The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arch/i386/kernel/traps.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  linux/arch/i386/traps.c
    3  *
    4  *  Copyright (C) 1991, 1992  Linus Torvalds
    5  *
    6  *  Pentium III FXSR, SSE support
    7  *      Gareth Hughes <gareth@valinux.com>, May 2000
    8  */
    9 
   10 /*
   11  * 'Traps.c' handles hardware traps and faults after we have saved some
   12  * state in 'asm.s'.
   13  */
   14 #include <linux/sched.h>
   15 #include <linux/kernel.h>
   16 #include <linux/string.h>
   17 #include <linux/errno.h>
   18 #include <linux/timer.h>
   19 #include <linux/mm.h>
   20 #include <linux/init.h>
   21 #include <linux/delay.h>
   22 #include <linux/spinlock.h>
   23 #include <linux/interrupt.h>
   24 #include <linux/highmem.h>
   25 #include <linux/kallsyms.h>
   26 #include <linux/ptrace.h>
   27 #include <linux/utsname.h>
   28 #include <linux/kprobes.h>
   29 #include <linux/kexec.h>
   30 #include <linux/unwind.h>
   31 #include <linux/uaccess.h>
   32 #include <linux/nmi.h>
   33 #include <linux/bug.h>
   34 
   35 #ifdef CONFIG_EISA
   36 #include <linux/ioport.h>
   37 #include <linux/eisa.h>
   38 #endif
   39 
   40 #ifdef CONFIG_MCA
   41 #include <linux/mca.h>
   42 #endif
   43 
   44 #include <asm/processor.h>
   45 #include <asm/system.h>
   46 #include <asm/io.h>
   47 #include <asm/atomic.h>
   48 #include <asm/debugreg.h>
   49 #include <asm/desc.h>
   50 #include <asm/i387.h>
   51 #include <asm/nmi.h>
   52 #include <asm/unwind.h>
   53 #include <asm/smp.h>
   54 #include <asm/arch_hooks.h>
   55 #include <linux/kdebug.h>
   56 #include <asm/stacktrace.h>
   57 
   58 #include <linux/module.h>
   59 
   60 #include "mach_traps.h"
   61 
   62 int panic_on_unrecovered_nmi;
   63 
   64 asmlinkage int system_call(void);
   65 
   66 /* Do we ignore FPU interrupts ? */
   67 char ignore_fpu_irq = 0;
   68 
   69 /*
   70  * The IDT has to be page-aligned to simplify the Pentium
   71  * F0 0F bug workaround.. We have a special link segment
   72  * for this.
   73  */
   74 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
   75 
   76 asmlinkage void divide_error(void);
   77 asmlinkage void debug(void);
   78 asmlinkage void nmi(void);
   79 asmlinkage void int3(void);
   80 asmlinkage void overflow(void);
   81 asmlinkage void bounds(void);
   82 asmlinkage void invalid_op(void);
   83 asmlinkage void device_not_available(void);
   84 asmlinkage void coprocessor_segment_overrun(void);
   85 asmlinkage void invalid_TSS(void);
   86 asmlinkage void segment_not_present(void);
   87 asmlinkage void stack_segment(void);
   88 asmlinkage void general_protection(void);
   89 asmlinkage void page_fault(void);
   90 asmlinkage void coprocessor_error(void);
   91 asmlinkage void simd_coprocessor_error(void);
   92 asmlinkage void alignment_check(void);
   93 asmlinkage void spurious_interrupt_bug(void);
   94 asmlinkage void machine_check(void);
   95 
   96 int kstack_depth_to_print = 24;
   97 static unsigned int code_bytes = 64;
   98 
   99 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
  100 {
  101         return  p > (void *)tinfo &&
  102                 p < (void *)tinfo + THREAD_SIZE - 3;
  103 }
  104 
  105 static inline unsigned long print_context_stack(struct thread_info *tinfo,
  106                                 unsigned long *stack, unsigned long ebp,
  107                                 struct stacktrace_ops *ops, void *data)
  108 {
  109         unsigned long addr;
  110 
  111 #ifdef  CONFIG_FRAME_POINTER
  112         while (valid_stack_ptr(tinfo, (void *)ebp)) {
  113                 unsigned long new_ebp;
  114                 addr = *(unsigned long *)(ebp + 4);
  115                 ops->address(data, addr);
  116                 /*
  117                  * break out of recursive entries (such as
  118                  * end_of_stack_stop_unwind_function). Also,
  119                  * we can never allow a frame pointer to
  120                  * move downwards!
  121                  */
  122                 new_ebp = *(unsigned long *)ebp;
  123                 if (new_ebp <= ebp)
  124                         break;
  125                 ebp = new_ebp;
  126         }
  127 #else
  128         while (valid_stack_ptr(tinfo, stack)) {
  129                 addr = *stack++;
  130                 if (__kernel_text_address(addr))
  131                         ops->address(data, addr);
  132         }
  133 #endif
  134         return ebp;
  135 }
  136 
  137 #define MSG(msg) ops->warning(data, msg)
  138 
  139 void dump_trace(struct task_struct *task, struct pt_regs *regs,
  140                 unsigned long *stack,
  141                 struct stacktrace_ops *ops, void *data)
  142 {
  143         unsigned long ebp = 0;
  144 
  145         if (!task)
  146                 task = current;
  147 
  148         if (!stack) {
  149                 unsigned long dummy;
  150                 stack = &dummy;
  151                 if (task && task != current)
  152                         stack = (unsigned long *)task->thread.esp;
  153         }
  154 
  155 #ifdef CONFIG_FRAME_POINTER
  156         if (!ebp) {
  157                 if (task == current) {
  158                         /* Grab ebp right from our regs */
  159                         asm ("movl %%ebp, %0" : "=r" (ebp) : );
  160                 } else {
  161                         /* ebp is the last reg pushed by switch_to */
  162                         ebp = *(unsigned long *) task->thread.esp;
  163                 }
  164         }
  165 #endif
  166 
  167         while (1) {
  168                 struct thread_info *context;
  169                 context = (struct thread_info *)
  170                         ((unsigned long)stack & (~(THREAD_SIZE - 1)));
  171                 ebp = print_context_stack(context, stack, ebp, ops, data);
  172                 /* Should be after the line below, but somewhere
  173                    in early boot context comes out corrupted and we
  174                    can't reference it -AK */
  175                 if (ops->stack(data, "IRQ") < 0)
  176                         break;
  177                 stack = (unsigned long*)context->previous_esp;
  178                 if (!stack)
  179                         break;
  180                 touch_nmi_watchdog();
  181         }
  182 }
  183 EXPORT_SYMBOL(dump_trace);
  184 
  185 static void
  186 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
  187 {
  188         printk(data);
  189         print_symbol(msg, symbol);
  190         printk("\n");
  191 }
  192 
  193 static void print_trace_warning(void *data, char *msg)
  194 {
  195         printk("%s%s\n", (char *)data, msg);
  196 }
  197 
  198 static int print_trace_stack(void *data, char *name)
  199 {
  200         return 0;
  201 }
  202 
  203 /*
  204  * Print one address/symbol entries per line.
  205  */
  206 static void print_trace_address(void *data, unsigned long addr)
  207 {
  208         printk("%s [<%08lx>] ", (char *)data, addr);
  209         print_symbol("%s\n", addr);
  210 }
  211 
  212 static struct stacktrace_ops print_trace_ops = {
  213         .warning = print_trace_warning,
  214         .warning_symbol = print_trace_warning_symbol,
  215         .stack = print_trace_stack,
  216         .address = print_trace_address,
  217 };
  218 
  219 static void
  220 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
  221                    unsigned long * stack, char *log_lvl)
  222 {
  223         dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
  224         printk("%s =======================\n", log_lvl);
  225 }
  226 
  227 void show_trace(struct task_struct *task, struct pt_regs *regs,
  228                 unsigned long * stack)
  229 {
  230         show_trace_log_lvl(task, regs, stack, "");
  231 }
  232 
  233 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
  234                                unsigned long *esp, char *log_lvl)
  235 {
  236         unsigned long *stack;
  237         int i;
  238 
  239         if (esp == NULL) {
  240                 if (task)
  241                         esp = (unsigned long*)task->thread.esp;
  242                 else
  243                         esp = (unsigned long *)&esp;
  244         }
  245 
  246         stack = esp;
  247         for(i = 0; i < kstack_depth_to_print; i++) {
  248                 if (kstack_end(stack))
  249                         break;
  250                 if (i && ((i % 8) == 0))
  251                         printk("\n%s       ", log_lvl);
  252                 printk("%08lx ", *stack++);
  253         }
  254         printk("\n%sCall Trace:\n", log_lvl);
  255         show_trace_log_lvl(task, regs, esp, log_lvl);
  256 }
  257 
  258 void show_stack(struct task_struct *task, unsigned long *esp)
  259 {
  260         printk("       ");
  261         show_stack_log_lvl(task, NULL, esp, "");
  262 }
  263 
  264 /*
  265  * The architecture-independent dump_stack generator
  266  */
  267 void dump_stack(void)
  268 {
  269         unsigned long stack;
  270 
  271         show_trace(current, NULL, &stack);
  272 }
  273 
  274 EXPORT_SYMBOL(dump_stack);
  275 
  276 void show_registers(struct pt_regs *regs)
  277 {
  278         int i;
  279         int in_kernel = 1;
  280         unsigned long esp;
  281         unsigned short ss, gs;
  282 
  283         esp = (unsigned long) (&regs->esp);
  284         savesegment(ss, ss);
  285         savesegment(gs, gs);
  286         if (user_mode_vm(regs)) {
  287                 in_kernel = 0;
  288                 esp = regs->esp;
  289                 ss = regs->xss & 0xffff;
  290         }
  291         print_modules();
  292         printk(KERN_EMERG "CPU:    %d\n"
  293                 KERN_EMERG "EIP:    %04x:[<%08lx>]    %s VLI\n"
  294                 KERN_EMERG "EFLAGS: %08lx   (%s %.*s)\n",
  295                 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
  296                 print_tainted(), regs->eflags, init_utsname()->release,
  297                 (int)strcspn(init_utsname()->version, " "),
  298                 init_utsname()->version);
  299         print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
  300         printk(KERN_EMERG "eax: %08lx   ebx: %08lx   ecx: %08lx   edx: %08lx\n",
  301                 regs->eax, regs->ebx, regs->ecx, regs->edx);
  302         printk(KERN_EMERG "esi: %08lx   edi: %08lx   ebp: %08lx   esp: %08lx\n",
  303                 regs->esi, regs->edi, regs->ebp, esp);
  304         printk(KERN_EMERG "ds: %04x   es: %04x   fs: %04x  gs: %04x  ss: %04x\n",
  305                regs->xds & 0xffff, regs->xes & 0xffff, regs->xfs & 0xffff, gs, ss);
  306         printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
  307                 TASK_COMM_LEN, current->comm, current->pid,
  308                 current_thread_info(), current, task_thread_info(current));
  309         /*
  310          * When in-kernel, we also print out the stack and code at the
  311          * time of the fault..
  312          */
  313         if (in_kernel) {
  314                 u8 *eip;
  315                 unsigned int code_prologue = code_bytes * 43 / 64;
  316                 unsigned int code_len = code_bytes;
  317                 unsigned char c;
  318 
  319                 printk("\n" KERN_EMERG "Stack: ");
  320                 show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
  321 
  322                 printk(KERN_EMERG "Code: ");
  323 
  324                 eip = (u8 *)regs->eip - code_prologue;
  325                 if (eip < (u8 *)PAGE_OFFSET ||
  326                         probe_kernel_address(eip, c)) {
  327                         /* try starting at EIP */
  328                         eip = (u8 *)regs->eip;
  329                         code_len = code_len - code_prologue + 1;
  330                 }
  331                 for (i = 0; i < code_len; i++, eip++) {
  332                         if (eip < (u8 *)PAGE_OFFSET ||
  333                                 probe_kernel_address(eip, c)) {
  334                                 printk(" Bad EIP value.");
  335                                 break;
  336                         }
  337                         if (eip == (u8 *)regs->eip)
  338                                 printk("<%02x> ", c);
  339                         else
  340                                 printk("%02x ", c);
  341                 }
  342         }
  343         printk("\n");
  344 }       
  345 
  346 int is_valid_bugaddr(unsigned long eip)
  347 {
  348         unsigned short ud2;
  349 
  350         if (eip < PAGE_OFFSET)
  351                 return 0;
  352         if (probe_kernel_address((unsigned short *)eip, ud2))
  353                 return 0;
  354 
  355         return ud2 == 0x0b0f;
  356 }
  357 
  358 /*
  359  * This is gone through when something in the kernel has done something bad and
  360  * is about to be terminated.
  361  */
  362 void die(const char * str, struct pt_regs * regs, long err)
  363 {
  364         static struct {
  365                 spinlock_t lock;
  366                 u32 lock_owner;
  367                 int lock_owner_depth;
  368         } die = {
  369                 .lock =                 __SPIN_LOCK_UNLOCKED(die.lock),
  370                 .lock_owner =           -1,
  371                 .lock_owner_depth =     0
  372         };
  373         static int die_counter;
  374         unsigned long flags;
  375 
  376         oops_enter();
  377 
  378         if (die.lock_owner != raw_smp_processor_id()) {
  379                 console_verbose();
  380                 spin_lock_irqsave(&die.lock, flags);
  381                 die.lock_owner = smp_processor_id();
  382                 die.lock_owner_depth = 0;
  383                 bust_spinlocks(1);
  384         }
  385         else
  386                 local_save_flags(flags);
  387 
  388         if (++die.lock_owner_depth < 3) {
  389                 int nl = 0;
  390                 unsigned long esp;
  391                 unsigned short ss;
  392 
  393                 report_bug(regs->eip);
  394 
  395                 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
  396 #ifdef CONFIG_PREEMPT
  397                 printk(KERN_EMERG "PREEMPT ");
  398                 nl = 1;
  399 #endif
  400 #ifdef CONFIG_SMP
  401                 if (!nl)
  402                         printk(KERN_EMERG);
  403                 printk("SMP ");
  404                 nl = 1;
  405 #endif
  406 #ifdef CONFIG_DEBUG_PAGEALLOC
  407                 if (!nl)
  408                         printk(KERN_EMERG);
  409                 printk("DEBUG_PAGEALLOC");
  410                 nl = 1;
  411 #endif
  412                 if (nl)
  413                         printk("\n");
  414                 if (notify_die(DIE_OOPS, str, regs, err,
  415                                         current->thread.trap_no, SIGSEGV) !=
  416                                 NOTIFY_STOP) {
  417                         show_registers(regs);
  418                         /* Executive summary in case the oops scrolled away */
  419                         esp = (unsigned long) (&regs->esp);
  420                         savesegment(ss, ss);
  421                         if (user_mode(regs)) {
  422                                 esp = regs->esp;
  423                                 ss = regs->xss & 0xffff;
  424                         }
  425                         printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
  426                         print_symbol("%s", regs->eip);
  427                         printk(" SS:ESP %04x:%08lx\n", ss, esp);
  428                 }
  429                 else
  430                         regs = NULL;
  431         } else
  432                 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
  433 
  434         bust_spinlocks(0);
  435         die.lock_owner = -1;
  436         spin_unlock_irqrestore(&die.lock, flags);
  437 
  438         if (!regs)
  439                 return;
  440 
  441         if (kexec_should_crash(current))
  442                 crash_kexec(regs);
  443 
  444         if (in_interrupt())
  445                 panic("Fatal exception in interrupt");
  446 
  447         if (panic_on_oops)
  448                 panic("Fatal exception");
  449 
  450         oops_exit();
  451         do_exit(SIGSEGV);
  452 }
  453 
  454 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
  455 {
  456         if (!user_mode_vm(regs))
  457                 die(str, regs, err);
  458 }
  459 
  460 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
  461                               struct pt_regs * regs, long error_code,
  462                               siginfo_t *info)
  463 {
  464         struct task_struct *tsk = current;
  465 
  466         if (regs->eflags & VM_MASK) {
  467                 if (vm86)
  468                         goto vm86_trap;
  469                 goto trap_signal;
  470         }
  471 
  472         if (!user_mode(regs))
  473                 goto kernel_trap;
  474 
  475         trap_signal: {
  476                 /*
  477                  * We want error_code and trap_no set for userspace faults and
  478                  * kernelspace faults which result in die(), but not
  479                  * kernelspace faults which are fixed up.  die() gives the
  480                  * process no chance to handle the signal and notice the
  481                  * kernel fault information, so that won't result in polluting
  482                  * the information about previously queued, but not yet
  483                  * delivered, faults.  See also do_general_protection below.
  484                  */
  485                 tsk->thread.error_code = error_code;
  486                 tsk->thread.trap_no = trapnr;
  487 
  488                 if (info)
  489                         force_sig_info(signr, info, tsk);
  490                 else
  491                         force_sig(signr, tsk);
  492                 return;
  493         }
  494 
  495         kernel_trap: {
  496                 if (!fixup_exception(regs)) {
  497                         tsk->thread.error_code = error_code;
  498                         tsk->thread.trap_no = trapnr;
  499                         die(str, regs, error_code);
  500                 }
  501                 return;
  502         }
  503 
  504         vm86_trap: {
  505                 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
  506                 if (ret) goto trap_signal;
  507                 return;
  508         }
  509 }
  510 
  511 #define DO_ERROR(trapnr, signr, str, name) \
  512 fastcall void do_##name(struct pt_regs * regs, long error_code) \
  513 { \
  514         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  515                                                 == NOTIFY_STOP) \
  516                 return; \
  517         do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
  518 }
  519 
  520 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
  521 fastcall void do_##name(struct pt_regs * regs, long error_code) \
  522 { \
  523         siginfo_t info; \
  524         info.si_signo = signr; \
  525         info.si_errno = 0; \
  526         info.si_code = sicode; \
  527         info.si_addr = (void __user *)siaddr; \
  528         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  529                                                 == NOTIFY_STOP) \
  530                 return; \
  531         do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
  532 }
  533 
  534 #define DO_VM86_ERROR(trapnr, signr, str, name) \
  535 fastcall void do_##name(struct pt_regs * regs, long error_code) \
  536 { \
  537         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  538                                                 == NOTIFY_STOP) \
  539                 return; \
  540         do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
  541 }
  542 
  543 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
  544 fastcall void do_##name(struct pt_regs * regs, long error_code) \
  545 { \
  546         siginfo_t info; \
  547         info.si_signo = signr; \
  548         info.si_errno = 0; \
  549         info.si_code = sicode; \
  550         info.si_addr = (void __user *)siaddr; \
  551         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  552                                                 == NOTIFY_STOP) \
  553                 return; \
  554         do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
  555 }
  556 
  557 DO_VM86_ERROR_INFO( 0, SIGFPE,  "divide error", divide_error, FPE_INTDIV, regs->eip)
  558 #ifndef CONFIG_KPROBES
  559 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
  560 #endif
  561 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
  562 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
  563 DO_ERROR_INFO( 6, SIGILL,  "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
  564 DO_ERROR( 9, SIGFPE,  "coprocessor segment overrun", coprocessor_segment_overrun)
  565 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
  566 DO_ERROR(11, SIGBUS,  "segment not present", segment_not_present)
  567 DO_ERROR(12, SIGBUS,  "stack segment", stack_segment)
  568 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
  569 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
  570 
  571 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
  572                                               long error_code)
  573 {
  574         int cpu = get_cpu();
  575         struct tss_struct *tss = &per_cpu(init_tss, cpu);
  576         struct thread_struct *thread = &current->thread;
  577 
  578         /*
  579          * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
  580          * invalid offset set (the LAZY one) and the faulting thread has
  581          * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
  582          * and we set the offset field correctly. Then we let the CPU to
  583          * restart the faulting instruction.
  584          */
  585         if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
  586             thread->io_bitmap_ptr) {
  587                 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
  588                        thread->io_bitmap_max);
  589                 /*
  590                  * If the previously set map was extending to higher ports
  591                  * than the current one, pad extra space with 0xff (no access).
  592                  */
  593                 if (thread->io_bitmap_max < tss->io_bitmap_max)
  594                         memset((char *) tss->io_bitmap +
  595                                 thread->io_bitmap_max, 0xff,
  596                                 tss->io_bitmap_max - thread->io_bitmap_max);
  597                 tss->io_bitmap_max = thread->io_bitmap_max;
  598                 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  599                 tss->io_bitmap_owner = thread;
  600                 put_cpu();
  601                 return;
  602         }
  603         put_cpu();
  604 
  605         if (regs->eflags & VM_MASK)
  606                 goto gp_in_vm86;
  607 
  608         if (!user_mode(regs))
  609                 goto gp_in_kernel;
  610 
  611         current->thread.error_code = error_code;
  612         current->thread.trap_no = 13;
  613         force_sig(SIGSEGV, current);
  614         return;
  615 
  616 gp_in_vm86:
  617         local_irq_enable();
  618         handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
  619         return;
  620 
  621 gp_in_kernel:
  622         if (!fixup_exception(regs)) {
  623                 current->thread.error_code = error_code;
  624                 current->thread.trap_no = 13;
  625                 if (notify_die(DIE_GPF, "general protection fault", regs,
  626                                 error_code, 13, SIGSEGV) == NOTIFY_STOP)
  627                         return;
  628                 die("general protection fault", regs, error_code);
  629         }
  630 }
  631 
  632 static __kprobes void
  633 mem_parity_error(unsigned char reason, struct pt_regs * regs)
  634 {
  635         printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
  636                 "CPU %d.\n", reason, smp_processor_id());
  637         printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
  638         if (panic_on_unrecovered_nmi)
  639                 panic("NMI: Not continuing");
  640 
  641         printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
  642 
  643         /* Clear and disable the memory parity error line. */
  644         clear_mem_error(reason);
  645 }
  646 
  647 static __kprobes void
  648 io_check_error(unsigned char reason, struct pt_regs * regs)
  649 {
  650         unsigned long i;
  651 
  652         printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
  653         show_registers(regs);
  654 
  655         /* Re-enable the IOCK line, wait for a few seconds */
  656         reason = (reason & 0xf) | 8;
  657         outb(reason, 0x61);
  658         i = 2000;
  659         while (--i) udelay(1000);
  660         reason &= ~8;
  661         outb(reason, 0x61);
  662 }
  663 
  664 static __kprobes void
  665 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
  666 {
  667 #ifdef CONFIG_MCA
  668         /* Might actually be able to figure out what the guilty party
  669         * is. */
  670         if( MCA_bus ) {
  671                 mca_handle_nmi();
  672                 return;
  673         }
  674 #endif
  675         printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
  676                 "CPU %d.\n", reason, smp_processor_id());
  677         printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
  678         if (panic_on_unrecovered_nmi)
  679                 panic("NMI: Not continuing");
  680 
  681         printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
  682 }
  683 
  684 static DEFINE_SPINLOCK(nmi_print_lock);
  685 
  686 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
  687 {
  688         if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
  689             NOTIFY_STOP)
  690                 return;
  691 
  692         spin_lock(&nmi_print_lock);
  693         /*
  694         * We are in trouble anyway, lets at least try
  695         * to get a message out.
  696         */
  697         bust_spinlocks(1);
  698         printk(KERN_EMERG "%s", msg);
  699         printk(" on CPU%d, eip %08lx, registers:\n",
  700                 smp_processor_id(), regs->eip);
  701         show_registers(regs);
  702         console_silent();
  703         spin_unlock(&nmi_print_lock);
  704         bust_spinlocks(0);
  705 
  706         /* If we are in kernel we are probably nested up pretty bad
  707          * and might aswell get out now while we still can.
  708         */
  709         if (!user_mode_vm(regs)) {
  710                 current->thread.trap_no = 2;
  711                 crash_kexec(regs);
  712         }
  713 
  714         do_exit(SIGSEGV);
  715 }
  716 
  717 static __kprobes void default_do_nmi(struct pt_regs * regs)
  718 {
  719         unsigned char reason = 0;
  720 
  721         /* Only the BSP gets external NMIs from the system.  */
  722         if (!smp_processor_id())
  723                 reason = get_nmi_reason();
  724  
  725         if (!(reason & 0xc0)) {
  726                 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
  727                                                         == NOTIFY_STOP)
  728                         return;
  729 #ifdef CONFIG_X86_LOCAL_APIC
  730                 /*
  731                  * Ok, so this is none of the documented NMI sources,
  732                  * so it must be the NMI watchdog.
  733                  */
  734                 if (nmi_watchdog_tick(regs, reason))
  735                         return;
  736                 if (!do_nmi_callback(regs, smp_processor_id()))
  737 #endif
  738                         unknown_nmi_error(reason, regs);
  739 
  740                 return;
  741         }
  742         if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
  743                 return;
  744         if (reason & 0x80)
  745                 mem_parity_error(reason, regs);
  746         if (reason & 0x40)
  747                 io_check_error(reason, regs);
  748         /*
  749          * Reassert NMI in case it became active meanwhile
  750          * as it's edge-triggered.
  751          */
  752         reassert_nmi();
  753 }
  754 
  755 fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
  756 {
  757         int cpu;
  758 
  759         nmi_enter();
  760 
  761         cpu = smp_processor_id();
  762 
  763         ++nmi_count(cpu);
  764 
  765         default_do_nmi(regs);
  766 
  767         nmi_exit();
  768 }
  769 
  770 #ifdef CONFIG_KPROBES
  771 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
  772 {
  773         if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
  774                         == NOTIFY_STOP)
  775                 return;
  776         /* This is an interrupt gate, because kprobes wants interrupts
  777         disabled.  Normal trap handlers don't. */
  778         restore_interrupts(regs);
  779         do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
  780 }
  781 #endif
  782 
  783 /*
  784  * Our handling of the processor debug registers is non-trivial.
  785  * We do not clear them on entry and exit from the kernel. Therefore
  786  * it is possible to get a watchpoint trap here from inside the kernel.
  787  * However, the code in ./ptrace.c has ensured that the user can
  788  * only set watchpoints on userspace addresses. Therefore the in-kernel
  789  * watchpoint trap can only occur in code which is reading/writing
  790  * from user space. Such code must not hold kernel locks (since it
  791  * can equally take a page fault), therefore it is safe to call
  792  * force_sig_info even though that claims and releases locks.
  793  * 
  794  * Code in ./signal.c ensures that the debug control register
  795  * is restored before we deliver any signal, and therefore that
  796  * user code runs with the correct debug control register even though
  797  * we clear it here.
  798  *
  799  * Being careful here means that we don't have to be as careful in a
  800  * lot of more complicated places (task switching can be a bit lazy
  801  * about restoring all the debug state, and ptrace doesn't have to
  802  * find every occurrence of the TF bit that could be saved away even
  803  * by user code)
  804  */
  805 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
  806 {
  807         unsigned int condition;
  808         struct task_struct *tsk = current;
  809 
  810         get_debugreg(condition, 6);
  811 
  812         if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
  813                                         SIGTRAP) == NOTIFY_STOP)
  814                 return;
  815         /* It's safe to allow irq's after DR6 has been saved */
  816         if (regs->eflags & X86_EFLAGS_IF)
  817                 local_irq_enable();
  818 
  819         /* Mask out spurious debug traps due to lazy DR7 setting */
  820         if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
  821                 if (!tsk->thread.debugreg[7])
  822                         goto clear_dr7;
  823         }
  824 
  825         if (regs->eflags & VM_MASK)
  826                 goto debug_vm86;
  827 
  828         /* Save debug status register where ptrace can see it */
  829         tsk->thread.debugreg[6] = condition;
  830 
  831         /*
  832          * Single-stepping through TF: make sure we ignore any events in
  833          * kernel space (but re-enable TF when returning to user mode).
  834          */
  835         if (condition & DR_STEP) {
  836                 /*
  837                  * We already checked v86 mode above, so we can
  838                  * check for kernel mode by just checking the CPL
  839                  * of CS.
  840                  */
  841                 if (!user_mode(regs))
  842                         goto clear_TF_reenable;
  843         }
  844 
  845         /* Ok, finally something we can handle */
  846         send_sigtrap(tsk, regs, error_code);
  847 
  848         /* Disable additional traps. They'll be re-enabled when
  849          * the signal is delivered.
  850          */
  851 clear_dr7:
  852         set_debugreg(0, 7);
  853         return;
  854 
  855 debug_vm86:
  856         handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
  857         return;
  858 
  859 clear_TF_reenable:
  860         set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
  861         regs->eflags &= ~TF_MASK;
  862         return;
  863 }
  864 
  865 /*
  866  * Note that we play around with the 'TS' bit in an attempt to get
  867  * the correct behaviour even in the presence of the asynchronous
  868  * IRQ13 behaviour
  869  */
  870 void math_error(void __user *eip)
  871 {
  872         struct task_struct * task;
  873         siginfo_t info;
  874         unsigned short cwd, swd;
  875 
  876         /*
  877          * Save the info for the exception handler and clear the error.
  878          */
  879         task = current;
  880         save_init_fpu(task);
  881         task->thread.trap_no = 16;
  882         task->thread.error_code = 0;
  883         info.si_signo = SIGFPE;
  884         info.si_errno = 0;
  885         info.si_code = __SI_FAULT;
  886         info.si_addr = eip;
  887         /*
  888          * (~cwd & swd) will mask out exceptions that are not set to unmasked
  889          * status.  0x3f is the exception bits in these regs, 0x200 is the
  890          * C1 reg you need in case of a stack fault, 0x040 is the stack
  891          * fault bit.  We should only be taking one exception at a time,
  892          * so if this combination doesn't produce any single exception,
  893          * then we have a bad program that isn't syncronizing its FPU usage
  894          * and it will suffer the consequences since we won't be able to
  895          * fully reproduce the context of the exception
  896          */
  897         cwd = get_fpu_cwd(task);
  898         swd = get_fpu_swd(task);
  899         switch (swd & ~cwd & 0x3f) {
  900                 case 0x000: /* No unmasked exception */
  901                         return;
  902                 default:    /* Multiple exceptions */
  903                         break;
  904                 case 0x001: /* Invalid Op */
  905                         /*
  906                          * swd & 0x240 == 0x040: Stack Underflow
  907                          * swd & 0x240 == 0x240: Stack Overflow
  908                          * User must clear the SF bit (0x40) if set
  909                          */
  910                         info.si_code = FPE_FLTINV;
  911                         break;
  912                 case 0x002: /* Denormalize */
  913                 case 0x010: /* Underflow */
  914                         info.si_code = FPE_FLTUND;
  915                         break;
  916                 case 0x004: /* Zero Divide */
  917                         info.si_code = FPE_FLTDIV;
  918                         break;
  919                 case 0x008: /* Overflow */
  920                         info.si_code = FPE_FLTOVF;
  921                         break;
  922                 case 0x020: /* Precision */
  923                         info.si_code = FPE_FLTRES;
  924                         break;
  925         }
  926         force_sig_info(SIGFPE, &info, task);
  927 }
  928 
  929 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
  930 {
  931         ignore_fpu_irq = 1;
  932         math_error((void __user *)regs->eip);
  933 }
  934 
  935 static void simd_math_error(void __user *eip)
  936 {
  937         struct task_struct * task;
  938         siginfo_t info;
  939         unsigned short mxcsr;
  940 
  941         /*
  942          * Save the info for the exception handler and clear the error.
  943          */
  944         task = current;
  945         save_init_fpu(task);
  946         task->thread.trap_no = 19;
  947         task->thread.error_code = 0;
  948         info.si_signo = SIGFPE;
  949         info.si_errno = 0;
  950         info.si_code = __SI_FAULT;
  951         info.si_addr = eip;
  952         /*
  953          * The SIMD FPU exceptions are handled a little differently, as there
  954          * is only a single status/control register.  Thus, to determine which
  955          * unmasked exception was caught we must mask the exception mask bits
  956          * at 0x1f80, and then use these to mask the exception bits at 0x3f.
  957          */
  958         mxcsr = get_fpu_mxcsr(task);
  959         switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
  960                 case 0x000:
  961                 default:
  962                         break;
  963                 case 0x001: /* Invalid Op */
  964                         info.si_code = FPE_FLTINV;
  965                         break;
  966                 case 0x002: /* Denormalize */
  967                 case 0x010: /* Underflow */
  968                         info.si_code = FPE_FLTUND;
  969                         break;
  970                 case 0x004: /* Zero Divide */
  971                         info.si_code = FPE_FLTDIV;
  972                         break;
  973                 case 0x008: /* Overflow */
  974                         info.si_code = FPE_FLTOVF;
  975                         break;
  976                 case 0x020: /* Precision */
  977                         info.si_code = FPE_FLTRES;
  978                         break;
  979         }
  980         force_sig_info(SIGFPE, &info, task);
  981 }
  982 
  983 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
  984                                           long error_code)
  985 {
  986         if (cpu_has_xmm) {
  987                 /* Handle SIMD FPU exceptions on PIII+ processors. */
  988                 ignore_fpu_irq = 1;
  989                 simd_math_error((void __user *)regs->eip);
  990         } else {
  991                 /*
  992                  * Handle strange cache flush from user space exception
  993                  * in all other cases.  This is undocumented behaviour.
  994                  */
  995                 if (regs->eflags & VM_MASK) {
  996                         handle_vm86_fault((struct kernel_vm86_regs *)regs,
  997                                           error_code);
  998                         return;
  999                 }
 1000                 current->thread.trap_no = 19;
 1001                 current->thread.error_code = error_code;
 1002                 die_if_kernel("cache flush denied", regs, error_code);
 1003                 force_sig(SIGSEGV, current);
 1004         }
 1005 }
 1006 
 1007 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
 1008                                           long error_code)
 1009 {
 1010 #if 0
 1011         /* No need to warn about this any longer. */
 1012         printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
 1013 #endif
 1014 }
 1015 
 1016 fastcall unsigned long patch_espfix_desc(unsigned long uesp,
 1017                                           unsigned long kesp)
 1018 {
 1019         struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
 1020         unsigned long base = (kesp - uesp) & -THREAD_SIZE;
 1021         unsigned long new_kesp = kesp - base;
 1022         unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
 1023         __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
 1024         /* Set up base for espfix segment */
 1025         desc &= 0x00f0ff0000000000ULL;
 1026         desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
 1027                 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
 1028                 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
 1029                 (lim_pages & 0xffff);
 1030         *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
 1031         return new_kesp;
 1032 }
 1033 
 1034 /*
 1035  *  'math_state_restore()' saves the current math information in the
 1036  * old math state array, and gets the new ones from the current task
 1037  *
 1038  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
 1039  * Don't touch unless you *really* know how it works.
 1040  *
 1041  * Must be called with kernel preemption disabled (in this case,
 1042  * local interrupts are disabled at the call-site in entry.S).
 1043  */
 1044 asmlinkage void math_state_restore(void)
 1045 {
 1046         struct thread_info *thread = current_thread_info();
 1047         struct task_struct *tsk = thread->task;
 1048 
 1049         clts();         /* Allow maths ops (or we recurse) */
 1050         if (!tsk_used_math(tsk))
 1051                 init_fpu(tsk);
 1052         restore_fpu(tsk);
 1053         thread->status |= TS_USEDFPU;   /* So we fnsave on switch_to() */
 1054         tsk->fpu_counter++;
 1055 }
 1056 
 1057 #ifndef CONFIG_MATH_EMULATION
 1058 
 1059 asmlinkage void math_emulate(long arg)
 1060 {
 1061         printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
 1062         printk(KERN_EMERG "killing %s.\n",current->comm);
 1063         force_sig(SIGFPE,current);
 1064         schedule();
 1065 }
 1066 
 1067 #endif /* CONFIG_MATH_EMULATION */
 1068 
 1069 #ifdef CONFIG_X86_F00F_BUG
 1070 void __init trap_init_f00f_bug(void)
 1071 {
 1072         __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
 1073 
 1074         /*
 1075          * Update the IDT descriptor and reload the IDT so that
 1076          * it uses the read-only mapped virtual address.
 1077          */
 1078         idt_descr.address = fix_to_virt(FIX_F00F_IDT);
 1079         load_idt(&idt_descr);
 1080 }
 1081 #endif
 1082 
 1083 /*
 1084  * This needs to use 'idt_table' rather than 'idt', and
 1085  * thus use the _nonmapped_ version of the IDT, as the
 1086  * Pentium F0 0F bugfix can have resulted in the mapped
 1087  * IDT being write-protected.
 1088  */
 1089 void set_intr_gate(unsigned int n, void *addr)
 1090 {
 1091         _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
 1092 }
 1093 
 1094 /*
 1095  * This routine sets up an interrupt gate at directory privilege level 3.
 1096  */
 1097 static inline void set_system_intr_gate(unsigned int n, void *addr)
 1098 {
 1099         _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
 1100 }
 1101 
 1102 static void __init set_trap_gate(unsigned int n, void *addr)
 1103 {
 1104         _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
 1105 }
 1106 
 1107 static void __init set_system_gate(unsigned int n, void *addr)
 1108 {
 1109         _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
 1110 }
 1111 
 1112 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
 1113 {
 1114         _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
 1115 }
 1116 
 1117 
 1118 void __init trap_init(void)
 1119 {
 1120 #ifdef CONFIG_EISA
 1121         void __iomem *p = ioremap(0x0FFFD9, 4);
 1122         if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
 1123                 EISA_bus = 1;
 1124         }
 1125         iounmap(p);
 1126 #endif
 1127 
 1128 #ifdef CONFIG_X86_LOCAL_APIC
 1129         init_apic_mappings();
 1130 #endif
 1131 
 1132         set_trap_gate(0,&divide_error);
 1133         set_intr_gate(1,&debug);
 1134         set_intr_gate(2,&nmi);
 1135         set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
 1136         set_system_gate(4,&overflow);
 1137         set_trap_gate(5,&bounds);
 1138         set_trap_gate(6,&invalid_op);
 1139         set_trap_gate(7,&device_not_available);
 1140         set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
 1141         set_trap_gate(9,&coprocessor_segment_overrun);
 1142         set_trap_gate(10,&invalid_TSS);
 1143         set_trap_gate(11,&segment_not_present);
 1144         set_trap_gate(12,&stack_segment);
 1145         set_trap_gate(13,&general_protection);
 1146         set_intr_gate(14,&page_fault);
 1147         set_trap_gate(15,&spurious_interrupt_bug);
 1148         set_trap_gate(16,&coprocessor_error);
 1149         set_trap_gate(17,&alignment_check);
 1150 #ifdef CONFIG_X86_MCE
 1151         set_trap_gate(18,&machine_check);
 1152 #endif
 1153         set_trap_gate(19,&simd_coprocessor_error);
 1154 
 1155         if (cpu_has_fxsr) {
 1156                 /*
 1157                  * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
 1158                  * Generates a compile-time "error: zero width for bit-field" if
 1159                  * the alignment is wrong.
 1160                  */
 1161                 struct fxsrAlignAssert {
 1162                         int _:!(offsetof(struct task_struct,
 1163                                         thread.i387.fxsave) & 15);
 1164                 };
 1165 
 1166                 printk(KERN_INFO "Enabling fast FPU save and restore... ");
 1167                 set_in_cr4(X86_CR4_OSFXSR);
 1168                 printk("done.\n");
 1169         }
 1170         if (cpu_has_xmm) {
 1171                 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
 1172                                 "support... ");
 1173                 set_in_cr4(X86_CR4_OSXMMEXCPT);
 1174                 printk("done.\n");
 1175         }
 1176 
 1177         set_system_gate(SYSCALL_VECTOR,&system_call);
 1178 
 1179         /*
 1180          * Should be a barrier for any external CPU state.
 1181          */
 1182         cpu_init();
 1183 
 1184         trap_init_hook();
 1185 }
 1186 
 1187 static int __init kstack_setup(char *s)
 1188 {
 1189         kstack_depth_to_print = simple_strtoul(s, NULL, 0);
 1190         return 1;
 1191 }
 1192 __setup("kstack=", kstack_setup);
 1193 
 1194 static int __init code_bytes_setup(char *s)
 1195 {
 1196         code_bytes = simple_strtoul(s, NULL, 0);
 1197         if (code_bytes > 8192)
 1198                 code_bytes = 8192;
 1199 
 1200         return 1;
 1201 }
 1202 __setup("code_bytes=", code_bytes_setup);

Cache object: 6118195a52627c47a816ec892764c73b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.