The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/vmm/vmm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2011 NetApp, Inc.
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  * $FreeBSD$
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/kernel.h>
   35 #include <sys/module.h>
   36 #include <sys/sysctl.h>
   37 #include <sys/malloc.h>
   38 #include <sys/pcpu.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/proc.h>
   42 #include <sys/rwlock.h>
   43 #include <sys/sched.h>
   44 #include <sys/smp.h>
   45 #include <sys/systm.h>
   46 
   47 #include <vm/vm.h>
   48 #include <vm/vm_object.h>
   49 #include <vm/vm_page.h>
   50 #include <vm/pmap.h>
   51 #include <vm/vm_map.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/vm_param.h>
   54 
   55 #include <machine/cpu.h>
   56 #include <machine/pcb.h>
   57 #include <machine/smp.h>
   58 #include <machine/md_var.h>
   59 #include <x86/psl.h>
   60 #include <x86/apicreg.h>
   61 
   62 #include <machine/vmm.h>
   63 #include <machine/vmm_dev.h>
   64 #include <machine/vmm_instruction_emul.h>
   65 
   66 #include "vmm_ioport.h"
   67 #include "vmm_ktr.h"
   68 #include "vmm_host.h"
   69 #include "vmm_mem.h"
   70 #include "vmm_util.h"
   71 #include "vatpic.h"
   72 #include "vatpit.h"
   73 #include "vhpet.h"
   74 #include "vioapic.h"
   75 #include "vlapic.h"
   76 #include "vpmtmr.h"
   77 #include "vrtc.h"
   78 #include "vmm_stat.h"
   79 #include "vmm_lapic.h"
   80 
   81 #include "io/ppt.h"
   82 #include "io/iommu.h"
   83 
   84 struct vlapic;
   85 
   86 /*
   87  * Initialization:
   88  * (a) allocated when vcpu is created
   89  * (i) initialized when vcpu is created and when it is reinitialized
   90  * (o) initialized the first time the vcpu is created
   91  * (x) initialized before use
   92  */
   93 struct vcpu {
   94         struct mtx      mtx;            /* (o) protects 'state' and 'hostcpu' */
   95         enum vcpu_state state;          /* (o) vcpu state */
   96         int             hostcpu;        /* (o) vcpu's host cpu */
   97         int             reqidle;        /* (i) request vcpu to idle */
   98         struct vlapic   *vlapic;        /* (i) APIC device model */
   99         enum x2apic_state x2apic_state; /* (i) APIC mode */
  100         uint64_t        exitintinfo;    /* (i) events pending at VM exit */
  101         int             nmi_pending;    /* (i) NMI pending */
  102         int             extint_pending; /* (i) INTR pending */
  103         int     exception_pending;      /* (i) exception pending */
  104         int     exc_vector;             /* (x) exception collateral */
  105         int     exc_errcode_valid;
  106         uint32_t exc_errcode;
  107         struct savefpu  *guestfpu;      /* (a,i) guest fpu state */
  108         uint64_t        guest_xcr0;     /* (i) guest %xcr0 register */
  109         void            *stats;         /* (a,i) statistics */
  110         struct vm_exit  exitinfo;       /* (x) exit reason and collateral */
  111         uint64_t        nextrip;        /* (x) next instruction to execute */
  112 };
  113 
  114 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
  115 #define vcpu_lock_init(v)       mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
  116 #define vcpu_lock(v)            mtx_lock_spin(&((v)->mtx))
  117 #define vcpu_unlock(v)          mtx_unlock_spin(&((v)->mtx))
  118 #define vcpu_assert_locked(v)   mtx_assert(&((v)->mtx), MA_OWNED)
  119 
  120 struct mem_seg {
  121         size_t  len;
  122         bool    sysmem;
  123         struct vm_object *object;
  124 };
  125 #define VM_MAX_MEMSEGS  3
  126 
  127 struct mem_map {
  128         vm_paddr_t      gpa;
  129         size_t          len;
  130         vm_ooffset_t    segoff;
  131         int             segid;
  132         int             prot;
  133         int             flags;
  134 };
  135 #define VM_MAX_MEMMAPS  4
  136 
  137 /*
  138  * Initialization:
  139  * (o) initialized the first time the VM is created
  140  * (i) initialized when VM is created and when it is reinitialized
  141  * (x) initialized before use
  142  */
  143 struct vm {
  144         void            *cookie;                /* (i) cpu-specific data */
  145         void            *iommu;                 /* (x) iommu-specific data */
  146         struct vhpet    *vhpet;                 /* (i) virtual HPET */
  147         struct vioapic  *vioapic;               /* (i) virtual ioapic */
  148         struct vatpic   *vatpic;                /* (i) virtual atpic */
  149         struct vatpit   *vatpit;                /* (i) virtual atpit */
  150         struct vpmtmr   *vpmtmr;                /* (i) virtual ACPI PM timer */
  151         struct vrtc     *vrtc;                  /* (o) virtual RTC */
  152         volatile cpuset_t active_cpus;          /* (i) active vcpus */
  153         int             suspend;                /* (i) stop VM execution */
  154         volatile cpuset_t suspended_cpus;       /* (i) suspended vcpus */
  155         volatile cpuset_t halted_cpus;          /* (x) cpus in a hard halt */
  156         cpuset_t        rendezvous_req_cpus;    /* (x) rendezvous requested */
  157         cpuset_t        rendezvous_done_cpus;   /* (x) rendezvous finished */
  158         void            *rendezvous_arg;        /* (x) rendezvous func/arg */
  159         vm_rendezvous_func_t rendezvous_func;
  160         struct mtx      rendezvous_mtx;         /* (o) rendezvous lock */
  161         struct mem_map  mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
  162         struct mem_seg  mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
  163         struct vmspace  *vmspace;               /* (o) guest's address space */
  164         char            name[VM_MAX_NAMELEN];   /* (o) virtual machine name */
  165         struct vcpu     vcpu[VM_MAXCPU];        /* (i) guest vcpus */
  166         /* The following describe the vm cpu topology */
  167         uint16_t        sockets;                /* (o) num of sockets */
  168         uint16_t        cores;                  /* (o) num of cores/socket */
  169         uint16_t        threads;                /* (o) num of threads/core */
  170         uint16_t        maxcpus;                /* (o) max pluggable cpus */
  171 };
  172 
  173 static int vmm_initialized;
  174 
  175 static struct vmm_ops *ops;
  176 #define VMM_INIT(num)   (ops != NULL ? (*ops->init)(num) : 0)
  177 #define VMM_CLEANUP()   (ops != NULL ? (*ops->cleanup)() : 0)
  178 #define VMM_RESUME()    (ops != NULL ? (*ops->resume)() : 0)
  179 
  180 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
  181 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \
  182         (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
  183 #define VMCLEANUP(vmi)  (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
  184 #define VMSPACE_ALLOC(min, max) \
  185         (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
  186 #define VMSPACE_FREE(vmspace) \
  187         (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
  188 #define VMGETREG(vmi, vcpu, num, retval)                \
  189         (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
  190 #define VMSETREG(vmi, vcpu, num, val)           \
  191         (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
  192 #define VMGETDESC(vmi, vcpu, num, desc)         \
  193         (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
  194 #define VMSETDESC(vmi, vcpu, num, desc)         \
  195         (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
  196 #define VMGETCAP(vmi, vcpu, num, retval)        \
  197         (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
  198 #define VMSETCAP(vmi, vcpu, num, val)           \
  199         (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
  200 #define VLAPIC_INIT(vmi, vcpu)                  \
  201         (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
  202 #define VLAPIC_CLEANUP(vmi, vlapic)             \
  203         (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
  204 
  205 #define fpu_start_emulating()   load_cr0(rcr0() | CR0_TS)
  206 #define fpu_stop_emulating()    clts()
  207 
  208 SDT_PROVIDER_DEFINE(vmm);
  209 
  210 static MALLOC_DEFINE(M_VM, "vm", "vm");
  211 
  212 /* statistics */
  213 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
  214 
  215 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
  216 
  217 /*
  218  * Halt the guest if all vcpus are executing a HLT instruction with
  219  * interrupts disabled.
  220  */
  221 static int halt_detection_enabled = 1;
  222 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
  223     &halt_detection_enabled, 0,
  224     "Halt VM if all vcpus execute HLT with interrupts disabled");
  225 
  226 static int vmm_ipinum;
  227 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
  228     "IPI vector used for vcpu notifications");
  229 
  230 static int trace_guest_exceptions;
  231 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
  232     &trace_guest_exceptions, 0,
  233     "Trap into hypervisor on all guest exceptions and reflect them back");
  234 
  235 static void vm_free_memmap(struct vm *vm, int ident);
  236 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
  237 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
  238 
  239 #ifdef KTR
  240 static const char *
  241 vcpu_state2str(enum vcpu_state state)
  242 {
  243 
  244         switch (state) {
  245         case VCPU_IDLE:
  246                 return ("idle");
  247         case VCPU_FROZEN:
  248                 return ("frozen");
  249         case VCPU_RUNNING:
  250                 return ("running");
  251         case VCPU_SLEEPING:
  252                 return ("sleeping");
  253         default:
  254                 return ("unknown");
  255         }
  256 }
  257 #endif
  258 
  259 static void
  260 vcpu_cleanup(struct vm *vm, int i, bool destroy)
  261 {
  262         struct vcpu *vcpu = &vm->vcpu[i];
  263 
  264         VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
  265         if (destroy) {
  266                 vmm_stat_free(vcpu->stats);     
  267                 fpu_save_area_free(vcpu->guestfpu);
  268         }
  269 }
  270 
  271 static void
  272 vcpu_init(struct vm *vm, int vcpu_id, bool create)
  273 {
  274         struct vcpu *vcpu;
  275 
  276         KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
  277             ("vcpu_init: invalid vcpu %d", vcpu_id));
  278           
  279         vcpu = &vm->vcpu[vcpu_id];
  280 
  281         if (create) {
  282                 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
  283                     "initialized", vcpu_id));
  284                 vcpu_lock_init(vcpu);
  285                 vcpu->state = VCPU_IDLE;
  286                 vcpu->hostcpu = NOCPU;
  287                 vcpu->guestfpu = fpu_save_area_alloc();
  288                 vcpu->stats = vmm_stat_alloc();
  289         }
  290 
  291         vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
  292         vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
  293         vcpu->reqidle = 0;
  294         vcpu->exitintinfo = 0;
  295         vcpu->nmi_pending = 0;
  296         vcpu->extint_pending = 0;
  297         vcpu->exception_pending = 0;
  298         vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
  299         fpu_save_area_reset(vcpu->guestfpu);
  300         vmm_stat_init(vcpu->stats);
  301 }
  302 
  303 int
  304 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
  305 {
  306 
  307         return (trace_guest_exceptions);
  308 }
  309 
  310 struct vm_exit *
  311 vm_exitinfo(struct vm *vm, int cpuid)
  312 {
  313         struct vcpu *vcpu;
  314 
  315         if (cpuid < 0 || cpuid >= vm->maxcpus)
  316                 panic("vm_exitinfo: invalid cpuid %d", cpuid);
  317 
  318         vcpu = &vm->vcpu[cpuid];
  319 
  320         return (&vcpu->exitinfo);
  321 }
  322 
  323 static void
  324 vmm_resume(void)
  325 {
  326         VMM_RESUME();
  327 }
  328 
  329 static int
  330 vmm_init(void)
  331 {
  332         int error;
  333 
  334         vmm_host_state_init();
  335 
  336         vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
  337             &IDTVEC(justreturn));
  338         if (vmm_ipinum < 0)
  339                 vmm_ipinum = IPI_AST;
  340 
  341         error = vmm_mem_init();
  342         if (error)
  343                 return (error);
  344         
  345         if (vmm_is_intel())
  346                 ops = &vmm_ops_intel;
  347         else if (vmm_is_amd())
  348                 ops = &vmm_ops_amd;
  349         else
  350                 return (ENXIO);
  351 
  352         vmm_resume_p = vmm_resume;
  353 
  354         return (VMM_INIT(vmm_ipinum));
  355 }
  356 
  357 static int
  358 vmm_handler(module_t mod, int what, void *arg)
  359 {
  360         int error;
  361 
  362         switch (what) {
  363         case MOD_LOAD:
  364                 vmmdev_init();
  365                 error = vmm_init();
  366                 if (error == 0)
  367                         vmm_initialized = 1;
  368                 break;
  369         case MOD_UNLOAD:
  370                 error = vmmdev_cleanup();
  371                 if (error == 0) {
  372                         vmm_resume_p = NULL;
  373                         iommu_cleanup();
  374                         if (vmm_ipinum != IPI_AST)
  375                                 lapic_ipi_free(vmm_ipinum);
  376                         error = VMM_CLEANUP();
  377                         /*
  378                          * Something bad happened - prevent new
  379                          * VMs from being created
  380                          */
  381                         if (error)
  382                                 vmm_initialized = 0;
  383                 }
  384                 break;
  385         default:
  386                 error = 0;
  387                 break;
  388         }
  389         return (error);
  390 }
  391 
  392 static moduledata_t vmm_kmod = {
  393         "vmm",
  394         vmm_handler,
  395         NULL
  396 };
  397 
  398 /*
  399  * vmm initialization has the following dependencies:
  400  *
  401  * - VT-x initialization requires smp_rendezvous() and therefore must happen
  402  *   after SMP is fully functional (after SI_SUB_SMP).
  403  */
  404 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
  405 MODULE_VERSION(vmm, 1);
  406 
  407 static void
  408 vm_init(struct vm *vm, bool create)
  409 {
  410         int i;
  411 
  412         vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
  413         vm->iommu = NULL;
  414         vm->vioapic = vioapic_init(vm);
  415         vm->vhpet = vhpet_init(vm);
  416         vm->vatpic = vatpic_init(vm);
  417         vm->vatpit = vatpit_init(vm);
  418         vm->vpmtmr = vpmtmr_init(vm);
  419         if (create)
  420                 vm->vrtc = vrtc_init(vm);
  421 
  422         CPU_ZERO(&vm->active_cpus);
  423 
  424         vm->suspend = 0;
  425         CPU_ZERO(&vm->suspended_cpus);
  426 
  427         for (i = 0; i < vm->maxcpus; i++)
  428                 vcpu_init(vm, i, create);
  429 }
  430 
  431 /*
  432  * The default CPU topology is a single thread per package.
  433  */
  434 u_int cores_per_package = 1;
  435 u_int threads_per_core = 1;
  436 
  437 int
  438 vm_create(const char *name, struct vm **retvm)
  439 {
  440         struct vm *vm;
  441         struct vmspace *vmspace;
  442 
  443         /*
  444          * If vmm.ko could not be successfully initialized then don't attempt
  445          * to create the virtual machine.
  446          */
  447         if (!vmm_initialized)
  448                 return (ENXIO);
  449 
  450         if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
  451                 return (EINVAL);
  452 
  453         vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
  454         if (vmspace == NULL)
  455                 return (ENOMEM);
  456 
  457         vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
  458         strcpy(vm->name, name);
  459         vm->vmspace = vmspace;
  460         mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
  461 
  462         vm->sockets = 1;
  463         vm->cores = cores_per_package;  /* XXX backwards compatibility */
  464         vm->threads = threads_per_core; /* XXX backwards compatibility */
  465         vm->maxcpus = VM_MAXCPU;        /* XXX temp to keep code working */
  466 
  467         vm_init(vm, true);
  468 
  469         *retvm = vm;
  470         return (0);
  471 }
  472 
  473 void
  474 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
  475     uint16_t *threads, uint16_t *maxcpus)
  476 {
  477         *sockets = vm->sockets;
  478         *cores = vm->cores;
  479         *threads = vm->threads;
  480         *maxcpus = vm->maxcpus;
  481 }
  482 
  483 uint16_t
  484 vm_get_maxcpus(struct vm *vm)
  485 {
  486         return (vm->maxcpus);
  487 }
  488 
  489 int
  490 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
  491     uint16_t threads, uint16_t maxcpus)
  492 {
  493         if (maxcpus != 0)
  494                 return (EINVAL);        /* XXX remove when supported */
  495         if ((sockets * cores * threads) > vm->maxcpus)
  496                 return (EINVAL);
  497         /* XXX need to check sockets * cores * threads == vCPU, how? */
  498         vm->sockets = sockets;
  499         vm->cores = cores;
  500         vm->threads = threads;
  501         vm->maxcpus = VM_MAXCPU;        /* XXX temp to keep code working */
  502         return(0);
  503 }
  504 
  505 static void
  506 vm_cleanup(struct vm *vm, bool destroy)
  507 {
  508         struct mem_map *mm;
  509         int i;
  510 
  511         ppt_unassign_all(vm);
  512 
  513         if (vm->iommu != NULL)
  514                 iommu_destroy_domain(vm->iommu);
  515 
  516         if (destroy)
  517                 vrtc_cleanup(vm->vrtc);
  518         else
  519                 vrtc_reset(vm->vrtc);
  520         vpmtmr_cleanup(vm->vpmtmr);
  521         vatpit_cleanup(vm->vatpit);
  522         vhpet_cleanup(vm->vhpet);
  523         vatpic_cleanup(vm->vatpic);
  524         vioapic_cleanup(vm->vioapic);
  525 
  526         for (i = 0; i < vm->maxcpus; i++)
  527                 vcpu_cleanup(vm, i, destroy);
  528 
  529         VMCLEANUP(vm->cookie);
  530 
  531         /*
  532          * System memory is removed from the guest address space only when
  533          * the VM is destroyed. This is because the mapping remains the same
  534          * across VM reset.
  535          *
  536          * Device memory can be relocated by the guest (e.g. using PCI BARs)
  537          * so those mappings are removed on a VM reset.
  538          */
  539         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  540                 mm = &vm->mem_maps[i];
  541                 if (destroy || !sysmem_mapping(vm, mm))
  542                         vm_free_memmap(vm, i);
  543         }
  544 
  545         if (destroy) {
  546                 for (i = 0; i < VM_MAX_MEMSEGS; i++)
  547                         vm_free_memseg(vm, i);
  548 
  549                 VMSPACE_FREE(vm->vmspace);
  550                 vm->vmspace = NULL;
  551         }
  552 }
  553 
  554 void
  555 vm_destroy(struct vm *vm)
  556 {
  557         vm_cleanup(vm, true);
  558         free(vm, M_VM);
  559 }
  560 
  561 int
  562 vm_reinit(struct vm *vm)
  563 {
  564         int error;
  565 
  566         /*
  567          * A virtual machine can be reset only if all vcpus are suspended.
  568          */
  569         if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
  570                 vm_cleanup(vm, false);
  571                 vm_init(vm, false);
  572                 error = 0;
  573         } else {
  574                 error = EBUSY;
  575         }
  576 
  577         return (error);
  578 }
  579 
  580 const char *
  581 vm_name(struct vm *vm)
  582 {
  583         return (vm->name);
  584 }
  585 
  586 int
  587 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
  588 {
  589         vm_object_t obj;
  590 
  591         if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
  592                 return (ENOMEM);
  593         else
  594                 return (0);
  595 }
  596 
  597 int
  598 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
  599 {
  600 
  601         vmm_mmio_free(vm->vmspace, gpa, len);
  602         return (0);
  603 }
  604 
  605 /*
  606  * Return 'true' if 'gpa' is allocated in the guest address space.
  607  *
  608  * This function is called in the context of a running vcpu which acts as
  609  * an implicit lock on 'vm->mem_maps[]'.
  610  */
  611 bool
  612 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
  613 {
  614         struct mem_map *mm;
  615         int i;
  616 
  617 #ifdef INVARIANTS
  618         int hostcpu, state;
  619         state = vcpu_get_state(vm, vcpuid, &hostcpu);
  620         KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
  621             ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
  622 #endif
  623 
  624         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  625                 mm = &vm->mem_maps[i];
  626                 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
  627                         return (true);          /* 'gpa' is sysmem or devmem */
  628         }
  629 
  630         if (ppt_is_mmio(vm, gpa))
  631                 return (true);                  /* 'gpa' is pci passthru mmio */
  632 
  633         return (false);
  634 }
  635 
  636 int
  637 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
  638 {
  639         struct mem_seg *seg;
  640         vm_object_t obj;
  641 
  642         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  643                 return (EINVAL);
  644 
  645         if (len == 0 || (len & PAGE_MASK))
  646                 return (EINVAL);
  647 
  648         seg = &vm->mem_segs[ident];
  649         if (seg->object != NULL) {
  650                 if (seg->len == len && seg->sysmem == sysmem)
  651                         return (EEXIST);
  652                 else
  653                         return (EINVAL);
  654         }
  655 
  656         obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
  657         if (obj == NULL)
  658                 return (ENOMEM);
  659 
  660         seg->len = len;
  661         seg->object = obj;
  662         seg->sysmem = sysmem;
  663         return (0);
  664 }
  665 
  666 int
  667 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
  668     vm_object_t *objptr)
  669 {
  670         struct mem_seg *seg;
  671 
  672         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  673                 return (EINVAL);
  674 
  675         seg = &vm->mem_segs[ident];
  676         if (len)
  677                 *len = seg->len;
  678         if (sysmem)
  679                 *sysmem = seg->sysmem;
  680         if (objptr)
  681                 *objptr = seg->object;
  682         return (0);
  683 }
  684 
  685 void
  686 vm_free_memseg(struct vm *vm, int ident)
  687 {
  688         struct mem_seg *seg;
  689 
  690         KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
  691             ("%s: invalid memseg ident %d", __func__, ident));
  692 
  693         seg = &vm->mem_segs[ident];
  694         if (seg->object != NULL) {
  695                 vm_object_deallocate(seg->object);
  696                 bzero(seg, sizeof(struct mem_seg));
  697         }
  698 }
  699 
  700 int
  701 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
  702     size_t len, int prot, int flags)
  703 {
  704         struct mem_seg *seg;
  705         struct mem_map *m, *map;
  706         vm_ooffset_t last;
  707         int i, error;
  708 
  709         if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
  710                 return (EINVAL);
  711 
  712         if (flags & ~VM_MEMMAP_F_WIRED)
  713                 return (EINVAL);
  714 
  715         if (segid < 0 || segid >= VM_MAX_MEMSEGS)
  716                 return (EINVAL);
  717 
  718         seg = &vm->mem_segs[segid];
  719         if (seg->object == NULL)
  720                 return (EINVAL);
  721 
  722         last = first + len;
  723         if (first < 0 || first >= last || last > seg->len)
  724                 return (EINVAL);
  725 
  726         if ((gpa | first | last) & PAGE_MASK)
  727                 return (EINVAL);
  728 
  729         map = NULL;
  730         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  731                 m = &vm->mem_maps[i];
  732                 if (m->len == 0) {
  733                         map = m;
  734                         break;
  735                 }
  736         }
  737 
  738         if (map == NULL)
  739                 return (ENOSPC);
  740 
  741         error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
  742             len, 0, VMFS_NO_SPACE, prot, prot, 0);
  743         if (error != KERN_SUCCESS)
  744                 return (EFAULT);
  745 
  746         vm_object_reference(seg->object);
  747 
  748         if (flags & VM_MEMMAP_F_WIRED) {
  749                 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
  750                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
  751                 if (error != KERN_SUCCESS) {
  752                         vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
  753                         return (EFAULT);
  754                 }
  755         }
  756 
  757         map->gpa = gpa;
  758         map->len = len;
  759         map->segoff = first;
  760         map->segid = segid;
  761         map->prot = prot;
  762         map->flags = flags;
  763         return (0);
  764 }
  765 
  766 int
  767 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
  768     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
  769 {
  770         struct mem_map *mm, *mmnext;
  771         int i;
  772 
  773         mmnext = NULL;
  774         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  775                 mm = &vm->mem_maps[i];
  776                 if (mm->len == 0 || mm->gpa < *gpa)
  777                         continue;
  778                 if (mmnext == NULL || mm->gpa < mmnext->gpa)
  779                         mmnext = mm;
  780         }
  781 
  782         if (mmnext != NULL) {
  783                 *gpa = mmnext->gpa;
  784                 if (segid)
  785                         *segid = mmnext->segid;
  786                 if (segoff)
  787                         *segoff = mmnext->segoff;
  788                 if (len)
  789                         *len = mmnext->len;
  790                 if (prot)
  791                         *prot = mmnext->prot;
  792                 if (flags)
  793                         *flags = mmnext->flags;
  794                 return (0);
  795         } else {
  796                 return (ENOENT);
  797         }
  798 }
  799 
  800 static void
  801 vm_free_memmap(struct vm *vm, int ident)
  802 {
  803         struct mem_map *mm;
  804         int error;
  805 
  806         mm = &vm->mem_maps[ident];
  807         if (mm->len) {
  808                 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
  809                     mm->gpa + mm->len);
  810                 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
  811                     __func__, error));
  812                 bzero(mm, sizeof(struct mem_map));
  813         }
  814 }
  815 
  816 static __inline bool
  817 sysmem_mapping(struct vm *vm, struct mem_map *mm)
  818 {
  819 
  820         if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
  821                 return (true);
  822         else
  823                 return (false);
  824 }
  825 
  826 vm_paddr_t
  827 vmm_sysmem_maxaddr(struct vm *vm)
  828 {
  829         struct mem_map *mm;
  830         vm_paddr_t maxaddr;
  831         int i;
  832 
  833         maxaddr = 0;
  834         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  835                 mm = &vm->mem_maps[i];
  836                 if (sysmem_mapping(vm, mm)) {
  837                         if (maxaddr < mm->gpa + mm->len)
  838                                 maxaddr = mm->gpa + mm->len;
  839                 }
  840         }
  841         return (maxaddr);
  842 }
  843 
  844 static void
  845 vm_iommu_modify(struct vm *vm, bool map)
  846 {
  847         int i, sz;
  848         vm_paddr_t gpa, hpa;
  849         struct mem_map *mm;
  850         void *vp, *cookie, *host_domain;
  851 
  852         sz = PAGE_SIZE;
  853         host_domain = iommu_host_domain();
  854 
  855         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  856                 mm = &vm->mem_maps[i];
  857                 if (!sysmem_mapping(vm, mm))
  858                         continue;
  859 
  860                 if (map) {
  861                         KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
  862                             ("iommu map found invalid memmap %#lx/%#lx/%#x",
  863                             mm->gpa, mm->len, mm->flags));
  864                         if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
  865                                 continue;
  866                         mm->flags |= VM_MEMMAP_F_IOMMU;
  867                 } else {
  868                         if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
  869                                 continue;
  870                         mm->flags &= ~VM_MEMMAP_F_IOMMU;
  871                         KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
  872                             ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
  873                             mm->gpa, mm->len, mm->flags));
  874                 }
  875 
  876                 gpa = mm->gpa;
  877                 while (gpa < mm->gpa + mm->len) {
  878                         vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
  879                                          &cookie);
  880                         KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
  881                             vm_name(vm), gpa));
  882 
  883                         vm_gpa_release(cookie);
  884 
  885                         hpa = DMAP_TO_PHYS((uintptr_t)vp);
  886                         if (map) {
  887                                 iommu_create_mapping(vm->iommu, gpa, hpa, sz);
  888                                 iommu_remove_mapping(host_domain, hpa, sz);
  889                         } else {
  890                                 iommu_remove_mapping(vm->iommu, gpa, sz);
  891                                 iommu_create_mapping(host_domain, hpa, hpa, sz);
  892                         }
  893 
  894                         gpa += PAGE_SIZE;
  895                 }
  896         }
  897 
  898         /*
  899          * Invalidate the cached translations associated with the domain
  900          * from which pages were removed.
  901          */
  902         if (map)
  903                 iommu_invalidate_tlb(host_domain);
  904         else
  905                 iommu_invalidate_tlb(vm->iommu);
  906 }
  907 
  908 #define vm_iommu_unmap(vm)      vm_iommu_modify((vm), false)
  909 #define vm_iommu_map(vm)        vm_iommu_modify((vm), true)
  910 
  911 int
  912 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
  913 {
  914         int error;
  915 
  916         error = ppt_unassign_device(vm, bus, slot, func);
  917         if (error)
  918                 return (error);
  919 
  920         if (ppt_assigned_devices(vm) == 0)
  921                 vm_iommu_unmap(vm);
  922 
  923         return (0);
  924 }
  925 
  926 int
  927 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
  928 {
  929         int error;
  930         vm_paddr_t maxaddr;
  931 
  932         /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
  933         if (ppt_assigned_devices(vm) == 0) {
  934                 KASSERT(vm->iommu == NULL,
  935                     ("vm_assign_pptdev: iommu must be NULL"));
  936                 maxaddr = vmm_sysmem_maxaddr(vm);
  937                 vm->iommu = iommu_create_domain(maxaddr);
  938                 if (vm->iommu == NULL)
  939                         return (ENXIO);
  940                 vm_iommu_map(vm);
  941         }
  942 
  943         error = ppt_assign_device(vm, bus, slot, func);
  944         return (error);
  945 }
  946 
  947 void *
  948 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
  949             void **cookie)
  950 {
  951         int i, count, pageoff;
  952         struct mem_map *mm;
  953         vm_page_t m;
  954 #ifdef INVARIANTS
  955         /*
  956          * All vcpus are frozen by ioctls that modify the memory map
  957          * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
  958          * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
  959          */
  960         int state;
  961         KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d",
  962             __func__, vcpuid));
  963         for (i = 0; i < vm->maxcpus; i++) {
  964                 if (vcpuid != -1 && vcpuid != i)
  965                         continue;
  966                 state = vcpu_get_state(vm, i, NULL);
  967                 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
  968                     __func__, state));
  969         }
  970 #endif
  971         pageoff = gpa & PAGE_MASK;
  972         if (len > PAGE_SIZE - pageoff)
  973                 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
  974 
  975         count = 0;
  976         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  977                 mm = &vm->mem_maps[i];
  978                 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
  979                     gpa < mm->gpa + mm->len) {
  980                         count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
  981                             trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
  982                         break;
  983                 }
  984         }
  985 
  986         if (count == 1) {
  987                 *cookie = m;
  988                 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
  989         } else {
  990                 *cookie = NULL;
  991                 return (NULL);
  992         }
  993 }
  994 
  995 void
  996 vm_gpa_release(void *cookie)
  997 {
  998         vm_page_t m = cookie;
  999 
 1000         vm_page_lock(m);
 1001         vm_page_unhold(m);
 1002         vm_page_unlock(m);
 1003 }
 1004 
 1005 int
 1006 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
 1007 {
 1008 
 1009         if (vcpu < 0 || vcpu >= vm->maxcpus)
 1010                 return (EINVAL);
 1011 
 1012         if (reg >= VM_REG_LAST)
 1013                 return (EINVAL);
 1014 
 1015         return (VMGETREG(vm->cookie, vcpu, reg, retval));
 1016 }
 1017 
 1018 int
 1019 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
 1020 {
 1021         struct vcpu *vcpu;
 1022         int error;
 1023 
 1024         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1025                 return (EINVAL);
 1026 
 1027         if (reg >= VM_REG_LAST)
 1028                 return (EINVAL);
 1029 
 1030         error = VMSETREG(vm->cookie, vcpuid, reg, val);
 1031         if (error || reg != VM_REG_GUEST_RIP)
 1032                 return (error);
 1033 
 1034         /* Set 'nextrip' to match the value of %rip */
 1035         VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
 1036         vcpu = &vm->vcpu[vcpuid];
 1037         vcpu->nextrip = val;
 1038         return (0);
 1039 }
 1040 
 1041 static bool
 1042 is_descriptor_table(int reg)
 1043 {
 1044 
 1045         switch (reg) {
 1046         case VM_REG_GUEST_IDTR:
 1047         case VM_REG_GUEST_GDTR:
 1048                 return (true);
 1049         default:
 1050                 return (false);
 1051         }
 1052 }
 1053 
 1054 static bool
 1055 is_segment_register(int reg)
 1056 {
 1057         
 1058         switch (reg) {
 1059         case VM_REG_GUEST_ES:
 1060         case VM_REG_GUEST_CS:
 1061         case VM_REG_GUEST_SS:
 1062         case VM_REG_GUEST_DS:
 1063         case VM_REG_GUEST_FS:
 1064         case VM_REG_GUEST_GS:
 1065         case VM_REG_GUEST_TR:
 1066         case VM_REG_GUEST_LDTR:
 1067                 return (true);
 1068         default:
 1069                 return (false);
 1070         }
 1071 }
 1072 
 1073 int
 1074 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
 1075                 struct seg_desc *desc)
 1076 {
 1077 
 1078         if (vcpu < 0 || vcpu >= vm->maxcpus)
 1079                 return (EINVAL);
 1080 
 1081         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1082                 return (EINVAL);
 1083 
 1084         return (VMGETDESC(vm->cookie, vcpu, reg, desc));
 1085 }
 1086 
 1087 int
 1088 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
 1089                 struct seg_desc *desc)
 1090 {
 1091         if (vcpu < 0 || vcpu >= vm->maxcpus)
 1092                 return (EINVAL);
 1093 
 1094         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1095                 return (EINVAL);
 1096 
 1097         return (VMSETDESC(vm->cookie, vcpu, reg, desc));
 1098 }
 1099 
 1100 static void
 1101 restore_guest_fpustate(struct vcpu *vcpu)
 1102 {
 1103 
 1104         /* flush host state to the pcb */
 1105         fpuexit(curthread);
 1106 
 1107         /* restore guest FPU state */
 1108         fpu_stop_emulating();
 1109         fpurestore(vcpu->guestfpu);
 1110 
 1111         /* restore guest XCR0 if XSAVE is enabled in the host */
 1112         if (rcr4() & CR4_XSAVE)
 1113                 load_xcr(0, vcpu->guest_xcr0);
 1114 
 1115         /*
 1116          * The FPU is now "dirty" with the guest's state so turn on emulation
 1117          * to trap any access to the FPU by the host.
 1118          */
 1119         fpu_start_emulating();
 1120 }
 1121 
 1122 static void
 1123 save_guest_fpustate(struct vcpu *vcpu)
 1124 {
 1125 
 1126         if ((rcr0() & CR0_TS) == 0)
 1127                 panic("fpu emulation not enabled in host!");
 1128 
 1129         /* save guest XCR0 and restore host XCR0 */
 1130         if (rcr4() & CR4_XSAVE) {
 1131                 vcpu->guest_xcr0 = rxcr(0);
 1132                 load_xcr(0, vmm_get_host_xcr0());
 1133         }
 1134 
 1135         /* save guest FPU state */
 1136         fpu_stop_emulating();
 1137         fpusave(vcpu->guestfpu);
 1138         fpu_start_emulating();
 1139 }
 1140 
 1141 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
 1142 
 1143 static int
 1144 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 1145     bool from_idle)
 1146 {
 1147         struct vcpu *vcpu;
 1148         int error;
 1149 
 1150         vcpu = &vm->vcpu[vcpuid];
 1151         vcpu_assert_locked(vcpu);
 1152 
 1153         /*
 1154          * State transitions from the vmmdev_ioctl() must always begin from
 1155          * the VCPU_IDLE state. This guarantees that there is only a single
 1156          * ioctl() operating on a vcpu at any point.
 1157          */
 1158         if (from_idle) {
 1159                 while (vcpu->state != VCPU_IDLE) {
 1160                         vcpu->reqidle = 1;
 1161                         vcpu_notify_event_locked(vcpu, false);
 1162                         VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
 1163                             "idle requested", vcpu_state2str(vcpu->state));
 1164                         msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
 1165                 }
 1166         } else {
 1167                 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
 1168                     "vcpu idle state"));
 1169         }
 1170 
 1171         if (vcpu->state == VCPU_RUNNING) {
 1172                 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
 1173                     "mismatch for running vcpu", curcpu, vcpu->hostcpu));
 1174         } else {
 1175                 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
 1176                     "vcpu that is not running", vcpu->hostcpu));
 1177         }
 1178 
 1179         /*
 1180          * The following state transitions are allowed:
 1181          * IDLE -> FROZEN -> IDLE
 1182          * FROZEN -> RUNNING -> FROZEN
 1183          * FROZEN -> SLEEPING -> FROZEN
 1184          */
 1185         switch (vcpu->state) {
 1186         case VCPU_IDLE:
 1187         case VCPU_RUNNING:
 1188         case VCPU_SLEEPING:
 1189                 error = (newstate != VCPU_FROZEN);
 1190                 break;
 1191         case VCPU_FROZEN:
 1192                 error = (newstate == VCPU_FROZEN);
 1193                 break;
 1194         default:
 1195                 error = 1;
 1196                 break;
 1197         }
 1198 
 1199         if (error)
 1200                 return (EBUSY);
 1201 
 1202         VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
 1203             vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
 1204 
 1205         vcpu->state = newstate;
 1206         if (newstate == VCPU_RUNNING)
 1207                 vcpu->hostcpu = curcpu;
 1208         else
 1209                 vcpu->hostcpu = NOCPU;
 1210 
 1211         if (newstate == VCPU_IDLE)
 1212                 wakeup(&vcpu->state);
 1213 
 1214         return (0);
 1215 }
 1216 
 1217 static void
 1218 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1219 {
 1220         int error;
 1221 
 1222         if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
 1223                 panic("Error %d setting state to %d\n", error, newstate);
 1224 }
 1225 
 1226 static void
 1227 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1228 {
 1229         int error;
 1230 
 1231         if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
 1232                 panic("Error %d setting state to %d", error, newstate);
 1233 }
 1234 
 1235 static void
 1236 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
 1237 {
 1238 
 1239         KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
 1240 
 1241         /*
 1242          * Update 'rendezvous_func' and execute a write memory barrier to
 1243          * ensure that it is visible across all host cpus. This is not needed
 1244          * for correctness but it does ensure that all the vcpus will notice
 1245          * that the rendezvous is requested immediately.
 1246          */
 1247         vm->rendezvous_func = func;
 1248         wmb();
 1249 }
 1250 
 1251 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt)                                \
 1252         do {                                                            \
 1253                 if (vcpuid >= 0)                                        \
 1254                         VCPU_CTR0(vm, vcpuid, fmt);                     \
 1255                 else                                                    \
 1256                         VM_CTR0(vm, fmt);                               \
 1257         } while (0)
 1258 
 1259 static void
 1260 vm_handle_rendezvous(struct vm *vm, int vcpuid)
 1261 {
 1262 
 1263         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus),
 1264             ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
 1265 
 1266         mtx_lock(&vm->rendezvous_mtx);
 1267         while (vm->rendezvous_func != NULL) {
 1268                 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
 1269                 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
 1270 
 1271                 if (vcpuid != -1 &&
 1272                     CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
 1273                     !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
 1274                         VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
 1275                         (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
 1276                         CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
 1277                 }
 1278                 if (CPU_CMP(&vm->rendezvous_req_cpus,
 1279                     &vm->rendezvous_done_cpus) == 0) {
 1280                         VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
 1281                         vm_set_rendezvous_func(vm, NULL);
 1282                         wakeup(&vm->rendezvous_func);
 1283                         break;
 1284                 }
 1285                 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
 1286                 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
 1287                     "vmrndv", 0);
 1288         }
 1289         mtx_unlock(&vm->rendezvous_mtx);
 1290 }
 1291 
 1292 /*
 1293  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
 1294  */
 1295 static int
 1296 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
 1297 {
 1298         struct vcpu *vcpu;
 1299         const char *wmesg;
 1300         int t, vcpu_halted, vm_halted;
 1301 
 1302         KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
 1303 
 1304         vcpu = &vm->vcpu[vcpuid];
 1305         vcpu_halted = 0;
 1306         vm_halted = 0;
 1307 
 1308         vcpu_lock(vcpu);
 1309         while (1) {
 1310                 /*
 1311                  * Do a final check for pending NMI or interrupts before
 1312                  * really putting this thread to sleep. Also check for
 1313                  * software events that would cause this vcpu to wakeup.
 1314                  *
 1315                  * These interrupts/events could have happened after the
 1316                  * vcpu returned from VMRUN() and before it acquired the
 1317                  * vcpu lock above.
 1318                  */
 1319                 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
 1320                         break;
 1321                 if (vm_nmi_pending(vm, vcpuid))
 1322                         break;
 1323                 if (!intr_disabled) {
 1324                         if (vm_extint_pending(vm, vcpuid) ||
 1325                             vlapic_pending_intr(vcpu->vlapic, NULL)) {
 1326                                 break;
 1327                         }
 1328                 }
 1329 
 1330                 /* Don't go to sleep if the vcpu thread needs to yield */
 1331                 if (vcpu_should_yield(vm, vcpuid))
 1332                         break;
 1333 
 1334                 /*
 1335                  * Some Linux guests implement "halt" by having all vcpus
 1336                  * execute HLT with interrupts disabled. 'halted_cpus' keeps
 1337                  * track of the vcpus that have entered this state. When all
 1338                  * vcpus enter the halted state the virtual machine is halted.
 1339                  */
 1340                 if (intr_disabled) {
 1341                         wmesg = "vmhalt";
 1342                         VCPU_CTR0(vm, vcpuid, "Halted");
 1343                         if (!vcpu_halted && halt_detection_enabled) {
 1344                                 vcpu_halted = 1;
 1345                                 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
 1346                         }
 1347                         if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
 1348                                 vm_halted = 1;
 1349                                 break;
 1350                         }
 1351                 } else {
 1352                         wmesg = "vmidle";
 1353                 }
 1354 
 1355                 t = ticks;
 1356                 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1357                 /*
 1358                  * XXX msleep_spin() cannot be interrupted by signals so
 1359                  * wake up periodically to check pending signals.
 1360                  */
 1361                 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
 1362                 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1363                 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
 1364         }
 1365 
 1366         if (vcpu_halted)
 1367                 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
 1368 
 1369         vcpu_unlock(vcpu);
 1370 
 1371         if (vm_halted)
 1372                 vm_suspend(vm, VM_SUSPEND_HALT);
 1373 
 1374         return (0);
 1375 }
 1376 
 1377 static int
 1378 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
 1379 {
 1380         int rv, ftype;
 1381         struct vm_map *map;
 1382         struct vcpu *vcpu;
 1383         struct vm_exit *vme;
 1384 
 1385         vcpu = &vm->vcpu[vcpuid];
 1386         vme = &vcpu->exitinfo;
 1387 
 1388         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1389             __func__, vme->inst_length));
 1390 
 1391         ftype = vme->u.paging.fault_type;
 1392         KASSERT(ftype == VM_PROT_READ ||
 1393             ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
 1394             ("vm_handle_paging: invalid fault_type %d", ftype));
 1395 
 1396         if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
 1397                 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
 1398                     vme->u.paging.gpa, ftype);
 1399                 if (rv == 0) {
 1400                         VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
 1401                             ftype == VM_PROT_READ ? "accessed" : "dirty",
 1402                             vme->u.paging.gpa);
 1403                         goto done;
 1404                 }
 1405         }
 1406 
 1407         map = &vm->vmspace->vm_map;
 1408         rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
 1409 
 1410         VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
 1411             "ftype = %d", rv, vme->u.paging.gpa, ftype);
 1412 
 1413         if (rv != KERN_SUCCESS)
 1414                 return (EFAULT);
 1415 done:
 1416         return (0);
 1417 }
 1418 
 1419 static int
 1420 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
 1421 {
 1422         struct vie *vie;
 1423         struct vcpu *vcpu;
 1424         struct vm_exit *vme;
 1425         uint64_t gla, gpa, cs_base;
 1426         struct vm_guest_paging *paging;
 1427         mem_region_read_t mread;
 1428         mem_region_write_t mwrite;
 1429         enum vm_cpu_mode cpu_mode;
 1430         int cs_d, error, fault;
 1431 
 1432         vcpu = &vm->vcpu[vcpuid];
 1433         vme = &vcpu->exitinfo;
 1434 
 1435         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1436             __func__, vme->inst_length));
 1437 
 1438         gla = vme->u.inst_emul.gla;
 1439         gpa = vme->u.inst_emul.gpa;
 1440         cs_base = vme->u.inst_emul.cs_base;
 1441         cs_d = vme->u.inst_emul.cs_d;
 1442         vie = &vme->u.inst_emul.vie;
 1443         paging = &vme->u.inst_emul.paging;
 1444         cpu_mode = paging->cpu_mode;
 1445 
 1446         VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
 1447 
 1448         /* Fetch, decode and emulate the faulting instruction */
 1449         if (vie->num_valid == 0) {
 1450                 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
 1451                     cs_base, VIE_INST_SIZE, vie, &fault);
 1452         } else {
 1453                 /*
 1454                  * The instruction bytes have already been copied into 'vie'
 1455                  */
 1456                 error = fault = 0;
 1457         }
 1458         if (error || fault)
 1459                 return (error);
 1460 
 1461         if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
 1462                 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
 1463                     vme->rip + cs_base);
 1464                 *retu = true;       /* dump instruction bytes in userspace */
 1465                 return (0);
 1466         }
 1467 
 1468         /*
 1469          * Update 'nextrip' based on the length of the emulated instruction.
 1470          */
 1471         vme->inst_length = vie->num_processed;
 1472         vcpu->nextrip += vie->num_processed;
 1473         VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
 1474             "decoding", vcpu->nextrip);
 1475  
 1476         /* return to userland unless this is an in-kernel emulated device */
 1477         if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
 1478                 mread = lapic_mmio_read;
 1479                 mwrite = lapic_mmio_write;
 1480         } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
 1481                 mread = vioapic_mmio_read;
 1482                 mwrite = vioapic_mmio_write;
 1483         } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
 1484                 mread = vhpet_mmio_read;
 1485                 mwrite = vhpet_mmio_write;
 1486         } else {
 1487                 *retu = true;
 1488                 return (0);
 1489         }
 1490 
 1491         error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
 1492             mread, mwrite, retu);
 1493 
 1494         return (error);
 1495 }
 1496 
 1497 static int
 1498 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
 1499 {
 1500         int i, done;
 1501         struct vcpu *vcpu;
 1502 
 1503         done = 0;
 1504         vcpu = &vm->vcpu[vcpuid];
 1505 
 1506         CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
 1507 
 1508         /*
 1509          * Wait until all 'active_cpus' have suspended themselves.
 1510          *
 1511          * Since a VM may be suspended at any time including when one or
 1512          * more vcpus are doing a rendezvous we need to call the rendezvous
 1513          * handler while we are waiting to prevent a deadlock.
 1514          */
 1515         vcpu_lock(vcpu);
 1516         while (1) {
 1517                 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
 1518                         VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
 1519                         break;
 1520                 }
 1521 
 1522                 if (vm->rendezvous_func == NULL) {
 1523                         VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
 1524                         vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1525                         msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
 1526                         vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1527                 } else {
 1528                         VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
 1529                         vcpu_unlock(vcpu);
 1530                         vm_handle_rendezvous(vm, vcpuid);
 1531                         vcpu_lock(vcpu);
 1532                 }
 1533         }
 1534         vcpu_unlock(vcpu);
 1535 
 1536         /*
 1537          * Wakeup the other sleeping vcpus and return to userspace.
 1538          */
 1539         for (i = 0; i < vm->maxcpus; i++) {
 1540                 if (CPU_ISSET(i, &vm->suspended_cpus)) {
 1541                         vcpu_notify_event(vm, i, false);
 1542                 }
 1543         }
 1544 
 1545         *retu = true;
 1546         return (0);
 1547 }
 1548 
 1549 static int
 1550 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
 1551 {
 1552         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 1553 
 1554         vcpu_lock(vcpu);
 1555         KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
 1556         vcpu->reqidle = 0;
 1557         vcpu_unlock(vcpu);
 1558         *retu = true;
 1559         return (0);
 1560 }
 1561 
 1562 int
 1563 vm_suspend(struct vm *vm, enum vm_suspend_how how)
 1564 {
 1565         int i;
 1566 
 1567         if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
 1568                 return (EINVAL);
 1569 
 1570         if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
 1571                 VM_CTR2(vm, "virtual machine already suspended %d/%d",
 1572                     vm->suspend, how);
 1573                 return (EALREADY);
 1574         }
 1575 
 1576         VM_CTR1(vm, "virtual machine successfully suspended %d", how);
 1577 
 1578         /*
 1579          * Notify all active vcpus that they are now suspended.
 1580          */
 1581         for (i = 0; i < vm->maxcpus; i++) {
 1582                 if (CPU_ISSET(i, &vm->active_cpus))
 1583                         vcpu_notify_event(vm, i, false);
 1584         }
 1585 
 1586         return (0);
 1587 }
 1588 
 1589 void
 1590 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
 1591 {
 1592         struct vm_exit *vmexit;
 1593 
 1594         KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
 1595             ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
 1596 
 1597         vmexit = vm_exitinfo(vm, vcpuid);
 1598         vmexit->rip = rip;
 1599         vmexit->inst_length = 0;
 1600         vmexit->exitcode = VM_EXITCODE_SUSPENDED;
 1601         vmexit->u.suspended.how = vm->suspend;
 1602 }
 1603 
 1604 void
 1605 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
 1606 {
 1607         struct vm_exit *vmexit;
 1608 
 1609         KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
 1610 
 1611         vmexit = vm_exitinfo(vm, vcpuid);
 1612         vmexit->rip = rip;
 1613         vmexit->inst_length = 0;
 1614         vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
 1615         vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
 1616 }
 1617 
 1618 void
 1619 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
 1620 {
 1621         struct vm_exit *vmexit;
 1622 
 1623         vmexit = vm_exitinfo(vm, vcpuid);
 1624         vmexit->rip = rip;
 1625         vmexit->inst_length = 0;
 1626         vmexit->exitcode = VM_EXITCODE_REQIDLE;
 1627         vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
 1628 }
 1629 
 1630 void
 1631 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
 1632 {
 1633         struct vm_exit *vmexit;
 1634 
 1635         vmexit = vm_exitinfo(vm, vcpuid);
 1636         vmexit->rip = rip;
 1637         vmexit->inst_length = 0;
 1638         vmexit->exitcode = VM_EXITCODE_BOGUS;
 1639         vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
 1640 }
 1641 
 1642 int
 1643 vm_run(struct vm *vm, struct vm_run *vmrun)
 1644 {
 1645         struct vm_eventinfo evinfo;
 1646         int error, vcpuid;
 1647         struct vcpu *vcpu;
 1648         struct pcb *pcb;
 1649         uint64_t tscval;
 1650         struct vm_exit *vme;
 1651         bool retu, intr_disabled;
 1652         pmap_t pmap;
 1653 
 1654         vcpuid = vmrun->cpuid;
 1655 
 1656         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1657                 return (EINVAL);
 1658 
 1659         if (!CPU_ISSET(vcpuid, &vm->active_cpus))
 1660                 return (EINVAL);
 1661 
 1662         if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
 1663                 return (EINVAL);
 1664 
 1665         pmap = vmspace_pmap(vm->vmspace);
 1666         vcpu = &vm->vcpu[vcpuid];
 1667         vme = &vcpu->exitinfo;
 1668         evinfo.rptr = &vm->rendezvous_func;
 1669         evinfo.sptr = &vm->suspend;
 1670         evinfo.iptr = &vcpu->reqidle;
 1671 restart:
 1672         critical_enter();
 1673 
 1674         KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
 1675             ("vm_run: absurd pm_active"));
 1676 
 1677         tscval = rdtsc();
 1678 
 1679         pcb = PCPU_GET(curpcb);
 1680         set_pcb_flags(pcb, PCB_FULL_IRET);
 1681 
 1682         restore_guest_fpustate(vcpu);
 1683 
 1684         vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
 1685         error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
 1686         vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
 1687 
 1688         save_guest_fpustate(vcpu);
 1689 
 1690         vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
 1691 
 1692         critical_exit();
 1693 
 1694         if (error == 0) {
 1695                 retu = false;
 1696                 vcpu->nextrip = vme->rip + vme->inst_length;
 1697                 switch (vme->exitcode) {
 1698                 case VM_EXITCODE_REQIDLE:
 1699                         error = vm_handle_reqidle(vm, vcpuid, &retu);
 1700                         break;
 1701                 case VM_EXITCODE_SUSPENDED:
 1702                         error = vm_handle_suspend(vm, vcpuid, &retu);
 1703                         break;
 1704                 case VM_EXITCODE_IOAPIC_EOI:
 1705                         vioapic_process_eoi(vm, vcpuid,
 1706                             vme->u.ioapic_eoi.vector);
 1707                         break;
 1708                 case VM_EXITCODE_RENDEZVOUS:
 1709                         vm_handle_rendezvous(vm, vcpuid);
 1710                         error = 0;
 1711                         break;
 1712                 case VM_EXITCODE_HLT:
 1713                         intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
 1714                         error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
 1715                         break;
 1716                 case VM_EXITCODE_PAGING:
 1717                         error = vm_handle_paging(vm, vcpuid, &retu);
 1718                         break;
 1719                 case VM_EXITCODE_INST_EMUL:
 1720                         error = vm_handle_inst_emul(vm, vcpuid, &retu);
 1721                         break;
 1722                 case VM_EXITCODE_INOUT:
 1723                 case VM_EXITCODE_INOUT_STR:
 1724                         error = vm_handle_inout(vm, vcpuid, vme, &retu);
 1725                         break;
 1726                 case VM_EXITCODE_MONITOR:
 1727                 case VM_EXITCODE_MWAIT:
 1728                 case VM_EXITCODE_VMINSN:
 1729                         vm_inject_ud(vm, vcpuid);
 1730                         break;
 1731                 default:
 1732                         retu = true;    /* handled in userland */
 1733                         break;
 1734                 }
 1735         }
 1736 
 1737         if (error == 0 && retu == false)
 1738                 goto restart;
 1739 
 1740         VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
 1741 
 1742         /* copy the exit information */
 1743         bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
 1744         return (error);
 1745 }
 1746 
 1747 int
 1748 vm_restart_instruction(void *arg, int vcpuid)
 1749 {
 1750         struct vm *vm;
 1751         struct vcpu *vcpu;
 1752         enum vcpu_state state;
 1753         uint64_t rip;
 1754         int error;
 1755 
 1756         vm = arg;
 1757         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1758                 return (EINVAL);
 1759 
 1760         vcpu = &vm->vcpu[vcpuid];
 1761         state = vcpu_get_state(vm, vcpuid, NULL);
 1762         if (state == VCPU_RUNNING) {
 1763                 /*
 1764                  * When a vcpu is "running" the next instruction is determined
 1765                  * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
 1766                  * Thus setting 'inst_length' to zero will cause the current
 1767                  * instruction to be restarted.
 1768                  */
 1769                 vcpu->exitinfo.inst_length = 0;
 1770                 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
 1771                     "setting inst_length to zero", vcpu->exitinfo.rip);
 1772         } else if (state == VCPU_FROZEN) {
 1773                 /*
 1774                  * When a vcpu is "frozen" it is outside the critical section
 1775                  * around VMRUN() and 'nextrip' points to the next instruction.
 1776                  * Thus instruction restart is achieved by setting 'nextrip'
 1777                  * to the vcpu's %rip.
 1778                  */
 1779                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
 1780                 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
 1781                 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
 1782                     "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
 1783                 vcpu->nextrip = rip;
 1784         } else {
 1785                 panic("%s: invalid state %d", __func__, state);
 1786         }
 1787         return (0);
 1788 }
 1789 
 1790 int
 1791 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
 1792 {
 1793         struct vcpu *vcpu;
 1794         int type, vector;
 1795 
 1796         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1797                 return (EINVAL);
 1798 
 1799         vcpu = &vm->vcpu[vcpuid];
 1800 
 1801         if (info & VM_INTINFO_VALID) {
 1802                 type = info & VM_INTINFO_TYPE;
 1803                 vector = info & 0xff;
 1804                 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
 1805                         return (EINVAL);
 1806                 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
 1807                         return (EINVAL);
 1808                 if (info & VM_INTINFO_RSVD)
 1809                         return (EINVAL);
 1810         } else {
 1811                 info = 0;
 1812         }
 1813         VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
 1814         vcpu->exitintinfo = info;
 1815         return (0);
 1816 }
 1817 
 1818 enum exc_class {
 1819         EXC_BENIGN,
 1820         EXC_CONTRIBUTORY,
 1821         EXC_PAGEFAULT
 1822 };
 1823 
 1824 #define IDT_VE  20      /* Virtualization Exception (Intel specific) */
 1825 
 1826 static enum exc_class
 1827 exception_class(uint64_t info)
 1828 {
 1829         int type, vector;
 1830 
 1831         KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
 1832         type = info & VM_INTINFO_TYPE;
 1833         vector = info & 0xff;
 1834 
 1835         /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
 1836         switch (type) {
 1837         case VM_INTINFO_HWINTR:
 1838         case VM_INTINFO_SWINTR:
 1839         case VM_INTINFO_NMI:
 1840                 return (EXC_BENIGN);
 1841         default:
 1842                 /*
 1843                  * Hardware exception.
 1844                  *
 1845                  * SVM and VT-x use identical type values to represent NMI,
 1846                  * hardware interrupt and software interrupt.
 1847                  *
 1848                  * SVM uses type '3' for all exceptions. VT-x uses type '3'
 1849                  * for exceptions except #BP and #OF. #BP and #OF use a type
 1850                  * value of '5' or '6'. Therefore we don't check for explicit
 1851                  * values of 'type' to classify 'intinfo' into a hardware
 1852                  * exception.
 1853                  */
 1854                 break;
 1855         }
 1856 
 1857         switch (vector) {
 1858         case IDT_PF:
 1859         case IDT_VE:
 1860                 return (EXC_PAGEFAULT);
 1861         case IDT_DE:
 1862         case IDT_TS:
 1863         case IDT_NP:
 1864         case IDT_SS:
 1865         case IDT_GP:
 1866                 return (EXC_CONTRIBUTORY);
 1867         default:
 1868                 return (EXC_BENIGN);
 1869         }
 1870 }
 1871 
 1872 static int
 1873 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
 1874     uint64_t *retinfo)
 1875 {
 1876         enum exc_class exc1, exc2;
 1877         int type1, vector1;
 1878 
 1879         KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
 1880         KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
 1881 
 1882         /*
 1883          * If an exception occurs while attempting to call the double-fault
 1884          * handler the processor enters shutdown mode (aka triple fault).
 1885          */
 1886         type1 = info1 & VM_INTINFO_TYPE;
 1887         vector1 = info1 & 0xff;
 1888         if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
 1889                 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
 1890                     info1, info2);
 1891                 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
 1892                 *retinfo = 0;
 1893                 return (0);
 1894         }
 1895 
 1896         /*
 1897          * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
 1898          */
 1899         exc1 = exception_class(info1);
 1900         exc2 = exception_class(info2);
 1901         if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
 1902             (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
 1903                 /* Convert nested fault into a double fault. */
 1904                 *retinfo = IDT_DF;
 1905                 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1906                 *retinfo |= VM_INTINFO_DEL_ERRCODE;
 1907         } else {
 1908                 /* Handle exceptions serially */
 1909                 *retinfo = info2;
 1910         }
 1911         return (1);
 1912 }
 1913 
 1914 static uint64_t
 1915 vcpu_exception_intinfo(struct vcpu *vcpu)
 1916 {
 1917         uint64_t info = 0;
 1918 
 1919         if (vcpu->exception_pending) {
 1920                 info = vcpu->exc_vector & 0xff;
 1921                 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1922                 if (vcpu->exc_errcode_valid) {
 1923                         info |= VM_INTINFO_DEL_ERRCODE;
 1924                         info |= (uint64_t)vcpu->exc_errcode << 32;
 1925                 }
 1926         }
 1927         return (info);
 1928 }
 1929 
 1930 int
 1931 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
 1932 {
 1933         struct vcpu *vcpu;
 1934         uint64_t info1, info2;
 1935         int valid;
 1936 
 1937         KASSERT(vcpuid >= 0 &&
 1938             vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid));
 1939 
 1940         vcpu = &vm->vcpu[vcpuid];
 1941 
 1942         info1 = vcpu->exitintinfo;
 1943         vcpu->exitintinfo = 0;
 1944 
 1945         info2 = 0;
 1946         if (vcpu->exception_pending) {
 1947                 info2 = vcpu_exception_intinfo(vcpu);
 1948                 vcpu->exception_pending = 0;
 1949                 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
 1950                     vcpu->exc_vector, info2);
 1951         }
 1952 
 1953         if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
 1954                 valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
 1955         } else if (info1 & VM_INTINFO_VALID) {
 1956                 *retinfo = info1;
 1957                 valid = 1;
 1958         } else if (info2 & VM_INTINFO_VALID) {
 1959                 *retinfo = info2;
 1960                 valid = 1;
 1961         } else {
 1962                 valid = 0;
 1963         }
 1964 
 1965         if (valid) {
 1966                 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
 1967                     "retinfo(%#lx)", __func__, info1, info2, *retinfo);
 1968         }
 1969 
 1970         return (valid);
 1971 }
 1972 
 1973 int
 1974 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
 1975 {
 1976         struct vcpu *vcpu;
 1977 
 1978         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1979                 return (EINVAL);
 1980 
 1981         vcpu = &vm->vcpu[vcpuid];
 1982         *info1 = vcpu->exitintinfo;
 1983         *info2 = vcpu_exception_intinfo(vcpu);
 1984         return (0);
 1985 }
 1986 
 1987 int
 1988 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
 1989     uint32_t errcode, int restart_instruction)
 1990 {
 1991         struct vcpu *vcpu;
 1992         uint64_t regval;
 1993         int error;
 1994 
 1995         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1996                 return (EINVAL);
 1997 
 1998         if (vector < 0 || vector >= 32)
 1999                 return (EINVAL);
 2000 
 2001         /*
 2002          * A double fault exception should never be injected directly into
 2003          * the guest. It is a derived exception that results from specific
 2004          * combinations of nested faults.
 2005          */
 2006         if (vector == IDT_DF)
 2007                 return (EINVAL);
 2008 
 2009         vcpu = &vm->vcpu[vcpuid];
 2010 
 2011         if (vcpu->exception_pending) {
 2012                 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
 2013                     "pending exception %d", vector, vcpu->exc_vector);
 2014                 return (EBUSY);
 2015         }
 2016 
 2017         if (errcode_valid) {
 2018                 /*
 2019                  * Exceptions don't deliver an error code in real mode.
 2020                  */
 2021                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
 2022                 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
 2023                 if (!(regval & CR0_PE))
 2024                         errcode_valid = 0;
 2025         }
 2026 
 2027         /*
 2028          * From section 26.6.1 "Interruptibility State" in Intel SDM:
 2029          *
 2030          * Event blocking by "STI" or "MOV SS" is cleared after guest executes
 2031          * one instruction or incurs an exception.
 2032          */
 2033         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
 2034         KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
 2035             __func__, error));
 2036 
 2037         if (restart_instruction)
 2038                 vm_restart_instruction(vm, vcpuid);
 2039 
 2040         vcpu->exception_pending = 1;
 2041         vcpu->exc_vector = vector;
 2042         vcpu->exc_errcode = errcode;
 2043         vcpu->exc_errcode_valid = errcode_valid;
 2044         VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
 2045         return (0);
 2046 }
 2047 
 2048 void
 2049 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
 2050     int errcode)
 2051 {
 2052         struct vm *vm;
 2053         int error, restart_instruction;
 2054 
 2055         vm = vmarg;
 2056         restart_instruction = 1;
 2057 
 2058         error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
 2059             errcode, restart_instruction);
 2060         KASSERT(error == 0, ("vm_inject_exception error %d", error));
 2061 }
 2062 
 2063 void
 2064 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
 2065 {
 2066         struct vm *vm;
 2067         int error;
 2068 
 2069         vm = vmarg;
 2070         VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
 2071             error_code, cr2);
 2072 
 2073         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
 2074         KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
 2075 
 2076         vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
 2077 }
 2078 
 2079 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
 2080 
 2081 int
 2082 vm_inject_nmi(struct vm *vm, int vcpuid)
 2083 {
 2084         struct vcpu *vcpu;
 2085 
 2086         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2087                 return (EINVAL);
 2088 
 2089         vcpu = &vm->vcpu[vcpuid];
 2090 
 2091         vcpu->nmi_pending = 1;
 2092         vcpu_notify_event(vm, vcpuid, false);
 2093         return (0);
 2094 }
 2095 
 2096 int
 2097 vm_nmi_pending(struct vm *vm, int vcpuid)
 2098 {
 2099         struct vcpu *vcpu;
 2100 
 2101         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2102                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2103 
 2104         vcpu = &vm->vcpu[vcpuid];
 2105 
 2106         return (vcpu->nmi_pending);
 2107 }
 2108 
 2109 void
 2110 vm_nmi_clear(struct vm *vm, int vcpuid)
 2111 {
 2112         struct vcpu *vcpu;
 2113 
 2114         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2115                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2116 
 2117         vcpu = &vm->vcpu[vcpuid];
 2118 
 2119         if (vcpu->nmi_pending == 0)
 2120                 panic("vm_nmi_clear: inconsistent nmi_pending state");
 2121 
 2122         vcpu->nmi_pending = 0;
 2123         vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
 2124 }
 2125 
 2126 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
 2127 
 2128 int
 2129 vm_inject_extint(struct vm *vm, int vcpuid)
 2130 {
 2131         struct vcpu *vcpu;
 2132 
 2133         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2134                 return (EINVAL);
 2135 
 2136         vcpu = &vm->vcpu[vcpuid];
 2137 
 2138         vcpu->extint_pending = 1;
 2139         vcpu_notify_event(vm, vcpuid, false);
 2140         return (0);
 2141 }
 2142 
 2143 int
 2144 vm_extint_pending(struct vm *vm, int vcpuid)
 2145 {
 2146         struct vcpu *vcpu;
 2147 
 2148         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2149                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2150 
 2151         vcpu = &vm->vcpu[vcpuid];
 2152 
 2153         return (vcpu->extint_pending);
 2154 }
 2155 
 2156 void
 2157 vm_extint_clear(struct vm *vm, int vcpuid)
 2158 {
 2159         struct vcpu *vcpu;
 2160 
 2161         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2162                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2163 
 2164         vcpu = &vm->vcpu[vcpuid];
 2165 
 2166         if (vcpu->extint_pending == 0)
 2167                 panic("vm_extint_clear: inconsistent extint_pending state");
 2168 
 2169         vcpu->extint_pending = 0;
 2170         vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
 2171 }
 2172 
 2173 int
 2174 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
 2175 {
 2176         if (vcpu < 0 || vcpu >= vm->maxcpus)
 2177                 return (EINVAL);
 2178 
 2179         if (type < 0 || type >= VM_CAP_MAX)
 2180                 return (EINVAL);
 2181 
 2182         return (VMGETCAP(vm->cookie, vcpu, type, retval));
 2183 }
 2184 
 2185 int
 2186 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
 2187 {
 2188         if (vcpu < 0 || vcpu >= vm->maxcpus)
 2189                 return (EINVAL);
 2190 
 2191         if (type < 0 || type >= VM_CAP_MAX)
 2192                 return (EINVAL);
 2193 
 2194         return (VMSETCAP(vm->cookie, vcpu, type, val));
 2195 }
 2196 
 2197 struct vlapic *
 2198 vm_lapic(struct vm *vm, int cpu)
 2199 {
 2200         return (vm->vcpu[cpu].vlapic);
 2201 }
 2202 
 2203 struct vioapic *
 2204 vm_ioapic(struct vm *vm)
 2205 {
 2206 
 2207         return (vm->vioapic);
 2208 }
 2209 
 2210 struct vhpet *
 2211 vm_hpet(struct vm *vm)
 2212 {
 2213 
 2214         return (vm->vhpet);
 2215 }
 2216 
 2217 bool
 2218 vmm_is_pptdev(int bus, int slot, int func)
 2219 {
 2220         int b, f, i, n, s;
 2221         char *val, *cp, *cp2;
 2222         bool found;
 2223 
 2224         /*
 2225          * XXX
 2226          * The length of an environment variable is limited to 128 bytes which
 2227          * puts an upper limit on the number of passthru devices that may be
 2228          * specified using a single environment variable.
 2229          *
 2230          * Work around this by scanning multiple environment variable
 2231          * names instead of a single one - yuck!
 2232          */
 2233         const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
 2234 
 2235         /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
 2236         found = false;
 2237         for (i = 0; names[i] != NULL && !found; i++) {
 2238                 cp = val = kern_getenv(names[i]);
 2239                 while (cp != NULL && *cp != '\0') {
 2240                         if ((cp2 = strchr(cp, ' ')) != NULL)
 2241                                 *cp2 = '\0';
 2242 
 2243                         n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
 2244                         if (n == 3 && bus == b && slot == s && func == f) {
 2245                                 found = true;
 2246                                 break;
 2247                         }
 2248                 
 2249                         if (cp2 != NULL)
 2250                                 *cp2++ = ' ';
 2251 
 2252                         cp = cp2;
 2253                 }
 2254                 freeenv(val);
 2255         }
 2256         return (found);
 2257 }
 2258 
 2259 void *
 2260 vm_iommu_domain(struct vm *vm)
 2261 {
 2262 
 2263         return (vm->iommu);
 2264 }
 2265 
 2266 int
 2267 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 2268     bool from_idle)
 2269 {
 2270         int error;
 2271         struct vcpu *vcpu;
 2272 
 2273         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2274                 panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
 2275 
 2276         vcpu = &vm->vcpu[vcpuid];
 2277 
 2278         vcpu_lock(vcpu);
 2279         error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
 2280         vcpu_unlock(vcpu);
 2281 
 2282         return (error);
 2283 }
 2284 
 2285 enum vcpu_state
 2286 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
 2287 {
 2288         struct vcpu *vcpu;
 2289         enum vcpu_state state;
 2290 
 2291         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2292                 panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
 2293 
 2294         vcpu = &vm->vcpu[vcpuid];
 2295 
 2296         vcpu_lock(vcpu);
 2297         state = vcpu->state;
 2298         if (hostcpu != NULL)
 2299                 *hostcpu = vcpu->hostcpu;
 2300         vcpu_unlock(vcpu);
 2301 
 2302         return (state);
 2303 }
 2304 
 2305 int
 2306 vm_activate_cpu(struct vm *vm, int vcpuid)
 2307 {
 2308 
 2309         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2310                 return (EINVAL);
 2311 
 2312         if (CPU_ISSET(vcpuid, &vm->active_cpus))
 2313                 return (EBUSY);
 2314 
 2315         VCPU_CTR0(vm, vcpuid, "activated");
 2316         CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
 2317         return (0);
 2318 }
 2319 
 2320 cpuset_t
 2321 vm_active_cpus(struct vm *vm)
 2322 {
 2323 
 2324         return (vm->active_cpus);
 2325 }
 2326 
 2327 cpuset_t
 2328 vm_suspended_cpus(struct vm *vm)
 2329 {
 2330 
 2331         return (vm->suspended_cpus);
 2332 }
 2333 
 2334 void *
 2335 vcpu_stats(struct vm *vm, int vcpuid)
 2336 {
 2337 
 2338         return (vm->vcpu[vcpuid].stats);
 2339 }
 2340 
 2341 int
 2342 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
 2343 {
 2344         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2345                 return (EINVAL);
 2346 
 2347         *state = vm->vcpu[vcpuid].x2apic_state;
 2348 
 2349         return (0);
 2350 }
 2351 
 2352 int
 2353 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
 2354 {
 2355         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2356                 return (EINVAL);
 2357 
 2358         if (state >= X2APIC_STATE_LAST)
 2359                 return (EINVAL);
 2360 
 2361         vm->vcpu[vcpuid].x2apic_state = state;
 2362 
 2363         vlapic_set_x2apic_state(vm, vcpuid, state);
 2364 
 2365         return (0);
 2366 }
 2367 
 2368 /*
 2369  * This function is called to ensure that a vcpu "sees" a pending event
 2370  * as soon as possible:
 2371  * - If the vcpu thread is sleeping then it is woken up.
 2372  * - If the vcpu is running on a different host_cpu then an IPI will be directed
 2373  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
 2374  */
 2375 static void
 2376 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
 2377 {
 2378         int hostcpu;
 2379 
 2380         hostcpu = vcpu->hostcpu;
 2381         if (vcpu->state == VCPU_RUNNING) {
 2382                 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
 2383                 if (hostcpu != curcpu) {
 2384                         if (lapic_intr) {
 2385                                 vlapic_post_intr(vcpu->vlapic, hostcpu,
 2386                                     vmm_ipinum);
 2387                         } else {
 2388                                 ipi_cpu(hostcpu, vmm_ipinum);
 2389                         }
 2390                 } else {
 2391                         /*
 2392                          * If the 'vcpu' is running on 'curcpu' then it must
 2393                          * be sending a notification to itself (e.g. SELF_IPI).
 2394                          * The pending event will be picked up when the vcpu
 2395                          * transitions back to guest context.
 2396                          */
 2397                 }
 2398         } else {
 2399                 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
 2400                     "with hostcpu %d", vcpu->state, hostcpu));
 2401                 if (vcpu->state == VCPU_SLEEPING)
 2402                         wakeup_one(vcpu);
 2403         }
 2404 }
 2405 
 2406 void
 2407 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
 2408 {
 2409         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 2410 
 2411         vcpu_lock(vcpu);
 2412         vcpu_notify_event_locked(vcpu, lapic_intr);
 2413         vcpu_unlock(vcpu);
 2414 }
 2415 
 2416 struct vmspace *
 2417 vm_get_vmspace(struct vm *vm)
 2418 {
 2419 
 2420         return (vm->vmspace);
 2421 }
 2422 
 2423 int
 2424 vm_apicid2vcpuid(struct vm *vm, int apicid)
 2425 {
 2426         /*
 2427          * XXX apic id is assumed to be numerically identical to vcpu id
 2428          */
 2429         return (apicid);
 2430 }
 2431 
 2432 void
 2433 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
 2434     vm_rendezvous_func_t func, void *arg)
 2435 {
 2436         int i;
 2437 
 2438         /*
 2439          * Enforce that this function is called without any locks
 2440          */
 2441         WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
 2442         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus),
 2443             ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
 2444 
 2445 restart:
 2446         mtx_lock(&vm->rendezvous_mtx);
 2447         if (vm->rendezvous_func != NULL) {
 2448                 /*
 2449                  * If a rendezvous is already in progress then we need to
 2450                  * call the rendezvous handler in case this 'vcpuid' is one
 2451                  * of the targets of the rendezvous.
 2452                  */
 2453                 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
 2454                 mtx_unlock(&vm->rendezvous_mtx);
 2455                 vm_handle_rendezvous(vm, vcpuid);
 2456                 goto restart;
 2457         }
 2458         KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
 2459             "rendezvous is still in progress"));
 2460 
 2461         RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
 2462         vm->rendezvous_req_cpus = dest;
 2463         CPU_ZERO(&vm->rendezvous_done_cpus);
 2464         vm->rendezvous_arg = arg;
 2465         vm_set_rendezvous_func(vm, func);
 2466         mtx_unlock(&vm->rendezvous_mtx);
 2467 
 2468         /*
 2469          * Wake up any sleeping vcpus and trigger a VM-exit in any running
 2470          * vcpus so they handle the rendezvous as soon as possible.
 2471          */
 2472         for (i = 0; i < vm->maxcpus; i++) {
 2473                 if (CPU_ISSET(i, &dest))
 2474                         vcpu_notify_event(vm, i, false);
 2475         }
 2476 
 2477         vm_handle_rendezvous(vm, vcpuid);
 2478 }
 2479 
 2480 struct vatpic *
 2481 vm_atpic(struct vm *vm)
 2482 {
 2483         return (vm->vatpic);
 2484 }
 2485 
 2486 struct vatpit *
 2487 vm_atpit(struct vm *vm)
 2488 {
 2489         return (vm->vatpit);
 2490 }
 2491 
 2492 struct vpmtmr *
 2493 vm_pmtmr(struct vm *vm)
 2494 {
 2495 
 2496         return (vm->vpmtmr);
 2497 }
 2498 
 2499 struct vrtc *
 2500 vm_rtc(struct vm *vm)
 2501 {
 2502 
 2503         return (vm->vrtc);
 2504 }
 2505 
 2506 enum vm_reg_name
 2507 vm_segment_name(int seg)
 2508 {
 2509         static enum vm_reg_name seg_names[] = {
 2510                 VM_REG_GUEST_ES,
 2511                 VM_REG_GUEST_CS,
 2512                 VM_REG_GUEST_SS,
 2513                 VM_REG_GUEST_DS,
 2514                 VM_REG_GUEST_FS,
 2515                 VM_REG_GUEST_GS
 2516         };
 2517 
 2518         KASSERT(seg >= 0 && seg < nitems(seg_names),
 2519             ("%s: invalid segment encoding %d", __func__, seg));
 2520         return (seg_names[seg]);
 2521 }
 2522 
 2523 void
 2524 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
 2525     int num_copyinfo)
 2526 {
 2527         int idx;
 2528 
 2529         for (idx = 0; idx < num_copyinfo; idx++) {
 2530                 if (copyinfo[idx].cookie != NULL)
 2531                         vm_gpa_release(copyinfo[idx].cookie);
 2532         }
 2533         bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
 2534 }
 2535 
 2536 int
 2537 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
 2538     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
 2539     int num_copyinfo, int *fault)
 2540 {
 2541         int error, idx, nused;
 2542         size_t n, off, remaining;
 2543         void *hva, *cookie;
 2544         uint64_t gpa;
 2545 
 2546         bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
 2547 
 2548         nused = 0;
 2549         remaining = len;
 2550         while (remaining > 0) {
 2551                 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
 2552                 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
 2553                 if (error || *fault)
 2554                         return (error);
 2555                 off = gpa & PAGE_MASK;
 2556                 n = min(remaining, PAGE_SIZE - off);
 2557                 copyinfo[nused].gpa = gpa;
 2558                 copyinfo[nused].len = n;
 2559                 remaining -= n;
 2560                 gla += n;
 2561                 nused++;
 2562         }
 2563 
 2564         for (idx = 0; idx < nused; idx++) {
 2565                 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
 2566                     copyinfo[idx].len, prot, &cookie);
 2567                 if (hva == NULL)
 2568                         break;
 2569                 copyinfo[idx].hva = hva;
 2570                 copyinfo[idx].cookie = cookie;
 2571         }
 2572 
 2573         if (idx != nused) {
 2574                 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
 2575                 return (EFAULT);
 2576         } else {
 2577                 *fault = 0;
 2578                 return (0);
 2579         }
 2580 }
 2581 
 2582 void
 2583 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
 2584     size_t len)
 2585 {
 2586         char *dst;
 2587         int idx;
 2588         
 2589         dst = kaddr;
 2590         idx = 0;
 2591         while (len > 0) {
 2592                 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
 2593                 len -= copyinfo[idx].len;
 2594                 dst += copyinfo[idx].len;
 2595                 idx++;
 2596         }
 2597 }
 2598 
 2599 void
 2600 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
 2601     struct vm_copyinfo *copyinfo, size_t len)
 2602 {
 2603         const char *src;
 2604         int idx;
 2605 
 2606         src = kaddr;
 2607         idx = 0;
 2608         while (len > 0) {
 2609                 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
 2610                 len -= copyinfo[idx].len;
 2611                 src += copyinfo[idx].len;
 2612                 idx++;
 2613         }
 2614 }
 2615 
 2616 /*
 2617  * Return the amount of in-use and wired memory for the VM. Since
 2618  * these are global stats, only return the values with for vCPU 0
 2619  */
 2620 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
 2621 VMM_STAT_DECLARE(VMM_MEM_WIRED);
 2622 
 2623 static void
 2624 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2625 {
 2626 
 2627         if (vcpu == 0) {
 2628                 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
 2629                     PAGE_SIZE * vmspace_resident_count(vm->vmspace));
 2630         }       
 2631 }
 2632 
 2633 static void
 2634 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2635 {
 2636 
 2637         if (vcpu == 0) {
 2638                 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
 2639                     PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
 2640         }       
 2641 }
 2642 
 2643 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
 2644 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);

Cache object: 8028f1ae90407397e974c340c501669a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.