The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/allwinner/if_awg.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   18  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   19  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   20  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   21  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  *
   25  * $FreeBSD$
   26  */
   27 
   28 /*
   29  * Allwinner Gigabit Ethernet MAC (EMAC) controller
   30  */
   31 
   32 #include "opt_device_polling.h"
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/bus.h>
   40 #include <sys/rman.h>
   41 #include <sys/kernel.h>
   42 #include <sys/endian.h>
   43 #include <sys/mbuf.h>
   44 #include <sys/socket.h>
   45 #include <sys/sockio.h>
   46 #include <sys/module.h>
   47 #include <sys/gpio.h>
   48 
   49 #include <net/bpf.h>
   50 #include <net/if.h>
   51 #include <net/ethernet.h>
   52 #include <net/if_dl.h>
   53 #include <net/if_media.h>
   54 #include <net/if_types.h>
   55 #include <net/if_var.h>
   56 
   57 #include <machine/bus.h>
   58 
   59 #include <dev/ofw/ofw_bus.h>
   60 #include <dev/ofw/ofw_bus_subr.h>
   61 
   62 #include <arm/allwinner/if_awgreg.h>
   63 #include <arm/allwinner/aw_sid.h>
   64 #include <dev/mii/mii.h>
   65 #include <dev/mii/miivar.h>
   66 
   67 #include <dev/extres/clk/clk.h>
   68 #include <dev/extres/hwreset/hwreset.h>
   69 #include <dev/extres/regulator/regulator.h>
   70 #include <dev/extres/syscon/syscon.h>
   71 
   72 #include "syscon_if.h"
   73 #include "miibus_if.h"
   74 #include "gpio_if.h"
   75 
   76 #define RD4(sc, reg)            bus_read_4((sc)->res[_RES_EMAC], (reg))
   77 #define WR4(sc, reg, val)       bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
   78 
   79 #define AWG_LOCK(sc)            mtx_lock(&(sc)->mtx)
   80 #define AWG_UNLOCK(sc)          mtx_unlock(&(sc)->mtx);
   81 #define AWG_ASSERT_LOCKED(sc)   mtx_assert(&(sc)->mtx, MA_OWNED)
   82 #define AWG_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED)
   83 
   84 #define DESC_ALIGN              4
   85 #define TX_DESC_COUNT           1024
   86 #define TX_DESC_SIZE            (sizeof(struct emac_desc) * TX_DESC_COUNT)
   87 #define RX_DESC_COUNT           256
   88 #define RX_DESC_SIZE            (sizeof(struct emac_desc) * RX_DESC_COUNT)
   89 
   90 #define DESC_OFF(n)             ((n) * sizeof(struct emac_desc))
   91 #define TX_NEXT(n)              (((n) + 1) & (TX_DESC_COUNT - 1))
   92 #define TX_SKIP(n, o)           (((n) + (o)) & (TX_DESC_COUNT - 1))
   93 #define RX_NEXT(n)              (((n) + 1) & (RX_DESC_COUNT - 1))
   94 
   95 #define TX_MAX_SEGS             20
   96 
   97 #define SOFT_RST_RETRY          1000
   98 #define MII_BUSY_RETRY          1000
   99 #define MDIO_FREQ               2500000
  100 
  101 #define BURST_LEN_DEFAULT       8
  102 #define RX_TX_PRI_DEFAULT       0
  103 #define PAUSE_TIME_DEFAULT      0x400
  104 #define TX_INTERVAL_DEFAULT     64
  105 #define RX_BATCH_DEFAULT        64
  106 
  107 /* syscon EMAC clock register */
  108 #define EMAC_CLK_REG            0x30
  109 #define EMAC_CLK_EPHY_ADDR      (0x1f << 20)    /* H3 */
  110 #define EMAC_CLK_EPHY_ADDR_SHIFT 20
  111 #define EMAC_CLK_EPHY_LED_POL   (1 << 17)       /* H3 */
  112 #define EMAC_CLK_EPHY_SHUTDOWN  (1 << 16)       /* H3 */
  113 #define EMAC_CLK_EPHY_SELECT    (1 << 15)       /* H3 */
  114 #define EMAC_CLK_RMII_EN        (1 << 13)
  115 #define EMAC_CLK_ETXDC          (0x7 << 10)
  116 #define EMAC_CLK_ETXDC_SHIFT    10
  117 #define EMAC_CLK_ERXDC          (0x1f << 5)
  118 #define EMAC_CLK_ERXDC_SHIFT    5
  119 #define EMAC_CLK_PIT            (0x1 << 2)
  120 #define  EMAC_CLK_PIT_MII       (0 << 2)
  121 #define  EMAC_CLK_PIT_RGMII     (1 << 2)
  122 #define EMAC_CLK_SRC            (0x3 << 0)
  123 #define  EMAC_CLK_SRC_MII       (0 << 0)
  124 #define  EMAC_CLK_SRC_EXT_RGMII (1 << 0)
  125 #define  EMAC_CLK_SRC_RGMII     (2 << 0)
  126 
  127 /* Burst length of RX and TX DMA transfers */
  128 static int awg_burst_len = BURST_LEN_DEFAULT;
  129 TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
  130 
  131 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
  132 static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
  133 TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
  134 
  135 /* Pause time field in the transmitted control frame */
  136 static int awg_pause_time = PAUSE_TIME_DEFAULT;
  137 TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
  138 
  139 /* Request a TX interrupt every <n> descriptors */
  140 static int awg_tx_interval = TX_INTERVAL_DEFAULT;
  141 TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
  142 
  143 /* Maximum number of mbufs to send to if_input */
  144 static int awg_rx_batch = RX_BATCH_DEFAULT;
  145 TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
  146 
  147 enum awg_type {
  148         EMAC_A83T = 1,
  149         EMAC_H3,
  150         EMAC_A64,
  151 };
  152 
  153 static struct ofw_compat_data compat_data[] = {
  154         { "allwinner,sun8i-a83t-emac",          EMAC_A83T },
  155         { "allwinner,sun8i-h3-emac",            EMAC_H3 },
  156         { "allwinner,sun50i-a64-emac",          EMAC_A64 },
  157         { NULL,                                 0 }
  158 };
  159 
  160 struct awg_bufmap {
  161         bus_dmamap_t            map;
  162         struct mbuf             *mbuf;
  163 };
  164 
  165 struct awg_txring {
  166         bus_dma_tag_t           desc_tag;
  167         bus_dmamap_t            desc_map;
  168         struct emac_desc        *desc_ring;
  169         bus_addr_t              desc_ring_paddr;
  170         bus_dma_tag_t           buf_tag;
  171         struct awg_bufmap       buf_map[TX_DESC_COUNT];
  172         u_int                   cur, next, queued;
  173         u_int                   segs;
  174 };
  175 
  176 struct awg_rxring {
  177         bus_dma_tag_t           desc_tag;
  178         bus_dmamap_t            desc_map;
  179         struct emac_desc        *desc_ring;
  180         bus_addr_t              desc_ring_paddr;
  181         bus_dma_tag_t           buf_tag;
  182         struct awg_bufmap       buf_map[RX_DESC_COUNT];
  183         bus_dmamap_t            buf_spare_map;
  184         u_int                   cur;
  185 };
  186 
  187 enum {
  188         _RES_EMAC,
  189         _RES_IRQ,
  190         _RES_SYSCON,
  191         _RES_NITEMS
  192 };
  193 
  194 struct awg_softc {
  195         struct resource         *res[_RES_NITEMS];
  196         struct mtx              mtx;
  197         if_t                    ifp;
  198         device_t                dev;
  199         device_t                miibus;
  200         struct callout          stat_ch;
  201         void                    *ih;
  202         u_int                   mdc_div_ratio_m;
  203         int                     link;
  204         int                     if_flags;
  205         enum awg_type           type;
  206         struct syscon           *syscon;
  207 
  208         struct awg_txring       tx;
  209         struct awg_rxring       rx;
  210 };
  211 
  212 static struct resource_spec awg_spec[] = {
  213         { SYS_RES_MEMORY,       0,      RF_ACTIVE },
  214         { SYS_RES_IRQ,          0,      RF_ACTIVE },
  215         { SYS_RES_MEMORY,       1,      RF_ACTIVE | RF_OPTIONAL },
  216         { -1, 0 }
  217 };
  218 
  219 static void awg_txeof(struct awg_softc *sc);
  220 static void awg_start_locked(struct awg_softc *sc);
  221 
  222 static void awg_tick(void *softc);
  223 
  224 static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
  225     uint32_t *rx_delay);
  226 static uint32_t syscon_read_emac_clk_reg(device_t dev);
  227 static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
  228 static phandle_t awg_get_phy_node(device_t dev);
  229 static bool awg_has_internal_phy(device_t dev);
  230 
  231 /*
  232  * MII functions
  233  */
  234 
  235 static int
  236 awg_miibus_readreg(device_t dev, int phy, int reg)
  237 {
  238         struct awg_softc *sc;
  239         int retry, val;
  240 
  241         sc = device_get_softc(dev);
  242         val = 0;
  243 
  244         WR4(sc, EMAC_MII_CMD,
  245             (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
  246             (phy << PHY_ADDR_SHIFT) |
  247             (reg << PHY_REG_ADDR_SHIFT) |
  248             MII_BUSY);
  249         for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
  250                 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
  251                         val = RD4(sc, EMAC_MII_DATA);
  252                         break;
  253                 }
  254                 DELAY(10);
  255         }
  256 
  257         if (retry == 0)
  258                 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
  259                     phy, reg);
  260 
  261         return (val);
  262 }
  263 
  264 static int
  265 awg_miibus_writereg(device_t dev, int phy, int reg, int val)
  266 {
  267         struct awg_softc *sc;
  268         int retry;
  269 
  270         sc = device_get_softc(dev);
  271 
  272         WR4(sc, EMAC_MII_DATA, val);
  273         WR4(sc, EMAC_MII_CMD,
  274             (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
  275             (phy << PHY_ADDR_SHIFT) |
  276             (reg << PHY_REG_ADDR_SHIFT) |
  277             MII_WR | MII_BUSY);
  278         for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
  279                 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
  280                         break;
  281                 DELAY(10);
  282         }
  283 
  284         if (retry == 0)
  285                 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
  286                     phy, reg);
  287 
  288         return (0);
  289 }
  290 
  291 static void
  292 awg_miibus_statchg(device_t dev)
  293 {
  294         struct awg_softc *sc;
  295         struct mii_data *mii;
  296         uint32_t val;
  297 
  298         sc = device_get_softc(dev);
  299 
  300         AWG_ASSERT_LOCKED(sc);
  301 
  302         if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
  303                 return;
  304         mii = device_get_softc(sc->miibus);
  305 
  306         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  307             (IFM_ACTIVE | IFM_AVALID)) {
  308                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  309                 case IFM_1000_T:
  310                 case IFM_1000_SX:
  311                 case IFM_100_TX:
  312                 case IFM_10_T:
  313                         sc->link = 1;
  314                         break;
  315                 default:
  316                         sc->link = 0;
  317                         break;
  318                 }
  319         } else
  320                 sc->link = 0;
  321 
  322         if (sc->link == 0)
  323                 return;
  324 
  325         val = RD4(sc, EMAC_BASIC_CTL_0);
  326         val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
  327 
  328         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
  329             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
  330                 val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
  331         else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
  332                 val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
  333         else
  334                 val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
  335 
  336         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
  337                 val |= BASIC_CTL_DUPLEX;
  338 
  339         WR4(sc, EMAC_BASIC_CTL_0, val);
  340 
  341         val = RD4(sc, EMAC_RX_CTL_0);
  342         val &= ~RX_FLOW_CTL_EN;
  343         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
  344                 val |= RX_FLOW_CTL_EN;
  345         WR4(sc, EMAC_RX_CTL_0, val);
  346 
  347         val = RD4(sc, EMAC_TX_FLOW_CTL);
  348         val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
  349         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
  350                 val |= TX_FLOW_CTL_EN;
  351         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
  352                 val |= awg_pause_time << PAUSE_TIME_SHIFT;
  353         WR4(sc, EMAC_TX_FLOW_CTL, val);
  354 }
  355 
  356 /*
  357  * Media functions
  358  */
  359 
  360 static void
  361 awg_media_status(if_t ifp, struct ifmediareq *ifmr)
  362 {
  363         struct awg_softc *sc;
  364         struct mii_data *mii;
  365 
  366         sc = if_getsoftc(ifp);
  367         mii = device_get_softc(sc->miibus);
  368 
  369         AWG_LOCK(sc);
  370         mii_pollstat(mii);
  371         ifmr->ifm_active = mii->mii_media_active;
  372         ifmr->ifm_status = mii->mii_media_status;
  373         AWG_UNLOCK(sc);
  374 }
  375 
  376 static int
  377 awg_media_change(if_t ifp)
  378 {
  379         struct awg_softc *sc;
  380         struct mii_data *mii;
  381         int error;
  382 
  383         sc = if_getsoftc(ifp);
  384         mii = device_get_softc(sc->miibus);
  385 
  386         AWG_LOCK(sc);
  387         error = mii_mediachg(mii);
  388         AWG_UNLOCK(sc);
  389 
  390         return (error);
  391 }
  392 
  393 /*
  394  * Core functions
  395  */
  396 
  397 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
  398 static uint32_t
  399 bitrev32(uint32_t x)
  400 {
  401         x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
  402         x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
  403         x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
  404         x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
  405 
  406         return (x >> 16) | (x << 16);
  407 }
  408 
  409 static u_int
  410 awg_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
  411 {
  412         uint32_t crc, hashreg, hashbit, *hash = arg;
  413 
  414         crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7f;
  415         crc = bitrev32(~crc) >> 26;
  416         hashreg = (crc >> 5);
  417         hashbit = (crc & 0x1f);
  418         hash[hashreg] |= (1 << hashbit);
  419 
  420         return (1);
  421 }
  422 
  423 static void
  424 awg_setup_rxfilter(struct awg_softc *sc)
  425 {
  426         uint32_t val, hash[2], machi, maclo;
  427         uint8_t *eaddr;
  428         if_t ifp;
  429 
  430         AWG_ASSERT_LOCKED(sc);
  431 
  432         ifp = sc->ifp;
  433         val = 0;
  434         hash[0] = hash[1] = 0;
  435 
  436         if (if_getflags(ifp) & IFF_PROMISC)
  437                 val |= DIS_ADDR_FILTER;
  438         else if (if_getflags(ifp) & IFF_ALLMULTI) {
  439                 val |= RX_ALL_MULTICAST;
  440                 hash[0] = hash[1] = ~0;
  441         } else if (if_foreach_llmaddr(ifp, awg_hash_maddr, hash) > 0)
  442                 val |= HASH_MULTICAST;
  443 
  444         /* Write our unicast address */
  445         eaddr = IF_LLADDR(ifp);
  446         machi = (eaddr[5] << 8) | eaddr[4];
  447         maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
  448            (eaddr[0] << 0);
  449         WR4(sc, EMAC_ADDR_HIGH(0), machi);
  450         WR4(sc, EMAC_ADDR_LOW(0), maclo);
  451 
  452         /* Multicast hash filters */
  453         WR4(sc, EMAC_RX_HASH_0, hash[1]);
  454         WR4(sc, EMAC_RX_HASH_1, hash[0]);
  455 
  456         /* RX frame filter config */
  457         WR4(sc, EMAC_RX_FRM_FLT, val);
  458 }
  459 
  460 static void
  461 awg_setup_core(struct awg_softc *sc)
  462 {
  463         uint32_t val;
  464 
  465         AWG_ASSERT_LOCKED(sc);
  466         /* Configure DMA burst length and priorities */
  467         val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
  468         if (awg_rx_tx_pri)
  469                 val |= BASIC_CTL_RX_TX_PRI;
  470         WR4(sc, EMAC_BASIC_CTL_1, val);
  471 
  472 }
  473 
  474 static void
  475 awg_enable_mac(struct awg_softc *sc, bool enable)
  476 {
  477         uint32_t tx, rx;
  478 
  479         AWG_ASSERT_LOCKED(sc);
  480 
  481         tx = RD4(sc, EMAC_TX_CTL_0);
  482         rx = RD4(sc, EMAC_RX_CTL_0);
  483         if (enable) {
  484                 tx |= TX_EN;
  485                 rx |= RX_EN | CHECK_CRC;
  486         } else {
  487                 tx &= ~TX_EN;
  488                 rx &= ~(RX_EN | CHECK_CRC);
  489         }
  490 
  491         WR4(sc, EMAC_TX_CTL_0, tx);
  492         WR4(sc, EMAC_RX_CTL_0, rx);
  493 }
  494 
  495 static void 
  496 awg_get_eaddr(device_t dev, uint8_t *eaddr)
  497 {
  498         struct awg_softc *sc;
  499         uint32_t maclo, machi, rnd;
  500         u_char rootkey[16];
  501         uint32_t rootkey_size;
  502 
  503         sc = device_get_softc(dev);
  504 
  505         machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
  506         maclo = RD4(sc, EMAC_ADDR_LOW(0));
  507 
  508         rootkey_size = sizeof(rootkey);
  509         if (maclo == 0xffffffff && machi == 0xffff) {
  510                 /* MAC address in hardware is invalid, create one */
  511                 if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
  512                     &rootkey_size) == 0 &&
  513                     (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
  514                      rootkey[15]) != 0) {
  515                         /* MAC address is derived from the root key in SID */
  516                         maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
  517                                 (rootkey[3] << 8) | 0x02;
  518                         machi = (rootkey[15] << 8) | rootkey[14];
  519                 } else {
  520                         /* Create one */
  521                         rnd = arc4random();
  522                         maclo = 0x00f2 | (rnd & 0xffff0000);
  523                         machi = rnd & 0xffff;
  524                 }
  525         }
  526 
  527         eaddr[0] = maclo & 0xff;
  528         eaddr[1] = (maclo >> 8) & 0xff;
  529         eaddr[2] = (maclo >> 16) & 0xff;
  530         eaddr[3] = (maclo >> 24) & 0xff;
  531         eaddr[4] = machi & 0xff;
  532         eaddr[5] = (machi >> 8) & 0xff;
  533 }
  534 
  535 /*
  536  * DMA functions
  537  */
  538 
  539 static void
  540 awg_enable_dma_intr(struct awg_softc *sc)
  541 {
  542         /* Enable interrupts */
  543         WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
  544 }
  545 
  546 static void
  547 awg_disable_dma_intr(struct awg_softc *sc)
  548 {
  549         /* Disable interrupts */
  550         WR4(sc, EMAC_INT_EN, 0);
  551 }
  552 
  553 static void
  554 awg_init_dma(struct awg_softc *sc)
  555 {
  556         uint32_t val;
  557 
  558         AWG_ASSERT_LOCKED(sc);
  559 
  560         /* Enable interrupts */
  561 #ifdef DEVICE_POLLING
  562         if ((if_getcapenable(sc->ifp) & IFCAP_POLLING) == 0)
  563                 awg_enable_dma_intr(sc);
  564         else
  565                 awg_disable_dma_intr(sc);
  566 #else
  567         awg_enable_dma_intr(sc);
  568 #endif
  569 
  570         /* Enable transmit DMA */
  571         val = RD4(sc, EMAC_TX_CTL_1);
  572         WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
  573 
  574         /* Enable receive DMA */
  575         val = RD4(sc, EMAC_RX_CTL_1);
  576         WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
  577 }
  578 
  579 static void
  580 awg_stop_dma(struct awg_softc *sc)
  581 {
  582         uint32_t val;
  583 
  584         AWG_ASSERT_LOCKED(sc);
  585 
  586         /* Stop transmit DMA and flush data in the TX FIFO */
  587         val = RD4(sc, EMAC_TX_CTL_1);
  588         val &= ~TX_DMA_EN;
  589         val |= FLUSH_TX_FIFO;
  590         WR4(sc, EMAC_TX_CTL_1, val);
  591 
  592         /* Disable interrupts */
  593         awg_disable_dma_intr(sc);
  594 
  595         /* Disable transmit DMA */
  596         val = RD4(sc, EMAC_TX_CTL_1);
  597         WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
  598 
  599         /* Disable receive DMA */
  600         val = RD4(sc, EMAC_RX_CTL_1);
  601         WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
  602 }
  603 
  604 static int
  605 awg_encap(struct awg_softc *sc, struct mbuf **mp)
  606 {
  607         bus_dmamap_t map;
  608         bus_dma_segment_t segs[TX_MAX_SEGS];
  609         int error, nsegs, cur, first, last, i;
  610         u_int csum_flags;
  611         uint32_t flags, status;
  612         struct mbuf *m;
  613 
  614         cur = first = sc->tx.cur;
  615         map = sc->tx.buf_map[first].map;
  616 
  617         m = *mp;
  618         error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
  619             &nsegs, BUS_DMA_NOWAIT);
  620         if (error == EFBIG) {
  621                 m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
  622                 if (m == NULL) {
  623                         device_printf(sc->dev, "awg_encap: m_collapse failed\n");
  624                         m_freem(*mp);
  625                         *mp = NULL;
  626                         return (ENOMEM);
  627                 }
  628                 *mp = m;
  629                 error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
  630                     segs, &nsegs, BUS_DMA_NOWAIT);
  631                 if (error != 0) {
  632                         m_freem(*mp);
  633                         *mp = NULL;
  634                 }
  635         }
  636         if (error != 0) {
  637                 device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
  638                 return (error);
  639         }
  640         if (nsegs == 0) {
  641                 m_freem(*mp);
  642                 *mp = NULL;
  643                 return (EIO);
  644         }
  645 
  646         if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
  647                 bus_dmamap_unload(sc->tx.buf_tag, map);
  648                 return (ENOBUFS);
  649         }
  650 
  651         bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
  652 
  653         flags = TX_FIR_DESC;
  654         status = 0;
  655         if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
  656                 if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
  657                         csum_flags = TX_CHECKSUM_CTL_FULL;
  658                 else
  659                         csum_flags = TX_CHECKSUM_CTL_IP;
  660                 flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
  661         }
  662 
  663         for (i = 0; i < nsegs; i++) {
  664                 sc->tx.segs++;
  665                 if (i == nsegs - 1) {
  666                         flags |= TX_LAST_DESC;
  667                         /*
  668                          * Can only request TX completion
  669                          * interrupt on last descriptor.
  670                          */
  671                         if (sc->tx.segs >= awg_tx_interval) {
  672                                 sc->tx.segs = 0;
  673                                 flags |= TX_INT_CTL;
  674                         }
  675                 }
  676 
  677                 sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
  678                 sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
  679                 sc->tx.desc_ring[cur].status = htole32(status);
  680 
  681                 flags &= ~TX_FIR_DESC;
  682                 /*
  683                  * Setting of the valid bit in the first descriptor is
  684                  * deferred until the whole chain is fully set up.
  685                  */
  686                 status = TX_DESC_CTL;
  687 
  688                 ++sc->tx.queued;
  689                 cur = TX_NEXT(cur);
  690         }
  691 
  692         sc->tx.cur = cur;
  693 
  694         /* Store mapping and mbuf in the last segment */
  695         last = TX_SKIP(cur, TX_DESC_COUNT - 1);
  696         sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
  697         sc->tx.buf_map[last].map = map;
  698         sc->tx.buf_map[last].mbuf = m;
  699 
  700         /*
  701          * The whole mbuf chain has been DMA mapped,
  702          * fix the first descriptor.
  703          */
  704         sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
  705 
  706         return (0);
  707 }
  708 
  709 static void
  710 awg_clean_txbuf(struct awg_softc *sc, int index)
  711 {
  712         struct awg_bufmap *bmap;
  713 
  714         --sc->tx.queued;
  715 
  716         bmap = &sc->tx.buf_map[index];
  717         if (bmap->mbuf != NULL) {
  718                 bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
  719                     BUS_DMASYNC_POSTWRITE);
  720                 bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
  721                 m_freem(bmap->mbuf);
  722                 bmap->mbuf = NULL;
  723         }
  724 }
  725 
  726 static void
  727 awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
  728 {
  729         uint32_t status, size;
  730 
  731         status = RX_DESC_CTL;
  732         size = MCLBYTES - 1;
  733 
  734         sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
  735         sc->rx.desc_ring[index].size = htole32(size);
  736         sc->rx.desc_ring[index].status = htole32(status);
  737 }
  738 
  739 static void
  740 awg_reuse_rxdesc(struct awg_softc *sc, int index)
  741 {
  742 
  743         sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
  744 }
  745 
  746 static int
  747 awg_newbuf_rx(struct awg_softc *sc, int index)
  748 {
  749         struct mbuf *m;
  750         bus_dma_segment_t seg;
  751         bus_dmamap_t map;
  752         int nsegs;
  753 
  754         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
  755         if (m == NULL)
  756                 return (ENOBUFS);
  757 
  758         m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
  759         m_adj(m, ETHER_ALIGN);
  760 
  761         if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
  762             m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
  763                 m_freem(m);
  764                 return (ENOBUFS);
  765         }
  766 
  767         if (sc->rx.buf_map[index].mbuf != NULL) {
  768                 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
  769                     BUS_DMASYNC_POSTREAD);
  770                 bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
  771         }
  772         map = sc->rx.buf_map[index].map;
  773         sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
  774         sc->rx.buf_spare_map = map;
  775         bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
  776             BUS_DMASYNC_PREREAD);
  777 
  778         sc->rx.buf_map[index].mbuf = m;
  779         awg_setup_rxdesc(sc, index, seg.ds_addr);
  780 
  781         return (0);
  782 }
  783 
  784 static void
  785 awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  786 {
  787         if (error != 0)
  788                 return;
  789         *(bus_addr_t *)arg = segs[0].ds_addr;
  790 }
  791 
  792 static int
  793 awg_setup_dma(device_t dev)
  794 {
  795         struct awg_softc *sc;
  796         int error, i;
  797 
  798         sc = device_get_softc(dev);
  799 
  800         /* Setup TX ring */
  801         error = bus_dma_tag_create(
  802             bus_get_dma_tag(dev),       /* Parent tag */
  803             DESC_ALIGN, 0,              /* alignment, boundary */
  804             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
  805             BUS_SPACE_MAXADDR,          /* highaddr */
  806             NULL, NULL,                 /* filter, filterarg */
  807             TX_DESC_SIZE, 1,            /* maxsize, nsegs */
  808             TX_DESC_SIZE,               /* maxsegsize */
  809             0,                          /* flags */
  810             NULL, NULL,                 /* lockfunc, lockarg */
  811             &sc->tx.desc_tag);
  812         if (error != 0) {
  813                 device_printf(dev, "cannot create TX descriptor ring tag\n");
  814                 return (error);
  815         }
  816 
  817         error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
  818             BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
  819         if (error != 0) {
  820                 device_printf(dev, "cannot allocate TX descriptor ring\n");
  821                 return (error);
  822         }
  823 
  824         error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
  825             sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
  826             &sc->tx.desc_ring_paddr, 0);
  827         if (error != 0) {
  828                 device_printf(dev, "cannot load TX descriptor ring\n");
  829                 return (error);
  830         }
  831 
  832         for (i = 0; i < TX_DESC_COUNT; i++)
  833                 sc->tx.desc_ring[i].next =
  834                     htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
  835 
  836         error = bus_dma_tag_create(
  837             bus_get_dma_tag(dev),       /* Parent tag */
  838             1, 0,                       /* alignment, boundary */
  839             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
  840             BUS_SPACE_MAXADDR,          /* highaddr */
  841             NULL, NULL,                 /* filter, filterarg */
  842             MCLBYTES, TX_MAX_SEGS,      /* maxsize, nsegs */
  843             MCLBYTES,                   /* maxsegsize */
  844             0,                          /* flags */
  845             NULL, NULL,                 /* lockfunc, lockarg */
  846             &sc->tx.buf_tag);
  847         if (error != 0) {
  848                 device_printf(dev, "cannot create TX buffer tag\n");
  849                 return (error);
  850         }
  851 
  852         sc->tx.queued = 0;
  853         for (i = 0; i < TX_DESC_COUNT; i++) {
  854                 error = bus_dmamap_create(sc->tx.buf_tag, 0,
  855                     &sc->tx.buf_map[i].map);
  856                 if (error != 0) {
  857                         device_printf(dev, "cannot create TX buffer map\n");
  858                         return (error);
  859                 }
  860         }
  861 
  862         /* Setup RX ring */
  863         error = bus_dma_tag_create(
  864             bus_get_dma_tag(dev),       /* Parent tag */
  865             DESC_ALIGN, 0,              /* alignment, boundary */
  866             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
  867             BUS_SPACE_MAXADDR,          /* highaddr */
  868             NULL, NULL,                 /* filter, filterarg */
  869             RX_DESC_SIZE, 1,            /* maxsize, nsegs */
  870             RX_DESC_SIZE,               /* maxsegsize */
  871             0,                          /* flags */
  872             NULL, NULL,                 /* lockfunc, lockarg */
  873             &sc->rx.desc_tag);
  874         if (error != 0) {
  875                 device_printf(dev, "cannot create RX descriptor ring tag\n");
  876                 return (error);
  877         }
  878 
  879         error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
  880             BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
  881         if (error != 0) {
  882                 device_printf(dev, "cannot allocate RX descriptor ring\n");
  883                 return (error);
  884         }
  885 
  886         error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
  887             sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
  888             &sc->rx.desc_ring_paddr, 0);
  889         if (error != 0) {
  890                 device_printf(dev, "cannot load RX descriptor ring\n");
  891                 return (error);
  892         }
  893 
  894         error = bus_dma_tag_create(
  895             bus_get_dma_tag(dev),       /* Parent tag */
  896             1, 0,                       /* alignment, boundary */
  897             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
  898             BUS_SPACE_MAXADDR,          /* highaddr */
  899             NULL, NULL,                 /* filter, filterarg */
  900             MCLBYTES, 1,                /* maxsize, nsegs */
  901             MCLBYTES,                   /* maxsegsize */
  902             0,                          /* flags */
  903             NULL, NULL,                 /* lockfunc, lockarg */
  904             &sc->rx.buf_tag);
  905         if (error != 0) {
  906                 device_printf(dev, "cannot create RX buffer tag\n");
  907                 return (error);
  908         }
  909 
  910         error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
  911         if (error != 0) {
  912                 device_printf(dev,
  913                     "cannot create RX buffer spare map\n");
  914                 return (error);
  915         }
  916 
  917         for (i = 0; i < RX_DESC_COUNT; i++) {
  918                 sc->rx.desc_ring[i].next =
  919                     htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
  920 
  921                 error = bus_dmamap_create(sc->rx.buf_tag, 0,
  922                     &sc->rx.buf_map[i].map);
  923                 if (error != 0) {
  924                         device_printf(dev, "cannot create RX buffer map\n");
  925                         return (error);
  926                 }
  927                 sc->rx.buf_map[i].mbuf = NULL;
  928                 error = awg_newbuf_rx(sc, i);
  929                 if (error != 0) {
  930                         device_printf(dev, "cannot create RX buffer\n");
  931                         return (error);
  932                 }
  933         }
  934         bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
  935             BUS_DMASYNC_PREWRITE);
  936 
  937         /* Write transmit and receive descriptor base address registers */
  938         WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
  939         WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
  940 
  941         return (0);
  942 }
  943 
  944 static void
  945 awg_dma_start_tx(struct awg_softc *sc)
  946 {
  947         uint32_t val;
  948 
  949         AWG_ASSERT_LOCKED(sc);
  950 
  951         /* Start and run TX DMA */
  952         val = RD4(sc, EMAC_TX_CTL_1);
  953         WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
  954 }
  955 
  956 /*
  957  * if_ functions
  958  */
  959 
  960 static void
  961 awg_start_locked(struct awg_softc *sc)
  962 {
  963         struct mbuf *m;
  964         if_t ifp;
  965         int cnt, err;
  966 
  967         AWG_ASSERT_LOCKED(sc);
  968 
  969         if (!sc->link)
  970                 return;
  971 
  972         ifp = sc->ifp;
  973 
  974         if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
  975             IFF_DRV_RUNNING)
  976                 return;
  977 
  978         for (cnt = 0; ; cnt++) {
  979                 m = if_dequeue(ifp);
  980                 if (m == NULL)
  981                         break;
  982 
  983                 err = awg_encap(sc, &m);
  984                 if (err != 0) {
  985                         if (err == ENOBUFS)
  986                                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
  987                         if (m != NULL)
  988                                 if_sendq_prepend(ifp, m);
  989                         break;
  990                 }
  991                 if_bpfmtap(ifp, m);
  992         }
  993 
  994         if (cnt != 0) {
  995                 bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
  996                     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
  997 
  998                 awg_dma_start_tx(sc);
  999         }
 1000 }
 1001 
 1002 static void
 1003 awg_start(if_t ifp)
 1004 {
 1005         struct awg_softc *sc;
 1006 
 1007         sc = if_getsoftc(ifp);
 1008 
 1009         AWG_LOCK(sc);
 1010         awg_start_locked(sc);
 1011         AWG_UNLOCK(sc);
 1012 }
 1013 
 1014 static void
 1015 awg_init_locked(struct awg_softc *sc)
 1016 {
 1017         struct mii_data *mii;
 1018         if_t ifp;
 1019 
 1020         mii = device_get_softc(sc->miibus);
 1021         ifp = sc->ifp;
 1022 
 1023         AWG_ASSERT_LOCKED(sc);
 1024 
 1025         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
 1026                 return;
 1027 
 1028         awg_setup_rxfilter(sc);
 1029         awg_setup_core(sc);
 1030         awg_enable_mac(sc, true);
 1031         awg_init_dma(sc);
 1032 
 1033         if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
 1034 
 1035         mii_mediachg(mii);
 1036         callout_reset(&sc->stat_ch, hz, awg_tick, sc);
 1037 }
 1038 
 1039 static void
 1040 awg_init(void *softc)
 1041 {
 1042         struct awg_softc *sc;
 1043 
 1044         sc = softc;
 1045 
 1046         AWG_LOCK(sc);
 1047         awg_init_locked(sc);
 1048         AWG_UNLOCK(sc);
 1049 }
 1050 
 1051 static void
 1052 awg_stop(struct awg_softc *sc)
 1053 {
 1054         if_t ifp;
 1055         uint32_t val;
 1056         int i;
 1057 
 1058         AWG_ASSERT_LOCKED(sc);
 1059 
 1060         ifp = sc->ifp;
 1061 
 1062         callout_stop(&sc->stat_ch);
 1063 
 1064         awg_stop_dma(sc);
 1065         awg_enable_mac(sc, false);
 1066 
 1067         sc->link = 0;
 1068 
 1069         /* Finish handling transmitted buffers */
 1070         awg_txeof(sc);
 1071 
 1072         /* Release any untransmitted buffers. */
 1073         for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
 1074                 val = le32toh(sc->tx.desc_ring[i].status);
 1075                 if ((val & TX_DESC_CTL) != 0)
 1076                         break;
 1077                 awg_clean_txbuf(sc, i);
 1078         }
 1079         sc->tx.next = i;
 1080         for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
 1081                 sc->tx.desc_ring[i].status = 0;
 1082                 awg_clean_txbuf(sc, i);
 1083         }
 1084         sc->tx.cur = sc->tx.next;
 1085         bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
 1086             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1087 
 1088         /* Setup RX buffers for reuse */
 1089         bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
 1090             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1091 
 1092         for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
 1093                 val = le32toh(sc->rx.desc_ring[i].status);
 1094                 if ((val & RX_DESC_CTL) != 0)
 1095                         break;
 1096                 awg_reuse_rxdesc(sc, i);
 1097         }
 1098         sc->rx.cur = i;
 1099         bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
 1100             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1101 
 1102         if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1103 }
 1104 
 1105 static int
 1106 awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
 1107 {
 1108         struct awg_softc *sc;
 1109         struct mii_data *mii;
 1110         struct ifreq *ifr;
 1111         int flags, mask, error;
 1112 
 1113         sc = if_getsoftc(ifp);
 1114         mii = device_get_softc(sc->miibus);
 1115         ifr = (struct ifreq *)data;
 1116         error = 0;
 1117 
 1118         switch (cmd) {
 1119         case SIOCSIFFLAGS:
 1120                 AWG_LOCK(sc);
 1121                 if (if_getflags(ifp) & IFF_UP) {
 1122                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 1123                                 flags = if_getflags(ifp) ^ sc->if_flags;
 1124                                 if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
 1125                                         awg_setup_rxfilter(sc);
 1126                         } else
 1127                                 awg_init_locked(sc);
 1128                 } else {
 1129                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
 1130                                 awg_stop(sc);
 1131                 }
 1132                 sc->if_flags = if_getflags(ifp);
 1133                 AWG_UNLOCK(sc);
 1134                 break;
 1135         case SIOCADDMULTI:
 1136         case SIOCDELMULTI:
 1137                 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 1138                         AWG_LOCK(sc);
 1139                         awg_setup_rxfilter(sc);
 1140                         AWG_UNLOCK(sc);
 1141                 }
 1142                 break;
 1143         case SIOCSIFMEDIA:
 1144         case SIOCGIFMEDIA:
 1145                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 1146                 break;
 1147         case SIOCSIFCAP:
 1148                 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
 1149 #ifdef DEVICE_POLLING
 1150                 if (mask & IFCAP_POLLING) {
 1151                         if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
 1152                                 error = ether_poll_register(awg_poll, ifp);
 1153                                 if (error != 0)
 1154                                         break;
 1155                                 AWG_LOCK(sc);
 1156                                 awg_disable_dma_intr(sc);
 1157                                 if_setcapenablebit(ifp, IFCAP_POLLING, 0);
 1158                                 AWG_UNLOCK(sc);
 1159                         } else {
 1160                                 error = ether_poll_deregister(ifp);
 1161                                 AWG_LOCK(sc);
 1162                                 awg_enable_dma_intr(sc);
 1163                                 if_setcapenablebit(ifp, 0, IFCAP_POLLING);
 1164                                 AWG_UNLOCK(sc);
 1165                         }
 1166                 }
 1167 #endif
 1168                 if (mask & IFCAP_VLAN_MTU)
 1169                         if_togglecapenable(ifp, IFCAP_VLAN_MTU);
 1170                 if (mask & IFCAP_RXCSUM)
 1171                         if_togglecapenable(ifp, IFCAP_RXCSUM);
 1172                 if (mask & IFCAP_TXCSUM)
 1173                         if_togglecapenable(ifp, IFCAP_TXCSUM);
 1174                 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
 1175                         if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
 1176                 else
 1177                         if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
 1178                 break;
 1179         default:
 1180                 error = ether_ioctl(ifp, cmd, data);
 1181                 break;
 1182         }
 1183 
 1184         return (error);
 1185 }
 1186 
 1187 /*
 1188  * Interrupts functions
 1189  */
 1190 
 1191 static int
 1192 awg_rxintr(struct awg_softc *sc)
 1193 {
 1194         if_t ifp;
 1195         struct mbuf *m, *mh, *mt;
 1196         int error, index, len, cnt, npkt;
 1197         uint32_t status;
 1198 
 1199         ifp = sc->ifp;
 1200         mh = mt = NULL;
 1201         cnt = 0;
 1202         npkt = 0;
 1203 
 1204         bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
 1205             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1206 
 1207         for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
 1208                 status = le32toh(sc->rx.desc_ring[index].status);
 1209                 if ((status & RX_DESC_CTL) != 0)
 1210                         break;
 1211 
 1212                 len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
 1213 
 1214                 if (len == 0) {
 1215                         if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
 1216                                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 1217                         awg_reuse_rxdesc(sc, index);
 1218                         continue;
 1219                 }
 1220 
 1221                 m = sc->rx.buf_map[index].mbuf;
 1222 
 1223                 error = awg_newbuf_rx(sc, index);
 1224                 if (error != 0) {
 1225                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 1226                         awg_reuse_rxdesc(sc, index);
 1227                         continue;
 1228                 }
 1229 
 1230                 m->m_pkthdr.rcvif = ifp;
 1231                 m->m_pkthdr.len = len;
 1232                 m->m_len = len;
 1233                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 1234 
 1235                 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
 1236                     (status & RX_FRM_TYPE) != 0) {
 1237                         m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
 1238                         if ((status & RX_HEADER_ERR) == 0)
 1239                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 1240                         if ((status & RX_PAYLOAD_ERR) == 0) {
 1241                                 m->m_pkthdr.csum_flags |=
 1242                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 1243                                 m->m_pkthdr.csum_data = 0xffff;
 1244                         }
 1245                 }
 1246 
 1247                 m->m_nextpkt = NULL;
 1248                 if (mh == NULL)
 1249                         mh = m;
 1250                 else
 1251                         mt->m_nextpkt = m;
 1252                 mt = m;
 1253                 ++cnt;
 1254                 ++npkt;
 1255 
 1256                 if (cnt == awg_rx_batch) {
 1257                         AWG_UNLOCK(sc);
 1258                         if_input(ifp, mh);
 1259                         AWG_LOCK(sc);
 1260                         mh = mt = NULL;
 1261                         cnt = 0;
 1262                 }
 1263         }
 1264 
 1265         if (index != sc->rx.cur) {
 1266                 bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
 1267                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1268         }
 1269 
 1270         if (mh != NULL) {
 1271                 AWG_UNLOCK(sc);
 1272                 if_input(ifp, mh);
 1273                 AWG_LOCK(sc);
 1274         }
 1275 
 1276         sc->rx.cur = index;
 1277 
 1278         return (npkt);
 1279 }
 1280 
 1281 static void
 1282 awg_txeof(struct awg_softc *sc)
 1283 {
 1284         struct emac_desc *desc;
 1285         uint32_t status, size;
 1286         if_t ifp;
 1287         int i, prog;
 1288 
 1289         AWG_ASSERT_LOCKED(sc);
 1290 
 1291         bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
 1292             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 1293 
 1294         ifp = sc->ifp;
 1295 
 1296         prog = 0;
 1297         for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
 1298                 desc = &sc->tx.desc_ring[i];
 1299                 status = le32toh(desc->status);
 1300                 if ((status & TX_DESC_CTL) != 0)
 1301                         break;
 1302                 size = le32toh(desc->size);
 1303                 if (size & TX_LAST_DESC) {
 1304                         if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
 1305                                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1306                         else
 1307                                 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 1308                 }
 1309                 prog++;
 1310                 awg_clean_txbuf(sc, i);
 1311         }
 1312 
 1313         if (prog > 0) {
 1314                 sc->tx.next = i;
 1315                 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
 1316         }
 1317 }
 1318 
 1319 static void
 1320 awg_intr(void *arg)
 1321 {
 1322         struct awg_softc *sc;
 1323         uint32_t val;
 1324 
 1325         sc = arg;
 1326 
 1327         AWG_LOCK(sc);
 1328         val = RD4(sc, EMAC_INT_STA);
 1329         WR4(sc, EMAC_INT_STA, val);
 1330 
 1331         if (val & RX_INT)
 1332                 awg_rxintr(sc);
 1333 
 1334         if (val & TX_INT)
 1335                 awg_txeof(sc);
 1336 
 1337         if (val & (TX_INT | TX_BUF_UA_INT)) {
 1338                 if (!if_sendq_empty(sc->ifp))
 1339                         awg_start_locked(sc);
 1340         }
 1341 
 1342         AWG_UNLOCK(sc);
 1343 }
 1344 
 1345 #ifdef DEVICE_POLLING
 1346 static int
 1347 awg_poll(if_t ifp, enum poll_cmd cmd, int count)
 1348 {
 1349         struct awg_softc *sc;
 1350         uint32_t val;
 1351         int rx_npkts;
 1352 
 1353         sc = if_getsoftc(ifp);
 1354         rx_npkts = 0;
 1355 
 1356         AWG_LOCK(sc);
 1357 
 1358         if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
 1359                 AWG_UNLOCK(sc);
 1360                 return (0);
 1361         }
 1362 
 1363         rx_npkts = awg_rxintr(sc);
 1364         awg_txeof(sc);
 1365         if (!if_sendq_empty(ifp))
 1366                 awg_start_locked(sc);
 1367 
 1368         if (cmd == POLL_AND_CHECK_STATUS) {
 1369                 val = RD4(sc, EMAC_INT_STA);
 1370                 if (val != 0)
 1371                         WR4(sc, EMAC_INT_STA, val);
 1372         }
 1373 
 1374         AWG_UNLOCK(sc);
 1375 
 1376         return (rx_npkts);
 1377 }
 1378 #endif
 1379 
 1380 /*
 1381  * syscon functions
 1382  */
 1383 static uint32_t
 1384 syscon_read_emac_clk_reg(device_t dev)
 1385 {
 1386         struct awg_softc *sc;
 1387 
 1388         sc = device_get_softc(dev);
 1389         if (sc->syscon != NULL)
 1390                 return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
 1391         else if (sc->res[_RES_SYSCON] != NULL)
 1392                 return (bus_read_4(sc->res[_RES_SYSCON], 0));
 1393 
 1394         return (0);
 1395 }
 1396 
 1397 static void
 1398 syscon_write_emac_clk_reg(device_t dev, uint32_t val)
 1399 {
 1400         struct awg_softc *sc;
 1401 
 1402         sc = device_get_softc(dev);
 1403         if (sc->syscon != NULL)
 1404                 SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
 1405         else if (sc->res[_RES_SYSCON] != NULL)
 1406                 bus_write_4(sc->res[_RES_SYSCON], 0, val);
 1407 }
 1408 
 1409 /*
 1410  * PHY functions
 1411  */
 1412 
 1413 static phandle_t
 1414 awg_get_phy_node(device_t dev)
 1415 {
 1416         phandle_t node;
 1417         pcell_t phy_handle;
 1418 
 1419         node = ofw_bus_get_node(dev);
 1420         if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
 1421             sizeof(phy_handle)) <= 0)
 1422                 return (0);
 1423 
 1424         return (OF_node_from_xref(phy_handle));
 1425 }
 1426 
 1427 static bool
 1428 awg_has_internal_phy(device_t dev)
 1429 {
 1430         phandle_t node, phy_node;
 1431 
 1432         node = ofw_bus_get_node(dev);
 1433         /* Legacy binding */
 1434         if (OF_hasprop(node, "allwinner,use-internal-phy"))
 1435                 return (true);
 1436 
 1437         phy_node = awg_get_phy_node(dev);
 1438         return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
 1439             "allwinner,sun8i-h3-mdio-internal") != 0);
 1440 }
 1441 
 1442 static int
 1443 awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
 1444 {
 1445         phandle_t node;
 1446         uint32_t delay;
 1447 
 1448         if (tx_delay == NULL || rx_delay == NULL)
 1449                 return (EINVAL);
 1450         *tx_delay = *rx_delay = 0;
 1451         node = ofw_bus_get_node(dev);
 1452 
 1453         if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
 1454                 *tx_delay = delay;
 1455         else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
 1456             sizeof(delay)) >= 0) {
 1457                 if ((delay % 100) != 0) {
 1458                         device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
 1459                         return (EDOM);
 1460                 }
 1461                 *tx_delay = delay / 100;
 1462         }
 1463         if (*tx_delay > 7) {
 1464                 device_printf(dev, "tx-delay out of range\n");
 1465                 return (ERANGE);
 1466         }
 1467 
 1468         if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
 1469                 *rx_delay = delay;
 1470         else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
 1471             sizeof(delay)) >= 0) {
 1472                 if ((delay % 100) != 0) {
 1473                         device_printf(dev, "rx-delay-ps is not within documented domain\n");
 1474                         return (EDOM);
 1475                 }
 1476                 *rx_delay = delay / 100;
 1477         }
 1478         if (*rx_delay > 31) {
 1479                 device_printf(dev, "rx-delay out of range\n");
 1480                 return (ERANGE);
 1481         }
 1482 
 1483         return (0);
 1484 }
 1485 
 1486 static int
 1487 awg_setup_phy(device_t dev)
 1488 {
 1489         struct awg_softc *sc;
 1490         clk_t clk_tx, clk_tx_parent;
 1491         const char *tx_parent_name;
 1492         char *phy_type;
 1493         phandle_t node;
 1494         uint32_t reg, tx_delay, rx_delay;
 1495         int error;
 1496         bool use_syscon;
 1497 
 1498         sc = device_get_softc(dev);
 1499         node = ofw_bus_get_node(dev);
 1500         use_syscon = false;
 1501 
 1502         if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
 1503                 return (0);
 1504 
 1505         if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
 1506                 use_syscon = true;
 1507 
 1508         if (bootverbose)
 1509                 device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
 1510                     use_syscon ? "reg" : "clk");
 1511 
 1512         if (use_syscon) {
 1513                 /*
 1514                  * Abstract away writing to syscon for devices like the pine64.
 1515                  * For the pine64, we get dtb from U-Boot and it still uses the
 1516                  * legacy setup of specifying syscon register in emac node
 1517                  * rather than as its own node and using an xref in emac.
 1518                  * These abstractions can go away once U-Boot dts is up-to-date.
 1519                  */
 1520                 reg = syscon_read_emac_clk_reg(dev);
 1521                 reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
 1522                 if (strncmp(phy_type, "rgmii", 5) == 0)
 1523                         reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
 1524                 else if (strcmp(phy_type, "rmii") == 0)
 1525                         reg |= EMAC_CLK_RMII_EN;
 1526                 else
 1527                         reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
 1528 
 1529                 /*
 1530                  * Fail attach if we fail to parse either of the delay
 1531                  * parameters. If we don't have the proper delay to write to
 1532                  * syscon, then awg likely won't function properly anyways.
 1533                  * Lack of delay is not an error!
 1534                  */
 1535                 error = awg_parse_delay(dev, &tx_delay, &rx_delay);
 1536                 if (error != 0)
 1537                         goto fail;
 1538 
 1539                 /* Default to 0 and we'll increase it if we need to. */
 1540                 reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
 1541                 if (tx_delay > 0)
 1542                         reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
 1543                 if (rx_delay > 0)
 1544                         reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
 1545 
 1546                 if (sc->type == EMAC_H3) {
 1547                         if (awg_has_internal_phy(dev)) {
 1548                                 reg |= EMAC_CLK_EPHY_SELECT;
 1549                                 reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
 1550                                 if (OF_hasprop(node,
 1551                                     "allwinner,leds-active-low"))
 1552                                         reg |= EMAC_CLK_EPHY_LED_POL;
 1553                                 else
 1554                                         reg &= ~EMAC_CLK_EPHY_LED_POL;
 1555 
 1556                                 /* Set internal PHY addr to 1 */
 1557                                 reg &= ~EMAC_CLK_EPHY_ADDR;
 1558                                 reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
 1559                         } else {
 1560                                 reg &= ~EMAC_CLK_EPHY_SELECT;
 1561                         }
 1562                 }
 1563 
 1564                 if (bootverbose)
 1565                         device_printf(dev, "EMAC clock: 0x%08x\n", reg);
 1566                 syscon_write_emac_clk_reg(dev, reg);
 1567         } else {
 1568                 if (strncmp(phy_type, "rgmii", 5) == 0)
 1569                         tx_parent_name = "emac_int_tx";
 1570                 else
 1571                         tx_parent_name = "mii_phy_tx";
 1572 
 1573                 /* Get the TX clock */
 1574                 error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
 1575                 if (error != 0) {
 1576                         device_printf(dev, "cannot get tx clock\n");
 1577                         goto fail;
 1578                 }
 1579 
 1580                 /* Find the desired parent clock based on phy-mode property */
 1581                 error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
 1582                 if (error != 0) {
 1583                         device_printf(dev, "cannot get clock '%s'\n",
 1584                             tx_parent_name);
 1585                         goto fail;
 1586                 }
 1587 
 1588                 /* Set TX clock parent */
 1589                 error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
 1590                 if (error != 0) {
 1591                         device_printf(dev, "cannot set tx clock parent\n");
 1592                         goto fail;
 1593                 }
 1594 
 1595                 /* Enable TX clock */
 1596                 error = clk_enable(clk_tx);
 1597                 if (error != 0) {
 1598                         device_printf(dev, "cannot enable tx clock\n");
 1599                         goto fail;
 1600                 }
 1601         }
 1602 
 1603         error = 0;
 1604 
 1605 fail:
 1606         OF_prop_free(phy_type);
 1607         return (error);
 1608 }
 1609 
 1610 static int
 1611 awg_setup_extres(device_t dev)
 1612 {
 1613         struct awg_softc *sc;
 1614         phandle_t node, phy_node;
 1615         hwreset_t rst_ahb, rst_ephy;
 1616         clk_t clk_ahb, clk_ephy;
 1617         regulator_t reg;
 1618         uint64_t freq;
 1619         int error, div;
 1620 
 1621         sc = device_get_softc(dev);
 1622         rst_ahb = rst_ephy = NULL;
 1623         clk_ahb = clk_ephy = NULL;
 1624         reg = NULL;
 1625         node = ofw_bus_get_node(dev);
 1626         phy_node = awg_get_phy_node(dev);
 1627 
 1628         if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
 1629                 error = ENXIO;
 1630                 device_printf(dev, "cannot get phy handle\n");
 1631                 goto fail;
 1632         }
 1633 
 1634         /* Get AHB clock and reset resources */
 1635         error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
 1636         if (error != 0)
 1637                 error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
 1638         if (error != 0) {
 1639                 device_printf(dev, "cannot get ahb reset\n");
 1640                 goto fail;
 1641         }
 1642         if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
 1643                 if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
 1644                     &rst_ephy) != 0)
 1645                         rst_ephy = NULL;
 1646         error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
 1647         if (error != 0)
 1648                 error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
 1649         if (error != 0) {
 1650                 device_printf(dev, "cannot get ahb clock\n");
 1651                 goto fail;
 1652         }
 1653         if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
 1654                 if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
 1655                     &clk_ephy) != 0)
 1656                         clk_ephy = NULL;
 1657 
 1658         if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
 1659             "syscon", &sc->syscon) != 0) {
 1660                 device_printf(dev, "cannot get syscon driver handle\n");
 1661                 goto fail;
 1662         }
 1663 
 1664         /* Configure PHY for MII or RGMII mode */
 1665         if (awg_setup_phy(dev) != 0)
 1666                 goto fail;
 1667 
 1668         /* Enable clocks */
 1669         error = clk_enable(clk_ahb);
 1670         if (error != 0) {
 1671                 device_printf(dev, "cannot enable ahb clock\n");
 1672                 goto fail;
 1673         }
 1674         if (clk_ephy != NULL) {
 1675                 error = clk_enable(clk_ephy);
 1676                 if (error != 0) {
 1677                         device_printf(dev, "cannot enable ephy clock\n");
 1678                         goto fail;
 1679                 }
 1680         }
 1681 
 1682         /* De-assert reset */
 1683         error = hwreset_deassert(rst_ahb);
 1684         if (error != 0) {
 1685                 device_printf(dev, "cannot de-assert ahb reset\n");
 1686                 goto fail;
 1687         }
 1688         if (rst_ephy != NULL) {
 1689                 /*
 1690                  * The ephy reset is left de-asserted by U-Boot.  Assert it
 1691                  * here to make sure that we're in a known good state going
 1692                  * into the PHY reset.
 1693                  */
 1694                 hwreset_assert(rst_ephy);
 1695                 error = hwreset_deassert(rst_ephy);
 1696                 if (error != 0) {
 1697                         device_printf(dev, "cannot de-assert ephy reset\n");
 1698                         goto fail;
 1699                 }
 1700         }
 1701 
 1702         /* Enable PHY regulator if applicable */
 1703         if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
 1704                 error = regulator_enable(reg);
 1705                 if (error != 0) {
 1706                         device_printf(dev, "cannot enable PHY regulator\n");
 1707                         goto fail;
 1708                 }
 1709         }
 1710 
 1711         /* Determine MDC clock divide ratio based on AHB clock */
 1712         error = clk_get_freq(clk_ahb, &freq);
 1713         if (error != 0) {
 1714                 device_printf(dev, "cannot get AHB clock frequency\n");
 1715                 goto fail;
 1716         }
 1717         div = freq / MDIO_FREQ;
 1718         if (div <= 16)
 1719                 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
 1720         else if (div <= 32)
 1721                 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
 1722         else if (div <= 64)
 1723                 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
 1724         else if (div <= 128)
 1725                 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
 1726         else {
 1727                 device_printf(dev, "cannot determine MDC clock divide ratio\n");
 1728                 error = ENXIO;
 1729                 goto fail;
 1730         }
 1731 
 1732         if (bootverbose)
 1733                 device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
 1734                     (uintmax_t)freq, sc->mdc_div_ratio_m);
 1735 
 1736         return (0);
 1737 
 1738 fail:
 1739         if (reg != NULL)
 1740                 regulator_release(reg);
 1741         if (clk_ephy != NULL)
 1742                 clk_release(clk_ephy);
 1743         if (clk_ahb != NULL)
 1744                 clk_release(clk_ahb);
 1745         if (rst_ephy != NULL)
 1746                 hwreset_release(rst_ephy);
 1747         if (rst_ahb != NULL)
 1748                 hwreset_release(rst_ahb);
 1749         return (error);
 1750 }
 1751 
 1752 #ifdef AWG_DEBUG
 1753 static void
 1754 awg_dump_regs(device_t dev)
 1755 {
 1756         static const struct {
 1757                 const char *name;
 1758                 u_int reg;
 1759         } regs[] = {
 1760                 { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
 1761                 { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
 1762                 { "INT_STA", EMAC_INT_STA },
 1763                 { "INT_EN", EMAC_INT_EN },
 1764                 { "TX_CTL_0", EMAC_TX_CTL_0 },
 1765                 { "TX_CTL_1", EMAC_TX_CTL_1 },
 1766                 { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
 1767                 { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
 1768                 { "RX_CTL_0", EMAC_RX_CTL_0 },
 1769                 { "RX_CTL_1", EMAC_RX_CTL_1 },
 1770                 { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
 1771                 { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
 1772                 { "RX_HASH_0", EMAC_RX_HASH_0 },
 1773                 { "RX_HASH_1", EMAC_RX_HASH_1 },
 1774                 { "MII_CMD", EMAC_MII_CMD },
 1775                 { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
 1776                 { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
 1777                 { "TX_DMA_STA", EMAC_TX_DMA_STA },
 1778                 { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
 1779                 { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
 1780                 { "RX_DMA_STA", EMAC_RX_DMA_STA },
 1781                 { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
 1782                 { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
 1783                 { "RGMII_STA", EMAC_RGMII_STA },
 1784         };
 1785         struct awg_softc *sc;
 1786         unsigned int n;
 1787 
 1788         sc = device_get_softc(dev);
 1789 
 1790         for (n = 0; n < nitems(regs); n++)
 1791                 device_printf(dev, "  %-20s %08x\n", regs[n].name,
 1792                     RD4(sc, regs[n].reg));
 1793 }
 1794 #endif
 1795 
 1796 #define GPIO_ACTIVE_LOW         1
 1797 
 1798 static int
 1799 awg_phy_reset(device_t dev)
 1800 {
 1801         pcell_t gpio_prop[4], delay_prop[3];
 1802         phandle_t node, gpio_node;
 1803         device_t gpio;
 1804         uint32_t pin, flags;
 1805         uint32_t pin_value;
 1806 
 1807         node = ofw_bus_get_node(dev);
 1808         if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
 1809             sizeof(gpio_prop)) <= 0)
 1810                 return (0);
 1811 
 1812         if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
 1813             sizeof(delay_prop)) <= 0)
 1814                 return (ENXIO);
 1815 
 1816         gpio_node = OF_node_from_xref(gpio_prop[0]);
 1817         if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
 1818                 return (ENXIO);
 1819 
 1820         if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
 1821             gpio_prop + 1, &pin, &flags) != 0)
 1822                 return (ENXIO);
 1823 
 1824         pin_value = GPIO_PIN_LOW;
 1825         if (OF_hasprop(node, "allwinner,reset-active-low"))
 1826                 pin_value = GPIO_PIN_HIGH;
 1827 
 1828         if (flags & GPIO_ACTIVE_LOW)
 1829                 pin_value = !pin_value;
 1830 
 1831         GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
 1832         GPIO_PIN_SET(gpio, pin, pin_value);
 1833         DELAY(delay_prop[0]);
 1834         GPIO_PIN_SET(gpio, pin, !pin_value);
 1835         DELAY(delay_prop[1]);
 1836         GPIO_PIN_SET(gpio, pin, pin_value);
 1837         DELAY(delay_prop[2]);
 1838 
 1839         return (0);
 1840 }
 1841 
 1842 static int
 1843 awg_reset(device_t dev)
 1844 {
 1845         struct awg_softc *sc;
 1846         int retry;
 1847 
 1848         sc = device_get_softc(dev);
 1849 
 1850         /* Reset PHY if necessary */
 1851         if (awg_phy_reset(dev) != 0) {
 1852                 device_printf(dev, "failed to reset PHY\n");
 1853                 return (ENXIO);
 1854         }
 1855 
 1856         /* Soft reset all registers and logic */
 1857         WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
 1858 
 1859         /* Wait for soft reset bit to self-clear */
 1860         for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
 1861                 if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
 1862                         break;
 1863                 DELAY(10);
 1864         }
 1865         if (retry == 0) {
 1866                 device_printf(dev, "soft reset timed out\n");
 1867 #ifdef AWG_DEBUG
 1868                 awg_dump_regs(dev);
 1869 #endif
 1870                 return (ETIMEDOUT);
 1871         }
 1872 
 1873         return (0);
 1874 }
 1875 
 1876 /*
 1877  * Stats
 1878  */
 1879 
 1880 static void
 1881 awg_tick(void *softc)
 1882 {
 1883         struct awg_softc *sc;
 1884         struct mii_data *mii;
 1885         if_t ifp;
 1886         int link;
 1887 
 1888         sc = softc;
 1889         ifp = sc->ifp;
 1890         mii = device_get_softc(sc->miibus);
 1891 
 1892         AWG_ASSERT_LOCKED(sc);
 1893 
 1894         if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
 1895                 return;
 1896 
 1897         link = sc->link;
 1898         mii_tick(mii);
 1899         if (sc->link && !link)
 1900                 awg_start_locked(sc);
 1901 
 1902         callout_reset(&sc->stat_ch, hz, awg_tick, sc);
 1903 }
 1904 
 1905 /*
 1906  * Probe/attach functions
 1907  */
 1908 
 1909 static int
 1910 awg_probe(device_t dev)
 1911 {
 1912         if (!ofw_bus_status_okay(dev))
 1913                 return (ENXIO);
 1914 
 1915         if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
 1916                 return (ENXIO);
 1917 
 1918         device_set_desc(dev, "Allwinner Gigabit Ethernet");
 1919         return (BUS_PROBE_DEFAULT);
 1920 }
 1921 
 1922 static int
 1923 awg_attach(device_t dev)
 1924 {
 1925         uint8_t eaddr[ETHER_ADDR_LEN];
 1926         struct awg_softc *sc;
 1927         int error;
 1928 
 1929         sc = device_get_softc(dev);
 1930         sc->dev = dev;
 1931         sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
 1932 
 1933         if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
 1934                 device_printf(dev, "cannot allocate resources for device\n");
 1935                 return (ENXIO);
 1936         }
 1937 
 1938         mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
 1939         callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
 1940 
 1941         /* Setup clocks and regulators */
 1942         error = awg_setup_extres(dev);
 1943         if (error != 0)
 1944                 return (error);
 1945 
 1946         /* Read MAC address before resetting the chip */
 1947         awg_get_eaddr(dev, eaddr);
 1948 
 1949         /* Soft reset EMAC core */
 1950         error = awg_reset(dev);
 1951         if (error != 0)
 1952                 return (error);
 1953 
 1954         /* Setup DMA descriptors */
 1955         error = awg_setup_dma(dev);
 1956         if (error != 0)
 1957                 return (error);
 1958 
 1959         /* Install interrupt handler */
 1960         error = bus_setup_intr(dev, sc->res[_RES_IRQ],
 1961             INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
 1962         if (error != 0) {
 1963                 device_printf(dev, "cannot setup interrupt handler\n");
 1964                 return (error);
 1965         }
 1966 
 1967         /* Setup ethernet interface */
 1968         sc->ifp = if_alloc(IFT_ETHER);
 1969         if_setsoftc(sc->ifp, sc);
 1970         if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
 1971         if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
 1972         if_setstartfn(sc->ifp, awg_start);
 1973         if_setioctlfn(sc->ifp, awg_ioctl);
 1974         if_setinitfn(sc->ifp, awg_init);
 1975         if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
 1976         if_setsendqready(sc->ifp);
 1977         if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
 1978         if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
 1979         if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
 1980 #ifdef DEVICE_POLLING
 1981         if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
 1982 #endif
 1983 
 1984         /* Attach MII driver */
 1985         error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
 1986             awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
 1987             MIIF_DOPAUSE);
 1988         if (error != 0) {
 1989                 device_printf(dev, "cannot attach PHY\n");
 1990                 return (error);
 1991         }
 1992 
 1993         /* Attach ethernet interface */
 1994         ether_ifattach(sc->ifp, eaddr);
 1995 
 1996         return (0);
 1997 }
 1998 
 1999 static device_method_t awg_methods[] = {
 2000         /* Device interface */
 2001         DEVMETHOD(device_probe,         awg_probe),
 2002         DEVMETHOD(device_attach,        awg_attach),
 2003 
 2004         /* MII interface */
 2005         DEVMETHOD(miibus_readreg,       awg_miibus_readreg),
 2006         DEVMETHOD(miibus_writereg,      awg_miibus_writereg),
 2007         DEVMETHOD(miibus_statchg,       awg_miibus_statchg),
 2008 
 2009         DEVMETHOD_END
 2010 };
 2011 
 2012 static driver_t awg_driver = {
 2013         "awg",
 2014         awg_methods,
 2015         sizeof(struct awg_softc),
 2016 };
 2017 
 2018 static devclass_t awg_devclass;
 2019 
 2020 DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
 2021 DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
 2022 MODULE_DEPEND(awg, ether, 1, 1, 1);
 2023 MODULE_DEPEND(awg, miibus, 1, 1, 1);
 2024 MODULE_DEPEND(awg, aw_sid, 1, 1, 1);
 2025 SIMPLEBUS_PNP_INFO(compat_data);

Cache object: dde96def64f5f2392204e7bec97dabee


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.