The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/amd64/vmm/vmm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2011 NetApp, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  * $FreeBSD$
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include <sys/param.h>
   35 #include <sys/systm.h>
   36 #include <sys/kernel.h>
   37 #include <sys/module.h>
   38 #include <sys/sysctl.h>
   39 #include <sys/malloc.h>
   40 #include <sys/pcpu.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/proc.h>
   44 #include <sys/rwlock.h>
   45 #include <sys/sched.h>
   46 #include <sys/smp.h>
   47 #include <sys/systm.h>
   48 
   49 #include <vm/vm.h>
   50 #include <vm/vm_object.h>
   51 #include <vm/vm_page.h>
   52 #include <vm/pmap.h>
   53 #include <vm/vm_map.h>
   54 #include <vm/vm_extern.h>
   55 #include <vm/vm_param.h>
   56 
   57 #include <machine/cpu.h>
   58 #include <machine/pcb.h>
   59 #include <machine/smp.h>
   60 #include <machine/md_var.h>
   61 #include <x86/psl.h>
   62 #include <x86/apicreg.h>
   63 
   64 #include <machine/vmm.h>
   65 #include <machine/vmm_dev.h>
   66 #include <machine/vmm_instruction_emul.h>
   67 
   68 #include "vmm_ioport.h"
   69 #include "vmm_ktr.h"
   70 #include "vmm_host.h"
   71 #include "vmm_mem.h"
   72 #include "vmm_util.h"
   73 #include "vatpic.h"
   74 #include "vatpit.h"
   75 #include "vhpet.h"
   76 #include "vioapic.h"
   77 #include "vlapic.h"
   78 #include "vpmtmr.h"
   79 #include "vrtc.h"
   80 #include "vmm_stat.h"
   81 #include "vmm_lapic.h"
   82 
   83 #include "io/ppt.h"
   84 #include "io/iommu.h"
   85 
   86 struct vlapic;
   87 
   88 /*
   89  * Initialization:
   90  * (a) allocated when vcpu is created
   91  * (i) initialized when vcpu is created and when it is reinitialized
   92  * (o) initialized the first time the vcpu is created
   93  * (x) initialized before use
   94  */
   95 struct vcpu {
   96         struct mtx      mtx;            /* (o) protects 'state' and 'hostcpu' */
   97         enum vcpu_state state;          /* (o) vcpu state */
   98         int             hostcpu;        /* (o) vcpu's host cpu */
   99         int             reqidle;        /* (i) request vcpu to idle */
  100         struct vlapic   *vlapic;        /* (i) APIC device model */
  101         enum x2apic_state x2apic_state; /* (i) APIC mode */
  102         uint64_t        exitintinfo;    /* (i) events pending at VM exit */
  103         int             nmi_pending;    /* (i) NMI pending */
  104         int             extint_pending; /* (i) INTR pending */
  105         int     exception_pending;      /* (i) exception pending */
  106         int     exc_vector;             /* (x) exception collateral */
  107         int     exc_errcode_valid;
  108         uint32_t exc_errcode;
  109         struct savefpu  *guestfpu;      /* (a,i) guest fpu state */
  110         uint64_t        guest_xcr0;     /* (i) guest %xcr0 register */
  111         void            *stats;         /* (a,i) statistics */
  112         struct vm_exit  exitinfo;       /* (x) exit reason and collateral */
  113         uint64_t        nextrip;        /* (x) next instruction to execute */
  114 };
  115 
  116 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
  117 #define vcpu_lock_init(v)       mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
  118 #define vcpu_lock(v)            mtx_lock_spin(&((v)->mtx))
  119 #define vcpu_unlock(v)          mtx_unlock_spin(&((v)->mtx))
  120 #define vcpu_assert_locked(v)   mtx_assert(&((v)->mtx), MA_OWNED)
  121 
  122 struct mem_seg {
  123         size_t  len;
  124         bool    sysmem;
  125         struct vm_object *object;
  126 };
  127 #define VM_MAX_MEMSEGS  3
  128 
  129 struct mem_map {
  130         vm_paddr_t      gpa;
  131         size_t          len;
  132         vm_ooffset_t    segoff;
  133         int             segid;
  134         int             prot;
  135         int             flags;
  136 };
  137 #define VM_MAX_MEMMAPS  4
  138 
  139 /*
  140  * Initialization:
  141  * (o) initialized the first time the VM is created
  142  * (i) initialized when VM is created and when it is reinitialized
  143  * (x) initialized before use
  144  */
  145 struct vm {
  146         void            *cookie;                /* (i) cpu-specific data */
  147         void            *iommu;                 /* (x) iommu-specific data */
  148         struct vhpet    *vhpet;                 /* (i) virtual HPET */
  149         struct vioapic  *vioapic;               /* (i) virtual ioapic */
  150         struct vatpic   *vatpic;                /* (i) virtual atpic */
  151         struct vatpit   *vatpit;                /* (i) virtual atpit */
  152         struct vpmtmr   *vpmtmr;                /* (i) virtual ACPI PM timer */
  153         struct vrtc     *vrtc;                  /* (o) virtual RTC */
  154         volatile cpuset_t active_cpus;          /* (i) active vcpus */
  155         volatile cpuset_t debug_cpus;           /* (i) vcpus stopped for debug */
  156         int             suspend;                /* (i) stop VM execution */
  157         volatile cpuset_t suspended_cpus;       /* (i) suspended vcpus */
  158         volatile cpuset_t halted_cpus;          /* (x) cpus in a hard halt */
  159         cpuset_t        rendezvous_req_cpus;    /* (x) rendezvous requested */
  160         cpuset_t        rendezvous_done_cpus;   /* (x) rendezvous finished */
  161         void            *rendezvous_arg;        /* (x) rendezvous func/arg */
  162         vm_rendezvous_func_t rendezvous_func;
  163         struct mtx      rendezvous_mtx;         /* (o) rendezvous lock */
  164         struct mem_map  mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
  165         struct mem_seg  mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
  166         struct vmspace  *vmspace;               /* (o) guest's address space */
  167         char            name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
  168         struct vcpu     vcpu[VM_MAXCPU];        /* (i) guest vcpus */
  169         /* The following describe the vm cpu topology */
  170         uint16_t        sockets;                /* (o) num of sockets */
  171         uint16_t        cores;                  /* (o) num of cores/socket */
  172         uint16_t        threads;                /* (o) num of threads/core */
  173         uint16_t        maxcpus;                /* (o) max pluggable cpus */
  174 };
  175 
  176 static int vmm_initialized;
  177 
  178 static struct vmm_ops *ops;
  179 #define VMM_INIT(num)   (ops != NULL ? (*ops->init)(num) : 0)
  180 #define VMM_CLEANUP()   (ops != NULL ? (*ops->cleanup)() : 0)
  181 #define VMM_RESUME()    (ops != NULL ? (*ops->resume)() : 0)
  182 
  183 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
  184 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \
  185         (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
  186 #define VMCLEANUP(vmi)  (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
  187 #define VMSPACE_ALLOC(min, max) \
  188         (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
  189 #define VMSPACE_FREE(vmspace) \
  190         (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
  191 #define VMGETREG(vmi, vcpu, num, retval)                \
  192         (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
  193 #define VMSETREG(vmi, vcpu, num, val)           \
  194         (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
  195 #define VMGETDESC(vmi, vcpu, num, desc)         \
  196         (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
  197 #define VMSETDESC(vmi, vcpu, num, desc)         \
  198         (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
  199 #define VMGETCAP(vmi, vcpu, num, retval)        \
  200         (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
  201 #define VMSETCAP(vmi, vcpu, num, val)           \
  202         (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
  203 #define VLAPIC_INIT(vmi, vcpu)                  \
  204         (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
  205 #define VLAPIC_CLEANUP(vmi, vlapic)             \
  206         (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
  207 
  208 #define fpu_start_emulating()   load_cr0(rcr0() | CR0_TS)
  209 #define fpu_stop_emulating()    clts()
  210 
  211 SDT_PROVIDER_DEFINE(vmm);
  212 
  213 static MALLOC_DEFINE(M_VM, "vm", "vm");
  214 
  215 /* statistics */
  216 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
  217 
  218 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
  219 
  220 /*
  221  * Halt the guest if all vcpus are executing a HLT instruction with
  222  * interrupts disabled.
  223  */
  224 static int halt_detection_enabled = 1;
  225 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
  226     &halt_detection_enabled, 0,
  227     "Halt VM if all vcpus execute HLT with interrupts disabled");
  228 
  229 static int vmm_ipinum;
  230 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
  231     "IPI vector used for vcpu notifications");
  232 
  233 static int trace_guest_exceptions;
  234 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
  235     &trace_guest_exceptions, 0,
  236     "Trap into hypervisor on all guest exceptions and reflect them back");
  237 
  238 static void vm_free_memmap(struct vm *vm, int ident);
  239 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
  240 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
  241 
  242 #ifdef KTR
  243 static const char *
  244 vcpu_state2str(enum vcpu_state state)
  245 {
  246 
  247         switch (state) {
  248         case VCPU_IDLE:
  249                 return ("idle");
  250         case VCPU_FROZEN:
  251                 return ("frozen");
  252         case VCPU_RUNNING:
  253                 return ("running");
  254         case VCPU_SLEEPING:
  255                 return ("sleeping");
  256         default:
  257                 return ("unknown");
  258         }
  259 }
  260 #endif
  261 
  262 static void
  263 vcpu_cleanup(struct vm *vm, int i, bool destroy)
  264 {
  265         struct vcpu *vcpu = &vm->vcpu[i];
  266 
  267         VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
  268         if (destroy) {
  269                 vmm_stat_free(vcpu->stats);     
  270                 fpu_save_area_free(vcpu->guestfpu);
  271         }
  272 }
  273 
  274 static void
  275 vcpu_init(struct vm *vm, int vcpu_id, bool create)
  276 {
  277         struct vcpu *vcpu;
  278 
  279         KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
  280             ("vcpu_init: invalid vcpu %d", vcpu_id));
  281           
  282         vcpu = &vm->vcpu[vcpu_id];
  283 
  284         if (create) {
  285                 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
  286                     "initialized", vcpu_id));
  287                 vcpu_lock_init(vcpu);
  288                 vcpu->state = VCPU_IDLE;
  289                 vcpu->hostcpu = NOCPU;
  290                 vcpu->guestfpu = fpu_save_area_alloc();
  291                 vcpu->stats = vmm_stat_alloc();
  292         }
  293 
  294         vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
  295         vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
  296         vcpu->reqidle = 0;
  297         vcpu->exitintinfo = 0;
  298         vcpu->nmi_pending = 0;
  299         vcpu->extint_pending = 0;
  300         vcpu->exception_pending = 0;
  301         vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
  302         fpu_save_area_reset(vcpu->guestfpu);
  303         vmm_stat_init(vcpu->stats);
  304 }
  305 
  306 int
  307 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
  308 {
  309 
  310         return (trace_guest_exceptions);
  311 }
  312 
  313 struct vm_exit *
  314 vm_exitinfo(struct vm *vm, int cpuid)
  315 {
  316         struct vcpu *vcpu;
  317 
  318         if (cpuid < 0 || cpuid >= vm->maxcpus)
  319                 panic("vm_exitinfo: invalid cpuid %d", cpuid);
  320 
  321         vcpu = &vm->vcpu[cpuid];
  322 
  323         return (&vcpu->exitinfo);
  324 }
  325 
  326 static void
  327 vmm_resume(void)
  328 {
  329         VMM_RESUME();
  330 }
  331 
  332 static int
  333 vmm_init(void)
  334 {
  335         int error;
  336 
  337         vmm_host_state_init();
  338 
  339         vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
  340             &IDTVEC(justreturn));
  341         if (vmm_ipinum < 0)
  342                 vmm_ipinum = IPI_AST;
  343 
  344         error = vmm_mem_init();
  345         if (error)
  346                 return (error);
  347         
  348         if (vmm_is_intel())
  349                 ops = &vmm_ops_intel;
  350         else if (vmm_is_svm())
  351                 ops = &vmm_ops_amd;
  352         else
  353                 return (ENXIO);
  354 
  355         vmm_resume_p = vmm_resume;
  356 
  357         return (VMM_INIT(vmm_ipinum));
  358 }
  359 
  360 static int
  361 vmm_handler(module_t mod, int what, void *arg)
  362 {
  363         int error;
  364 
  365         switch (what) {
  366         case MOD_LOAD:
  367                 vmmdev_init();
  368                 error = vmm_init();
  369                 if (error == 0)
  370                         vmm_initialized = 1;
  371                 break;
  372         case MOD_UNLOAD:
  373                 error = vmmdev_cleanup();
  374                 if (error == 0) {
  375                         vmm_resume_p = NULL;
  376                         iommu_cleanup();
  377                         if (vmm_ipinum != IPI_AST)
  378                                 lapic_ipi_free(vmm_ipinum);
  379                         error = VMM_CLEANUP();
  380                         /*
  381                          * Something bad happened - prevent new
  382                          * VMs from being created
  383                          */
  384                         if (error)
  385                                 vmm_initialized = 0;
  386                 }
  387                 break;
  388         default:
  389                 error = 0;
  390                 break;
  391         }
  392         return (error);
  393 }
  394 
  395 static moduledata_t vmm_kmod = {
  396         "vmm",
  397         vmm_handler,
  398         NULL
  399 };
  400 
  401 /*
  402  * vmm initialization has the following dependencies:
  403  *
  404  * - VT-x initialization requires smp_rendezvous() and therefore must happen
  405  *   after SMP is fully functional (after SI_SUB_SMP).
  406  */
  407 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
  408 MODULE_VERSION(vmm, 1);
  409 
  410 static void
  411 vm_init(struct vm *vm, bool create)
  412 {
  413         int i;
  414 
  415         vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
  416         vm->iommu = NULL;
  417         vm->vioapic = vioapic_init(vm);
  418         vm->vhpet = vhpet_init(vm);
  419         vm->vatpic = vatpic_init(vm);
  420         vm->vatpit = vatpit_init(vm);
  421         vm->vpmtmr = vpmtmr_init(vm);
  422         if (create)
  423                 vm->vrtc = vrtc_init(vm);
  424 
  425         CPU_ZERO(&vm->active_cpus);
  426         CPU_ZERO(&vm->debug_cpus);
  427 
  428         vm->suspend = 0;
  429         CPU_ZERO(&vm->suspended_cpus);
  430 
  431         for (i = 0; i < vm->maxcpus; i++)
  432                 vcpu_init(vm, i, create);
  433 }
  434 
  435 /*
  436  * The default CPU topology is a single thread per package.
  437  */
  438 u_int cores_per_package = 1;
  439 u_int threads_per_core = 1;
  440 
  441 int
  442 vm_create(const char *name, struct vm **retvm)
  443 {
  444         struct vm *vm;
  445         struct vmspace *vmspace;
  446 
  447         /*
  448          * If vmm.ko could not be successfully initialized then don't attempt
  449          * to create the virtual machine.
  450          */
  451         if (!vmm_initialized)
  452                 return (ENXIO);
  453 
  454         if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
  455             VM_MAX_NAMELEN + 1)
  456                 return (EINVAL);
  457 
  458         vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
  459         if (vmspace == NULL)
  460                 return (ENOMEM);
  461 
  462         vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
  463         strcpy(vm->name, name);
  464         vm->vmspace = vmspace;
  465         mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
  466 
  467         vm->sockets = 1;
  468         vm->cores = cores_per_package;  /* XXX backwards compatibility */
  469         vm->threads = threads_per_core; /* XXX backwards compatibility */
  470         vm->maxcpus = VM_MAXCPU;        /* XXX temp to keep code working */
  471 
  472         vm_init(vm, true);
  473 
  474         *retvm = vm;
  475         return (0);
  476 }
  477 
  478 void
  479 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
  480     uint16_t *threads, uint16_t *maxcpus)
  481 {
  482         *sockets = vm->sockets;
  483         *cores = vm->cores;
  484         *threads = vm->threads;
  485         *maxcpus = vm->maxcpus;
  486 }
  487 
  488 uint16_t
  489 vm_get_maxcpus(struct vm *vm)
  490 {
  491         return (vm->maxcpus);
  492 }
  493 
  494 int
  495 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
  496     uint16_t threads, uint16_t maxcpus)
  497 {
  498         if (maxcpus != 0)
  499                 return (EINVAL);        /* XXX remove when supported */
  500         if ((sockets * cores * threads) > vm->maxcpus)
  501                 return (EINVAL);
  502         /* XXX need to check sockets * cores * threads == vCPU, how? */
  503         vm->sockets = sockets;
  504         vm->cores = cores;
  505         vm->threads = threads;
  506         vm->maxcpus = VM_MAXCPU;        /* XXX temp to keep code working */
  507         return(0);
  508 }
  509 
  510 static void
  511 vm_cleanup(struct vm *vm, bool destroy)
  512 {
  513         struct mem_map *mm;
  514         int i;
  515 
  516         ppt_unassign_all(vm);
  517 
  518         if (vm->iommu != NULL)
  519                 iommu_destroy_domain(vm->iommu);
  520 
  521         if (destroy)
  522                 vrtc_cleanup(vm->vrtc);
  523         else
  524                 vrtc_reset(vm->vrtc);
  525         vpmtmr_cleanup(vm->vpmtmr);
  526         vatpit_cleanup(vm->vatpit);
  527         vhpet_cleanup(vm->vhpet);
  528         vatpic_cleanup(vm->vatpic);
  529         vioapic_cleanup(vm->vioapic);
  530 
  531         for (i = 0; i < vm->maxcpus; i++)
  532                 vcpu_cleanup(vm, i, destroy);
  533 
  534         VMCLEANUP(vm->cookie);
  535 
  536         /*
  537          * System memory is removed from the guest address space only when
  538          * the VM is destroyed. This is because the mapping remains the same
  539          * across VM reset.
  540          *
  541          * Device memory can be relocated by the guest (e.g. using PCI BARs)
  542          * so those mappings are removed on a VM reset.
  543          */
  544         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  545                 mm = &vm->mem_maps[i];
  546                 if (destroy || !sysmem_mapping(vm, mm))
  547                         vm_free_memmap(vm, i);
  548         }
  549 
  550         if (destroy) {
  551                 for (i = 0; i < VM_MAX_MEMSEGS; i++)
  552                         vm_free_memseg(vm, i);
  553 
  554                 VMSPACE_FREE(vm->vmspace);
  555                 vm->vmspace = NULL;
  556         }
  557 }
  558 
  559 void
  560 vm_destroy(struct vm *vm)
  561 {
  562         vm_cleanup(vm, true);
  563         free(vm, M_VM);
  564 }
  565 
  566 int
  567 vm_reinit(struct vm *vm)
  568 {
  569         int error;
  570 
  571         /*
  572          * A virtual machine can be reset only if all vcpus are suspended.
  573          */
  574         if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
  575                 vm_cleanup(vm, false);
  576                 vm_init(vm, false);
  577                 error = 0;
  578         } else {
  579                 error = EBUSY;
  580         }
  581 
  582         return (error);
  583 }
  584 
  585 const char *
  586 vm_name(struct vm *vm)
  587 {
  588         return (vm->name);
  589 }
  590 
  591 int
  592 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
  593 {
  594         vm_object_t obj;
  595 
  596         if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
  597                 return (ENOMEM);
  598         else
  599                 return (0);
  600 }
  601 
  602 int
  603 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
  604 {
  605 
  606         vmm_mmio_free(vm->vmspace, gpa, len);
  607         return (0);
  608 }
  609 
  610 /*
  611  * Return 'true' if 'gpa' is allocated in the guest address space.
  612  *
  613  * This function is called in the context of a running vcpu which acts as
  614  * an implicit lock on 'vm->mem_maps[]'.
  615  */
  616 bool
  617 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
  618 {
  619         struct mem_map *mm;
  620         int i;
  621 
  622 #ifdef INVARIANTS
  623         int hostcpu, state;
  624         state = vcpu_get_state(vm, vcpuid, &hostcpu);
  625         KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
  626             ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
  627 #endif
  628 
  629         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  630                 mm = &vm->mem_maps[i];
  631                 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
  632                         return (true);          /* 'gpa' is sysmem or devmem */
  633         }
  634 
  635         if (ppt_is_mmio(vm, gpa))
  636                 return (true);                  /* 'gpa' is pci passthru mmio */
  637 
  638         return (false);
  639 }
  640 
  641 int
  642 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
  643 {
  644         struct mem_seg *seg;
  645         vm_object_t obj;
  646 
  647         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  648                 return (EINVAL);
  649 
  650         if (len == 0 || (len & PAGE_MASK))
  651                 return (EINVAL);
  652 
  653         seg = &vm->mem_segs[ident];
  654         if (seg->object != NULL) {
  655                 if (seg->len == len && seg->sysmem == sysmem)
  656                         return (EEXIST);
  657                 else
  658                         return (EINVAL);
  659         }
  660 
  661         obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
  662         if (obj == NULL)
  663                 return (ENOMEM);
  664 
  665         seg->len = len;
  666         seg->object = obj;
  667         seg->sysmem = sysmem;
  668         return (0);
  669 }
  670 
  671 int
  672 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
  673     vm_object_t *objptr)
  674 {
  675         struct mem_seg *seg;
  676 
  677         if (ident < 0 || ident >= VM_MAX_MEMSEGS)
  678                 return (EINVAL);
  679 
  680         seg = &vm->mem_segs[ident];
  681         if (len)
  682                 *len = seg->len;
  683         if (sysmem)
  684                 *sysmem = seg->sysmem;
  685         if (objptr)
  686                 *objptr = seg->object;
  687         return (0);
  688 }
  689 
  690 void
  691 vm_free_memseg(struct vm *vm, int ident)
  692 {
  693         struct mem_seg *seg;
  694 
  695         KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
  696             ("%s: invalid memseg ident %d", __func__, ident));
  697 
  698         seg = &vm->mem_segs[ident];
  699         if (seg->object != NULL) {
  700                 vm_object_deallocate(seg->object);
  701                 bzero(seg, sizeof(struct mem_seg));
  702         }
  703 }
  704 
  705 int
  706 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
  707     size_t len, int prot, int flags)
  708 {
  709         struct mem_seg *seg;
  710         struct mem_map *m, *map;
  711         vm_ooffset_t last;
  712         int i, error;
  713 
  714         if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
  715                 return (EINVAL);
  716 
  717         if (flags & ~VM_MEMMAP_F_WIRED)
  718                 return (EINVAL);
  719 
  720         if (segid < 0 || segid >= VM_MAX_MEMSEGS)
  721                 return (EINVAL);
  722 
  723         seg = &vm->mem_segs[segid];
  724         if (seg->object == NULL)
  725                 return (EINVAL);
  726 
  727         last = first + len;
  728         if (first < 0 || first >= last || last > seg->len)
  729                 return (EINVAL);
  730 
  731         if ((gpa | first | last) & PAGE_MASK)
  732                 return (EINVAL);
  733 
  734         map = NULL;
  735         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  736                 m = &vm->mem_maps[i];
  737                 if (m->len == 0) {
  738                         map = m;
  739                         break;
  740                 }
  741         }
  742 
  743         if (map == NULL)
  744                 return (ENOSPC);
  745 
  746         error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
  747             len, 0, VMFS_NO_SPACE, prot, prot, 0);
  748         if (error != KERN_SUCCESS)
  749                 return (EFAULT);
  750 
  751         vm_object_reference(seg->object);
  752 
  753         if (flags & VM_MEMMAP_F_WIRED) {
  754                 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
  755                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
  756                 if (error != KERN_SUCCESS) {
  757                         vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
  758                         return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM :
  759                             EFAULT);
  760                 }
  761         }
  762 
  763         map->gpa = gpa;
  764         map->len = len;
  765         map->segoff = first;
  766         map->segid = segid;
  767         map->prot = prot;
  768         map->flags = flags;
  769         return (0);
  770 }
  771 
  772 int
  773 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
  774     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
  775 {
  776         struct mem_map *mm, *mmnext;
  777         int i;
  778 
  779         mmnext = NULL;
  780         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  781                 mm = &vm->mem_maps[i];
  782                 if (mm->len == 0 || mm->gpa < *gpa)
  783                         continue;
  784                 if (mmnext == NULL || mm->gpa < mmnext->gpa)
  785                         mmnext = mm;
  786         }
  787 
  788         if (mmnext != NULL) {
  789                 *gpa = mmnext->gpa;
  790                 if (segid)
  791                         *segid = mmnext->segid;
  792                 if (segoff)
  793                         *segoff = mmnext->segoff;
  794                 if (len)
  795                         *len = mmnext->len;
  796                 if (prot)
  797                         *prot = mmnext->prot;
  798                 if (flags)
  799                         *flags = mmnext->flags;
  800                 return (0);
  801         } else {
  802                 return (ENOENT);
  803         }
  804 }
  805 
  806 static void
  807 vm_free_memmap(struct vm *vm, int ident)
  808 {
  809         struct mem_map *mm;
  810         int error;
  811 
  812         mm = &vm->mem_maps[ident];
  813         if (mm->len) {
  814                 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
  815                     mm->gpa + mm->len);
  816                 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
  817                     __func__, error));
  818                 bzero(mm, sizeof(struct mem_map));
  819         }
  820 }
  821 
  822 static __inline bool
  823 sysmem_mapping(struct vm *vm, struct mem_map *mm)
  824 {
  825 
  826         if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
  827                 return (true);
  828         else
  829                 return (false);
  830 }
  831 
  832 vm_paddr_t
  833 vmm_sysmem_maxaddr(struct vm *vm)
  834 {
  835         struct mem_map *mm;
  836         vm_paddr_t maxaddr;
  837         int i;
  838 
  839         maxaddr = 0;
  840         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  841                 mm = &vm->mem_maps[i];
  842                 if (sysmem_mapping(vm, mm)) {
  843                         if (maxaddr < mm->gpa + mm->len)
  844                                 maxaddr = mm->gpa + mm->len;
  845                 }
  846         }
  847         return (maxaddr);
  848 }
  849 
  850 static void
  851 vm_iommu_modify(struct vm *vm, bool map)
  852 {
  853         int i, sz;
  854         vm_paddr_t gpa, hpa;
  855         struct mem_map *mm;
  856         void *vp, *cookie, *host_domain;
  857 
  858         sz = PAGE_SIZE;
  859         host_domain = iommu_host_domain();
  860 
  861         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  862                 mm = &vm->mem_maps[i];
  863                 if (!sysmem_mapping(vm, mm))
  864                         continue;
  865 
  866                 if (map) {
  867                         KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
  868                             ("iommu map found invalid memmap %#lx/%#lx/%#x",
  869                             mm->gpa, mm->len, mm->flags));
  870                         if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
  871                                 continue;
  872                         mm->flags |= VM_MEMMAP_F_IOMMU;
  873                 } else {
  874                         if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
  875                                 continue;
  876                         mm->flags &= ~VM_MEMMAP_F_IOMMU;
  877                         KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
  878                             ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
  879                             mm->gpa, mm->len, mm->flags));
  880                 }
  881 
  882                 gpa = mm->gpa;
  883                 while (gpa < mm->gpa + mm->len) {
  884                         vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
  885                                          &cookie);
  886                         KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
  887                             vm_name(vm), gpa));
  888 
  889                         vm_gpa_release(cookie);
  890 
  891                         hpa = DMAP_TO_PHYS((uintptr_t)vp);
  892                         if (map) {
  893                                 iommu_create_mapping(vm->iommu, gpa, hpa, sz);
  894                                 iommu_remove_mapping(host_domain, hpa, sz);
  895                         } else {
  896                                 iommu_remove_mapping(vm->iommu, gpa, sz);
  897                                 iommu_create_mapping(host_domain, hpa, hpa, sz);
  898                         }
  899 
  900                         gpa += PAGE_SIZE;
  901                 }
  902         }
  903 
  904         /*
  905          * Invalidate the cached translations associated with the domain
  906          * from which pages were removed.
  907          */
  908         if (map)
  909                 iommu_invalidate_tlb(host_domain);
  910         else
  911                 iommu_invalidate_tlb(vm->iommu);
  912 }
  913 
  914 #define vm_iommu_unmap(vm)      vm_iommu_modify((vm), false)
  915 #define vm_iommu_map(vm)        vm_iommu_modify((vm), true)
  916 
  917 int
  918 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
  919 {
  920         int error;
  921 
  922         error = ppt_unassign_device(vm, bus, slot, func);
  923         if (error)
  924                 return (error);
  925 
  926         if (ppt_assigned_devices(vm) == 0)
  927                 vm_iommu_unmap(vm);
  928 
  929         return (0);
  930 }
  931 
  932 int
  933 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
  934 {
  935         int error;
  936         vm_paddr_t maxaddr;
  937 
  938         /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
  939         if (ppt_assigned_devices(vm) == 0) {
  940                 KASSERT(vm->iommu == NULL,
  941                     ("vm_assign_pptdev: iommu must be NULL"));
  942                 maxaddr = vmm_sysmem_maxaddr(vm);
  943                 vm->iommu = iommu_create_domain(maxaddr);
  944                 if (vm->iommu == NULL)
  945                         return (ENXIO);
  946                 vm_iommu_map(vm);
  947         }
  948 
  949         error = ppt_assign_device(vm, bus, slot, func);
  950         return (error);
  951 }
  952 
  953 void *
  954 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
  955             void **cookie)
  956 {
  957         int i, count, pageoff;
  958         struct mem_map *mm;
  959         vm_page_t m;
  960 #ifdef INVARIANTS
  961         /*
  962          * All vcpus are frozen by ioctls that modify the memory map
  963          * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
  964          * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
  965          */
  966         int state;
  967         KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d",
  968             __func__, vcpuid));
  969         for (i = 0; i < vm->maxcpus; i++) {
  970                 if (vcpuid != -1 && vcpuid != i)
  971                         continue;
  972                 state = vcpu_get_state(vm, i, NULL);
  973                 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
  974                     __func__, state));
  975         }
  976 #endif
  977         pageoff = gpa & PAGE_MASK;
  978         if (len > PAGE_SIZE - pageoff)
  979                 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
  980 
  981         count = 0;
  982         for (i = 0; i < VM_MAX_MEMMAPS; i++) {
  983                 mm = &vm->mem_maps[i];
  984                 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) {
  985                         count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
  986                             trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
  987                         break;
  988                 }
  989         }
  990 
  991         if (count == 1) {
  992                 *cookie = m;
  993                 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
  994         } else {
  995                 *cookie = NULL;
  996                 return (NULL);
  997         }
  998 }
  999 
 1000 void
 1001 vm_gpa_release(void *cookie)
 1002 {
 1003         vm_page_t m = cookie;
 1004 
 1005         vm_page_lock(m);
 1006         vm_page_unhold(m);
 1007         vm_page_unlock(m);
 1008 }
 1009 
 1010 int
 1011 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
 1012 {
 1013 
 1014         if (vcpu < 0 || vcpu >= vm->maxcpus)
 1015                 return (EINVAL);
 1016 
 1017         if (reg >= VM_REG_LAST)
 1018                 return (EINVAL);
 1019 
 1020         return (VMGETREG(vm->cookie, vcpu, reg, retval));
 1021 }
 1022 
 1023 int
 1024 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
 1025 {
 1026         struct vcpu *vcpu;
 1027         int error;
 1028 
 1029         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1030                 return (EINVAL);
 1031 
 1032         if (reg >= VM_REG_LAST)
 1033                 return (EINVAL);
 1034 
 1035         error = VMSETREG(vm->cookie, vcpuid, reg, val);
 1036         if (error || reg != VM_REG_GUEST_RIP)
 1037                 return (error);
 1038 
 1039         /* Set 'nextrip' to match the value of %rip */
 1040         VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
 1041         vcpu = &vm->vcpu[vcpuid];
 1042         vcpu->nextrip = val;
 1043         return (0);
 1044 }
 1045 
 1046 static bool
 1047 is_descriptor_table(int reg)
 1048 {
 1049 
 1050         switch (reg) {
 1051         case VM_REG_GUEST_IDTR:
 1052         case VM_REG_GUEST_GDTR:
 1053                 return (true);
 1054         default:
 1055                 return (false);
 1056         }
 1057 }
 1058 
 1059 static bool
 1060 is_segment_register(int reg)
 1061 {
 1062         
 1063         switch (reg) {
 1064         case VM_REG_GUEST_ES:
 1065         case VM_REG_GUEST_CS:
 1066         case VM_REG_GUEST_SS:
 1067         case VM_REG_GUEST_DS:
 1068         case VM_REG_GUEST_FS:
 1069         case VM_REG_GUEST_GS:
 1070         case VM_REG_GUEST_TR:
 1071         case VM_REG_GUEST_LDTR:
 1072                 return (true);
 1073         default:
 1074                 return (false);
 1075         }
 1076 }
 1077 
 1078 int
 1079 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
 1080                 struct seg_desc *desc)
 1081 {
 1082 
 1083         if (vcpu < 0 || vcpu >= vm->maxcpus)
 1084                 return (EINVAL);
 1085 
 1086         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1087                 return (EINVAL);
 1088 
 1089         return (VMGETDESC(vm->cookie, vcpu, reg, desc));
 1090 }
 1091 
 1092 int
 1093 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
 1094                 struct seg_desc *desc)
 1095 {
 1096         if (vcpu < 0 || vcpu >= vm->maxcpus)
 1097                 return (EINVAL);
 1098 
 1099         if (!is_segment_register(reg) && !is_descriptor_table(reg))
 1100                 return (EINVAL);
 1101 
 1102         return (VMSETDESC(vm->cookie, vcpu, reg, desc));
 1103 }
 1104 
 1105 static void
 1106 restore_guest_fpustate(struct vcpu *vcpu)
 1107 {
 1108 
 1109         /* flush host state to the pcb */
 1110         fpuexit(curthread);
 1111 
 1112         /* restore guest FPU state */
 1113         fpu_stop_emulating();
 1114         fpurestore(vcpu->guestfpu);
 1115 
 1116         /* restore guest XCR0 if XSAVE is enabled in the host */
 1117         if (rcr4() & CR4_XSAVE)
 1118                 load_xcr(0, vcpu->guest_xcr0);
 1119 
 1120         /*
 1121          * The FPU is now "dirty" with the guest's state so turn on emulation
 1122          * to trap any access to the FPU by the host.
 1123          */
 1124         fpu_start_emulating();
 1125 }
 1126 
 1127 static void
 1128 save_guest_fpustate(struct vcpu *vcpu)
 1129 {
 1130 
 1131         if ((rcr0() & CR0_TS) == 0)
 1132                 panic("fpu emulation not enabled in host!");
 1133 
 1134         /* save guest XCR0 and restore host XCR0 */
 1135         if (rcr4() & CR4_XSAVE) {
 1136                 vcpu->guest_xcr0 = rxcr(0);
 1137                 load_xcr(0, vmm_get_host_xcr0());
 1138         }
 1139 
 1140         /* save guest FPU state */
 1141         fpu_stop_emulating();
 1142         fpusave(vcpu->guestfpu);
 1143         fpu_start_emulating();
 1144 }
 1145 
 1146 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
 1147 
 1148 static int
 1149 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 1150     bool from_idle)
 1151 {
 1152         struct vcpu *vcpu;
 1153         int error;
 1154 
 1155         vcpu = &vm->vcpu[vcpuid];
 1156         vcpu_assert_locked(vcpu);
 1157 
 1158         /*
 1159          * State transitions from the vmmdev_ioctl() must always begin from
 1160          * the VCPU_IDLE state. This guarantees that there is only a single
 1161          * ioctl() operating on a vcpu at any point.
 1162          */
 1163         if (from_idle) {
 1164                 while (vcpu->state != VCPU_IDLE) {
 1165                         vcpu->reqidle = 1;
 1166                         vcpu_notify_event_locked(vcpu, false);
 1167                         VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
 1168                             "idle requested", vcpu_state2str(vcpu->state));
 1169                         msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
 1170                 }
 1171         } else {
 1172                 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
 1173                     "vcpu idle state"));
 1174         }
 1175 
 1176         if (vcpu->state == VCPU_RUNNING) {
 1177                 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
 1178                     "mismatch for running vcpu", curcpu, vcpu->hostcpu));
 1179         } else {
 1180                 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
 1181                     "vcpu that is not running", vcpu->hostcpu));
 1182         }
 1183 
 1184         /*
 1185          * The following state transitions are allowed:
 1186          * IDLE -> FROZEN -> IDLE
 1187          * FROZEN -> RUNNING -> FROZEN
 1188          * FROZEN -> SLEEPING -> FROZEN
 1189          */
 1190         switch (vcpu->state) {
 1191         case VCPU_IDLE:
 1192         case VCPU_RUNNING:
 1193         case VCPU_SLEEPING:
 1194                 error = (newstate != VCPU_FROZEN);
 1195                 break;
 1196         case VCPU_FROZEN:
 1197                 error = (newstate == VCPU_FROZEN);
 1198                 break;
 1199         default:
 1200                 error = 1;
 1201                 break;
 1202         }
 1203 
 1204         if (error)
 1205                 return (EBUSY);
 1206 
 1207         VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
 1208             vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
 1209 
 1210         vcpu->state = newstate;
 1211         if (newstate == VCPU_RUNNING)
 1212                 vcpu->hostcpu = curcpu;
 1213         else
 1214                 vcpu->hostcpu = NOCPU;
 1215 
 1216         if (newstate == VCPU_IDLE)
 1217                 wakeup(&vcpu->state);
 1218 
 1219         return (0);
 1220 }
 1221 
 1222 static void
 1223 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1224 {
 1225         int error;
 1226 
 1227         if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
 1228                 panic("Error %d setting state to %d\n", error, newstate);
 1229 }
 1230 
 1231 static void
 1232 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
 1233 {
 1234         int error;
 1235 
 1236         if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
 1237                 panic("Error %d setting state to %d", error, newstate);
 1238 }
 1239 
 1240 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt)                                \
 1241         do {                                                            \
 1242                 if (vcpuid >= 0)                                        \
 1243                         VCPU_CTR0(vm, vcpuid, fmt);                     \
 1244                 else                                                    \
 1245                         VM_CTR0(vm, fmt);                               \
 1246         } while (0)
 1247 
 1248 static int
 1249 vm_handle_rendezvous(struct vm *vm, int vcpuid)
 1250 {
 1251         struct thread *td;
 1252         int error;
 1253 
 1254         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus),
 1255             ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
 1256 
 1257         error = 0;
 1258         td = curthread;
 1259         mtx_lock(&vm->rendezvous_mtx);
 1260         while (vm->rendezvous_func != NULL) {
 1261                 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
 1262                 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
 1263 
 1264                 if (vcpuid != -1 &&
 1265                     CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
 1266                     !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
 1267                         VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
 1268                         (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
 1269                         CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
 1270                 }
 1271                 if (CPU_CMP(&vm->rendezvous_req_cpus,
 1272                     &vm->rendezvous_done_cpus) == 0) {
 1273                         VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
 1274                         vm->rendezvous_func = NULL;
 1275                         wakeup(&vm->rendezvous_func);
 1276                         break;
 1277                 }
 1278                 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
 1279                 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
 1280                     "vmrndv", hz);
 1281                 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
 1282                         mtx_unlock(&vm->rendezvous_mtx);
 1283                         error = thread_check_susp(td, true);
 1284                         if (error != 0)
 1285                                 return (error);
 1286                         mtx_lock(&vm->rendezvous_mtx);
 1287                 }
 1288         }
 1289         mtx_unlock(&vm->rendezvous_mtx);
 1290         return (0);
 1291 }
 1292 
 1293 /*
 1294  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
 1295  */
 1296 static int
 1297 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
 1298 {
 1299         struct vcpu *vcpu;
 1300         const char *wmesg;
 1301         struct thread *td;
 1302         int error, t, vcpu_halted, vm_halted;
 1303 
 1304         KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
 1305 
 1306         vcpu = &vm->vcpu[vcpuid];
 1307         vcpu_halted = 0;
 1308         vm_halted = 0;
 1309         error = 0;
 1310         td = curthread;
 1311 
 1312         vcpu_lock(vcpu);
 1313         while (1) {
 1314                 /*
 1315                  * Do a final check for pending NMI or interrupts before
 1316                  * really putting this thread to sleep. Also check for
 1317                  * software events that would cause this vcpu to wakeup.
 1318                  *
 1319                  * These interrupts/events could have happened after the
 1320                  * vcpu returned from VMRUN() and before it acquired the
 1321                  * vcpu lock above.
 1322                  */
 1323                 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
 1324                         break;
 1325                 if (vm_nmi_pending(vm, vcpuid))
 1326                         break;
 1327                 if (!intr_disabled) {
 1328                         if (vm_extint_pending(vm, vcpuid) ||
 1329                             vlapic_pending_intr(vcpu->vlapic, NULL)) {
 1330                                 break;
 1331                         }
 1332                 }
 1333 
 1334                 /* Don't go to sleep if the vcpu thread needs to yield */
 1335                 if (vcpu_should_yield(vm, vcpuid))
 1336                         break;
 1337 
 1338                 if (vcpu_debugged(vm, vcpuid))
 1339                         break;
 1340 
 1341                 /*
 1342                  * Some Linux guests implement "halt" by having all vcpus
 1343                  * execute HLT with interrupts disabled. 'halted_cpus' keeps
 1344                  * track of the vcpus that have entered this state. When all
 1345                  * vcpus enter the halted state the virtual machine is halted.
 1346                  */
 1347                 if (intr_disabled) {
 1348                         wmesg = "vmhalt";
 1349                         VCPU_CTR0(vm, vcpuid, "Halted");
 1350                         if (!vcpu_halted && halt_detection_enabled) {
 1351                                 vcpu_halted = 1;
 1352                                 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
 1353                         }
 1354                         if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
 1355                                 vm_halted = 1;
 1356                                 break;
 1357                         }
 1358                 } else {
 1359                         wmesg = "vmidle";
 1360                 }
 1361 
 1362                 t = ticks;
 1363                 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1364                 /*
 1365                  * XXX msleep_spin() cannot be interrupted by signals so
 1366                  * wake up periodically to check pending signals.
 1367                  */
 1368                 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
 1369                 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1370                 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
 1371                 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
 1372                         vcpu_unlock(vcpu);
 1373                         error = thread_check_susp(td, false);
 1374                         if (error != 0)
 1375                                 return (error);
 1376                         vcpu_lock(vcpu);
 1377                 }
 1378         }
 1379 
 1380         if (vcpu_halted)
 1381                 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
 1382 
 1383         vcpu_unlock(vcpu);
 1384 
 1385         if (vm_halted)
 1386                 vm_suspend(vm, VM_SUSPEND_HALT);
 1387 
 1388         return (0);
 1389 }
 1390 
 1391 static int
 1392 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
 1393 {
 1394         int rv, ftype;
 1395         struct vm_map *map;
 1396         struct vcpu *vcpu;
 1397         struct vm_exit *vme;
 1398 
 1399         vcpu = &vm->vcpu[vcpuid];
 1400         vme = &vcpu->exitinfo;
 1401 
 1402         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1403             __func__, vme->inst_length));
 1404 
 1405         ftype = vme->u.paging.fault_type;
 1406         KASSERT(ftype == VM_PROT_READ ||
 1407             ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
 1408             ("vm_handle_paging: invalid fault_type %d", ftype));
 1409 
 1410         if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
 1411                 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
 1412                     vme->u.paging.gpa, ftype);
 1413                 if (rv == 0) {
 1414                         VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
 1415                             ftype == VM_PROT_READ ? "accessed" : "dirty",
 1416                             vme->u.paging.gpa);
 1417                         goto done;
 1418                 }
 1419         }
 1420 
 1421         map = &vm->vmspace->vm_map;
 1422         rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
 1423 
 1424         VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
 1425             "ftype = %d", rv, vme->u.paging.gpa, ftype);
 1426 
 1427         if (rv != KERN_SUCCESS)
 1428                 return (EFAULT);
 1429 done:
 1430         return (0);
 1431 }
 1432 
 1433 static int
 1434 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
 1435 {
 1436         struct vie *vie;
 1437         struct vcpu *vcpu;
 1438         struct vm_exit *vme;
 1439         uint64_t gla, gpa, cs_base;
 1440         struct vm_guest_paging *paging;
 1441         mem_region_read_t mread;
 1442         mem_region_write_t mwrite;
 1443         enum vm_cpu_mode cpu_mode;
 1444         int cs_d, error, fault;
 1445 
 1446         vcpu = &vm->vcpu[vcpuid];
 1447         vme = &vcpu->exitinfo;
 1448 
 1449         KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
 1450             __func__, vme->inst_length));
 1451 
 1452         gla = vme->u.inst_emul.gla;
 1453         gpa = vme->u.inst_emul.gpa;
 1454         cs_base = vme->u.inst_emul.cs_base;
 1455         cs_d = vme->u.inst_emul.cs_d;
 1456         vie = &vme->u.inst_emul.vie;
 1457         paging = &vme->u.inst_emul.paging;
 1458         cpu_mode = paging->cpu_mode;
 1459 
 1460         VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
 1461 
 1462         /* Fetch, decode and emulate the faulting instruction */
 1463         if (vie->num_valid == 0) {
 1464                 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
 1465                     cs_base, VIE_INST_SIZE, vie, &fault);
 1466         } else {
 1467                 /*
 1468                  * The instruction bytes have already been copied into 'vie'
 1469                  */
 1470                 error = fault = 0;
 1471         }
 1472         if (error || fault)
 1473                 return (error);
 1474 
 1475         if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
 1476                 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
 1477                     vme->rip + cs_base);
 1478                 *retu = true;       /* dump instruction bytes in userspace */
 1479                 return (0);
 1480         }
 1481 
 1482         /*
 1483          * Update 'nextrip' based on the length of the emulated instruction.
 1484          */
 1485         vme->inst_length = vie->num_processed;
 1486         vcpu->nextrip += vie->num_processed;
 1487         VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
 1488             "decoding", vcpu->nextrip);
 1489  
 1490         /* return to userland unless this is an in-kernel emulated device */
 1491         if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
 1492                 mread = lapic_mmio_read;
 1493                 mwrite = lapic_mmio_write;
 1494         } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
 1495                 mread = vioapic_mmio_read;
 1496                 mwrite = vioapic_mmio_write;
 1497         } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
 1498                 mread = vhpet_mmio_read;
 1499                 mwrite = vhpet_mmio_write;
 1500         } else {
 1501                 *retu = true;
 1502                 return (0);
 1503         }
 1504 
 1505         error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
 1506             mread, mwrite, retu);
 1507 
 1508         return (error);
 1509 }
 1510 
 1511 static int
 1512 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
 1513 {
 1514         int error, i;
 1515         struct vcpu *vcpu;
 1516         struct thread *td;
 1517 
 1518         error = 0;
 1519         vcpu = &vm->vcpu[vcpuid];
 1520         td = curthread;
 1521 
 1522         CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
 1523 
 1524         /*
 1525          * Wait until all 'active_cpus' have suspended themselves.
 1526          *
 1527          * Since a VM may be suspended at any time including when one or
 1528          * more vcpus are doing a rendezvous we need to call the rendezvous
 1529          * handler while we are waiting to prevent a deadlock.
 1530          */
 1531         vcpu_lock(vcpu);
 1532         while (error == 0) {
 1533                 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
 1534                         VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
 1535                         break;
 1536                 }
 1537 
 1538                 if (vm->rendezvous_func == NULL) {
 1539                         VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
 1540                         vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
 1541                         msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
 1542                         vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
 1543                         if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
 1544                                 vcpu_unlock(vcpu);
 1545                                 error = thread_check_susp(td, false);
 1546                                 vcpu_lock(vcpu);
 1547                         }
 1548                 } else {
 1549                         VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
 1550                         vcpu_unlock(vcpu);
 1551                         error = vm_handle_rendezvous(vm, vcpuid);
 1552                         vcpu_lock(vcpu);
 1553                 }
 1554         }
 1555         vcpu_unlock(vcpu);
 1556 
 1557         /*
 1558          * Wakeup the other sleeping vcpus and return to userspace.
 1559          */
 1560         for (i = 0; i < vm->maxcpus; i++) {
 1561                 if (CPU_ISSET(i, &vm->suspended_cpus)) {
 1562                         vcpu_notify_event(vm, i, false);
 1563                 }
 1564         }
 1565 
 1566         *retu = true;
 1567         return (error);
 1568 }
 1569 
 1570 static int
 1571 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
 1572 {
 1573         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 1574 
 1575         vcpu_lock(vcpu);
 1576         KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
 1577         vcpu->reqidle = 0;
 1578         vcpu_unlock(vcpu);
 1579         *retu = true;
 1580         return (0);
 1581 }
 1582 
 1583 int
 1584 vm_suspend(struct vm *vm, enum vm_suspend_how how)
 1585 {
 1586         int i;
 1587 
 1588         if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
 1589                 return (EINVAL);
 1590 
 1591         if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
 1592                 VM_CTR2(vm, "virtual machine already suspended %d/%d",
 1593                     vm->suspend, how);
 1594                 return (EALREADY);
 1595         }
 1596 
 1597         VM_CTR1(vm, "virtual machine successfully suspended %d", how);
 1598 
 1599         /*
 1600          * Notify all active vcpus that they are now suspended.
 1601          */
 1602         for (i = 0; i < vm->maxcpus; i++) {
 1603                 if (CPU_ISSET(i, &vm->active_cpus))
 1604                         vcpu_notify_event(vm, i, false);
 1605         }
 1606 
 1607         return (0);
 1608 }
 1609 
 1610 void
 1611 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
 1612 {
 1613         struct vm_exit *vmexit;
 1614 
 1615         KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
 1616             ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
 1617 
 1618         vmexit = vm_exitinfo(vm, vcpuid);
 1619         vmexit->rip = rip;
 1620         vmexit->inst_length = 0;
 1621         vmexit->exitcode = VM_EXITCODE_SUSPENDED;
 1622         vmexit->u.suspended.how = vm->suspend;
 1623 }
 1624 
 1625 void
 1626 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip)
 1627 {
 1628         struct vm_exit *vmexit;
 1629 
 1630         vmexit = vm_exitinfo(vm, vcpuid);
 1631         vmexit->rip = rip;
 1632         vmexit->inst_length = 0;
 1633         vmexit->exitcode = VM_EXITCODE_DEBUG;
 1634 }
 1635 
 1636 void
 1637 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
 1638 {
 1639         struct vm_exit *vmexit;
 1640 
 1641         KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
 1642 
 1643         vmexit = vm_exitinfo(vm, vcpuid);
 1644         vmexit->rip = rip;
 1645         vmexit->inst_length = 0;
 1646         vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
 1647         vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
 1648 }
 1649 
 1650 void
 1651 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
 1652 {
 1653         struct vm_exit *vmexit;
 1654 
 1655         vmexit = vm_exitinfo(vm, vcpuid);
 1656         vmexit->rip = rip;
 1657         vmexit->inst_length = 0;
 1658         vmexit->exitcode = VM_EXITCODE_REQIDLE;
 1659         vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
 1660 }
 1661 
 1662 void
 1663 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
 1664 {
 1665         struct vm_exit *vmexit;
 1666 
 1667         vmexit = vm_exitinfo(vm, vcpuid);
 1668         vmexit->rip = rip;
 1669         vmexit->inst_length = 0;
 1670         vmexit->exitcode = VM_EXITCODE_BOGUS;
 1671         vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
 1672 }
 1673 
 1674 int
 1675 vm_run(struct vm *vm, struct vm_run *vmrun)
 1676 {
 1677         struct vm_eventinfo evinfo;
 1678         int error, vcpuid;
 1679         struct vcpu *vcpu;
 1680         struct pcb *pcb;
 1681         uint64_t tscval;
 1682         struct vm_exit *vme;
 1683         bool retu, intr_disabled;
 1684         pmap_t pmap;
 1685 
 1686         vcpuid = vmrun->cpuid;
 1687 
 1688         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1689                 return (EINVAL);
 1690 
 1691         if (!CPU_ISSET(vcpuid, &vm->active_cpus))
 1692                 return (EINVAL);
 1693 
 1694         if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
 1695                 return (EINVAL);
 1696 
 1697         pmap = vmspace_pmap(vm->vmspace);
 1698         vcpu = &vm->vcpu[vcpuid];
 1699         vme = &vcpu->exitinfo;
 1700         evinfo.rptr = &vm->rendezvous_func;
 1701         evinfo.sptr = &vm->suspend;
 1702         evinfo.iptr = &vcpu->reqidle;
 1703 restart:
 1704         critical_enter();
 1705 
 1706         KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
 1707             ("vm_run: absurd pm_active"));
 1708 
 1709         tscval = rdtsc();
 1710 
 1711         pcb = PCPU_GET(curpcb);
 1712         set_pcb_flags(pcb, PCB_FULL_IRET);
 1713 
 1714         restore_guest_fpustate(vcpu);
 1715 
 1716         vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
 1717         error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
 1718         vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
 1719 
 1720         save_guest_fpustate(vcpu);
 1721 
 1722         vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
 1723 
 1724         critical_exit();
 1725 
 1726         if (error == 0) {
 1727                 retu = false;
 1728                 vcpu->nextrip = vme->rip + vme->inst_length;
 1729                 switch (vme->exitcode) {
 1730                 case VM_EXITCODE_REQIDLE:
 1731                         error = vm_handle_reqidle(vm, vcpuid, &retu);
 1732                         break;
 1733                 case VM_EXITCODE_SUSPENDED:
 1734                         error = vm_handle_suspend(vm, vcpuid, &retu);
 1735                         break;
 1736                 case VM_EXITCODE_IOAPIC_EOI:
 1737                         vioapic_process_eoi(vm, vcpuid,
 1738                             vme->u.ioapic_eoi.vector);
 1739                         break;
 1740                 case VM_EXITCODE_RENDEZVOUS:
 1741                         error = vm_handle_rendezvous(vm, vcpuid);
 1742                         break;
 1743                 case VM_EXITCODE_HLT:
 1744                         intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
 1745                         error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
 1746                         break;
 1747                 case VM_EXITCODE_PAGING:
 1748                         error = vm_handle_paging(vm, vcpuid, &retu);
 1749                         break;
 1750                 case VM_EXITCODE_INST_EMUL:
 1751                         error = vm_handle_inst_emul(vm, vcpuid, &retu);
 1752                         break;
 1753                 case VM_EXITCODE_INOUT:
 1754                 case VM_EXITCODE_INOUT_STR:
 1755                         error = vm_handle_inout(vm, vcpuid, vme, &retu);
 1756                         break;
 1757                 case VM_EXITCODE_MONITOR:
 1758                 case VM_EXITCODE_MWAIT:
 1759                 case VM_EXITCODE_VMINSN:
 1760                         vm_inject_ud(vm, vcpuid);
 1761                         break;
 1762                 default:
 1763                         retu = true;    /* handled in userland */
 1764                         break;
 1765                 }
 1766         }
 1767 
 1768         if (error == 0 && retu == false)
 1769                 goto restart;
 1770 
 1771         VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
 1772 
 1773         /* copy the exit information */
 1774         bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
 1775         return (error);
 1776 }
 1777 
 1778 int
 1779 vm_restart_instruction(void *arg, int vcpuid)
 1780 {
 1781         struct vm *vm;
 1782         struct vcpu *vcpu;
 1783         enum vcpu_state state;
 1784         uint64_t rip;
 1785         int error;
 1786 
 1787         vm = arg;
 1788         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1789                 return (EINVAL);
 1790 
 1791         vcpu = &vm->vcpu[vcpuid];
 1792         state = vcpu_get_state(vm, vcpuid, NULL);
 1793         if (state == VCPU_RUNNING) {
 1794                 /*
 1795                  * When a vcpu is "running" the next instruction is determined
 1796                  * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
 1797                  * Thus setting 'inst_length' to zero will cause the current
 1798                  * instruction to be restarted.
 1799                  */
 1800                 vcpu->exitinfo.inst_length = 0;
 1801                 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
 1802                     "setting inst_length to zero", vcpu->exitinfo.rip);
 1803         } else if (state == VCPU_FROZEN) {
 1804                 /*
 1805                  * When a vcpu is "frozen" it is outside the critical section
 1806                  * around VMRUN() and 'nextrip' points to the next instruction.
 1807                  * Thus instruction restart is achieved by setting 'nextrip'
 1808                  * to the vcpu's %rip.
 1809                  */
 1810                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
 1811                 KASSERT(!error, ("%s: error %d getting rip", __func__, error));
 1812                 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
 1813                     "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
 1814                 vcpu->nextrip = rip;
 1815         } else {
 1816                 panic("%s: invalid state %d", __func__, state);
 1817         }
 1818         return (0);
 1819 }
 1820 
 1821 int
 1822 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
 1823 {
 1824         struct vcpu *vcpu;
 1825         int type, vector;
 1826 
 1827         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 1828                 return (EINVAL);
 1829 
 1830         vcpu = &vm->vcpu[vcpuid];
 1831 
 1832         if (info & VM_INTINFO_VALID) {
 1833                 type = info & VM_INTINFO_TYPE;
 1834                 vector = info & 0xff;
 1835                 if (type == VM_INTINFO_NMI && vector != IDT_NMI)
 1836                         return (EINVAL);
 1837                 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
 1838                         return (EINVAL);
 1839                 if (info & VM_INTINFO_RSVD)
 1840                         return (EINVAL);
 1841         } else {
 1842                 info = 0;
 1843         }
 1844         VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
 1845         vcpu->exitintinfo = info;
 1846         return (0);
 1847 }
 1848 
 1849 enum exc_class {
 1850         EXC_BENIGN,
 1851         EXC_CONTRIBUTORY,
 1852         EXC_PAGEFAULT
 1853 };
 1854 
 1855 #define IDT_VE  20      /* Virtualization Exception (Intel specific) */
 1856 
 1857 static enum exc_class
 1858 exception_class(uint64_t info)
 1859 {
 1860         int type, vector;
 1861 
 1862         KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
 1863         type = info & VM_INTINFO_TYPE;
 1864         vector = info & 0xff;
 1865 
 1866         /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
 1867         switch (type) {
 1868         case VM_INTINFO_HWINTR:
 1869         case VM_INTINFO_SWINTR:
 1870         case VM_INTINFO_NMI:
 1871                 return (EXC_BENIGN);
 1872         default:
 1873                 /*
 1874                  * Hardware exception.
 1875                  *
 1876                  * SVM and VT-x use identical type values to represent NMI,
 1877                  * hardware interrupt and software interrupt.
 1878                  *
 1879                  * SVM uses type '3' for all exceptions. VT-x uses type '3'
 1880                  * for exceptions except #BP and #OF. #BP and #OF use a type
 1881                  * value of '5' or '6'. Therefore we don't check for explicit
 1882                  * values of 'type' to classify 'intinfo' into a hardware
 1883                  * exception.
 1884                  */
 1885                 break;
 1886         }
 1887 
 1888         switch (vector) {
 1889         case IDT_PF:
 1890         case IDT_VE:
 1891                 return (EXC_PAGEFAULT);
 1892         case IDT_DE:
 1893         case IDT_TS:
 1894         case IDT_NP:
 1895         case IDT_SS:
 1896         case IDT_GP:
 1897                 return (EXC_CONTRIBUTORY);
 1898         default:
 1899                 return (EXC_BENIGN);
 1900         }
 1901 }
 1902 
 1903 static int
 1904 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
 1905     uint64_t *retinfo)
 1906 {
 1907         enum exc_class exc1, exc2;
 1908         int type1, vector1;
 1909 
 1910         KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
 1911         KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
 1912 
 1913         /*
 1914          * If an exception occurs while attempting to call the double-fault
 1915          * handler the processor enters shutdown mode (aka triple fault).
 1916          */
 1917         type1 = info1 & VM_INTINFO_TYPE;
 1918         vector1 = info1 & 0xff;
 1919         if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
 1920                 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
 1921                     info1, info2);
 1922                 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
 1923                 *retinfo = 0;
 1924                 return (0);
 1925         }
 1926 
 1927         /*
 1928          * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
 1929          */
 1930         exc1 = exception_class(info1);
 1931         exc2 = exception_class(info2);
 1932         if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
 1933             (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
 1934                 /* Convert nested fault into a double fault. */
 1935                 *retinfo = IDT_DF;
 1936                 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1937                 *retinfo |= VM_INTINFO_DEL_ERRCODE;
 1938         } else {
 1939                 /* Handle exceptions serially */
 1940                 *retinfo = info2;
 1941         }
 1942         return (1);
 1943 }
 1944 
 1945 static uint64_t
 1946 vcpu_exception_intinfo(struct vcpu *vcpu)
 1947 {
 1948         uint64_t info = 0;
 1949 
 1950         if (vcpu->exception_pending) {
 1951                 info = vcpu->exc_vector & 0xff;
 1952                 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
 1953                 if (vcpu->exc_errcode_valid) {
 1954                         info |= VM_INTINFO_DEL_ERRCODE;
 1955                         info |= (uint64_t)vcpu->exc_errcode << 32;
 1956                 }
 1957         }
 1958         return (info);
 1959 }
 1960 
 1961 int
 1962 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
 1963 {
 1964         struct vcpu *vcpu;
 1965         uint64_t info1, info2;
 1966         int valid;
 1967 
 1968         KASSERT(vcpuid >= 0 &&
 1969             vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid));
 1970 
 1971         vcpu = &vm->vcpu[vcpuid];
 1972 
 1973         info1 = vcpu->exitintinfo;
 1974         vcpu->exitintinfo = 0;
 1975 
 1976         info2 = 0;
 1977         if (vcpu->exception_pending) {
 1978                 info2 = vcpu_exception_intinfo(vcpu);
 1979                 vcpu->exception_pending = 0;
 1980                 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
 1981                     vcpu->exc_vector, info2);
 1982         }
 1983 
 1984         if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
 1985                 valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
 1986         } else if (info1 & VM_INTINFO_VALID) {
 1987                 *retinfo = info1;
 1988                 valid = 1;
 1989         } else if (info2 & VM_INTINFO_VALID) {
 1990                 *retinfo = info2;
 1991                 valid = 1;
 1992         } else {
 1993                 valid = 0;
 1994         }
 1995 
 1996         if (valid) {
 1997                 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
 1998                     "retinfo(%#lx)", __func__, info1, info2, *retinfo);
 1999         }
 2000 
 2001         return (valid);
 2002 }
 2003 
 2004 int
 2005 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
 2006 {
 2007         struct vcpu *vcpu;
 2008 
 2009         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2010                 return (EINVAL);
 2011 
 2012         vcpu = &vm->vcpu[vcpuid];
 2013         *info1 = vcpu->exitintinfo;
 2014         *info2 = vcpu_exception_intinfo(vcpu);
 2015         return (0);
 2016 }
 2017 
 2018 int
 2019 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
 2020     uint32_t errcode, int restart_instruction)
 2021 {
 2022         struct vcpu *vcpu;
 2023         uint64_t regval;
 2024         int error;
 2025 
 2026         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2027                 return (EINVAL);
 2028 
 2029         if (vector < 0 || vector >= 32)
 2030                 return (EINVAL);
 2031 
 2032         /*
 2033          * A double fault exception should never be injected directly into
 2034          * the guest. It is a derived exception that results from specific
 2035          * combinations of nested faults.
 2036          */
 2037         if (vector == IDT_DF)
 2038                 return (EINVAL);
 2039 
 2040         vcpu = &vm->vcpu[vcpuid];
 2041 
 2042         if (vcpu->exception_pending) {
 2043                 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
 2044                     "pending exception %d", vector, vcpu->exc_vector);
 2045                 return (EBUSY);
 2046         }
 2047 
 2048         if (errcode_valid) {
 2049                 /*
 2050                  * Exceptions don't deliver an error code in real mode.
 2051                  */
 2052                 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
 2053                 KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
 2054                 if (!(regval & CR0_PE))
 2055                         errcode_valid = 0;
 2056         }
 2057 
 2058         /*
 2059          * From section 26.6.1 "Interruptibility State" in Intel SDM:
 2060          *
 2061          * Event blocking by "STI" or "MOV SS" is cleared after guest executes
 2062          * one instruction or incurs an exception.
 2063          */
 2064         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
 2065         KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
 2066             __func__, error));
 2067 
 2068         if (restart_instruction)
 2069                 vm_restart_instruction(vm, vcpuid);
 2070 
 2071         vcpu->exception_pending = 1;
 2072         vcpu->exc_vector = vector;
 2073         vcpu->exc_errcode = errcode;
 2074         vcpu->exc_errcode_valid = errcode_valid;
 2075         VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
 2076         return (0);
 2077 }
 2078 
 2079 void
 2080 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
 2081     int errcode)
 2082 {
 2083         struct vm *vm;
 2084         int error, restart_instruction;
 2085 
 2086         vm = vmarg;
 2087         restart_instruction = 1;
 2088 
 2089         error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
 2090             errcode, restart_instruction);
 2091         KASSERT(error == 0, ("vm_inject_exception error %d", error));
 2092 }
 2093 
 2094 void
 2095 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
 2096 {
 2097         struct vm *vm;
 2098         int error;
 2099 
 2100         vm = vmarg;
 2101         VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
 2102             error_code, cr2);
 2103 
 2104         error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
 2105         KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
 2106 
 2107         vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
 2108 }
 2109 
 2110 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
 2111 
 2112 int
 2113 vm_inject_nmi(struct vm *vm, int vcpuid)
 2114 {
 2115         struct vcpu *vcpu;
 2116 
 2117         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2118                 return (EINVAL);
 2119 
 2120         vcpu = &vm->vcpu[vcpuid];
 2121 
 2122         vcpu->nmi_pending = 1;
 2123         vcpu_notify_event(vm, vcpuid, false);
 2124         return (0);
 2125 }
 2126 
 2127 int
 2128 vm_nmi_pending(struct vm *vm, int vcpuid)
 2129 {
 2130         struct vcpu *vcpu;
 2131 
 2132         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2133                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2134 
 2135         vcpu = &vm->vcpu[vcpuid];
 2136 
 2137         return (vcpu->nmi_pending);
 2138 }
 2139 
 2140 void
 2141 vm_nmi_clear(struct vm *vm, int vcpuid)
 2142 {
 2143         struct vcpu *vcpu;
 2144 
 2145         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2146                 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
 2147 
 2148         vcpu = &vm->vcpu[vcpuid];
 2149 
 2150         if (vcpu->nmi_pending == 0)
 2151                 panic("vm_nmi_clear: inconsistent nmi_pending state");
 2152 
 2153         vcpu->nmi_pending = 0;
 2154         vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
 2155 }
 2156 
 2157 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
 2158 
 2159 int
 2160 vm_inject_extint(struct vm *vm, int vcpuid)
 2161 {
 2162         struct vcpu *vcpu;
 2163 
 2164         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2165                 return (EINVAL);
 2166 
 2167         vcpu = &vm->vcpu[vcpuid];
 2168 
 2169         vcpu->extint_pending = 1;
 2170         vcpu_notify_event(vm, vcpuid, false);
 2171         return (0);
 2172 }
 2173 
 2174 int
 2175 vm_extint_pending(struct vm *vm, int vcpuid)
 2176 {
 2177         struct vcpu *vcpu;
 2178 
 2179         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2180                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2181 
 2182         vcpu = &vm->vcpu[vcpuid];
 2183 
 2184         return (vcpu->extint_pending);
 2185 }
 2186 
 2187 void
 2188 vm_extint_clear(struct vm *vm, int vcpuid)
 2189 {
 2190         struct vcpu *vcpu;
 2191 
 2192         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2193                 panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
 2194 
 2195         vcpu = &vm->vcpu[vcpuid];
 2196 
 2197         if (vcpu->extint_pending == 0)
 2198                 panic("vm_extint_clear: inconsistent extint_pending state");
 2199 
 2200         vcpu->extint_pending = 0;
 2201         vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
 2202 }
 2203 
 2204 int
 2205 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
 2206 {
 2207         if (vcpu < 0 || vcpu >= vm->maxcpus)
 2208                 return (EINVAL);
 2209 
 2210         if (type < 0 || type >= VM_CAP_MAX)
 2211                 return (EINVAL);
 2212 
 2213         return (VMGETCAP(vm->cookie, vcpu, type, retval));
 2214 }
 2215 
 2216 int
 2217 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
 2218 {
 2219         if (vcpu < 0 || vcpu >= vm->maxcpus)
 2220                 return (EINVAL);
 2221 
 2222         if (type < 0 || type >= VM_CAP_MAX)
 2223                 return (EINVAL);
 2224 
 2225         return (VMSETCAP(vm->cookie, vcpu, type, val));
 2226 }
 2227 
 2228 struct vlapic *
 2229 vm_lapic(struct vm *vm, int cpu)
 2230 {
 2231         return (vm->vcpu[cpu].vlapic);
 2232 }
 2233 
 2234 struct vioapic *
 2235 vm_ioapic(struct vm *vm)
 2236 {
 2237 
 2238         return (vm->vioapic);
 2239 }
 2240 
 2241 struct vhpet *
 2242 vm_hpet(struct vm *vm)
 2243 {
 2244 
 2245         return (vm->vhpet);
 2246 }
 2247 
 2248 bool
 2249 vmm_is_pptdev(int bus, int slot, int func)
 2250 {
 2251         int b, f, i, n, s;
 2252         char *val, *cp, *cp2;
 2253         bool found;
 2254 
 2255         /*
 2256          * XXX
 2257          * The length of an environment variable is limited to 128 bytes which
 2258          * puts an upper limit on the number of passthru devices that may be
 2259          * specified using a single environment variable.
 2260          *
 2261          * Work around this by scanning multiple environment variable
 2262          * names instead of a single one - yuck!
 2263          */
 2264         const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
 2265 
 2266         /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
 2267         found = false;
 2268         for (i = 0; names[i] != NULL && !found; i++) {
 2269                 cp = val = kern_getenv(names[i]);
 2270                 while (cp != NULL && *cp != '\0') {
 2271                         if ((cp2 = strchr(cp, ' ')) != NULL)
 2272                                 *cp2 = '\0';
 2273 
 2274                         n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
 2275                         if (n == 3 && bus == b && slot == s && func == f) {
 2276                                 found = true;
 2277                                 break;
 2278                         }
 2279                 
 2280                         if (cp2 != NULL)
 2281                                 *cp2++ = ' ';
 2282 
 2283                         cp = cp2;
 2284                 }
 2285                 freeenv(val);
 2286         }
 2287         return (found);
 2288 }
 2289 
 2290 void *
 2291 vm_iommu_domain(struct vm *vm)
 2292 {
 2293 
 2294         return (vm->iommu);
 2295 }
 2296 
 2297 int
 2298 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
 2299     bool from_idle)
 2300 {
 2301         int error;
 2302         struct vcpu *vcpu;
 2303 
 2304         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2305                 panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
 2306 
 2307         vcpu = &vm->vcpu[vcpuid];
 2308 
 2309         vcpu_lock(vcpu);
 2310         error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
 2311         vcpu_unlock(vcpu);
 2312 
 2313         return (error);
 2314 }
 2315 
 2316 enum vcpu_state
 2317 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
 2318 {
 2319         struct vcpu *vcpu;
 2320         enum vcpu_state state;
 2321 
 2322         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2323                 panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
 2324 
 2325         vcpu = &vm->vcpu[vcpuid];
 2326 
 2327         vcpu_lock(vcpu);
 2328         state = vcpu->state;
 2329         if (hostcpu != NULL)
 2330                 *hostcpu = vcpu->hostcpu;
 2331         vcpu_unlock(vcpu);
 2332 
 2333         return (state);
 2334 }
 2335 
 2336 int
 2337 vm_activate_cpu(struct vm *vm, int vcpuid)
 2338 {
 2339 
 2340         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2341                 return (EINVAL);
 2342 
 2343         if (CPU_ISSET(vcpuid, &vm->active_cpus))
 2344                 return (EBUSY);
 2345 
 2346         VCPU_CTR0(vm, vcpuid, "activated");
 2347         CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
 2348         return (0);
 2349 }
 2350 
 2351 int
 2352 vm_suspend_cpu(struct vm *vm, int vcpuid)
 2353 {
 2354         int i;
 2355 
 2356         if (vcpuid < -1 || vcpuid >= vm->maxcpus)
 2357                 return (EINVAL);
 2358 
 2359         if (vcpuid == -1) {
 2360                 vm->debug_cpus = vm->active_cpus;
 2361                 for (i = 0; i < vm->maxcpus; i++) {
 2362                         if (CPU_ISSET(i, &vm->active_cpus))
 2363                                 vcpu_notify_event(vm, i, false);
 2364                 }
 2365         } else {
 2366                 if (!CPU_ISSET(vcpuid, &vm->active_cpus))
 2367                         return (EINVAL);
 2368 
 2369                 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus);
 2370                 vcpu_notify_event(vm, vcpuid, false);
 2371         }
 2372         return (0);
 2373 }
 2374 
 2375 int
 2376 vm_resume_cpu(struct vm *vm, int vcpuid)
 2377 {
 2378 
 2379         if (vcpuid < -1 || vcpuid >= vm->maxcpus)
 2380                 return (EINVAL);
 2381 
 2382         if (vcpuid == -1) {
 2383                 CPU_ZERO(&vm->debug_cpus);
 2384         } else {
 2385                 if (!CPU_ISSET(vcpuid, &vm->debug_cpus))
 2386                         return (EINVAL);
 2387 
 2388                 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus);
 2389         }
 2390         return (0);
 2391 }
 2392 
 2393 int
 2394 vcpu_debugged(struct vm *vm, int vcpuid)
 2395 {
 2396 
 2397         return (CPU_ISSET(vcpuid, &vm->debug_cpus));
 2398 }
 2399 
 2400 cpuset_t
 2401 vm_active_cpus(struct vm *vm)
 2402 {
 2403 
 2404         return (vm->active_cpus);
 2405 }
 2406 
 2407 cpuset_t
 2408 vm_debug_cpus(struct vm *vm)
 2409 {
 2410 
 2411         return (vm->debug_cpus);
 2412 }
 2413 
 2414 cpuset_t
 2415 vm_suspended_cpus(struct vm *vm)
 2416 {
 2417 
 2418         return (vm->suspended_cpus);
 2419 }
 2420 
 2421 void *
 2422 vcpu_stats(struct vm *vm, int vcpuid)
 2423 {
 2424 
 2425         return (vm->vcpu[vcpuid].stats);
 2426 }
 2427 
 2428 int
 2429 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
 2430 {
 2431         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2432                 return (EINVAL);
 2433 
 2434         *state = vm->vcpu[vcpuid].x2apic_state;
 2435 
 2436         return (0);
 2437 }
 2438 
 2439 int
 2440 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
 2441 {
 2442         if (vcpuid < 0 || vcpuid >= vm->maxcpus)
 2443                 return (EINVAL);
 2444 
 2445         if (state >= X2APIC_STATE_LAST)
 2446                 return (EINVAL);
 2447 
 2448         vm->vcpu[vcpuid].x2apic_state = state;
 2449 
 2450         vlapic_set_x2apic_state(vm, vcpuid, state);
 2451 
 2452         return (0);
 2453 }
 2454 
 2455 /*
 2456  * This function is called to ensure that a vcpu "sees" a pending event
 2457  * as soon as possible:
 2458  * - If the vcpu thread is sleeping then it is woken up.
 2459  * - If the vcpu is running on a different host_cpu then an IPI will be directed
 2460  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
 2461  */
 2462 static void
 2463 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
 2464 {
 2465         int hostcpu;
 2466 
 2467         hostcpu = vcpu->hostcpu;
 2468         if (vcpu->state == VCPU_RUNNING) {
 2469                 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
 2470                 if (hostcpu != curcpu) {
 2471                         if (lapic_intr) {
 2472                                 vlapic_post_intr(vcpu->vlapic, hostcpu,
 2473                                     vmm_ipinum);
 2474                         } else {
 2475                                 ipi_cpu(hostcpu, vmm_ipinum);
 2476                         }
 2477                 } else {
 2478                         /*
 2479                          * If the 'vcpu' is running on 'curcpu' then it must
 2480                          * be sending a notification to itself (e.g. SELF_IPI).
 2481                          * The pending event will be picked up when the vcpu
 2482                          * transitions back to guest context.
 2483                          */
 2484                 }
 2485         } else {
 2486                 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
 2487                     "with hostcpu %d", vcpu->state, hostcpu));
 2488                 if (vcpu->state == VCPU_SLEEPING)
 2489                         wakeup_one(vcpu);
 2490         }
 2491 }
 2492 
 2493 void
 2494 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
 2495 {
 2496         struct vcpu *vcpu = &vm->vcpu[vcpuid];
 2497 
 2498         vcpu_lock(vcpu);
 2499         vcpu_notify_event_locked(vcpu, lapic_intr);
 2500         vcpu_unlock(vcpu);
 2501 }
 2502 
 2503 struct vmspace *
 2504 vm_get_vmspace(struct vm *vm)
 2505 {
 2506 
 2507         return (vm->vmspace);
 2508 }
 2509 
 2510 int
 2511 vm_apicid2vcpuid(struct vm *vm, int apicid)
 2512 {
 2513         /*
 2514          * XXX apic id is assumed to be numerically identical to vcpu id
 2515          */
 2516         return (apicid);
 2517 }
 2518 
 2519 int
 2520 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
 2521     vm_rendezvous_func_t func, void *arg)
 2522 {
 2523         int error, i;
 2524 
 2525         /*
 2526          * Enforce that this function is called without any locks
 2527          */
 2528         WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
 2529         KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus),
 2530             ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
 2531 
 2532 restart:
 2533         mtx_lock(&vm->rendezvous_mtx);
 2534         if (vm->rendezvous_func != NULL) {
 2535                 /*
 2536                  * If a rendezvous is already in progress then we need to
 2537                  * call the rendezvous handler in case this 'vcpuid' is one
 2538                  * of the targets of the rendezvous.
 2539                  */
 2540                 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
 2541                 mtx_unlock(&vm->rendezvous_mtx);
 2542                 error = vm_handle_rendezvous(vm, vcpuid);
 2543                 if (error != 0)
 2544                         return (error);
 2545                 goto restart;
 2546         }
 2547         KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
 2548             "rendezvous is still in progress"));
 2549 
 2550         RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
 2551         vm->rendezvous_req_cpus = dest;
 2552         CPU_ZERO(&vm->rendezvous_done_cpus);
 2553         vm->rendezvous_arg = arg;
 2554         vm->rendezvous_func = func;
 2555         mtx_unlock(&vm->rendezvous_mtx);
 2556 
 2557         /*
 2558          * Wake up any sleeping vcpus and trigger a VM-exit in any running
 2559          * vcpus so they handle the rendezvous as soon as possible.
 2560          */
 2561         for (i = 0; i < vm->maxcpus; i++) {
 2562                 if (CPU_ISSET(i, &dest))
 2563                         vcpu_notify_event(vm, i, false);
 2564         }
 2565 
 2566         return (vm_handle_rendezvous(vm, vcpuid));
 2567 }
 2568 
 2569 struct vatpic *
 2570 vm_atpic(struct vm *vm)
 2571 {
 2572         return (vm->vatpic);
 2573 }
 2574 
 2575 struct vatpit *
 2576 vm_atpit(struct vm *vm)
 2577 {
 2578         return (vm->vatpit);
 2579 }
 2580 
 2581 struct vpmtmr *
 2582 vm_pmtmr(struct vm *vm)
 2583 {
 2584 
 2585         return (vm->vpmtmr);
 2586 }
 2587 
 2588 struct vrtc *
 2589 vm_rtc(struct vm *vm)
 2590 {
 2591 
 2592         return (vm->vrtc);
 2593 }
 2594 
 2595 enum vm_reg_name
 2596 vm_segment_name(int seg)
 2597 {
 2598         static enum vm_reg_name seg_names[] = {
 2599                 VM_REG_GUEST_ES,
 2600                 VM_REG_GUEST_CS,
 2601                 VM_REG_GUEST_SS,
 2602                 VM_REG_GUEST_DS,
 2603                 VM_REG_GUEST_FS,
 2604                 VM_REG_GUEST_GS
 2605         };
 2606 
 2607         KASSERT(seg >= 0 && seg < nitems(seg_names),
 2608             ("%s: invalid segment encoding %d", __func__, seg));
 2609         return (seg_names[seg]);
 2610 }
 2611 
 2612 void
 2613 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
 2614     int num_copyinfo)
 2615 {
 2616         int idx;
 2617 
 2618         for (idx = 0; idx < num_copyinfo; idx++) {
 2619                 if (copyinfo[idx].cookie != NULL)
 2620                         vm_gpa_release(copyinfo[idx].cookie);
 2621         }
 2622         bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
 2623 }
 2624 
 2625 int
 2626 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
 2627     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
 2628     int num_copyinfo, int *fault)
 2629 {
 2630         int error, idx, nused;
 2631         size_t n, off, remaining;
 2632         void *hva, *cookie;
 2633         uint64_t gpa;
 2634 
 2635         bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
 2636 
 2637         nused = 0;
 2638         remaining = len;
 2639         while (remaining > 0) {
 2640                 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
 2641                 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
 2642                 if (error || *fault)
 2643                         return (error);
 2644                 off = gpa & PAGE_MASK;
 2645                 n = min(remaining, PAGE_SIZE - off);
 2646                 copyinfo[nused].gpa = gpa;
 2647                 copyinfo[nused].len = n;
 2648                 remaining -= n;
 2649                 gla += n;
 2650                 nused++;
 2651         }
 2652 
 2653         for (idx = 0; idx < nused; idx++) {
 2654                 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
 2655                     copyinfo[idx].len, prot, &cookie);
 2656                 if (hva == NULL)
 2657                         break;
 2658                 copyinfo[idx].hva = hva;
 2659                 copyinfo[idx].cookie = cookie;
 2660         }
 2661 
 2662         if (idx != nused) {
 2663                 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
 2664                 return (EFAULT);
 2665         } else {
 2666                 *fault = 0;
 2667                 return (0);
 2668         }
 2669 }
 2670 
 2671 void
 2672 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
 2673     size_t len)
 2674 {
 2675         char *dst;
 2676         int idx;
 2677         
 2678         dst = kaddr;
 2679         idx = 0;
 2680         while (len > 0) {
 2681                 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
 2682                 len -= copyinfo[idx].len;
 2683                 dst += copyinfo[idx].len;
 2684                 idx++;
 2685         }
 2686 }
 2687 
 2688 void
 2689 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
 2690     struct vm_copyinfo *copyinfo, size_t len)
 2691 {
 2692         const char *src;
 2693         int idx;
 2694 
 2695         src = kaddr;
 2696         idx = 0;
 2697         while (len > 0) {
 2698                 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
 2699                 len -= copyinfo[idx].len;
 2700                 src += copyinfo[idx].len;
 2701                 idx++;
 2702         }
 2703 }
 2704 
 2705 /*
 2706  * Return the amount of in-use and wired memory for the VM. Since
 2707  * these are global stats, only return the values with for vCPU 0
 2708  */
 2709 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
 2710 VMM_STAT_DECLARE(VMM_MEM_WIRED);
 2711 
 2712 static void
 2713 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2714 {
 2715 
 2716         if (vcpu == 0) {
 2717                 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
 2718                     PAGE_SIZE * vmspace_resident_count(vm->vmspace));
 2719         }       
 2720 }
 2721 
 2722 static void
 2723 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
 2724 {
 2725 
 2726         if (vcpu == 0) {
 2727                 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
 2728                     PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
 2729         }       
 2730 }
 2731 
 2732 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
 2733 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);

Cache object: 0cb5605a551a921025d4df9c9d48e222


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.