuid);
 2426 }
 2427 
 2428 struct vatpic *
 2429 vm_atpic(struct vm *vm)
 2430 {
 2431         return (vm->vatpic);
 2432 }
 2433 
 2434 struct vatpit *
 2435 vm_atpit(struct vm *vm)
 2436 {
 2437         return (vm->vatpit);
 2438 }
 2439 
 2440 struct vpmtmr *
 2441 vm_pmtmr(struct vm *vm)
 2442 {
 2443 
 2444         return (vm->vpmtmr);
 2445 }
 2446 
 2447 struct vrtc *
 2448 vm_rtc(struct vm *vm)
 2449 {
 2450 
 2451         return (vm->vrtc);
 2452 }
 2453 
 2454 enum vm_reg_name
 2455 vm_segment_name(int seg)
 2456 {
 2457         static enum vm_reg_name seg_names[] = {
 2458                 VM_REG_GUEST_ES,
 2459                 VM_REG_GUEST_CS,
 2460                 VM_REG_GUEST_SS,
 2461                 VM_REG_GUEST_DS,
 2462                 VM_REG_GUEST_FS,
 2463                 VM_REG_GUEST_GS
 2464         };
 2465 
 2466         KASSERT(seg >= 0 && seg < nitems(seg_names),
 2467             ("%s: invalid segment encoding %d", __func__, seg));
 2468         return (seg_names[seg]);
 2469 }
 2470 
 2471 void
 2472 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
 2473     int num_copyinfo)
 2474 {
 2475         int idx;
 2476 
 2477         for (idx = 0; idx < num_copyinfo; idx++) {
 2478                 if (copyinfo[idx].cookie != NULL)
 2479                         vm_gpa_release(copyinfo[idx].cookie);
 2480         }
 2481         bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
 2482 }
 2483 
 2484 int
 2485 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
 2486     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
 2487     int num_copyinfo, int *fault)
 2488 {
 2489         int error, idx, nused;
 2490         size_t n, off, remaining;
 2491         void *hva, *cookie;
 2492         uint64_t gpa;
 2493 
 2494         bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
 2495 
 2496         nused = 0;
 2497         remaining = len;
 2498         while (remaining > 0) {
 2499                 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
 2500                 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
 2501                 if (error || *fault)
 2502                         return (error);
 2503                 off = gpa & PAGE_MASK;
 2504                 n = min(remaining, PAGE_SIZE - off);
 2505                 copyinfo[nused].gpa = gpa;
 2506                 copyinfo[nused].len = n;
 2507                 remaining -= n;
 2508                 gla += n;
 2509                 nused++;
 2510         }
 2511 
 2512         for (idx = 0; idx < nused; idx++) {
 2513                 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
 2514                     copyinfo[idx].len, prot, &cookie);
 2515                 if (hva == NULL)
 2516                         break;
 2517                 copyinfo[idx].hva = hva;
 2518                 copyinfo[idx].cookie = cookie;
 2519         }
 2520 
 2521         if (idx != nused) {
 2522                 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
 2523                 return (EFAULT);
 2524         } else {
 2525                 *fault = 0;
 2526                 return (0);
 2527         }
 2528 }
 2529 
 2530 void
 2531 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
 2532     size_t len)
 2533 {
 2534         char *dst;
 2535         int idx;
 2536         
 2537         dst = kaddr;
 2538         idx = 0;
 2539         while (len > 0) {
 2540                 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
 2541                 len -= copyinfo[idx].len;
 2542                 dst += copyinfo[idx].len;
 2543                 idx++;
 2544         }
 2545 }
 2546 
 2547 void
 2548 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
 2549     struct vm_copyinfo *copyinfo, size_t len)
 2550 {
 2551         const char *src;
 2552         int idx;
 2553 
 2554         src = kaddr;
 2555         idx = 0;
 2556         while (len > 0) {
 2557                 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
 2558                 len -= copyinfo[idx].len;
 2559                 src += copyinfo[idx].len;
 2560                 idx++;
 2561         }
 2562 }
 2563 
 2564 /*
 2565  * Return the amount of in-use and wired memory for the VM. Since
 2566  * these are global stats, only return the values with for vCPU 0
 2567  */
 2568 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
 2569 VMM_STAT_DECLARE(VMM_MEM_WIRED);
 2570 
 2571 static void
 2572 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2573 {
 2574 
 2575         if (vcpu == 0) {
 2576                 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
 2577                     PAGE_SIZE * vmspace_resident_count(vm->vmspace));
 2578         }       
 2579 }
 2580 
 2581 static void
 2582 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2583 {
 2584 
 2585         if (vcpu == 0) {
 2586                 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
 2587                     PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
 2588         }       
 2589 }
 2590 
 2591 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
 2592 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);

Cache object: 8f24794e72a06874f321ee812dba5e74


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.