1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012 Sandvine, Inc.
5 * Copyright (c) 2012 NetApp, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #ifdef _KERNEL
36 #include <sys/param.h>
37 #include <sys/pcpu.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43
44 #include <machine/vmparam.h>
45 #include <machine/vmm.h>
46 #else /* !_KERNEL */
47 #include <sys/types.h>
48 #include <sys/errno.h>
49 #include <sys/_iovec.h>
50
51 #include <machine/vmm.h>
52
53 #include <err.h>
54 #include <assert.h>
55 #include <stdbool.h>
56 #include <stddef.h>
57 #include <stdio.h>
58 #include <string.h>
59 #include <strings.h>
60 #include <vmmapi.h>
61 #define __diagused
62 #define KASSERT(exp,msg) assert((exp))
63 #define panic(...) errx(4, __VA_ARGS__)
64 #endif /* _KERNEL */
65
66 #include <machine/vmm_instruction_emul.h>
67 #include <x86/psl.h>
68 #include <x86/specialreg.h>
69
70 /* struct vie_op.op_type */
71 enum {
72 VIE_OP_TYPE_NONE = 0,
73 VIE_OP_TYPE_MOV,
74 VIE_OP_TYPE_MOVSX,
75 VIE_OP_TYPE_MOVZX,
76 VIE_OP_TYPE_AND,
77 VIE_OP_TYPE_OR,
78 VIE_OP_TYPE_SUB,
79 VIE_OP_TYPE_TWO_BYTE,
80 VIE_OP_TYPE_PUSH,
81 VIE_OP_TYPE_CMP,
82 VIE_OP_TYPE_POP,
83 VIE_OP_TYPE_MOVS,
84 VIE_OP_TYPE_GROUP1,
85 VIE_OP_TYPE_STOS,
86 VIE_OP_TYPE_BITTEST,
87 VIE_OP_TYPE_TWOB_GRP15,
88 VIE_OP_TYPE_ADD,
89 VIE_OP_TYPE_TEST,
90 VIE_OP_TYPE_BEXTR,
91 VIE_OP_TYPE_LAST
92 };
93
94 /* struct vie_op.op_flags */
95 #define VIE_OP_F_IMM (1 << 0) /* 16/32-bit immediate operand */
96 #define VIE_OP_F_IMM8 (1 << 1) /* 8-bit immediate operand */
97 #define VIE_OP_F_MOFFSET (1 << 2) /* 16/32/64-bit immediate moffset */
98 #define VIE_OP_F_NO_MODRM (1 << 3)
99 #define VIE_OP_F_NO_GLA_VERIFICATION (1 << 4)
100
101 static const struct vie_op three_byte_opcodes_0f38[256] = {
102 [0xF7] = {
103 .op_byte = 0xF7,
104 .op_type = VIE_OP_TYPE_BEXTR,
105 },
106 };
107
108 static const struct vie_op two_byte_opcodes[256] = {
109 [0xAE] = {
110 .op_byte = 0xAE,
111 .op_type = VIE_OP_TYPE_TWOB_GRP15,
112 },
113 [0xB6] = {
114 .op_byte = 0xB6,
115 .op_type = VIE_OP_TYPE_MOVZX,
116 },
117 [0xB7] = {
118 .op_byte = 0xB7,
119 .op_type = VIE_OP_TYPE_MOVZX,
120 },
121 [0xBA] = {
122 .op_byte = 0xBA,
123 .op_type = VIE_OP_TYPE_BITTEST,
124 .op_flags = VIE_OP_F_IMM8,
125 },
126 [0xBE] = {
127 .op_byte = 0xBE,
128 .op_type = VIE_OP_TYPE_MOVSX,
129 },
130 };
131
132 static const struct vie_op one_byte_opcodes[256] = {
133 [0x03] = {
134 .op_byte = 0x03,
135 .op_type = VIE_OP_TYPE_ADD,
136 },
137 [0x0F] = {
138 .op_byte = 0x0F,
139 .op_type = VIE_OP_TYPE_TWO_BYTE
140 },
141 [0x0B] = {
142 .op_byte = 0x0B,
143 .op_type = VIE_OP_TYPE_OR,
144 },
145 [0x2B] = {
146 .op_byte = 0x2B,
147 .op_type = VIE_OP_TYPE_SUB,
148 },
149 [0x39] = {
150 .op_byte = 0x39,
151 .op_type = VIE_OP_TYPE_CMP,
152 },
153 [0x3B] = {
154 .op_byte = 0x3B,
155 .op_type = VIE_OP_TYPE_CMP,
156 },
157 [0x88] = {
158 .op_byte = 0x88,
159 .op_type = VIE_OP_TYPE_MOV,
160 },
161 [0x89] = {
162 .op_byte = 0x89,
163 .op_type = VIE_OP_TYPE_MOV,
164 },
165 [0x8A] = {
166 .op_byte = 0x8A,
167 .op_type = VIE_OP_TYPE_MOV,
168 },
169 [0x8B] = {
170 .op_byte = 0x8B,
171 .op_type = VIE_OP_TYPE_MOV,
172 },
173 [0xA1] = {
174 .op_byte = 0xA1,
175 .op_type = VIE_OP_TYPE_MOV,
176 .op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
177 },
178 [0xA3] = {
179 .op_byte = 0xA3,
180 .op_type = VIE_OP_TYPE_MOV,
181 .op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
182 },
183 [0xA4] = {
184 .op_byte = 0xA4,
185 .op_type = VIE_OP_TYPE_MOVS,
186 .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
187 },
188 [0xA5] = {
189 .op_byte = 0xA5,
190 .op_type = VIE_OP_TYPE_MOVS,
191 .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
192 },
193 [0xAA] = {
194 .op_byte = 0xAA,
195 .op_type = VIE_OP_TYPE_STOS,
196 .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
197 },
198 [0xAB] = {
199 .op_byte = 0xAB,
200 .op_type = VIE_OP_TYPE_STOS,
201 .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
202 },
203 [0xC6] = {
204 /* XXX Group 11 extended opcode - not just MOV */
205 .op_byte = 0xC6,
206 .op_type = VIE_OP_TYPE_MOV,
207 .op_flags = VIE_OP_F_IMM8,
208 },
209 [0xC7] = {
210 .op_byte = 0xC7,
211 .op_type = VIE_OP_TYPE_MOV,
212 .op_flags = VIE_OP_F_IMM,
213 },
214 [0x23] = {
215 .op_byte = 0x23,
216 .op_type = VIE_OP_TYPE_AND,
217 },
218 [0x80] = {
219 /* Group 1 extended opcode */
220 .op_byte = 0x80,
221 .op_type = VIE_OP_TYPE_GROUP1,
222 .op_flags = VIE_OP_F_IMM8,
223 },
224 [0x81] = {
225 /* Group 1 extended opcode */
226 .op_byte = 0x81,
227 .op_type = VIE_OP_TYPE_GROUP1,
228 .op_flags = VIE_OP_F_IMM,
229 },
230 [0x83] = {
231 /* Group 1 extended opcode */
232 .op_byte = 0x83,
233 .op_type = VIE_OP_TYPE_GROUP1,
234 .op_flags = VIE_OP_F_IMM8,
235 },
236 [0x8F] = {
237 /* XXX Group 1A extended opcode - not just POP */
238 .op_byte = 0x8F,
239 .op_type = VIE_OP_TYPE_POP,
240 },
241 [0xF7] = {
242 /* XXX Group 3 extended opcode - not just TEST */
243 .op_byte = 0xF7,
244 .op_type = VIE_OP_TYPE_TEST,
245 .op_flags = VIE_OP_F_IMM,
246 },
247 [0xFF] = {
248 /* XXX Group 5 extended opcode - not just PUSH */
249 .op_byte = 0xFF,
250 .op_type = VIE_OP_TYPE_PUSH,
251 }
252 };
253
254 /* struct vie.mod */
255 #define VIE_MOD_INDIRECT 0
256 #define VIE_MOD_INDIRECT_DISP8 1
257 #define VIE_MOD_INDIRECT_DISP32 2
258 #define VIE_MOD_DIRECT 3
259
260 /* struct vie.rm */
261 #define VIE_RM_SIB 4
262 #define VIE_RM_DISP32 5
263
264 #define GB (1024 * 1024 * 1024)
265
266 static enum vm_reg_name gpr_map[16] = {
267 VM_REG_GUEST_RAX,
268 VM_REG_GUEST_RCX,
269 VM_REG_GUEST_RDX,
270 VM_REG_GUEST_RBX,
271 VM_REG_GUEST_RSP,
272 VM_REG_GUEST_RBP,
273 VM_REG_GUEST_RSI,
274 VM_REG_GUEST_RDI,
275 VM_REG_GUEST_R8,
276 VM_REG_GUEST_R9,
277 VM_REG_GUEST_R10,
278 VM_REG_GUEST_R11,
279 VM_REG_GUEST_R12,
280 VM_REG_GUEST_R13,
281 VM_REG_GUEST_R14,
282 VM_REG_GUEST_R15
283 };
284
285 static uint64_t size2mask[] = {
286 [1] = 0xff,
287 [2] = 0xffff,
288 [4] = 0xffffffff,
289 [8] = 0xffffffffffffffff,
290 };
291
292 static int
293 vie_read_register(VCPU_DECL, enum vm_reg_name reg, uint64_t *rval)
294 {
295 int error;
296
297 error = vm_get_register(VCPU_ARGS, reg, rval);
298
299 return (error);
300 }
301
302 static void
303 vie_calc_bytereg(struct vie *vie, enum vm_reg_name *reg, int *lhbr)
304 {
305 *lhbr = 0;
306 *reg = gpr_map[vie->reg];
307
308 /*
309 * 64-bit mode imposes limitations on accessing legacy high byte
310 * registers (lhbr).
311 *
312 * The legacy high-byte registers cannot be addressed if the REX
313 * prefix is present. In this case the values 4, 5, 6 and 7 of the
314 * 'ModRM:reg' field address %spl, %bpl, %sil and %dil respectively.
315 *
316 * If the REX prefix is not present then the values 4, 5, 6 and 7
317 * of the 'ModRM:reg' field address the legacy high-byte registers,
318 * %ah, %ch, %dh and %bh respectively.
319 */
320 if (!vie->rex_present) {
321 if (vie->reg & 0x4) {
322 *lhbr = 1;
323 *reg = gpr_map[vie->reg & 0x3];
324 }
325 }
326 }
327
328 static int
329 vie_read_bytereg(VCPU_DECL, struct vie *vie, uint8_t *rval)
330 {
331 uint64_t val;
332 int error, lhbr;
333 enum vm_reg_name reg;
334
335 vie_calc_bytereg(vie, ®, &lhbr);
336 error = vm_get_register(VCPU_ARGS, reg, &val);
337
338 /*
339 * To obtain the value of a legacy high byte register shift the
340 * base register right by 8 bits (%ah = %rax >> 8).
341 */
342 if (lhbr)
343 *rval = val >> 8;
344 else
345 *rval = val;
346 return (error);
347 }
348
349 static int
350 vie_write_bytereg(VCPU_DECL, struct vie *vie, uint8_t byte)
351 {
352 uint64_t origval, val, mask;
353 int error, lhbr;
354 enum vm_reg_name reg;
355
356 vie_calc_bytereg(vie, ®, &lhbr);
357 error = vm_get_register(VCPU_ARGS, reg, &origval);
358 if (error == 0) {
359 val = byte;
360 mask = 0xff;
361 if (lhbr) {
362 /*
363 * Shift left by 8 to store 'byte' in a legacy high
364 * byte register.
365 */
366 val <<= 8;
367 mask <<= 8;
368 }
369 val |= origval & ~mask;
370 error = vm_set_register(VCPU_ARGS, reg, val);
371 }
372 return (error);
373 }
374
375 int
376 vie_update_register(VCPU_DECL, enum vm_reg_name reg,
377 uint64_t val, int size)
378 {
379 int error;
380 uint64_t origval;
381
382 switch (size) {
383 case 1:
384 case 2:
385 error = vie_read_register(VCPU_ARGS, reg, &origval);
386 if (error)
387 return (error);
388 val &= size2mask[size];
389 val |= origval & ~size2mask[size];
390 break;
391 case 4:
392 val &= 0xffffffffUL;
393 break;
394 case 8:
395 break;
396 default:
397 return (EINVAL);
398 }
399
400 error = vm_set_register(VCPU_ARGS, reg, val);
401 return (error);
402 }
403
404 #define RFLAGS_STATUS_BITS (PSL_C | PSL_PF | PSL_AF | PSL_Z | PSL_N | PSL_V)
405
406 /*
407 * Return the status flags that would result from doing (x - y).
408 */
409 #define GETCC(sz) \
410 static u_long \
411 getcc##sz(uint##sz##_t x, uint##sz##_t y) \
412 { \
413 u_long rflags; \
414 \
415 __asm __volatile("sub %2,%1; pushfq; popq %0" : \
416 "=r" (rflags), "+r" (x) : "m" (y)); \
417 return (rflags); \
418 } struct __hack
419
420 GETCC(8);
421 GETCC(16);
422 GETCC(32);
423 GETCC(64);
424
425 static u_long
426 getcc(int opsize, uint64_t x, uint64_t y)
427 {
428 KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
429 ("getcc: invalid operand size %d", opsize));
430
431 if (opsize == 1)
432 return (getcc8(x, y));
433 else if (opsize == 2)
434 return (getcc16(x, y));
435 else if (opsize == 4)
436 return (getcc32(x, y));
437 else
438 return (getcc64(x, y));
439 }
440
441 /*
442 * Macro creation of functions getaddflags{8,16,32,64}
443 */
444 #define GETADDFLAGS(sz) \
445 static u_long \
446 getaddflags##sz(uint##sz##_t x, uint##sz##_t y) \
447 { \
448 u_long rflags; \
449 \
450 __asm __volatile("add %2,%1; pushfq; popq %0" : \
451 "=r" (rflags), "+r" (x) : "m" (y)); \
452 return (rflags); \
453 } struct __hack
454
455 GETADDFLAGS(8);
456 GETADDFLAGS(16);
457 GETADDFLAGS(32);
458 GETADDFLAGS(64);
459
460 static u_long
461 getaddflags(int opsize, uint64_t x, uint64_t y)
462 {
463 KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
464 ("getaddflags: invalid operand size %d", opsize));
465
466 if (opsize == 1)
467 return (getaddflags8(x, y));
468 else if (opsize == 2)
469 return (getaddflags16(x, y));
470 else if (opsize == 4)
471 return (getaddflags32(x, y));
472 else
473 return (getaddflags64(x, y));
474 }
475
476 /*
477 * Return the status flags that would result from doing (x & y).
478 */
479 #define GETANDFLAGS(sz) \
480 static u_long \
481 getandflags##sz(uint##sz##_t x, uint##sz##_t y) \
482 { \
483 u_long rflags; \
484 \
485 __asm __volatile("and %2,%1; pushfq; popq %0" : \
486 "=r" (rflags), "+r" (x) : "m" (y)); \
487 return (rflags); \
488 } struct __hack
489
490 GETANDFLAGS(8);
491 GETANDFLAGS(16);
492 GETANDFLAGS(32);
493 GETANDFLAGS(64);
494
495 static u_long
496 getandflags(int opsize, uint64_t x, uint64_t y)
497 {
498 KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
499 ("getandflags: invalid operand size %d", opsize));
500
501 if (opsize == 1)
502 return (getandflags8(x, y));
503 else if (opsize == 2)
504 return (getandflags16(x, y));
505 else if (opsize == 4)
506 return (getandflags32(x, y));
507 else
508 return (getandflags64(x, y));
509 }
510
511 static int
512 emulate_mov(VCPU_DECL, uint64_t gpa, struct vie *vie,
513 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
514 {
515 int error, size;
516 enum vm_reg_name reg;
517 uint8_t byte;
518 uint64_t val;
519
520 size = vie->opsize;
521 error = EINVAL;
522
523 switch (vie->op.op_byte) {
524 case 0x88:
525 /*
526 * MOV byte from reg (ModRM:reg) to mem (ModRM:r/m)
527 * 88/r: mov r/m8, r8
528 * REX + 88/r: mov r/m8, r8 (%ah, %ch, %dh, %bh not available)
529 */
530 size = 1; /* override for byte operation */
531 error = vie_read_bytereg(VCPU_ARGS, vie, &byte);
532 if (error == 0)
533 error = memwrite(VCPU_ARGS, gpa, byte, size, arg);
534 break;
535 case 0x89:
536 /*
537 * MOV from reg (ModRM:reg) to mem (ModRM:r/m)
538 * 89/r: mov r/m16, r16
539 * 89/r: mov r/m32, r32
540 * REX.W + 89/r mov r/m64, r64
541 */
542 reg = gpr_map[vie->reg];
543 error = vie_read_register(VCPU_ARGS, reg, &val);
544 if (error == 0) {
545 val &= size2mask[size];
546 error = memwrite(VCPU_ARGS, gpa, val, size, arg);
547 }
548 break;
549 case 0x8A:
550 /*
551 * MOV byte from mem (ModRM:r/m) to reg (ModRM:reg)
552 * 8A/r: mov r8, r/m8
553 * REX + 8A/r: mov r8, r/m8
554 */
555 size = 1; /* override for byte operation */
556 error = memread(VCPU_ARGS, gpa, &val, size, arg);
557 if (error == 0)
558 error = vie_write_bytereg(VCPU_ARGS, vie, val);
559 break;
560 case 0x8B:
561 /*
562 * MOV from mem (ModRM:r/m) to reg (ModRM:reg)
563 * 8B/r: mov r16, r/m16
564 * 8B/r: mov r32, r/m32
565 * REX.W 8B/r: mov r64, r/m64
566 */
567 error = memread(VCPU_ARGS, gpa, &val, size, arg);
568 if (error == 0) {
569 reg = gpr_map[vie->reg];
570 error = vie_update_register(VCPU_ARGS, reg, val, size);
571 }
572 break;
573 case 0xA1:
574 /*
575 * MOV from seg:moffset to AX/EAX/RAX
576 * A1: mov AX, moffs16
577 * A1: mov EAX, moffs32
578 * REX.W + A1: mov RAX, moffs64
579 */
580 error = memread(VCPU_ARGS, gpa, &val, size, arg);
581 if (error == 0) {
582 reg = VM_REG_GUEST_RAX;
583 error = vie_update_register(VCPU_ARGS, reg, val, size);
584 }
585 break;
586 case 0xA3:
587 /*
588 * MOV from AX/EAX/RAX to seg:moffset
589 * A3: mov moffs16, AX
590 * A3: mov moffs32, EAX
591 * REX.W + A3: mov moffs64, RAX
592 */
593 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RAX, &val);
594 if (error == 0) {
595 val &= size2mask[size];
596 error = memwrite(VCPU_ARGS, gpa, val, size, arg);
597 }
598 break;
599 case 0xC6:
600 /*
601 * MOV from imm8 to mem (ModRM:r/m)
602 * C6/0 mov r/m8, imm8
603 * REX + C6/0 mov r/m8, imm8
604 */
605 size = 1; /* override for byte operation */
606 error = memwrite(VCPU_ARGS, gpa, vie->immediate, size, arg);
607 break;
608 case 0xC7:
609 /*
610 * MOV from imm16/imm32 to mem (ModRM:r/m)
611 * C7/0 mov r/m16, imm16
612 * C7/0 mov r/m32, imm32
613 * REX.W + C7/0 mov r/m64, imm32 (sign-extended to 64-bits)
614 */
615 val = vie->immediate & size2mask[size];
616 error = memwrite(VCPU_ARGS, gpa, val, size, arg);
617 break;
618 default:
619 break;
620 }
621
622 return (error);
623 }
624
625 static int
626 emulate_movx(VCPU_DECL, uint64_t gpa, struct vie *vie,
627 mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
628 {
629 int error, size;
630 enum vm_reg_name reg;
631 uint64_t val;
632
633 size = vie->opsize;
634 error = EINVAL;
635
636 switch (vie->op.op_byte) {
637 case 0xB6:
638 /*
639 * MOV and zero extend byte from mem (ModRM:r/m) to
640 * reg (ModRM:reg).
641 *
642 * 0F B6/r movzx r16, r/m8
643 * 0F B6/r movzx r32, r/m8
644 * REX.W + 0F B6/r movzx r64, r/m8
645 */
646
647 /* get the first operand */
648 error = memread(VCPU_ARGS, gpa, &val, 1, arg);
649 if (error)
650 break;
651
652 /* get the second operand */
653 reg = gpr_map[vie->reg];
654
655 /* zero-extend byte */
656 val = (uint8_t)val;
657
658 /* write the result */
659 error = vie_update_register(VCPU_ARGS, reg, val, size);
660 break;
661 case 0xB7:
662 /*
663 * MOV and zero extend word from mem (ModRM:r/m) to
664 * reg (ModRM:reg).
665 *
666 * 0F B7/r movzx r32, r/m16
667 * REX.W + 0F B7/r movzx r64, r/m16
668 */
669 error = memread(VCPU_ARGS, gpa, &val, 2, arg);
670 if (error)
671 return (error);
672
673 reg = gpr_map[vie->reg];
674
675 /* zero-extend word */
676 val = (uint16_t)val;
677
678 error = vie_update_register(VCPU_ARGS, reg, val, size);
679 break;
680 case 0xBE:
681 /*
682 * MOV and sign extend byte from mem (ModRM:r/m) to
683 * reg (ModRM:reg).
684 *
685 * 0F BE/r movsx r16, r/m8
686 * 0F BE/r movsx r32, r/m8
687 * REX.W + 0F BE/r movsx r64, r/m8
688 */
689
690 /* get the first operand */
691 error = memread(VCPU_ARGS, gpa, &val, 1, arg);
692 if (error)
693 break;
694
695 /* get the second operand */
696 reg = gpr_map[vie->reg];
697
698 /* sign extend byte */
699 val = (int8_t)val;
700
701 /* write the result */
702 error = vie_update_register(VCPU_ARGS, reg, val, size);
703 break;
704 default:
705 break;
706 }
707 return (error);
708 }
709
710 /*
711 * Helper function to calculate and validate a linear address.
712 */
713 static int
714 get_gla(VCPU_DECL, struct vie *vie __unused,
715 struct vm_guest_paging *paging, int opsize, int addrsize, int prot,
716 enum vm_reg_name seg, enum vm_reg_name gpr, uint64_t *gla, int *fault)
717 {
718 struct seg_desc desc;
719 uint64_t cr0, val, rflags;
720 int error __diagused;
721
722 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_CR0, &cr0);
723 KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
724
725 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
726 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
727
728 error = vm_get_seg_desc(VCPU_ARGS, seg, &desc);
729 KASSERT(error == 0, ("%s: error %d getting segment descriptor %d",
730 __func__, error, seg));
731
732 error = vie_read_register(VCPU_ARGS, gpr, &val);
733 KASSERT(error == 0, ("%s: error %d getting register %d", __func__,
734 error, gpr));
735
736 if (vie_calculate_gla(paging->cpu_mode, seg, &desc, val, opsize,
737 addrsize, prot, gla)) {
738 if (seg == VM_REG_GUEST_SS)
739 vm_inject_ss(VCPU_ARGS, 0);
740 else
741 vm_inject_gp(VCPU_ARGS);
742 goto guest_fault;
743 }
744
745 if (vie_canonical_check(paging->cpu_mode, *gla)) {
746 if (seg == VM_REG_GUEST_SS)
747 vm_inject_ss(VCPU_ARGS, 0);
748 else
749 vm_inject_gp(VCPU_ARGS);
750 goto guest_fault;
751 }
752
753 if (vie_alignment_check(paging->cpl, opsize, cr0, rflags, *gla)) {
754 vm_inject_ac(VCPU_ARGS, 0);
755 goto guest_fault;
756 }
757
758 *fault = 0;
759 return (0);
760
761 guest_fault:
762 *fault = 1;
763 return (0);
764 }
765
766 static int
767 emulate_movs(VCPU_DECL, uint64_t gpa, struct vie *vie,
768 struct vm_guest_paging *paging, mem_region_read_t memread,
769 mem_region_write_t memwrite, void *arg)
770 {
771 #ifdef _KERNEL
772 struct vm_copyinfo copyinfo[2];
773 #else
774 struct iovec copyinfo[2];
775 #endif
776 uint64_t dstaddr, srcaddr, dstgpa, srcgpa, val;
777 uint64_t rcx, rdi, rsi, rflags;
778 int error, fault, opsize, seg, repeat;
779
780 opsize = (vie->op.op_byte == 0xA4) ? 1 : vie->opsize;
781 val = 0;
782 error = 0;
783
784 /*
785 * XXX although the MOVS instruction is only supposed to be used with
786 * the "rep" prefix some guests like FreeBSD will use "repnz" instead.
787 *
788 * Empirically the "repnz" prefix has identical behavior to "rep"
789 * and the zero flag does not make a difference.
790 */
791 repeat = vie->repz_present | vie->repnz_present;
792
793 if (repeat) {
794 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RCX, &rcx);
795 KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
796
797 /*
798 * The count register is %rcx, %ecx or %cx depending on the
799 * address size of the instruction.
800 */
801 if ((rcx & vie_size2mask(vie->addrsize)) == 0) {
802 error = 0;
803 goto done;
804 }
805 }
806
807 /*
808 * Source Destination Comments
809 * --------------------------------------------
810 * (1) memory memory n/a
811 * (2) memory mmio emulated
812 * (3) mmio memory emulated
813 * (4) mmio mmio emulated
814 *
815 * At this point we don't have sufficient information to distinguish
816 * between (2), (3) and (4). We use 'vm_copy_setup()' to tease this
817 * out because it will succeed only when operating on regular memory.
818 *
819 * XXX the emulation doesn't properly handle the case where 'gpa'
820 * is straddling the boundary between the normal memory and MMIO.
821 */
822
823 seg = vie->segment_override ? vie->segment_register : VM_REG_GUEST_DS;
824 error = get_gla(VCPU_ARGS, vie, paging, opsize, vie->addrsize,
825 PROT_READ, seg, VM_REG_GUEST_RSI, &srcaddr, &fault);
826 if (error || fault)
827 goto done;
828
829 error = vm_copy_setup(VCPU_ARGS, paging, srcaddr, opsize, PROT_READ,
830 copyinfo, nitems(copyinfo), &fault);
831 if (error == 0) {
832 if (fault)
833 goto done; /* Resume guest to handle fault */
834
835 /*
836 * case (2): read from system memory and write to mmio.
837 */
838 vm_copyin(copyinfo, &val, opsize);
839 vm_copy_teardown(copyinfo, nitems(copyinfo));
840 error = memwrite(VCPU_ARGS, gpa, val, opsize, arg);
841 if (error)
842 goto done;
843 } else {
844 /*
845 * 'vm_copy_setup()' is expected to fail for cases (3) and (4)
846 * if 'srcaddr' is in the mmio space.
847 */
848
849 error = get_gla(VCPU_ARGS, vie, paging, opsize, vie->addrsize,
850 PROT_WRITE, VM_REG_GUEST_ES, VM_REG_GUEST_RDI, &dstaddr,
851 &fault);
852 if (error || fault)
853 goto done;
854
855 error = vm_copy_setup(VCPU_ARGS, paging, dstaddr, opsize,
856 PROT_WRITE, copyinfo, nitems(copyinfo), &fault);
857 if (error == 0) {
858 if (fault)
859 goto done; /* Resume guest to handle fault */
860
861 /*
862 * case (3): read from MMIO and write to system memory.
863 *
864 * A MMIO read can have side-effects so we
865 * commit to it only after vm_copy_setup() is
866 * successful. If a page-fault needs to be
867 * injected into the guest then it will happen
868 * before the MMIO read is attempted.
869 */
870 error = memread(VCPU_ARGS, gpa, &val, opsize, arg);
871 if (error)
872 goto done;
873
874 vm_copyout(&val, copyinfo, opsize);
875 vm_copy_teardown(copyinfo, nitems(copyinfo));
876 } else {
877 /*
878 * Case (4): read from and write to mmio.
879 *
880 * Commit to the MMIO read/write (with potential
881 * side-effects) only after we are sure that the
882 * instruction is not going to be restarted due
883 * to address translation faults.
884 */
885 error = vm_gla2gpa(VCPU_ARGS, paging, srcaddr,
886 PROT_READ, &srcgpa, &fault);
887 if (error || fault)
888 goto done;
889
890 error = vm_gla2gpa(VCPU_ARGS, paging, dstaddr,
891 PROT_WRITE, &dstgpa, &fault);
892 if (error || fault)
893 goto done;
894
895 error = memread(VCPU_ARGS, srcgpa, &val, opsize, arg);
896 if (error)
897 goto done;
898
899 error = memwrite(VCPU_ARGS, dstgpa, val, opsize, arg);
900 if (error)
901 goto done;
902 }
903 }
904
905 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RSI, &rsi);
906 KASSERT(error == 0, ("%s: error %d getting rsi", __func__, error));
907
908 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RDI, &rdi);
909 KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
910
911 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
912 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
913
914 if (rflags & PSL_D) {
915 rsi -= opsize;
916 rdi -= opsize;
917 } else {
918 rsi += opsize;
919 rdi += opsize;
920 }
921
922 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RSI, rsi,
923 vie->addrsize);
924 KASSERT(error == 0, ("%s: error %d updating rsi", __func__, error));
925
926 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RDI, rdi,
927 vie->addrsize);
928 KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
929
930 if (repeat) {
931 rcx = rcx - 1;
932 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RCX,
933 rcx, vie->addrsize);
934 KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
935
936 /*
937 * Repeat the instruction if the count register is not zero.
938 */
939 if ((rcx & vie_size2mask(vie->addrsize)) != 0)
940 vm_restart_instruction(VCPU_ARGS);
941 }
942 done:
943 KASSERT(error == 0 || error == EFAULT, ("%s: unexpected error %d",
944 __func__, error));
945 return (error);
946 }
947
948 static int
949 emulate_stos(VCPU_DECL, uint64_t gpa, struct vie *vie,
950 struct vm_guest_paging *paging __unused, mem_region_read_t memread __unused,
951 mem_region_write_t memwrite, void *arg)
952 {
953 int error, opsize, repeat;
954 uint64_t val;
955 uint64_t rcx, rdi, rflags;
956
957 opsize = (vie->op.op_byte == 0xAA) ? 1 : vie->opsize;
958 repeat = vie->repz_present | vie->repnz_present;
959
960 if (repeat) {
961 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RCX, &rcx);
962 KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
963
964 /*
965 * The count register is %rcx, %ecx or %cx depending on the
966 * address size of the instruction.
967 */
968 if ((rcx & vie_size2mask(vie->addrsize)) == 0)
969 return (0);
970 }
971
972 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RAX, &val);
973 KASSERT(!error, ("%s: error %d getting rax", __func__, error));
974
975 error = memwrite(VCPU_ARGS, gpa, val, opsize, arg);
976 if (error)
977 return (error);
978
979 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RDI, &rdi);
980 KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
981
982 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
983 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
984
985 if (rflags & PSL_D)
986 rdi -= opsize;
987 else
988 rdi += opsize;
989
990 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RDI, rdi,
991 vie->addrsize);
992 KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
993
994 if (repeat) {
995 rcx = rcx - 1;
996 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RCX,
997 rcx, vie->addrsize);
998 KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
999
1000 /*
1001 * Repeat the instruction if the count register is not zero.
1002 */
1003 if ((rcx & vie_size2mask(vie->addrsize)) != 0)
1004 vm_restart_instruction(VCPU_ARGS);
1005 }
1006
1007 return (0);
1008 }
1009
1010 static int
1011 emulate_and(VCPU_DECL, uint64_t gpa, struct vie *vie,
1012 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1013 {
1014 int error, size;
1015 enum vm_reg_name reg;
1016 uint64_t result, rflags, rflags2, val1, val2;
1017
1018 size = vie->opsize;
1019 error = EINVAL;
1020
1021 switch (vie->op.op_byte) {
1022 case 0x23:
1023 /*
1024 * AND reg (ModRM:reg) and mem (ModRM:r/m) and store the
1025 * result in reg.
1026 *
1027 * 23/r and r16, r/m16
1028 * 23/r and r32, r/m32
1029 * REX.W + 23/r and r64, r/m64
1030 */
1031
1032 /* get the first operand */
1033 reg = gpr_map[vie->reg];
1034 error = vie_read_register(VCPU_ARGS, reg, &val1);
1035 if (error)
1036 break;
1037
1038 /* get the second operand */
1039 error = memread(VCPU_ARGS, gpa, &val2, size, arg);
1040 if (error)
1041 break;
1042
1043 /* perform the operation and write the result */
1044 result = val1 & val2;
1045 error = vie_update_register(VCPU_ARGS, reg, result, size);
1046 break;
1047 case 0x81:
1048 case 0x83:
1049 /*
1050 * AND mem (ModRM:r/m) with immediate and store the
1051 * result in mem.
1052 *
1053 * 81 /4 and r/m16, imm16
1054 * 81 /4 and r/m32, imm32
1055 * REX.W + 81 /4 and r/m64, imm32 sign-extended to 64
1056 *
1057 * 83 /4 and r/m16, imm8 sign-extended to 16
1058 * 83 /4 and r/m32, imm8 sign-extended to 32
1059 * REX.W + 83/4 and r/m64, imm8 sign-extended to 64
1060 */
1061
1062 /* get the first operand */
1063 error = memread(VCPU_ARGS, gpa, &val1, size, arg);
1064 if (error)
1065 break;
1066
1067 /*
1068 * perform the operation with the pre-fetched immediate
1069 * operand and write the result
1070 */
1071 result = val1 & vie->immediate;
1072 error = memwrite(VCPU_ARGS, gpa, result, size, arg);
1073 break;
1074 default:
1075 break;
1076 }
1077 if (error)
1078 return (error);
1079
1080 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
1081 if (error)
1082 return (error);
1083
1084 /*
1085 * OF and CF are cleared; the SF, ZF and PF flags are set according
1086 * to the result; AF is undefined.
1087 *
1088 * The updated status flags are obtained by subtracting 0 from 'result'.
1089 */
1090 rflags2 = getcc(size, result, 0);
1091 rflags &= ~RFLAGS_STATUS_BITS;
1092 rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
1093
1094 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, rflags, 8);
1095 return (error);
1096 }
1097
1098 static int
1099 emulate_or(VCPU_DECL, uint64_t gpa, struct vie *vie,
1100 mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
1101 {
1102 int error, size;
1103 enum vm_reg_name reg;
1104 uint64_t result, rflags, rflags2, val1, val2;
1105
1106 size = vie->opsize;
1107 error = EINVAL;
1108
1109 switch (vie->op.op_byte) {
1110 case 0x0B:
1111 /*
1112 * OR reg (ModRM:reg) and mem (ModRM:r/m) and store the
1113 * result in reg.
1114 *
1115 * 0b/r or r16, r/m16
1116 * 0b/r or r32, r/m32
1117 * REX.W + 0b/r or r64, r/m64
1118 */
1119
1120 /* get the first operand */
1121 reg = gpr_map[vie->reg];
1122 error = vie_read_register(VCPU_ARGS, reg, &val1);
1123 if (error)
1124 break;
1125
1126 /* get the second operand */
1127 error = memread(VCPU_ARGS, gpa, &val2, size, arg);
1128 if (error)
1129 break;
1130
1131 /* perform the operation and write the result */
1132 result = val1 | val2;
1133 error = vie_update_register(VCPU_ARGS, reg, result, size);
1134 break;
1135 case 0x81:
1136 case 0x83:
1137 /*
1138 * OR mem (ModRM:r/m) with immediate and store the
1139 * result in mem.
1140 *
1141 * 81 /1 or r/m16, imm16
1142 * 81 /1 or r/m32, imm32
1143 * REX.W + 81 /1 or r/m64, imm32 sign-extended to 64
1144 *
1145 * 83 /1 or r/m16, imm8 sign-extended to 16
1146 * 83 /1 or r/m32, imm8 sign-extended to 32
1147 * REX.W + 83/1 or r/m64, imm8 sign-extended to 64
1148 */
1149
1150 /* get the first operand */
1151 error = memread(VCPU_ARGS, gpa, &val1, size, arg);
1152 if (error)
1153 break;
1154
1155 /*
1156 * perform the operation with the pre-fetched immediate
1157 * operand and write the result
1158 */
1159 result = val1 | vie->immediate;
1160 error = memwrite(VCPU_ARGS, gpa, result, size, arg);
1161 break;
1162 default:
1163 break;
1164 }
1165 if (error)
1166 return (error);
1167
1168 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
1169 if (error)
1170 return (error);
1171
1172 /*
1173 * OF and CF are cleared; the SF, ZF and PF flags are set according
1174 * to the result; AF is undefined.
1175 *
1176 * The updated status flags are obtained by subtracting 0 from 'result'.
1177 */
1178 rflags2 = getcc(size, result, 0);
1179 rflags &= ~RFLAGS_STATUS_BITS;
1180 rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
1181
1182 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, rflags, 8);
1183 return (error);
1184 }
1185
1186 static int
1187 emulate_cmp(VCPU_DECL, uint64_t gpa, struct vie *vie,
1188 mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
1189 {
1190 int error, size;
1191 uint64_t regop, memop, op1, op2, rflags, rflags2;
1192 enum vm_reg_name reg;
1193
1194 size = vie->opsize;
1195 switch (vie->op.op_byte) {
1196 case 0x39:
1197 case 0x3B:
1198 /*
1199 * 39/r CMP r/m16, r16
1200 * 39/r CMP r/m32, r32
1201 * REX.W 39/r CMP r/m64, r64
1202 *
1203 * 3B/r CMP r16, r/m16
1204 * 3B/r CMP r32, r/m32
1205 * REX.W + 3B/r CMP r64, r/m64
1206 *
1207 * Compare the first operand with the second operand and
1208 * set status flags in EFLAGS register. The comparison is
1209 * performed by subtracting the second operand from the first
1210 * operand and then setting the status flags.
1211 */
1212
1213 /* Get the register operand */
1214 reg = gpr_map[vie->reg];
1215 error = vie_read_register(VCPU_ARGS, reg, ®op);
1216 if (error)
1217 return (error);
1218
1219 /* Get the memory operand */
1220 error = memread(VCPU_ARGS, gpa, &memop, size, arg);
1221 if (error)
1222 return (error);
1223
1224 if (vie->op.op_byte == 0x3B) {
1225 op1 = regop;
1226 op2 = memop;
1227 } else {
1228 op1 = memop;
1229 op2 = regop;
1230 }
1231 rflags2 = getcc(size, op1, op2);
1232 break;
1233 case 0x80:
1234 case 0x81:
1235 case 0x83:
1236 /*
1237 * 80 /7 cmp r/m8, imm8
1238 * REX + 80 /7 cmp r/m8, imm8
1239 *
1240 * 81 /7 cmp r/m16, imm16
1241 * 81 /7 cmp r/m32, imm32
1242 * REX.W + 81 /7 cmp r/m64, imm32 sign-extended to 64
1243 *
1244 * 83 /7 cmp r/m16, imm8 sign-extended to 16
1245 * 83 /7 cmp r/m32, imm8 sign-extended to 32
1246 * REX.W + 83 /7 cmp r/m64, imm8 sign-extended to 64
1247 *
1248 * Compare mem (ModRM:r/m) with immediate and set
1249 * status flags according to the results. The
1250 * comparison is performed by subtracting the
1251 * immediate from the first operand and then setting
1252 * the status flags.
1253 *
1254 */
1255 if (vie->op.op_byte == 0x80)
1256 size = 1;
1257
1258 /* get the first operand */
1259 error = memread(VCPU_ARGS, gpa, &op1, size, arg);
1260 if (error)
1261 return (error);
1262
1263 rflags2 = getcc(size, op1, vie->immediate);
1264 break;
1265 default:
1266 return (EINVAL);
1267 }
1268 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
1269 if (error)
1270 return (error);
1271 rflags &= ~RFLAGS_STATUS_BITS;
1272 rflags |= rflags2 & RFLAGS_STATUS_BITS;
1273
1274 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, rflags, 8);
1275 return (error);
1276 }
1277
1278 static int
1279 emulate_test(VCPU_DECL, uint64_t gpa, struct vie *vie,
1280 mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
1281 {
1282 int error, size;
1283 uint64_t op1, rflags, rflags2;
1284
1285 size = vie->opsize;
1286 error = EINVAL;
1287
1288 switch (vie->op.op_byte) {
1289 case 0xF7:
1290 /*
1291 * F7 /0 test r/m16, imm16
1292 * F7 /0 test r/m32, imm32
1293 * REX.W + F7 /0 test r/m64, imm32 sign-extended to 64
1294 *
1295 * Test mem (ModRM:r/m) with immediate and set status
1296 * flags according to the results. The comparison is
1297 * performed by anding the immediate from the first
1298 * operand and then setting the status flags.
1299 */
1300 if ((vie->reg & 7) != 0)
1301 return (EINVAL);
1302
1303 error = memread(VCPU_ARGS, gpa, &op1, size, arg);
1304 if (error)
1305 return (error);
1306
1307 rflags2 = getandflags(size, op1, vie->immediate);
1308 break;
1309 default:
1310 return (EINVAL);
1311 }
1312 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
1313 if (error)
1314 return (error);
1315
1316 /*
1317 * OF and CF are cleared; the SF, ZF and PF flags are set according
1318 * to the result; AF is undefined.
1319 */
1320 rflags &= ~RFLAGS_STATUS_BITS;
1321 rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
1322
1323 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, rflags, 8);
1324 return (error);
1325 }
1326
1327 static int
1328 emulate_bextr(VCPU_DECL, uint64_t gpa, struct vie *vie,
1329 struct vm_guest_paging *paging, mem_region_read_t memread,
1330 mem_region_write_t memwrite __unused, void *arg)
1331 {
1332 uint64_t src1, src2, dst, rflags;
1333 unsigned start, len, size;
1334 int error;
1335
1336 size = vie->opsize;
1337 error = EINVAL;
1338
1339 /*
1340 * VEX.LZ.0F38.W0 F7 /r BEXTR r32a, r/m32, r32b
1341 * VEX.LZ.0F38.W1 F7 /r BEXTR r64a, r/m64, r64b
1342 *
1343 * Destination operand is ModRM:reg. Source operands are ModRM:r/m and
1344 * Vex.vvvv.
1345 *
1346 * Operand size is always 32-bit if not in 64-bit mode (W1 is ignored).
1347 */
1348 if (size != 4 && paging->cpu_mode != CPU_MODE_64BIT)
1349 size = 4;
1350
1351 /*
1352 * Extracts contiguous bits from the first /source/ operand (second
1353 * operand) using an index and length specified in the second /source/
1354 * operand (third operand).
1355 */
1356 error = memread(VCPU_ARGS, gpa, &src1, size, arg);
1357 if (error)
1358 return (error);
1359 error = vie_read_register(VCPU_ARGS, gpr_map[vie->vex_reg], &src2);
1360 if (error)
1361 return (error);
1362 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
1363 if (error)
1364 return (error);
1365
1366 start = (src2 & 0xff);
1367 len = (src2 & 0xff00) >> 8;
1368
1369 /* If no bits are extracted, the destination register is cleared. */
1370 dst = 0;
1371
1372 /* If START exceeds the operand size, no bits are extracted. */
1373 if (start > size * 8)
1374 goto done;
1375 /* Length is bounded by both the destination size and start offset. */
1376 if (start + len > size * 8)
1377 len = (size * 8) - start;
1378 if (len == 0)
1379 goto done;
1380
1381 if (start > 0)
1382 src1 = (src1 >> start);
1383 if (len < 64)
1384 src1 = src1 & ((1ull << len) - 1);
1385 dst = src1;
1386
1387 done:
1388 error = vie_update_register(VCPU_ARGS, gpr_map[vie->reg], dst, size);
1389 if (error)
1390 return (error);
1391
1392 /*
1393 * AMD: OF, CF cleared; SF/AF/PF undefined; ZF set by result.
1394 * Intel: ZF is set by result; AF/SF/PF undefined; all others cleared.
1395 */
1396 rflags &= ~RFLAGS_STATUS_BITS;
1397 if (dst == 0)
1398 rflags |= PSL_Z;
1399 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, rflags,
1400 8);
1401 return (error);
1402 }
1403
1404 static int
1405 emulate_add(VCPU_DECL, uint64_t gpa, struct vie *vie,
1406 mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
1407 {
1408 int error, size;
1409 uint64_t nval, rflags, rflags2, val1, val2;
1410 enum vm_reg_name reg;
1411
1412 size = vie->opsize;
1413 error = EINVAL;
1414
1415 switch (vie->op.op_byte) {
1416 case 0x03:
1417 /*
1418 * ADD r/m to r and store the result in r
1419 *
1420 * 03/r ADD r16, r/m16
1421 * 03/r ADD r32, r/m32
1422 * REX.W + 03/r ADD r64, r/m64
1423 */
1424
1425 /* get the first operand */
1426 reg = gpr_map[vie->reg];
1427 error = vie_read_register(VCPU_ARGS, reg, &val1);
1428 if (error)
1429 break;
1430
1431 /* get the second operand */
1432 error = memread(VCPU_ARGS, gpa, &val2, size, arg);
1433 if (error)
1434 break;
1435
1436 /* perform the operation and write the result */
1437 nval = val1 + val2;
1438 error = vie_update_register(VCPU_ARGS, reg, nval, size);
1439 break;
1440 default:
1441 break;
1442 }
1443
1444 if (!error) {
1445 rflags2 = getaddflags(size, val1, val2);
1446 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS,
1447 &rflags);
1448 if (error)
1449 return (error);
1450
1451 rflags &= ~RFLAGS_STATUS_BITS;
1452 rflags |= rflags2 & RFLAGS_STATUS_BITS;
1453 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS,
1454 rflags, 8);
1455 }
1456
1457 return (error);
1458 }
1459
1460 static int
1461 emulate_sub(VCPU_DECL, uint64_t gpa, struct vie *vie,
1462 mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
1463 {
1464 int error, size;
1465 uint64_t nval, rflags, rflags2, val1, val2;
1466 enum vm_reg_name reg;
1467
1468 size = vie->opsize;
1469 error = EINVAL;
1470
1471 switch (vie->op.op_byte) {
1472 case 0x2B:
1473 /*
1474 * SUB r/m from r and store the result in r
1475 *
1476 * 2B/r SUB r16, r/m16
1477 * 2B/r SUB r32, r/m32
1478 * REX.W + 2B/r SUB r64, r/m64
1479 */
1480
1481 /* get the first operand */
1482 reg = gpr_map[vie->reg];
1483 error = vie_read_register(VCPU_ARGS, reg, &val1);
1484 if (error)
1485 break;
1486
1487 /* get the second operand */
1488 error = memread(VCPU_ARGS, gpa, &val2, size, arg);
1489 if (error)
1490 break;
1491
1492 /* perform the operation and write the result */
1493 nval = val1 - val2;
1494 error = vie_update_register(VCPU_ARGS, reg, nval, size);
1495 break;
1496 default:
1497 break;
1498 }
1499
1500 if (!error) {
1501 rflags2 = getcc(size, val1, val2);
1502 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS,
1503 &rflags);
1504 if (error)
1505 return (error);
1506
1507 rflags &= ~RFLAGS_STATUS_BITS;
1508 rflags |= rflags2 & RFLAGS_STATUS_BITS;
1509 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS,
1510 rflags, 8);
1511 }
1512
1513 return (error);
1514 }
1515
1516 static int
1517 emulate_stack_op(VCPU_DECL, uint64_t mmio_gpa, struct vie *vie,
1518 struct vm_guest_paging *paging, mem_region_read_t memread,
1519 mem_region_write_t memwrite, void *arg)
1520 {
1521 #ifdef _KERNEL
1522 struct vm_copyinfo copyinfo[2];
1523 #else
1524 struct iovec copyinfo[2];
1525 #endif
1526 struct seg_desc ss_desc;
1527 uint64_t cr0, rflags, rsp, stack_gla, val;
1528 int error, fault, size, stackaddrsize, pushop;
1529
1530 val = 0;
1531 size = vie->opsize;
1532 pushop = (vie->op.op_type == VIE_OP_TYPE_PUSH) ? 1 : 0;
1533
1534 /*
1535 * From "Address-Size Attributes for Stack Accesses", Intel SDL, Vol 1
1536 */
1537 if (paging->cpu_mode == CPU_MODE_REAL) {
1538 stackaddrsize = 2;
1539 } else if (paging->cpu_mode == CPU_MODE_64BIT) {
1540 /*
1541 * "Stack Manipulation Instructions in 64-bit Mode", SDM, Vol 3
1542 * - Stack pointer size is always 64-bits.
1543 * - PUSH/POP of 32-bit values is not possible in 64-bit mode.
1544 * - 16-bit PUSH/POP is supported by using the operand size
1545 * override prefix (66H).
1546 */
1547 stackaddrsize = 8;
1548 size = vie->opsize_override ? 2 : 8;
1549 } else {
1550 /*
1551 * In protected or compatibility mode the 'B' flag in the
1552 * stack-segment descriptor determines the size of the
1553 * stack pointer.
1554 */
1555 error = vm_get_seg_desc(VCPU_ARGS, VM_REG_GUEST_SS, &ss_desc);
1556 KASSERT(error == 0, ("%s: error %d getting SS descriptor",
1557 __func__, error));
1558 if (SEG_DESC_DEF32(ss_desc.access))
1559 stackaddrsize = 4;
1560 else
1561 stackaddrsize = 2;
1562 }
1563
1564 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_CR0, &cr0);
1565 KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
1566
1567 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
1568 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
1569
1570 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RSP, &rsp);
1571 KASSERT(error == 0, ("%s: error %d getting rsp", __func__, error));
1572 if (pushop) {
1573 rsp -= size;
1574 }
1575
1576 if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS, &ss_desc,
1577 rsp, size, stackaddrsize, pushop ? PROT_WRITE : PROT_READ,
1578 &stack_gla)) {
1579 vm_inject_ss(VCPU_ARGS, 0);
1580 return (0);
1581 }
1582
1583 if (vie_canonical_check(paging->cpu_mode, stack_gla)) {
1584 vm_inject_ss(VCPU_ARGS, 0);
1585 return (0);
1586 }
1587
1588 if (vie_alignment_check(paging->cpl, size, cr0, rflags, stack_gla)) {
1589 vm_inject_ac(VCPU_ARGS, 0);
1590 return (0);
1591 }
1592
1593 error = vm_copy_setup(VCPU_ARGS, paging, stack_gla, size,
1594 pushop ? PROT_WRITE : PROT_READ, copyinfo, nitems(copyinfo),
1595 &fault);
1596 if (error || fault)
1597 return (error);
1598
1599 if (pushop) {
1600 error = memread(VCPU_ARGS, mmio_gpa, &val, size, arg);
1601 if (error == 0)
1602 vm_copyout(&val, copyinfo, size);
1603 } else {
1604 vm_copyin(copyinfo, &val, size);
1605 error = memwrite(VCPU_ARGS, mmio_gpa, val, size, arg);
1606 rsp += size;
1607 }
1608 vm_copy_teardown(copyinfo, nitems(copyinfo));
1609
1610 if (error == 0) {
1611 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RSP, rsp,
1612 stackaddrsize);
1613 KASSERT(error == 0, ("error %d updating rsp", error));
1614 }
1615 return (error);
1616 }
1617
1618 static int
1619 emulate_push(VCPU_DECL, uint64_t mmio_gpa, struct vie *vie,
1620 struct vm_guest_paging *paging, mem_region_read_t memread,
1621 mem_region_write_t memwrite, void *arg)
1622 {
1623 int error;
1624
1625 /*
1626 * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
1627 *
1628 * PUSH is part of the group 5 extended opcodes and is identified
1629 * by ModRM:reg = b110.
1630 */
1631 if ((vie->reg & 7) != 6)
1632 return (EINVAL);
1633
1634 error = emulate_stack_op(VCPU_ARGS, mmio_gpa, vie, paging, memread,
1635 memwrite, arg);
1636 return (error);
1637 }
1638
1639 static int
1640 emulate_pop(VCPU_DECL, uint64_t mmio_gpa, struct vie *vie,
1641 struct vm_guest_paging *paging, mem_region_read_t memread,
1642 mem_region_write_t memwrite, void *arg)
1643 {
1644 int error;
1645
1646 /*
1647 * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
1648 *
1649 * POP is part of the group 1A extended opcodes and is identified
1650 * by ModRM:reg = b000.
1651 */
1652 if ((vie->reg & 7) != 0)
1653 return (EINVAL);
1654
1655 error = emulate_stack_op(VCPU_ARGS, mmio_gpa, vie, paging, memread,
1656 memwrite, arg);
1657 return (error);
1658 }
1659
1660 static int
1661 emulate_group1(VCPU_DECL, uint64_t gpa, struct vie *vie,
1662 struct vm_guest_paging *paging __unused, mem_region_read_t memread,
1663 mem_region_write_t memwrite, void *memarg)
1664 {
1665 int error;
1666
1667 switch (vie->reg & 7) {
1668 case 0x1: /* OR */
1669 error = emulate_or(VCPU_ARGS, gpa, vie,
1670 memread, memwrite, memarg);
1671 break;
1672 case 0x4: /* AND */
1673 error = emulate_and(VCPU_ARGS, gpa, vie,
1674 memread, memwrite, memarg);
1675 break;
1676 case 0x7: /* CMP */
1677 error = emulate_cmp(VCPU_ARGS, gpa, vie,
1678 memread, memwrite, memarg);
1679 break;
1680 default:
1681 error = EINVAL;
1682 break;
1683 }
1684
1685 return (error);
1686 }
1687
1688 static int
1689 emulate_bittest(VCPU_DECL, uint64_t gpa, struct vie *vie,
1690 mem_region_read_t memread, mem_region_write_t memwrite __unused,
1691 void *memarg)
1692 {
1693 uint64_t val, rflags;
1694 int error, bitmask, bitoff;
1695
1696 /*
1697 * 0F BA is a Group 8 extended opcode.
1698 *
1699 * Currently we only emulate the 'Bit Test' instruction which is
1700 * identified by a ModR/M:reg encoding of 100b.
1701 */
1702 if ((vie->reg & 7) != 4)
1703 return (EINVAL);
1704
1705 error = vie_read_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, &rflags);
1706 KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
1707
1708 error = memread(VCPU_ARGS, gpa, &val, vie->opsize, memarg);
1709 if (error)
1710 return (error);
1711
1712 /*
1713 * Intel SDM, Vol 2, Table 3-2:
1714 * "Range of Bit Positions Specified by Bit Offset Operands"
1715 */
1716 bitmask = vie->opsize * 8 - 1;
1717 bitoff = vie->immediate & bitmask;
1718
1719 /* Copy the bit into the Carry flag in %rflags */
1720 if (val & (1UL << bitoff))
1721 rflags |= PSL_C;
1722 else
1723 rflags &= ~PSL_C;
1724
1725 error = vie_update_register(VCPU_ARGS, VM_REG_GUEST_RFLAGS, rflags, 8);
1726 KASSERT(error == 0, ("%s: error %d updating rflags", __func__, error));
1727
1728 return (0);
1729 }
1730
1731 static int
1732 emulate_twob_group15(VCPU_DECL, uint64_t gpa, struct vie *vie,
1733 mem_region_read_t memread, mem_region_write_t memwrite __unused,
1734 void *memarg)
1735 {
1736 int error;
1737 uint64_t buf;
1738
1739 switch (vie->reg & 7) {
1740 case 0x7: /* CLFLUSH, CLFLUSHOPT, and SFENCE */
1741 if (vie->mod == 0x3) {
1742 /*
1743 * SFENCE. Ignore it, VM exit provides enough
1744 * barriers on its own.
1745 */
1746 error = 0;
1747 } else {
1748 /*
1749 * CLFLUSH, CLFLUSHOPT. Only check for access
1750 * rights.
1751 */
1752 error = memread(VCPU_ARGS, gpa, &buf, 1, memarg);
1753 }
1754 break;
1755 default:
1756 error = EINVAL;
1757 break;
1758 }
1759
1760 return (error);
1761 }
1762
1763 int
1764 vmm_emulate_instruction(VCPU_DECL, uint64_t gpa, struct vie *vie,
1765 struct vm_guest_paging *paging, mem_region_read_t memread,
1766 mem_region_write_t memwrite, void *memarg)
1767 {
1768 int error;
1769
1770 if (!vie->decoded)
1771 return (EINVAL);
1772
1773 switch (vie->op.op_type) {
1774 case VIE_OP_TYPE_GROUP1:
1775 error = emulate_group1(VCPU_ARGS, gpa, vie, paging, memread,
1776 memwrite, memarg);
1777 break;
1778 case VIE_OP_TYPE_POP:
1779 error = emulate_pop(VCPU_ARGS, gpa, vie, paging, memread,
1780 memwrite, memarg);
1781 break;
1782 case VIE_OP_TYPE_PUSH:
1783 error = emulate_push(VCPU_ARGS, gpa, vie, paging, memread,
1784 memwrite, memarg);
1785 break;
1786 case VIE_OP_TYPE_CMP:
1787 error = emulate_cmp(VCPU_ARGS, gpa, vie,
1788 memread, memwrite, memarg);
1789 break;
1790 case VIE_OP_TYPE_MOV:
1791 error = emulate_mov(VCPU_ARGS, gpa, vie,
1792 memread, memwrite, memarg);
1793 break;
1794 case VIE_OP_TYPE_MOVSX:
1795 case VIE_OP_TYPE_MOVZX:
1796 error = emulate_movx(VCPU_ARGS, gpa, vie,
1797 memread, memwrite, memarg);
1798 break;
1799 case VIE_OP_TYPE_MOVS:
1800 error = emulate_movs(VCPU_ARGS, gpa, vie, paging, memread,
1801 memwrite, memarg);
1802 break;
1803 case VIE_OP_TYPE_STOS:
1804 error = emulate_stos(VCPU_ARGS, gpa, vie, paging, memread,
1805 memwrite, memarg);
1806 break;
1807 case VIE_OP_TYPE_AND:
1808 error = emulate_and(VCPU_ARGS, gpa, vie,
1809 memread, memwrite, memarg);
1810 break;
1811 case VIE_OP_TYPE_OR:
1812 error = emulate_or(VCPU_ARGS, gpa, vie,
1813 memread, memwrite, memarg);
1814 break;
1815 case VIE_OP_TYPE_SUB:
1816 error = emulate_sub(VCPU_ARGS, gpa, vie,
1817 memread, memwrite, memarg);
1818 break;
1819 case VIE_OP_TYPE_BITTEST:
1820 error = emulate_bittest(VCPU_ARGS, gpa, vie,
1821 memread, memwrite, memarg);
1822 break;
1823 case VIE_OP_TYPE_TWOB_GRP15:
1824 error = emulate_twob_group15(VCPU_ARGS, gpa, vie,
1825 memread, memwrite, memarg);
1826 break;
1827 case VIE_OP_TYPE_ADD:
1828 error = emulate_add(VCPU_ARGS, gpa, vie, memread,
1829 memwrite, memarg);
1830 break;
1831 case VIE_OP_TYPE_TEST:
1832 error = emulate_test(VCPU_ARGS, gpa, vie,
1833 memread, memwrite, memarg);
1834 break;
1835 case VIE_OP_TYPE_BEXTR:
1836 error = emulate_bextr(VCPU_ARGS, gpa, vie, paging,
1837 memread, memwrite, memarg);
1838 break;
1839 default:
1840 error = EINVAL;
1841 break;
1842 }
1843
1844 return (error);
1845 }
1846
1847 int
1848 vie_alignment_check(int cpl, int size, uint64_t cr0, uint64_t rf, uint64_t gla)
1849 {
1850 KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
1851 ("%s: invalid size %d", __func__, size));
1852 KASSERT(cpl >= 0 && cpl <= 3, ("%s: invalid cpl %d", __func__, cpl));
1853
1854 if (cpl != 3 || (cr0 & CR0_AM) == 0 || (rf & PSL_AC) == 0)
1855 return (0);
1856
1857 return ((gla & (size - 1)) ? 1 : 0);
1858 }
1859
1860 int
1861 vie_canonical_check(enum vm_cpu_mode cpu_mode, uint64_t gla)
1862 {
1863 uint64_t mask;
1864
1865 if (cpu_mode != CPU_MODE_64BIT)
1866 return (0);
1867
1868 /*
1869 * The value of the bit 47 in the 'gla' should be replicated in the
1870 * most significant 16 bits.
1871 */
1872 mask = ~((1UL << 48) - 1);
1873 if (gla & (1UL << 47))
1874 return ((gla & mask) != mask);
1875 else
1876 return ((gla & mask) != 0);
1877 }
1878
1879 uint64_t
1880 vie_size2mask(int size)
1881 {
1882 KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
1883 ("vie_size2mask: invalid size %d", size));
1884 return (size2mask[size]);
1885 }
1886
1887 int
1888 vie_calculate_gla(enum vm_cpu_mode cpu_mode, enum vm_reg_name seg,
1889 struct seg_desc *desc, uint64_t offset, int length, int addrsize,
1890 int prot, uint64_t *gla)
1891 {
1892 uint64_t firstoff, low_limit, high_limit, segbase;
1893 int glasize, type;
1894
1895 KASSERT(seg >= VM_REG_GUEST_ES && seg <= VM_REG_GUEST_GS,
1896 ("%s: invalid segment %d", __func__, seg));
1897 KASSERT(length == 1 || length == 2 || length == 4 || length == 8,
1898 ("%s: invalid operand size %d", __func__, length));
1899 KASSERT((prot & ~(PROT_READ | PROT_WRITE)) == 0,
1900 ("%s: invalid prot %#x", __func__, prot));
1901
1902 firstoff = offset;
1903 if (cpu_mode == CPU_MODE_64BIT) {
1904 KASSERT(addrsize == 4 || addrsize == 8, ("%s: invalid address "
1905 "size %d for cpu_mode %d", __func__, addrsize, cpu_mode));
1906 glasize = 8;
1907 } else {
1908 KASSERT(addrsize == 2 || addrsize == 4, ("%s: invalid address "
1909 "size %d for cpu mode %d", __func__, addrsize, cpu_mode));
1910 glasize = 4;
1911 /*
1912 * If the segment selector is loaded with a NULL selector
1913 * then the descriptor is unusable and attempting to use
1914 * it results in a #GP(0).
1915 */
1916 if (SEG_DESC_UNUSABLE(desc->access))
1917 return (-1);
1918
1919 /*
1920 * The processor generates a #NP exception when a segment
1921 * register is loaded with a selector that points to a
1922 * descriptor that is not present. If this was the case then
1923 * it would have been checked before the VM-exit.
1924 */
1925 KASSERT(SEG_DESC_PRESENT(desc->access),
1926 ("segment %d not present: %#x", seg, desc->access));
1927
1928 /*
1929 * The descriptor type must indicate a code/data segment.
1930 */
1931 type = SEG_DESC_TYPE(desc->access);
1932 KASSERT(type >= 16 && type <= 31, ("segment %d has invalid "
1933 "descriptor type %#x", seg, type));
1934
1935 if (prot & PROT_READ) {
1936 /* #GP on a read access to a exec-only code segment */
1937 if ((type & 0xA) == 0x8)
1938 return (-1);
1939 }
1940
1941 if (prot & PROT_WRITE) {
1942 /*
1943 * #GP on a write access to a code segment or a
1944 * read-only data segment.
1945 */
1946 if (type & 0x8) /* code segment */
1947 return (-1);
1948
1949 if ((type & 0xA) == 0) /* read-only data seg */
1950 return (-1);
1951 }
1952
1953 /*
1954 * 'desc->limit' is fully expanded taking granularity into
1955 * account.
1956 */
1957 if ((type & 0xC) == 0x4) {
1958 /* expand-down data segment */
1959 low_limit = desc->limit + 1;
1960 high_limit = SEG_DESC_DEF32(desc->access) ?
1961 0xffffffff : 0xffff;
1962 } else {
1963 /* code segment or expand-up data segment */
1964 low_limit = 0;
1965 high_limit = desc->limit;
1966 }
1967
1968 while (length > 0) {
1969 offset &= vie_size2mask(addrsize);
1970 if (offset < low_limit || offset > high_limit)
1971 return (-1);
1972 offset++;
1973 length--;
1974 }
1975 }
1976
1977 /*
1978 * In 64-bit mode all segments except %fs and %gs have a segment
1979 * base address of 0.
1980 */
1981 if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
1982 seg != VM_REG_GUEST_GS) {
1983 segbase = 0;
1984 } else {
1985 segbase = desc->base;
1986 }
1987
1988 /*
1989 * Truncate 'firstoff' to the effective address size before adding
1990 * it to the segment base.
1991 */
1992 firstoff &= vie_size2mask(addrsize);
1993 *gla = (segbase + firstoff) & vie_size2mask(glasize);
1994 return (0);
1995 }
1996
1997 /*
1998 * Prepare a partially decoded vie for a 2nd attempt.
1999 */
2000 void
2001 vie_restart(struct vie *vie)
2002 {
2003 _Static_assert(
2004 offsetof(struct vie, inst) < offsetof(struct vie, vie_startzero) &&
2005 offsetof(struct vie, num_valid) < offsetof(struct vie, vie_startzero),
2006 "restart should not erase instruction length or contents");
2007
2008 memset((char *)vie + offsetof(struct vie, vie_startzero), 0,
2009 sizeof(*vie) - offsetof(struct vie, vie_startzero));
2010
2011 vie->base_register = VM_REG_LAST;
2012 vie->index_register = VM_REG_LAST;
2013 vie->segment_register = VM_REG_LAST;
2014 }
2015
2016 void
2017 vie_init(struct vie *vie, const char *inst_bytes, int inst_length)
2018 {
2019 KASSERT(inst_length >= 0 && inst_length <= VIE_INST_SIZE,
2020 ("%s: invalid instruction length (%d)", __func__, inst_length));
2021
2022 vie_restart(vie);
2023 memset(vie->inst, 0, sizeof(vie->inst));
2024 if (inst_length != 0)
2025 memcpy(vie->inst, inst_bytes, inst_length);
2026 vie->num_valid = inst_length;
2027 }
2028
2029 #ifdef _KERNEL
2030 static int
2031 pf_error_code(int usermode, int prot, int rsvd, uint64_t pte)
2032 {
2033 int error_code = 0;
2034
2035 if (pte & PG_V)
2036 error_code |= PGEX_P;
2037 if (prot & VM_PROT_WRITE)
2038 error_code |= PGEX_W;
2039 if (usermode)
2040 error_code |= PGEX_U;
2041 if (rsvd)
2042 error_code |= PGEX_RSV;
2043 if (prot & VM_PROT_EXECUTE)
2044 error_code |= PGEX_I;
2045
2046 return (error_code);
2047 }
2048
2049 static void
2050 ptp_release(void **cookie)
2051 {
2052 if (*cookie != NULL) {
2053 vm_gpa_release(*cookie);
2054 *cookie = NULL;
2055 }
2056 }
2057
2058 static void *
2059 ptp_hold(struct vcpu *vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
2060 {
2061 void *ptr;
2062
2063 ptp_release(cookie);
2064 ptr = vm_gpa_hold(vcpu, ptpphys, len, VM_PROT_RW, cookie);
2065 return (ptr);
2066 }
2067
2068 static int
2069 _vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
2070 uint64_t gla, int prot, uint64_t *gpa, int *guest_fault, bool check_only)
2071 {
2072 int nlevels, pfcode, ptpshift, ptpindex, retval, usermode, writable;
2073 u_int retries;
2074 uint64_t *ptpbase, ptpphys, pte, pgsize;
2075 uint32_t *ptpbase32, pte32;
2076 void *cookie;
2077
2078 *guest_fault = 0;
2079
2080 usermode = (paging->cpl == 3 ? 1 : 0);
2081 writable = prot & VM_PROT_WRITE;
2082 cookie = NULL;
2083 retval = 0;
2084 retries = 0;
2085 restart:
2086 ptpphys = paging->cr3; /* root of the page tables */
2087 ptp_release(&cookie);
2088 if (retries++ > 0)
2089 maybe_yield();
2090
2091 if (vie_canonical_check(paging->cpu_mode, gla)) {
2092 /*
2093 * XXX assuming a non-stack reference otherwise a stack fault
2094 * should be generated.
2095 */
2096 if (!check_only)
2097 vm_inject_gp(vcpu);
2098 goto fault;
2099 }
2100
2101 if (paging->paging_mode == PAGING_MODE_FLAT) {
2102 *gpa = gla;
2103 goto done;
2104 }
2105
2106 if (paging->paging_mode == PAGING_MODE_32) {
2107 nlevels = 2;
2108 while (--nlevels >= 0) {
2109 /* Zero out the lower 12 bits. */
2110 ptpphys &= ~0xfff;
2111
2112 ptpbase32 = ptp_hold(vcpu, ptpphys, PAGE_SIZE,
2113 &cookie);
2114
2115 if (ptpbase32 == NULL)
2116 goto error;
2117
2118 ptpshift = PAGE_SHIFT + nlevels * 10;
2119 ptpindex = (gla >> ptpshift) & 0x3FF;
2120 pgsize = 1UL << ptpshift;
2121
2122 pte32 = ptpbase32[ptpindex];
2123
2124 if ((pte32 & PG_V) == 0 ||
2125 (usermode && (pte32 & PG_U) == 0) ||
2126 (writable && (pte32 & PG_RW) == 0)) {
2127 if (!check_only) {
2128 pfcode = pf_error_code(usermode, prot, 0,
2129 pte32);
2130 vm_inject_pf(vcpu, pfcode, gla);
2131 }
2132 goto fault;
2133 }
2134
2135 /*
2136 * Emulate the x86 MMU's management of the accessed
2137 * and dirty flags. While the accessed flag is set
2138 * at every level of the page table, the dirty flag
2139 * is only set at the last level providing the guest
2140 * physical address.
2141 */
2142 if (!check_only && (pte32 & PG_A) == 0) {
2143 if (atomic_cmpset_32(&ptpbase32[ptpindex],
2144 pte32, pte32 | PG_A) == 0) {
2145 goto restart;
2146 }
2147 }
2148
2149 /* XXX must be ignored if CR4.PSE=0 */
2150 if (nlevels > 0 && (pte32 & PG_PS) != 0)
2151 break;
2152
2153 ptpphys = pte32;
2154 }
2155
2156 /* Set the dirty bit in the page table entry if necessary */
2157 if (!check_only && writable && (pte32 & PG_M) == 0) {
2158 if (atomic_cmpset_32(&ptpbase32[ptpindex],
2159 pte32, pte32 | PG_M) == 0) {
2160 goto restart;
2161 }
2162 }
2163
2164 /* Zero out the lower 'ptpshift' bits */
2165 pte32 >>= ptpshift; pte32 <<= ptpshift;
2166 *gpa = pte32 | (gla & (pgsize - 1));
2167 goto done;
2168 }
2169
2170 if (paging->paging_mode == PAGING_MODE_PAE) {
2171 /* Zero out the lower 5 bits and the upper 32 bits */
2172 ptpphys &= 0xffffffe0UL;
2173
2174 ptpbase = ptp_hold(vcpu, ptpphys, sizeof(*ptpbase) * 4,
2175 &cookie);
2176 if (ptpbase == NULL)
2177 goto error;
2178
2179 ptpindex = (gla >> 30) & 0x3;
2180
2181 pte = ptpbase[ptpindex];
2182
2183 if ((pte & PG_V) == 0) {
2184 if (!check_only) {
2185 pfcode = pf_error_code(usermode, prot, 0, pte);
2186 vm_inject_pf(vcpu, pfcode, gla);
2187 }
2188 goto fault;
2189 }
2190
2191 ptpphys = pte;
2192
2193 nlevels = 2;
2194 } else if (paging->paging_mode == PAGING_MODE_64_LA57) {
2195 nlevels = 5;
2196 } else {
2197 nlevels = 4;
2198 }
2199
2200 while (--nlevels >= 0) {
2201 /* Zero out the lower 12 bits and the upper 12 bits */
2202 ptpphys >>= 12; ptpphys <<= 24; ptpphys >>= 12;
2203
2204 ptpbase = ptp_hold(vcpu, ptpphys, PAGE_SIZE, &cookie);
2205 if (ptpbase == NULL)
2206 goto error;
2207
2208 ptpshift = PAGE_SHIFT + nlevels * 9;
2209 ptpindex = (gla >> ptpshift) & 0x1FF;
2210 pgsize = 1UL << ptpshift;
2211
2212 pte = ptpbase[ptpindex];
2213
2214 if ((pte & PG_V) == 0 ||
2215 (usermode && (pte & PG_U) == 0) ||
2216 (writable && (pte & PG_RW) == 0)) {
2217 if (!check_only) {
2218 pfcode = pf_error_code(usermode, prot, 0, pte);
2219 vm_inject_pf(vcpu, pfcode, gla);
2220 }
2221 goto fault;
2222 }
2223
2224 /* Set the accessed bit in the page table entry */
2225 if (!check_only && (pte & PG_A) == 0) {
2226 if (atomic_cmpset_64(&ptpbase[ptpindex],
2227 pte, pte | PG_A) == 0) {
2228 goto restart;
2229 }
2230 }
2231
2232 if (nlevels > 0 && (pte & PG_PS) != 0) {
2233 if (pgsize > 1 * GB) {
2234 if (!check_only) {
2235 pfcode = pf_error_code(usermode, prot, 1,
2236 pte);
2237 vm_inject_pf(vcpu, pfcode, gla);
2238 }
2239 goto fault;
2240 }
2241 break;
2242 }
2243
2244 ptpphys = pte;
2245 }
2246
2247 /* Set the dirty bit in the page table entry if necessary */
2248 if (!check_only && writable && (pte & PG_M) == 0) {
2249 if (atomic_cmpset_64(&ptpbase[ptpindex], pte, pte | PG_M) == 0)
2250 goto restart;
2251 }
2252
2253 /* Zero out the lower 'ptpshift' bits and the upper 12 bits */
2254 pte >>= ptpshift; pte <<= (ptpshift + 12); pte >>= 12;
2255 *gpa = pte | (gla & (pgsize - 1));
2256 done:
2257 ptp_release(&cookie);
2258 KASSERT(retval == 0 || retval == EFAULT, ("%s: unexpected retval %d",
2259 __func__, retval));
2260 return (retval);
2261 error:
2262 retval = EFAULT;
2263 goto done;
2264 fault:
2265 *guest_fault = 1;
2266 goto done;
2267 }
2268
2269 int
2270 vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
2271 uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
2272 {
2273
2274 return (_vm_gla2gpa(vcpu, paging, gla, prot, gpa, guest_fault,
2275 false));
2276 }
2277
2278 int
2279 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
2280 uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
2281 {
2282
2283 return (_vm_gla2gpa(vcpu, paging, gla, prot, gpa, guest_fault,
2284 true));
2285 }
2286
2287 int
2288 vmm_fetch_instruction(struct vcpu *vcpu, struct vm_guest_paging *paging,
2289 uint64_t rip, int inst_length, struct vie *vie, int *faultptr)
2290 {
2291 struct vm_copyinfo copyinfo[2];
2292 int error, prot;
2293
2294 if (inst_length > VIE_INST_SIZE)
2295 panic("vmm_fetch_instruction: invalid length %d", inst_length);
2296
2297 prot = PROT_READ | PROT_EXEC;
2298 error = vm_copy_setup(vcpu, paging, rip, inst_length, prot,
2299 copyinfo, nitems(copyinfo), faultptr);
2300 if (error || *faultptr)
2301 return (error);
2302
2303 vm_copyin(copyinfo, vie->inst, inst_length);
2304 vm_copy_teardown(copyinfo, nitems(copyinfo));
2305 vie->num_valid = inst_length;
2306 return (0);
2307 }
2308 #endif /* _KERNEL */
2309
2310 static int
2311 vie_peek(struct vie *vie, uint8_t *x)
2312 {
2313
2314 if (vie->num_processed < vie->num_valid) {
2315 *x = vie->inst[vie->num_processed];
2316 return (0);
2317 } else
2318 return (-1);
2319 }
2320
2321 static void
2322 vie_advance(struct vie *vie)
2323 {
2324
2325 vie->num_processed++;
2326 }
2327
2328 static bool
2329 segment_override(uint8_t x, int *seg)
2330 {
2331
2332 switch (x) {
2333 case 0x2E:
2334 *seg = VM_REG_GUEST_CS;
2335 break;
2336 case 0x36:
2337 *seg = VM_REG_GUEST_SS;
2338 break;
2339 case 0x3E:
2340 *seg = VM_REG_GUEST_DS;
2341 break;
2342 case 0x26:
2343 *seg = VM_REG_GUEST_ES;
2344 break;
2345 case 0x64:
2346 *seg = VM_REG_GUEST_FS;
2347 break;
2348 case 0x65:
2349 *seg = VM_REG_GUEST_GS;
2350 break;
2351 default:
2352 return (false);
2353 }
2354 return (true);
2355 }
2356
2357 static int
2358 decode_prefixes(struct vie *vie, enum vm_cpu_mode cpu_mode, int cs_d)
2359 {
2360 uint8_t x;
2361
2362 while (1) {
2363 if (vie_peek(vie, &x))
2364 return (-1);
2365
2366 if (x == 0x66)
2367 vie->opsize_override = 1;
2368 else if (x == 0x67)
2369 vie->addrsize_override = 1;
2370 else if (x == 0xF3)
2371 vie->repz_present = 1;
2372 else if (x == 0xF2)
2373 vie->repnz_present = 1;
2374 else if (segment_override(x, &vie->segment_register))
2375 vie->segment_override = 1;
2376 else
2377 break;
2378
2379 vie_advance(vie);
2380 }
2381
2382 /*
2383 * From section 2.2.1, "REX Prefixes", Intel SDM Vol 2:
2384 * - Only one REX prefix is allowed per instruction.
2385 * - The REX prefix must immediately precede the opcode byte or the
2386 * escape opcode byte.
2387 * - If an instruction has a mandatory prefix (0x66, 0xF2 or 0xF3)
2388 * the mandatory prefix must come before the REX prefix.
2389 */
2390 if (cpu_mode == CPU_MODE_64BIT && x >= 0x40 && x <= 0x4F) {
2391 vie->rex_present = 1;
2392 vie->rex_w = x & 0x8 ? 1 : 0;
2393 vie->rex_r = x & 0x4 ? 1 : 0;
2394 vie->rex_x = x & 0x2 ? 1 : 0;
2395 vie->rex_b = x & 0x1 ? 1 : 0;
2396 vie_advance(vie);
2397 }
2398
2399 /*
2400 * § 2.3.5, "The VEX Prefix", SDM Vol 2.
2401 */
2402 if ((cpu_mode == CPU_MODE_64BIT || cpu_mode == CPU_MODE_COMPATIBILITY)
2403 && x == 0xC4) {
2404 const struct vie_op *optab;
2405
2406 /* 3-byte VEX prefix. */
2407 vie->vex_present = 1;
2408
2409 vie_advance(vie);
2410 if (vie_peek(vie, &x))
2411 return (-1);
2412
2413 /*
2414 * 2nd byte: [R', X', B', mmmmm[4:0]]. Bits are inverted
2415 * relative to REX encoding.
2416 */
2417 vie->rex_r = x & 0x80 ? 0 : 1;
2418 vie->rex_x = x & 0x40 ? 0 : 1;
2419 vie->rex_b = x & 0x20 ? 0 : 1;
2420
2421 switch (x & 0x1F) {
2422 case 0x2:
2423 /* 0F 38. */
2424 optab = three_byte_opcodes_0f38;
2425 break;
2426 case 0x1:
2427 /* 0F class - nothing handled here yet. */
2428 /* FALLTHROUGH */
2429 case 0x3:
2430 /* 0F 3A class - nothing handled here yet. */
2431 /* FALLTHROUGH */
2432 default:
2433 /* Reserved (#UD). */
2434 return (-1);
2435 }
2436
2437 vie_advance(vie);
2438 if (vie_peek(vie, &x))
2439 return (-1);
2440
2441 /* 3rd byte: [W, vvvv[6:3], L, pp[1:0]]. */
2442 vie->rex_w = x & 0x80 ? 1 : 0;
2443
2444 vie->vex_reg = ((~(unsigned)x & 0x78u) >> 3);
2445 vie->vex_l = !!(x & 0x4);
2446 vie->vex_pp = (x & 0x3);
2447
2448 /* PP: 1=66 2=F3 3=F2 prefixes. */
2449 switch (vie->vex_pp) {
2450 case 0x1:
2451 vie->opsize_override = 1;
2452 break;
2453 case 0x2:
2454 vie->repz_present = 1;
2455 break;
2456 case 0x3:
2457 vie->repnz_present = 1;
2458 break;
2459 }
2460
2461 vie_advance(vie);
2462
2463 /* Opcode, sans literal prefix prefix. */
2464 if (vie_peek(vie, &x))
2465 return (-1);
2466
2467 vie->op = optab[x];
2468 if (vie->op.op_type == VIE_OP_TYPE_NONE)
2469 return (-1);
2470
2471 vie_advance(vie);
2472 }
2473
2474 /*
2475 * Section "Operand-Size And Address-Size Attributes", Intel SDM, Vol 1
2476 */
2477 if (cpu_mode == CPU_MODE_64BIT) {
2478 /*
2479 * Default address size is 64-bits and default operand size
2480 * is 32-bits.
2481 */
2482 vie->addrsize = vie->addrsize_override ? 4 : 8;
2483 if (vie->rex_w)
2484 vie->opsize = 8;
2485 else if (vie->opsize_override)
2486 vie->opsize = 2;
2487 else
2488 vie->opsize = 4;
2489 } else if (cs_d) {
2490 /* Default address and operand sizes are 32-bits */
2491 vie->addrsize = vie->addrsize_override ? 2 : 4;
2492 vie->opsize = vie->opsize_override ? 2 : 4;
2493 } else {
2494 /* Default address and operand sizes are 16-bits */
2495 vie->addrsize = vie->addrsize_override ? 4 : 2;
2496 vie->opsize = vie->opsize_override ? 4 : 2;
2497 }
2498 return (0);
2499 }
2500
2501 static int
2502 decode_two_byte_opcode(struct vie *vie)
2503 {
2504 uint8_t x;
2505
2506 if (vie_peek(vie, &x))
2507 return (-1);
2508
2509 vie->op = two_byte_opcodes[x];
2510
2511 if (vie->op.op_type == VIE_OP_TYPE_NONE)
2512 return (-1);
2513
2514 vie_advance(vie);
2515 return (0);
2516 }
2517
2518 static int
2519 decode_opcode(struct vie *vie)
2520 {
2521 uint8_t x;
2522
2523 if (vie_peek(vie, &x))
2524 return (-1);
2525
2526 /* Already did this via VEX prefix. */
2527 if (vie->op.op_type != VIE_OP_TYPE_NONE)
2528 return (0);
2529
2530 vie->op = one_byte_opcodes[x];
2531
2532 if (vie->op.op_type == VIE_OP_TYPE_NONE)
2533 return (-1);
2534
2535 vie_advance(vie);
2536
2537 if (vie->op.op_type == VIE_OP_TYPE_TWO_BYTE)
2538 return (decode_two_byte_opcode(vie));
2539
2540 return (0);
2541 }
2542
2543 static int
2544 decode_modrm(struct vie *vie, enum vm_cpu_mode cpu_mode)
2545 {
2546 uint8_t x;
2547
2548 if (vie->op.op_flags & VIE_OP_F_NO_MODRM)
2549 return (0);
2550
2551 if (cpu_mode == CPU_MODE_REAL)
2552 return (-1);
2553
2554 if (vie_peek(vie, &x))
2555 return (-1);
2556
2557 vie->mod = (x >> 6) & 0x3;
2558 vie->rm = (x >> 0) & 0x7;
2559 vie->reg = (x >> 3) & 0x7;
2560
2561 /*
2562 * A direct addressing mode makes no sense in the context of an EPT
2563 * fault. There has to be a memory access involved to cause the
2564 * EPT fault.
2565 */
2566 if (vie->mod == VIE_MOD_DIRECT)
2567 return (-1);
2568
2569 if ((vie->mod == VIE_MOD_INDIRECT && vie->rm == VIE_RM_DISP32) ||
2570 (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)) {
2571 /*
2572 * Table 2-5: Special Cases of REX Encodings
2573 *
2574 * mod=0, r/m=5 is used in the compatibility mode to
2575 * indicate a disp32 without a base register.
2576 *
2577 * mod!=3, r/m=4 is used in the compatibility mode to
2578 * indicate that the SIB byte is present.
2579 *
2580 * The 'b' bit in the REX prefix is don't care in
2581 * this case.
2582 */
2583 } else {
2584 vie->rm |= (vie->rex_b << 3);
2585 }
2586
2587 vie->reg |= (vie->rex_r << 3);
2588
2589 /* SIB */
2590 if (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)
2591 goto done;
2592
2593 vie->base_register = gpr_map[vie->rm];
2594
2595 switch (vie->mod) {
2596 case VIE_MOD_INDIRECT_DISP8:
2597 vie->disp_bytes = 1;
2598 break;
2599 case VIE_MOD_INDIRECT_DISP32:
2600 vie->disp_bytes = 4;
2601 break;
2602 case VIE_MOD_INDIRECT:
2603 if (vie->rm == VIE_RM_DISP32) {
2604 vie->disp_bytes = 4;
2605 /*
2606 * Table 2-7. RIP-Relative Addressing
2607 *
2608 * In 64-bit mode mod=00 r/m=101 implies [rip] + disp32
2609 * whereas in compatibility mode it just implies disp32.
2610 */
2611
2612 if (cpu_mode == CPU_MODE_64BIT)
2613 vie->base_register = VM_REG_GUEST_RIP;
2614 else
2615 vie->base_register = VM_REG_LAST;
2616 }
2617 break;
2618 }
2619
2620 done:
2621 vie_advance(vie);
2622
2623 return (0);
2624 }
2625
2626 static int
2627 decode_sib(struct vie *vie)
2628 {
2629 uint8_t x;
2630
2631 /* Proceed only if SIB byte is present */
2632 if (vie->mod == VIE_MOD_DIRECT || vie->rm != VIE_RM_SIB)
2633 return (0);
2634
2635 if (vie_peek(vie, &x))
2636 return (-1);
2637
2638 /* De-construct the SIB byte */
2639 vie->ss = (x >> 6) & 0x3;
2640 vie->index = (x >> 3) & 0x7;
2641 vie->base = (x >> 0) & 0x7;
2642
2643 /* Apply the REX prefix modifiers */
2644 vie->index |= vie->rex_x << 3;
2645 vie->base |= vie->rex_b << 3;
2646
2647 switch (vie->mod) {
2648 case VIE_MOD_INDIRECT_DISP8:
2649 vie->disp_bytes = 1;
2650 break;
2651 case VIE_MOD_INDIRECT_DISP32:
2652 vie->disp_bytes = 4;
2653 break;
2654 }
2655
2656 if (vie->mod == VIE_MOD_INDIRECT &&
2657 (vie->base == 5 || vie->base == 13)) {
2658 /*
2659 * Special case when base register is unused if mod = 0
2660 * and base = %rbp or %r13.
2661 *
2662 * Documented in:
2663 * Table 2-3: 32-bit Addressing Forms with the SIB Byte
2664 * Table 2-5: Special Cases of REX Encodings
2665 */
2666 vie->disp_bytes = 4;
2667 } else {
2668 vie->base_register = gpr_map[vie->base];
2669 }
2670
2671 /*
2672 * All encodings of 'index' are valid except for %rsp (4).
2673 *
2674 * Documented in:
2675 * Table 2-3: 32-bit Addressing Forms with the SIB Byte
2676 * Table 2-5: Special Cases of REX Encodings
2677 */
2678 if (vie->index != 4)
2679 vie->index_register = gpr_map[vie->index];
2680
2681 /* 'scale' makes sense only in the context of an index register */
2682 if (vie->index_register < VM_REG_LAST)
2683 vie->scale = 1 << vie->ss;
2684
2685 vie_advance(vie);
2686
2687 return (0);
2688 }
2689
2690 static int
2691 decode_displacement(struct vie *vie)
2692 {
2693 int n, i;
2694 uint8_t x;
2695
2696 union {
2697 char buf[4];
2698 int8_t signed8;
2699 int32_t signed32;
2700 } u;
2701
2702 if ((n = vie->disp_bytes) == 0)
2703 return (0);
2704
2705 if (n != 1 && n != 4)
2706 panic("decode_displacement: invalid disp_bytes %d", n);
2707
2708 for (i = 0; i < n; i++) {
2709 if (vie_peek(vie, &x))
2710 return (-1);
2711
2712 u.buf[i] = x;
2713 vie_advance(vie);
2714 }
2715
2716 if (n == 1)
2717 vie->displacement = u.signed8; /* sign-extended */
2718 else
2719 vie->displacement = u.signed32; /* sign-extended */
2720
2721 return (0);
2722 }
2723
2724 static int
2725 decode_immediate(struct vie *vie)
2726 {
2727 int i, n;
2728 uint8_t x;
2729 union {
2730 char buf[4];
2731 int8_t signed8;
2732 int16_t signed16;
2733 int32_t signed32;
2734 } u;
2735
2736 /* Figure out immediate operand size (if any) */
2737 if (vie->op.op_flags & VIE_OP_F_IMM) {
2738 /*
2739 * Section 2.2.1.5 "Immediates", Intel SDM:
2740 * In 64-bit mode the typical size of immediate operands
2741 * remains 32-bits. When the operand size if 64-bits, the
2742 * processor sign-extends all immediates to 64-bits prior
2743 * to their use.
2744 */
2745 if (vie->opsize == 4 || vie->opsize == 8)
2746 vie->imm_bytes = 4;
2747 else
2748 vie->imm_bytes = 2;
2749 } else if (vie->op.op_flags & VIE_OP_F_IMM8) {
2750 vie->imm_bytes = 1;
2751 }
2752
2753 if ((n = vie->imm_bytes) == 0)
2754 return (0);
2755
2756 KASSERT(n == 1 || n == 2 || n == 4,
2757 ("%s: invalid number of immediate bytes: %d", __func__, n));
2758
2759 for (i = 0; i < n; i++) {
2760 if (vie_peek(vie, &x))
2761 return (-1);
2762
2763 u.buf[i] = x;
2764 vie_advance(vie);
2765 }
2766
2767 /* sign-extend the immediate value before use */
2768 if (n == 1)
2769 vie->immediate = u.signed8;
2770 else if (n == 2)
2771 vie->immediate = u.signed16;
2772 else
2773 vie->immediate = u.signed32;
2774
2775 return (0);
2776 }
2777
2778 static int
2779 decode_moffset(struct vie *vie)
2780 {
2781 int i, n;
2782 uint8_t x;
2783 union {
2784 char buf[8];
2785 uint64_t u64;
2786 } u;
2787
2788 if ((vie->op.op_flags & VIE_OP_F_MOFFSET) == 0)
2789 return (0);
2790
2791 /*
2792 * Section 2.2.1.4, "Direct Memory-Offset MOVs", Intel SDM:
2793 * The memory offset size follows the address-size of the instruction.
2794 */
2795 n = vie->addrsize;
2796 KASSERT(n == 2 || n == 4 || n == 8, ("invalid moffset bytes: %d", n));
2797
2798 u.u64 = 0;
2799 for (i = 0; i < n; i++) {
2800 if (vie_peek(vie, &x))
2801 return (-1);
2802
2803 u.buf[i] = x;
2804 vie_advance(vie);
2805 }
2806 vie->displacement = u.u64;
2807 return (0);
2808 }
2809
2810 #ifdef _KERNEL
2811 /*
2812 * Verify that the 'guest linear address' provided as collateral of the nested
2813 * page table fault matches with our instruction decoding.
2814 */
2815 static int
2816 verify_gla(struct vcpu *vcpu, uint64_t gla, struct vie *vie,
2817 enum vm_cpu_mode cpu_mode)
2818 {
2819 int error;
2820 uint64_t base, segbase, idx, gla2;
2821 enum vm_reg_name seg;
2822 struct seg_desc desc;
2823
2824 /* Skip 'gla' verification */
2825 if (gla == VIE_INVALID_GLA)
2826 return (0);
2827
2828 base = 0;
2829 if (vie->base_register != VM_REG_LAST) {
2830 error = vm_get_register(vcpu, vie->base_register, &base);
2831 if (error) {
2832 printf("verify_gla: error %d getting base reg %d\n",
2833 error, vie->base_register);
2834 return (-1);
2835 }
2836
2837 /*
2838 * RIP-relative addressing starts from the following
2839 * instruction
2840 */
2841 if (vie->base_register == VM_REG_GUEST_RIP)
2842 base += vie->num_processed;
2843 }
2844
2845 idx = 0;
2846 if (vie->index_register != VM_REG_LAST) {
2847 error = vm_get_register(vcpu, vie->index_register, &idx);
2848 if (error) {
2849 printf("verify_gla: error %d getting index reg %d\n",
2850 error, vie->index_register);
2851 return (-1);
2852 }
2853 }
2854
2855 /*
2856 * From "Specifying a Segment Selector", Intel SDM, Vol 1
2857 *
2858 * In 64-bit mode, segmentation is generally (but not
2859 * completely) disabled. The exceptions are the FS and GS
2860 * segments.
2861 *
2862 * In legacy IA-32 mode, when the ESP or EBP register is used
2863 * as the base, the SS segment is the default segment. For
2864 * other data references, except when relative to stack or
2865 * string destination the DS segment is the default. These
2866 * can be overridden to allow other segments to be accessed.
2867 */
2868 if (vie->segment_override)
2869 seg = vie->segment_register;
2870 else if (vie->base_register == VM_REG_GUEST_RSP ||
2871 vie->base_register == VM_REG_GUEST_RBP)
2872 seg = VM_REG_GUEST_SS;
2873 else
2874 seg = VM_REG_GUEST_DS;
2875 if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
2876 seg != VM_REG_GUEST_GS) {
2877 segbase = 0;
2878 } else {
2879 error = vm_get_seg_desc(vcpu, seg, &desc);
2880 if (error) {
2881 printf("verify_gla: error %d getting segment"
2882 " descriptor %d", error,
2883 vie->segment_register);
2884 return (-1);
2885 }
2886 segbase = desc.base;
2887 }
2888
2889 gla2 = segbase + base + vie->scale * idx + vie->displacement;
2890 gla2 &= size2mask[vie->addrsize];
2891 if (gla != gla2) {
2892 printf("verify_gla mismatch: segbase(0x%0lx)"
2893 "base(0x%0lx), scale(%d), index(0x%0lx), "
2894 "disp(0x%0lx), gla(0x%0lx), gla2(0x%0lx)\n",
2895 segbase, base, vie->scale, idx, vie->displacement,
2896 gla, gla2);
2897 return (-1);
2898 }
2899
2900 return (0);
2901 }
2902 #endif /* _KERNEL */
2903
2904 int
2905 #ifdef _KERNEL
2906 vmm_decode_instruction(struct vcpu *vcpu, uint64_t gla,
2907 enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
2908 #else
2909 vmm_decode_instruction(enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
2910 #endif
2911 {
2912
2913 if (decode_prefixes(vie, cpu_mode, cs_d))
2914 return (-1);
2915
2916 if (decode_opcode(vie))
2917 return (-1);
2918
2919 if (decode_modrm(vie, cpu_mode))
2920 return (-1);
2921
2922 if (decode_sib(vie))
2923 return (-1);
2924
2925 if (decode_displacement(vie))
2926 return (-1);
2927
2928 if (decode_immediate(vie))
2929 return (-1);
2930
2931 if (decode_moffset(vie))
2932 return (-1);
2933
2934 #ifdef _KERNEL
2935 if ((vie->op.op_flags & VIE_OP_F_NO_GLA_VERIFICATION) == 0) {
2936 if (verify_gla(vcpu, gla, vie, cpu_mode))
2937 return (-1);
2938 }
2939 #endif
2940
2941 vie->decoded = 1; /* success */
2942
2943 return (0);
2944 }
Cache object: 3fcf2af1f40df1f5fd35e459cb910d06
|