1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012-2015 Ian Lepore
5 * Copyright (c) 2010 Mark Tinguely
6 * Copyright (c) 2004 Olivier Houchard
7 * Copyright (c) 2002 Peter Grehan
8 * Copyright (c) 1997, 1998 Justin T. Gibbs.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification, immediately at the beginning of the file.
17 * 2. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * From i386/busdma_machdep.c 191438 2009-04-23 20:24:19Z jhb
33 */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/busdma_bufalloc.h>
43 #include <sys/counter.h>
44 #include <sys/interrupt.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/memdesc.h>
49 #include <sys/proc.h>
50 #include <sys/mutex.h>
51 #include <sys/sysctl.h>
52 #include <sys/uio.h>
53
54 #include <vm/vm.h>
55 #include <vm/vm_param.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_phys.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_extern.h>
60 #include <vm/vm_kern.h>
61
62 #include <machine/atomic.h>
63 #include <machine/bus.h>
64 #include <machine/cpu.h>
65 #include <machine/md_var.h>
66
67 //#define ARM_BUSDMA_MAPLOAD_STATS
68
69 #define BUSDMA_DCACHE_ALIGN cpuinfo.dcache_line_size
70 #define BUSDMA_DCACHE_MASK cpuinfo.dcache_line_mask
71
72 #define MAX_BPAGES 64
73 #define MAX_DMA_SEGMENTS 4096
74 #define BUS_DMA_EXCL_BOUNCE BUS_DMA_BUS2
75 #define BUS_DMA_ALIGN_BOUNCE BUS_DMA_BUS3
76 #define BUS_DMA_COULD_BOUNCE (BUS_DMA_EXCL_BOUNCE | BUS_DMA_ALIGN_BOUNCE)
77 #define BUS_DMA_MIN_ALLOC_COMP BUS_DMA_BUS4
78
79 struct bounce_page;
80 struct bounce_zone;
81
82 struct bus_dma_tag {
83 bus_dma_tag_t parent;
84 bus_size_t alignment;
85 bus_addr_t boundary;
86 bus_addr_t lowaddr;
87 bus_addr_t highaddr;
88 bus_dma_filter_t *filter;
89 void *filterarg;
90 bus_size_t maxsize;
91 u_int nsegments;
92 bus_size_t maxsegsz;
93 int flags;
94 int ref_count;
95 int map_count;
96 bus_dma_lock_t *lockfunc;
97 void *lockfuncarg;
98 struct bounce_zone *bounce_zone;
99 };
100
101 struct sync_list {
102 vm_offset_t vaddr; /* kva of client data */
103 bus_addr_t paddr; /* physical address */
104 vm_page_t pages; /* starting page of client data */
105 bus_size_t datacount; /* client data count */
106 };
107
108 static uint32_t tags_total;
109 static uint32_t maps_total;
110 static uint32_t maps_dmamem;
111 static uint32_t maps_coherent;
112 #ifdef ARM_BUSDMA_MAPLOAD_STATS
113 static counter_u64_t maploads_total;
114 static counter_u64_t maploads_bounced;
115 static counter_u64_t maploads_coherent;
116 static counter_u64_t maploads_dmamem;
117 static counter_u64_t maploads_mbuf;
118 static counter_u64_t maploads_physmem;
119 #endif
120
121 SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
122 "Busdma parameters");
123 SYSCTL_UINT(_hw_busdma, OID_AUTO, tags_total, CTLFLAG_RD, &tags_total, 0,
124 "Number of active tags");
125 SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_total, CTLFLAG_RD, &maps_total, 0,
126 "Number of active maps");
127 SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_dmamem, CTLFLAG_RD, &maps_dmamem, 0,
128 "Number of active maps for bus_dmamem_alloc buffers");
129 SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_coherent, CTLFLAG_RD, &maps_coherent, 0,
130 "Number of active maps with BUS_DMA_COHERENT flag set");
131 #ifdef ARM_BUSDMA_MAPLOAD_STATS
132 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_total, CTLFLAG_RD,
133 &maploads_total, "Number of load operations performed");
134 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_bounced, CTLFLAG_RD,
135 &maploads_bounced, "Number of load operations that used bounce buffers");
136 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_coherent, CTLFLAG_RD,
137 &maploads_dmamem, "Number of load operations on BUS_DMA_COHERENT memory");
138 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_dmamem, CTLFLAG_RD,
139 &maploads_dmamem, "Number of load operations on bus_dmamem_alloc buffers");
140 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_mbuf, CTLFLAG_RD,
141 &maploads_mbuf, "Number of load operations for mbufs");
142 SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_physmem, CTLFLAG_RD,
143 &maploads_physmem, "Number of load operations on physical buffers");
144 #endif
145
146 struct bus_dmamap {
147 STAILQ_HEAD(, bounce_page) bpages;
148 int pagesneeded;
149 int pagesreserved;
150 bus_dma_tag_t dmat;
151 struct memdesc mem;
152 bus_dmamap_callback_t *callback;
153 void *callback_arg;
154 int flags;
155 #define DMAMAP_COHERENT (1 << 0)
156 #define DMAMAP_DMAMEM_ALLOC (1 << 1)
157 #define DMAMAP_MBUF (1 << 2)
158 STAILQ_ENTRY(bus_dmamap) links;
159 bus_dma_segment_t *segments;
160 int sync_count;
161 struct sync_list slist[];
162 };
163
164 static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, pmap_t pmap,
165 bus_dmamap_t map, void *buf, bus_size_t buflen, int flags);
166 static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
167 vm_paddr_t buf, bus_size_t buflen, int flags);
168 static void dma_preread_safe(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
169 static void dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op);
170
171 static busdma_bufalloc_t coherent_allocator; /* Cache of coherent buffers */
172 static busdma_bufalloc_t standard_allocator; /* Cache of standard buffers */
173
174 MALLOC_DEFINE(M_BUSDMA, "busdma", "busdma metadata");
175
176 #define dmat_alignment(dmat) ((dmat)->alignment)
177 #define dmat_flags(dmat) ((dmat)->flags)
178 #define dmat_lowaddr(dmat) ((dmat)->lowaddr)
179 #define dmat_lockfunc(dmat) ((dmat)->lockfunc)
180 #define dmat_lockfuncarg(dmat) ((dmat)->lockfuncarg)
181
182 #include "../../kern/subr_busdma_bounce.c"
183
184 static void
185 busdma_init(void *dummy)
186 {
187 int uma_flags;
188
189 #ifdef ARM_BUSDMA_MAPLOAD_STATS
190 maploads_total = counter_u64_alloc(M_WAITOK);
191 maploads_bounced = counter_u64_alloc(M_WAITOK);
192 maploads_coherent = counter_u64_alloc(M_WAITOK);
193 maploads_dmamem = counter_u64_alloc(M_WAITOK);
194 maploads_mbuf = counter_u64_alloc(M_WAITOK);
195 maploads_physmem = counter_u64_alloc(M_WAITOK);
196 #endif
197
198 uma_flags = 0;
199
200 /* Create a cache of buffers in standard (cacheable) memory. */
201 standard_allocator = busdma_bufalloc_create("buffer",
202 BUSDMA_DCACHE_ALIGN,/* minimum_alignment */
203 NULL, /* uma_alloc func */
204 NULL, /* uma_free func */
205 uma_flags); /* uma_zcreate_flags */
206
207 #ifdef INVARIANTS
208 /*
209 * Force UMA zone to allocate service structures like
210 * slabs using own allocator. uma_debug code performs
211 * atomic ops on uma_slab_t fields and safety of this
212 * operation is not guaranteed for write-back caches
213 */
214 uma_flags = UMA_ZONE_NOTOUCH;
215 #endif
216 /*
217 * Create a cache of buffers in uncacheable memory, to implement the
218 * BUS_DMA_COHERENT (and potentially BUS_DMA_NOCACHE) flag.
219 */
220 coherent_allocator = busdma_bufalloc_create("coherent",
221 BUSDMA_DCACHE_ALIGN,/* minimum_alignment */
222 busdma_bufalloc_alloc_uncacheable,
223 busdma_bufalloc_free_uncacheable,
224 uma_flags); /* uma_zcreate_flags */
225 }
226
227 /*
228 * This init historically used SI_SUB_VM, but now the init code requires
229 * malloc(9) using M_BUSDMA memory and the pcpu zones for counter(9), which get
230 * set up by SI_SUB_KMEM and SI_ORDER_LAST, so we'll go right after that by
231 * using SI_SUB_KMEM+1.
232 */
233 SYSINIT(busdma, SI_SUB_KMEM+1, SI_ORDER_FIRST, busdma_init, NULL);
234
235 /*
236 * This routine checks the exclusion zone constraints from a tag against the
237 * physical RAM available on the machine. If a tag specifies an exclusion zone
238 * but there's no RAM in that zone, then we avoid allocating resources to bounce
239 * a request, and we can use any memory allocator (as opposed to needing
240 * kmem_alloc_contig() just because it can allocate pages in an address range).
241 *
242 * Most tags have BUS_SPACE_MAXADDR or BUS_SPACE_MAXADDR_32BIT (they are the
243 * same value on 32-bit architectures) as their lowaddr constraint, and we can't
244 * possibly have RAM at an address higher than the highest address we can
245 * express, so we take a fast out.
246 */
247 static int
248 exclusion_bounce_check(vm_offset_t lowaddr, vm_offset_t highaddr)
249 {
250 int i;
251
252 if (lowaddr >= BUS_SPACE_MAXADDR)
253 return (0);
254
255 for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) {
256 if ((lowaddr >= phys_avail[i] && lowaddr < phys_avail[i + 1]) ||
257 (lowaddr < phys_avail[i] && highaddr >= phys_avail[i]))
258 return (1);
259 }
260 return (0);
261 }
262
263 /*
264 * Return true if the tag has an exclusion zone that could lead to bouncing.
265 */
266 static __inline int
267 exclusion_bounce(bus_dma_tag_t dmat)
268 {
269
270 return (dmat->flags & BUS_DMA_EXCL_BOUNCE);
271 }
272
273 /*
274 * Return true if the given address does not fall on the alignment boundary.
275 */
276 static __inline int
277 alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
278 {
279
280 return (!vm_addr_align_ok(addr, dmat->alignment));
281 }
282
283 /*
284 * Return true if the DMA should bounce because the start or end does not fall
285 * on a cacheline boundary (which would require a partial cacheline flush).
286 * COHERENT memory doesn't trigger cacheline flushes. Memory allocated by
287 * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a
288 * strict rule that such memory cannot be accessed by the CPU while DMA is in
289 * progress (or by multiple DMA engines at once), so that it's always safe to do
290 * full cacheline flushes even if that affects memory outside the range of a
291 * given DMA operation that doesn't involve the full allocated buffer. If we're
292 * mapping an mbuf, that follows the same rules as a buffer we allocated.
293 */
294 static __inline int
295 cacheline_bounce(bus_dmamap_t map, bus_addr_t addr, bus_size_t size)
296 {
297
298 if (map->flags & (DMAMAP_DMAMEM_ALLOC | DMAMAP_COHERENT | DMAMAP_MBUF))
299 return (0);
300 return ((addr | size) & BUSDMA_DCACHE_MASK);
301 }
302
303 /*
304 * Return true if we might need to bounce the DMA described by addr and size.
305 *
306 * This is used to quick-check whether we need to do the more expensive work of
307 * checking the DMA page-by-page looking for alignment and exclusion bounces.
308 *
309 * Note that the addr argument might be either virtual or physical. It doesn't
310 * matter because we only look at the low-order bits, which are the same in both
311 * address spaces and maximum alignment of generic buffer is limited up to page
312 * size.
313 * Bouncing of buffers allocated by bus_dmamem_alloc()is not necessary, these
314 * always comply with the required rules (alignment, boundary, and address
315 * range).
316 */
317 static __inline int
318 might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t addr,
319 bus_size_t size)
320 {
321
322 KASSERT(map->flags & DMAMAP_DMAMEM_ALLOC ||
323 dmat->alignment <= PAGE_SIZE,
324 ("%s: unsupported alignment (0x%08lx) for buffer not "
325 "allocated by bus_dmamem_alloc()",
326 __func__, dmat->alignment));
327
328 return (!(map->flags & DMAMAP_DMAMEM_ALLOC) &&
329 ((dmat->flags & BUS_DMA_EXCL_BOUNCE) ||
330 alignment_bounce(dmat, addr) ||
331 cacheline_bounce(map, addr, size)));
332 }
333
334 /*
335 * Return true if we must bounce the DMA described by paddr and size.
336 *
337 * Bouncing can be triggered by DMA that doesn't begin and end on cacheline
338 * boundaries, or doesn't begin on an alignment boundary, or falls within the
339 * exclusion zone of any tag in the ancestry chain.
340 *
341 * For exclusions, walk the chain of tags comparing paddr to the exclusion zone
342 * within each tag. If the tag has a filter function, use it to decide whether
343 * the DMA needs to bounce, otherwise any DMA within the zone bounces.
344 */
345 static int
346 must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
347 bus_size_t size)
348 {
349
350 if (cacheline_bounce(map, paddr, size))
351 return (1);
352
353 /*
354 * The tag already contains ancestors' alignment restrictions so this
355 * check doesn't need to be inside the loop.
356 */
357 if (alignment_bounce(dmat, paddr))
358 return (1);
359
360 /*
361 * Even though each tag has an exclusion zone that is a superset of its
362 * own and all its ancestors' exclusions, the exclusion zone of each tag
363 * up the chain must be checked within the loop, because the busdma
364 * rules say the filter function is called only when the address lies
365 * within the low-highaddr range of the tag that filterfunc belongs to.
366 */
367 while (dmat != NULL && exclusion_bounce(dmat)) {
368 if ((paddr >= dmat->lowaddr && paddr <= dmat->highaddr) &&
369 (dmat->filter == NULL ||
370 dmat->filter(dmat->filterarg, paddr) != 0))
371 return (1);
372 dmat = dmat->parent;
373 }
374
375 return (0);
376 }
377
378 /*
379 * Allocate a device specific dma_tag.
380 */
381 int
382 bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
383 bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
384 bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
385 int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
386 void *lockfuncarg, bus_dma_tag_t *dmat)
387 {
388 bus_dma_tag_t newtag;
389 int error = 0;
390
391 /* Basic sanity checking. */
392 KASSERT(boundary == 0 || powerof2(boundary),
393 ("dma tag boundary %lu, must be a power of 2", boundary));
394 KASSERT(boundary == 0 || boundary >= maxsegsz,
395 ("dma tag boundary %lu is < maxsegsz %lu\n", boundary, maxsegsz));
396 KASSERT(alignment != 0 && powerof2(alignment),
397 ("dma tag alignment %lu, must be non-zero power of 2", alignment));
398 KASSERT(maxsegsz != 0, ("dma tag maxsegsz must not be zero"));
399
400 /* Return a NULL tag on failure */
401 *dmat = NULL;
402
403 newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_BUSDMA,
404 M_ZERO | M_NOWAIT);
405 if (newtag == NULL) {
406 CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
407 __func__, newtag, 0, error);
408 return (ENOMEM);
409 }
410
411 newtag->parent = parent;
412 newtag->alignment = alignment;
413 newtag->boundary = boundary;
414 newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1);
415 newtag->highaddr = trunc_page((vm_paddr_t)highaddr) +
416 (PAGE_SIZE - 1);
417 newtag->filter = filter;
418 newtag->filterarg = filterarg;
419 newtag->maxsize = maxsize;
420 newtag->nsegments = nsegments;
421 newtag->maxsegsz = maxsegsz;
422 newtag->flags = flags;
423 newtag->ref_count = 1; /* Count ourself */
424 newtag->map_count = 0;
425 if (lockfunc != NULL) {
426 newtag->lockfunc = lockfunc;
427 newtag->lockfuncarg = lockfuncarg;
428 } else {
429 newtag->lockfunc = _busdma_dflt_lock;
430 newtag->lockfuncarg = NULL;
431 }
432
433 /* Take into account any restrictions imposed by our parent tag */
434 if (parent != NULL) {
435 newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr);
436 newtag->highaddr = MAX(parent->highaddr, newtag->highaddr);
437 newtag->alignment = MAX(parent->alignment, newtag->alignment);
438 newtag->flags |= parent->flags & BUS_DMA_COULD_BOUNCE;
439 newtag->flags |= parent->flags & BUS_DMA_COHERENT;
440 if (newtag->boundary == 0)
441 newtag->boundary = parent->boundary;
442 else if (parent->boundary != 0)
443 newtag->boundary = MIN(parent->boundary,
444 newtag->boundary);
445 if (newtag->filter == NULL) {
446 /*
447 * Short circuit to looking at our parent directly
448 * since we have encapsulated all of its information
449 */
450 newtag->filter = parent->filter;
451 newtag->filterarg = parent->filterarg;
452 newtag->parent = parent->parent;
453 }
454 if (newtag->parent != NULL)
455 atomic_add_int(&parent->ref_count, 1);
456 }
457
458 if (exclusion_bounce_check(newtag->lowaddr, newtag->highaddr))
459 newtag->flags |= BUS_DMA_EXCL_BOUNCE;
460 if (alignment_bounce(newtag, 1))
461 newtag->flags |= BUS_DMA_ALIGN_BOUNCE;
462
463 /*
464 * Any request can auto-bounce due to cacheline alignment, in addition
465 * to any alignment or boundary specifications in the tag, so if the
466 * ALLOCNOW flag is set, there's always work to do.
467 */
468 if ((flags & BUS_DMA_ALLOCNOW) != 0) {
469 struct bounce_zone *bz;
470 /*
471 * Round size up to a full page, and add one more page because
472 * there can always be one more boundary crossing than the
473 * number of pages in a transfer.
474 */
475 maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE;
476
477 if ((error = alloc_bounce_zone(newtag)) != 0) {
478 free(newtag, M_BUSDMA);
479 return (error);
480 }
481 bz = newtag->bounce_zone;
482
483 if (ptoa(bz->total_bpages) < maxsize) {
484 int pages;
485
486 pages = atop(maxsize) - bz->total_bpages;
487
488 /* Add pages to our bounce pool */
489 if (alloc_bounce_pages(newtag, pages) < pages)
490 error = ENOMEM;
491 }
492 /* Performed initial allocation */
493 newtag->flags |= BUS_DMA_MIN_ALLOC_COMP;
494 } else
495 newtag->bounce_zone = NULL;
496
497 if (error != 0) {
498 free(newtag, M_BUSDMA);
499 } else {
500 atomic_add_32(&tags_total, 1);
501 *dmat = newtag;
502 }
503 CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
504 __func__, newtag, (newtag != NULL ? newtag->flags : 0), error);
505 return (error);
506 }
507
508 void
509 bus_dma_template_clone(bus_dma_template_t *t, bus_dma_tag_t dmat)
510 {
511
512 if (t == NULL || dmat == NULL)
513 return;
514
515 t->parent = dmat->parent;
516 t->alignment = dmat->alignment;
517 t->boundary = dmat->boundary;
518 t->lowaddr = dmat->lowaddr;
519 t->highaddr = dmat->highaddr;
520 t->maxsize = dmat->maxsize;
521 t->nsegments = dmat->nsegments;
522 t->maxsegsize = dmat->maxsegsz;
523 t->flags = dmat->flags;
524 t->lockfunc = dmat->lockfunc;
525 t->lockfuncarg = dmat->lockfuncarg;
526 }
527
528 int
529 bus_dma_tag_set_domain(bus_dma_tag_t dmat, int domain)
530 {
531
532 return (0);
533 }
534
535 int
536 bus_dma_tag_destroy(bus_dma_tag_t dmat)
537 {
538 #ifdef KTR
539 bus_dma_tag_t dmat_copy = dmat;
540 #endif
541 int error;
542
543 error = 0;
544
545 if (dmat != NULL) {
546 if (dmat->map_count != 0) {
547 error = EBUSY;
548 goto out;
549 }
550
551 while (dmat != NULL) {
552 bus_dma_tag_t parent;
553
554 parent = dmat->parent;
555 atomic_subtract_int(&dmat->ref_count, 1);
556 if (dmat->ref_count == 0) {
557 atomic_subtract_32(&tags_total, 1);
558 free(dmat, M_BUSDMA);
559 /*
560 * Last reference count, so
561 * release our reference
562 * count on our parent.
563 */
564 dmat = parent;
565 } else
566 dmat = NULL;
567 }
568 }
569 out:
570 CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
571 return (error);
572 }
573
574 static int
575 allocate_bz_and_pages(bus_dma_tag_t dmat, bus_dmamap_t mapp)
576 {
577 struct bounce_zone *bz;
578 int maxpages;
579 int error;
580
581 if (dmat->bounce_zone == NULL)
582 if ((error = alloc_bounce_zone(dmat)) != 0)
583 return (error);
584 bz = dmat->bounce_zone;
585 /* Initialize the new map */
586 STAILQ_INIT(&(mapp->bpages));
587
588 /*
589 * Attempt to add pages to our pool on a per-instance basis up to a sane
590 * limit. Even if the tag isn't flagged as COULD_BOUNCE due to
591 * alignment and boundary constraints, it could still auto-bounce due to
592 * cacheline alignment, which requires at most two bounce pages.
593 */
594 if (dmat->flags & BUS_DMA_COULD_BOUNCE)
595 maxpages = MAX_BPAGES;
596 else
597 maxpages = 2 * bz->map_count;
598 if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 ||
599 (bz->map_count > 0 && bz->total_bpages < maxpages)) {
600 int pages;
601
602 pages = atop(roundup2(dmat->maxsize, PAGE_SIZE)) + 1;
603 pages = MIN(maxpages - bz->total_bpages, pages);
604 pages = MAX(pages, 2);
605 if (alloc_bounce_pages(dmat, pages) < pages)
606 return (ENOMEM);
607
608 if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0)
609 dmat->flags |= BUS_DMA_MIN_ALLOC_COMP;
610 }
611 bz->map_count++;
612 return (0);
613 }
614
615 static bus_dmamap_t
616 allocate_map(bus_dma_tag_t dmat, int mflags)
617 {
618 int mapsize, segsize;
619 bus_dmamap_t map;
620
621 /*
622 * Allocate the map. The map structure ends with an embedded
623 * variable-sized array of sync_list structures. Following that
624 * we allocate enough extra space to hold the array of bus_dma_segments.
625 */
626 KASSERT(dmat->nsegments <= MAX_DMA_SEGMENTS,
627 ("cannot allocate %u dma segments (max is %u)",
628 dmat->nsegments, MAX_DMA_SEGMENTS));
629 segsize = sizeof(struct bus_dma_segment) * dmat->nsegments;
630 mapsize = sizeof(*map) + sizeof(struct sync_list) * dmat->nsegments;
631 map = malloc(mapsize + segsize, M_BUSDMA, mflags | M_ZERO);
632 if (map == NULL) {
633 CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
634 return (NULL);
635 }
636 map->segments = (bus_dma_segment_t *)((uintptr_t)map + mapsize);
637 STAILQ_INIT(&map->bpages);
638 return (map);
639 }
640
641 /*
642 * Allocate a handle for mapping from kva/uva/physical
643 * address space into bus device space.
644 */
645 int
646 bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
647 {
648 bus_dmamap_t map;
649 int error = 0;
650
651 *mapp = map = allocate_map(dmat, M_NOWAIT);
652 if (map == NULL) {
653 CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
654 return (ENOMEM);
655 }
656
657 /*
658 * Bouncing might be required if the driver asks for an exclusion
659 * region, a data alignment that is stricter than 1, or DMA that begins
660 * or ends with a partial cacheline. Whether bouncing will actually
661 * happen can't be known until mapping time, but we need to pre-allocate
662 * resources now because we might not be allowed to at mapping time.
663 */
664 error = allocate_bz_and_pages(dmat, map);
665 if (error != 0) {
666 free(map, M_BUSDMA);
667 *mapp = NULL;
668 return (error);
669 }
670 if (map->flags & DMAMAP_COHERENT)
671 atomic_add_32(&maps_coherent, 1);
672 atomic_add_32(&maps_total, 1);
673 dmat->map_count++;
674
675 return (0);
676 }
677
678 /*
679 * Destroy a handle for mapping from kva/uva/physical
680 * address space into bus device space.
681 */
682 int
683 bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
684 {
685
686 if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
687 CTR3(KTR_BUSDMA, "%s: tag %p error %d",
688 __func__, dmat, EBUSY);
689 return (EBUSY);
690 }
691 if (dmat->bounce_zone)
692 dmat->bounce_zone->map_count--;
693 if (map->flags & DMAMAP_COHERENT)
694 atomic_subtract_32(&maps_coherent, 1);
695 atomic_subtract_32(&maps_total, 1);
696 free(map, M_BUSDMA);
697 dmat->map_count--;
698 CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
699 return (0);
700 }
701
702 /*
703 * Allocate a piece of memory that can be efficiently mapped into bus device
704 * space based on the constraints listed in the dma tag. Returns a pointer to
705 * the allocated memory, and a pointer to an associated bus_dmamap.
706 */
707 int
708 bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags,
709 bus_dmamap_t *mapp)
710 {
711 busdma_bufalloc_t ba;
712 struct busdma_bufzone *bufzone;
713 bus_dmamap_t map;
714 vm_memattr_t memattr;
715 int mflags;
716
717 if (flags & BUS_DMA_NOWAIT)
718 mflags = M_NOWAIT;
719 else
720 mflags = M_WAITOK;
721 if (flags & BUS_DMA_ZERO)
722 mflags |= M_ZERO;
723
724 *mapp = map = allocate_map(dmat, mflags);
725 if (map == NULL) {
726 CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
727 __func__, dmat, dmat->flags, ENOMEM);
728 return (ENOMEM);
729 }
730 map->flags = DMAMAP_DMAMEM_ALLOC;
731
732 /* For coherent memory, set the map flag that disables sync ops. */
733 if (flags & BUS_DMA_COHERENT)
734 map->flags |= DMAMAP_COHERENT;
735
736 /*
737 * Choose a busdma buffer allocator based on memory type flags.
738 * If the tag's COHERENT flag is set, that means normal memory
739 * is already coherent, use the normal allocator.
740 */
741 if ((flags & BUS_DMA_COHERENT) &&
742 ((dmat->flags & BUS_DMA_COHERENT) == 0)) {
743 memattr = VM_MEMATTR_UNCACHEABLE;
744 ba = coherent_allocator;
745 } else {
746 memattr = VM_MEMATTR_DEFAULT;
747 ba = standard_allocator;
748 }
749
750 /*
751 * Try to find a bufzone in the allocator that holds a cache of buffers
752 * of the right size for this request. If the buffer is too big to be
753 * held in the allocator cache, this returns NULL.
754 */
755 bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
756
757 /*
758 * Allocate the buffer from the uma(9) allocator if...
759 * - It's small enough to be in the allocator (bufzone not NULL).
760 * - The alignment constraint isn't larger than the allocation size
761 * (the allocator aligns buffers to their size boundaries).
762 * - There's no need to handle lowaddr/highaddr exclusion zones.
763 * else allocate non-contiguous pages if...
764 * - The page count that could get allocated doesn't exceed
765 * nsegments also when the maximum segment size is less
766 * than PAGE_SIZE.
767 * - The alignment constraint isn't larger than a page boundary.
768 * - There are no boundary-crossing constraints.
769 * else allocate a block of contiguous pages because one or more of the
770 * constraints is something that only the contig allocator can fulfill.
771 */
772 if (bufzone != NULL && dmat->alignment <= bufzone->size &&
773 !exclusion_bounce(dmat)) {
774 *vaddr = uma_zalloc(bufzone->umazone, mflags);
775 } else if (dmat->nsegments >=
776 howmany(dmat->maxsize, MIN(dmat->maxsegsz, PAGE_SIZE)) &&
777 dmat->alignment <= PAGE_SIZE &&
778 (dmat->boundary % PAGE_SIZE) == 0) {
779 *vaddr = kmem_alloc_attr(dmat->maxsize, mflags, 0,
780 dmat->lowaddr, memattr);
781 } else {
782 *vaddr = kmem_alloc_contig(dmat->maxsize, mflags, 0,
783 dmat->lowaddr, dmat->alignment, dmat->boundary, memattr);
784 }
785 if (*vaddr == NULL) {
786 CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
787 __func__, dmat, dmat->flags, ENOMEM);
788 free(map, M_BUSDMA);
789 *mapp = NULL;
790 return (ENOMEM);
791 }
792 if (map->flags & DMAMAP_COHERENT)
793 atomic_add_32(&maps_coherent, 1);
794 atomic_add_32(&maps_dmamem, 1);
795 atomic_add_32(&maps_total, 1);
796 dmat->map_count++;
797
798 CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
799 __func__, dmat, dmat->flags, 0);
800 return (0);
801 }
802
803 /*
804 * Free a piece of memory that was allocated via bus_dmamem_alloc, along with
805 * its associated map.
806 */
807 void
808 bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
809 {
810 struct busdma_bufzone *bufzone;
811 busdma_bufalloc_t ba;
812
813 if ((map->flags & DMAMAP_COHERENT) &&
814 ((dmat->flags & BUS_DMA_COHERENT) == 0))
815 ba = coherent_allocator;
816 else
817 ba = standard_allocator;
818
819 bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);
820
821 if (bufzone != NULL && dmat->alignment <= bufzone->size &&
822 !exclusion_bounce(dmat))
823 uma_zfree(bufzone->umazone, vaddr);
824 else
825 kmem_free(vaddr, dmat->maxsize);
826
827 dmat->map_count--;
828 if (map->flags & DMAMAP_COHERENT)
829 atomic_subtract_32(&maps_coherent, 1);
830 atomic_subtract_32(&maps_total, 1);
831 atomic_subtract_32(&maps_dmamem, 1);
832 free(map, M_BUSDMA);
833 CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags);
834 }
835
836 static void
837 _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
838 bus_size_t buflen, int flags)
839 {
840 bus_addr_t curaddr;
841 bus_size_t sgsize;
842
843 if (map->pagesneeded == 0) {
844 CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
845 " map= %p, pagesneeded= %d",
846 dmat->lowaddr, dmat->boundary, dmat->alignment,
847 map, map->pagesneeded);
848 /*
849 * Count the number of bounce pages
850 * needed in order to complete this transfer
851 */
852 curaddr = buf;
853 while (buflen != 0) {
854 sgsize = MIN(buflen, dmat->maxsegsz);
855 if (must_bounce(dmat, map, curaddr, sgsize) != 0) {
856 sgsize = MIN(sgsize,
857 PAGE_SIZE - (curaddr & PAGE_MASK));
858 map->pagesneeded++;
859 }
860 curaddr += sgsize;
861 buflen -= sgsize;
862 }
863 CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
864 }
865 }
866
867 static void
868 _bus_dmamap_count_pages(bus_dma_tag_t dmat, pmap_t pmap, bus_dmamap_t map,
869 void *buf, bus_size_t buflen, int flags)
870 {
871 vm_offset_t vaddr;
872 vm_offset_t vendaddr;
873 bus_addr_t paddr;
874
875 if (map->pagesneeded == 0) {
876 CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
877 " map= %p, pagesneeded= %d",
878 dmat->lowaddr, dmat->boundary, dmat->alignment,
879 map, map->pagesneeded);
880 /*
881 * Count the number of bounce pages
882 * needed in order to complete this transfer
883 */
884 vaddr = (vm_offset_t)buf;
885 vendaddr = (vm_offset_t)buf + buflen;
886
887 while (vaddr < vendaddr) {
888 if (__predict_true(pmap == kernel_pmap))
889 paddr = pmap_kextract(vaddr);
890 else
891 paddr = pmap_extract(pmap, vaddr);
892 if (must_bounce(dmat, map, paddr,
893 min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr &
894 PAGE_MASK)))) != 0) {
895 map->pagesneeded++;
896 }
897 vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK));
898 }
899 CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
900 }
901 }
902
903 /*
904 * Add a single contiguous physical range to the segment list.
905 */
906 static int
907 _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
908 bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
909 {
910 int seg;
911
912 /*
913 * Make sure we don't cross any boundaries.
914 */
915 if (!vm_addr_bound_ok(curaddr, sgsize, dmat->boundary))
916 sgsize = roundup2(curaddr, dmat->boundary) - curaddr;
917
918 /*
919 * Insert chunk into a segment, coalescing with
920 * previous segment if possible.
921 */
922 seg = *segp;
923 if (seg == -1) {
924 seg = 0;
925 segs[seg].ds_addr = curaddr;
926 segs[seg].ds_len = sgsize;
927 } else {
928 if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
929 (segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
930 vm_addr_bound_ok(segs[seg].ds_addr,
931 segs[seg].ds_len + sgsize, dmat->boundary))
932 segs[seg].ds_len += sgsize;
933 else {
934 if (++seg >= dmat->nsegments)
935 return (0);
936 segs[seg].ds_addr = curaddr;
937 segs[seg].ds_len = sgsize;
938 }
939 }
940 *segp = seg;
941 return (sgsize);
942 }
943
944 /*
945 * Utility function to load a physical buffer. segp contains
946 * the starting segment on entrace, and the ending segment on exit.
947 */
948 int
949 _bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
950 bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp)
951 {
952 bus_addr_t curaddr;
953 bus_addr_t sl_end = 0;
954 bus_size_t sgsize;
955 struct sync_list *sl;
956 int error;
957
958 if (segs == NULL)
959 segs = map->segments;
960
961 #ifdef ARM_BUSDMA_MAPLOAD_STATS
962 counter_u64_add(maploads_total, 1);
963 counter_u64_add(maploads_physmem, 1);
964 #endif
965
966 if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
967 _bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
968 if (map->pagesneeded != 0) {
969 #ifdef ARM_BUSDMA_MAPLOAD_STATS
970 counter_u64_add(maploads_bounced, 1);
971 #endif
972 error = _bus_dmamap_reserve_pages(dmat, map, flags);
973 if (error)
974 return (error);
975 }
976 }
977
978 sl = map->slist + map->sync_count - 1;
979
980 while (buflen > 0) {
981 curaddr = buf;
982 sgsize = MIN(buflen, dmat->maxsegsz);
983 if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
984 sgsize)) {
985 sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK));
986 curaddr = add_bounce_page(dmat, map, 0, curaddr,
987 sgsize);
988 } else if ((dmat->flags & BUS_DMA_COHERENT) == 0) {
989 if (map->sync_count > 0)
990 sl_end = sl->paddr + sl->datacount;
991
992 if (map->sync_count == 0 || curaddr != sl_end) {
993 if (++map->sync_count > dmat->nsegments)
994 break;
995 sl++;
996 sl->vaddr = 0;
997 sl->paddr = curaddr;
998 sl->datacount = sgsize;
999 sl->pages = PHYS_TO_VM_PAGE(curaddr);
1000 KASSERT(sl->pages != NULL,
1001 ("%s: page at PA:0x%08lx is not in "
1002 "vm_page_array", __func__, curaddr));
1003 } else
1004 sl->datacount += sgsize;
1005 }
1006 sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1007 segp);
1008 if (sgsize == 0)
1009 break;
1010 buf += sgsize;
1011 buflen -= sgsize;
1012 }
1013
1014 /*
1015 * Did we fit?
1016 */
1017 if (buflen != 0) {
1018 bus_dmamap_unload(dmat, map);
1019 return (EFBIG); /* XXX better return value here? */
1020 }
1021 return (0);
1022 }
1023
1024 int
1025 _bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map,
1026 struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
1027 bus_dma_segment_t *segs, int *segp)
1028 {
1029
1030 return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags,
1031 segs, segp));
1032 }
1033
1034 /*
1035 * Utility function to load a linear buffer. segp contains
1036 * the starting segment on entrance, and the ending segment on exit.
1037 */
1038 int
1039 _bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
1040 bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs,
1041 int *segp)
1042 {
1043 bus_size_t sgsize;
1044 bus_addr_t curaddr;
1045 bus_addr_t sl_pend = 0;
1046 vm_offset_t kvaddr, vaddr, sl_vend = 0;
1047 struct sync_list *sl;
1048 int error;
1049
1050 #ifdef ARM_BUSDMA_MAPLOAD_STATS
1051 counter_u64_add(maploads_total, 1);
1052 if (map->flags & DMAMAP_COHERENT)
1053 counter_u64_add(maploads_coherent, 1);
1054 if (map->flags & DMAMAP_DMAMEM_ALLOC)
1055 counter_u64_add(maploads_dmamem, 1);
1056 #endif
1057
1058 if (segs == NULL)
1059 segs = map->segments;
1060
1061 if (flags & BUS_DMA_LOAD_MBUF) {
1062 #ifdef ARM_BUSDMA_MAPLOAD_STATS
1063 counter_u64_add(maploads_mbuf, 1);
1064 #endif
1065 map->flags |= DMAMAP_MBUF;
1066 }
1067
1068 if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
1069 _bus_dmamap_count_pages(dmat, pmap, map, buf, buflen, flags);
1070 if (map->pagesneeded != 0) {
1071 #ifdef ARM_BUSDMA_MAPLOAD_STATS
1072 counter_u64_add(maploads_bounced, 1);
1073 #endif
1074 error = _bus_dmamap_reserve_pages(dmat, map, flags);
1075 if (error)
1076 return (error);
1077 }
1078 }
1079
1080 sl = map->slist + map->sync_count - 1;
1081 vaddr = (vm_offset_t)buf;
1082
1083 while (buflen > 0) {
1084 /*
1085 * Get the physical address for this segment.
1086 */
1087 if (__predict_true(pmap == kernel_pmap)) {
1088 curaddr = pmap_kextract(vaddr);
1089 kvaddr = vaddr;
1090 } else {
1091 curaddr = pmap_extract(pmap, vaddr);
1092 kvaddr = 0;
1093 }
1094
1095 /*
1096 * Compute the segment size, and adjust counts.
1097 */
1098 sgsize = PAGE_SIZE - (curaddr & PAGE_MASK);
1099 if (sgsize > dmat->maxsegsz)
1100 sgsize = dmat->maxsegsz;
1101 if (buflen < sgsize)
1102 sgsize = buflen;
1103
1104 if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
1105 sgsize)) {
1106 curaddr = add_bounce_page(dmat, map, kvaddr, curaddr,
1107 sgsize);
1108 } else if ((dmat->flags & BUS_DMA_COHERENT) == 0) {
1109 if (map->sync_count > 0) {
1110 sl_pend = sl->paddr + sl->datacount;
1111 sl_vend = sl->vaddr + sl->datacount;
1112 }
1113
1114 if (map->sync_count == 0 ||
1115 (kvaddr != 0 && kvaddr != sl_vend) ||
1116 (curaddr != sl_pend)) {
1117 if (++map->sync_count > dmat->nsegments)
1118 goto cleanup;
1119 sl++;
1120 sl->vaddr = kvaddr;
1121 sl->paddr = curaddr;
1122 if (kvaddr != 0) {
1123 sl->pages = NULL;
1124 } else {
1125 sl->pages = PHYS_TO_VM_PAGE(curaddr);
1126 KASSERT(sl->pages != NULL,
1127 ("%s: page at PA:0x%08lx is not "
1128 "in vm_page_array", __func__,
1129 curaddr));
1130 }
1131 sl->datacount = sgsize;
1132 } else
1133 sl->datacount += sgsize;
1134 }
1135 sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
1136 segp);
1137 if (sgsize == 0)
1138 break;
1139 vaddr += sgsize;
1140 buflen -= sgsize;
1141 }
1142
1143 cleanup:
1144 /*
1145 * Did we fit?
1146 */
1147 if (buflen != 0) {
1148 bus_dmamap_unload(dmat, map);
1149 return (EFBIG); /* XXX better return value here? */
1150 }
1151 return (0);
1152 }
1153
1154 void
1155 _bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem,
1156 bus_dmamap_callback_t *callback, void *callback_arg)
1157 {
1158
1159 map->mem = *mem;
1160 map->dmat = dmat;
1161 map->callback = callback;
1162 map->callback_arg = callback_arg;
1163 }
1164
1165 bus_dma_segment_t *
1166 _bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
1167 bus_dma_segment_t *segs, int nsegs, int error)
1168 {
1169
1170 if (segs == NULL)
1171 segs = map->segments;
1172 return (segs);
1173 }
1174
1175 /*
1176 * Release the mapping held by map.
1177 */
1178 void
1179 bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
1180 {
1181 struct bounce_zone *bz;
1182
1183 if ((bz = dmat->bounce_zone) != NULL) {
1184 free_bounce_pages(dmat, map);
1185
1186 if (map->pagesreserved != 0) {
1187 mtx_lock(&bounce_lock);
1188 bz->free_bpages += map->pagesreserved;
1189 bz->reserved_bpages -= map->pagesreserved;
1190 mtx_unlock(&bounce_lock);
1191 map->pagesreserved = 0;
1192 }
1193 map->pagesneeded = 0;
1194 }
1195 map->sync_count = 0;
1196 map->flags &= ~DMAMAP_MBUF;
1197 }
1198
1199 static void
1200 dma_preread_safe(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
1201 {
1202 /*
1203 * Write back any partial cachelines immediately before and
1204 * after the DMA region. We don't need to round the address
1205 * down to the nearest cacheline or specify the exact size,
1206 * as dcache_wb_poc() will do the rounding for us and works
1207 * at cacheline granularity.
1208 */
1209 if (va & BUSDMA_DCACHE_MASK)
1210 dcache_wb_poc(va, pa, 1);
1211 if ((va + size) & BUSDMA_DCACHE_MASK)
1212 dcache_wb_poc(va + size, pa + size, 1);
1213
1214 dcache_inv_poc_dma(va, pa, size);
1215 }
1216
1217 static void
1218 dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op)
1219 {
1220 uint32_t len, offset;
1221 vm_page_t m;
1222 vm_paddr_t pa;
1223 vm_offset_t va, tempva;
1224 bus_size_t size;
1225
1226 offset = sl->paddr & PAGE_MASK;
1227 m = sl->pages;
1228 size = sl->datacount;
1229 pa = sl->paddr;
1230
1231 for ( ; size != 0; size -= len, pa += len, offset = 0, ++m) {
1232 tempva = 0;
1233 if (sl->vaddr == 0) {
1234 len = min(PAGE_SIZE - offset, size);
1235 tempva = pmap_quick_enter_page(m);
1236 va = tempva | offset;
1237 KASSERT(pa == (VM_PAGE_TO_PHYS(m) | offset),
1238 ("unexpected vm_page_t phys: 0x%08x != 0x%08x",
1239 VM_PAGE_TO_PHYS(m) | offset, pa));
1240 } else {
1241 len = sl->datacount;
1242 va = sl->vaddr;
1243 }
1244
1245 switch (op) {
1246 case BUS_DMASYNC_PREWRITE:
1247 case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
1248 dcache_wb_poc(va, pa, len);
1249 break;
1250 case BUS_DMASYNC_PREREAD:
1251 /*
1252 * An mbuf may start in the middle of a cacheline. There
1253 * will be no cpu writes to the beginning of that line
1254 * (which contains the mbuf header) while dma is in
1255 * progress. Handle that case by doing a writeback of
1256 * just the first cacheline before invalidating the
1257 * overall buffer. Any mbuf in a chain may have this
1258 * misalignment. Buffers which are not mbufs bounce if
1259 * they are not aligned to a cacheline.
1260 */
1261 dma_preread_safe(va, pa, len);
1262 break;
1263 case BUS_DMASYNC_POSTREAD:
1264 case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
1265 dcache_inv_poc(va, pa, len);
1266 break;
1267 default:
1268 panic("unsupported combination of sync operations: "
1269 "0x%08x\n", op);
1270 }
1271
1272 if (tempva != 0)
1273 pmap_quick_remove_page(tempva);
1274 }
1275 }
1276
1277 void
1278 bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
1279 {
1280 struct bounce_page *bpage;
1281 struct sync_list *sl, *end;
1282 vm_offset_t datavaddr, tempvaddr;
1283
1284 if (op == BUS_DMASYNC_POSTWRITE)
1285 return;
1286
1287 /*
1288 * If the buffer was from user space, it is possible that this is not
1289 * the same vm map, especially on a POST operation. It's not clear that
1290 * dma on userland buffers can work at all right now. To be safe, until
1291 * we're able to test direct userland dma, panic on a map mismatch.
1292 */
1293 if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
1294 CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1295 "performing bounce", __func__, dmat, dmat->flags, op);
1296
1297 /*
1298 * For PREWRITE do a writeback. Clean the caches from the
1299 * innermost to the outermost levels.
1300 */
1301 if (op & BUS_DMASYNC_PREWRITE) {
1302 while (bpage != NULL) {
1303 tempvaddr = 0;
1304 datavaddr = bpage->datavaddr;
1305 if (datavaddr == 0) {
1306 tempvaddr = pmap_quick_enter_page(
1307 bpage->datapage);
1308 datavaddr = tempvaddr | bpage->dataoffs;
1309 }
1310 bcopy((void *)datavaddr, (void *)bpage->vaddr,
1311 bpage->datacount);
1312 if (tempvaddr != 0)
1313 pmap_quick_remove_page(tempvaddr);
1314 if ((dmat->flags & BUS_DMA_COHERENT) == 0)
1315 dcache_wb_poc(bpage->vaddr,
1316 bpage->busaddr, bpage->datacount);
1317 bpage = STAILQ_NEXT(bpage, links);
1318 }
1319 dmat->bounce_zone->total_bounced++;
1320 }
1321
1322 /*
1323 * Do an invalidate for PREREAD unless a writeback was already
1324 * done above due to PREWRITE also being set. The reason for a
1325 * PREREAD invalidate is to prevent dirty lines currently in the
1326 * cache from being evicted during the DMA. If a writeback was
1327 * done due to PREWRITE also being set there will be no dirty
1328 * lines and the POSTREAD invalidate handles the rest. The
1329 * invalidate is done from the innermost to outermost level. If
1330 * L2 were done first, a dirty cacheline could be automatically
1331 * evicted from L1 before we invalidated it, re-dirtying the L2.
1332 */
1333 if ((op & BUS_DMASYNC_PREREAD) && !(op & BUS_DMASYNC_PREWRITE)) {
1334 bpage = STAILQ_FIRST(&map->bpages);
1335 while (bpage != NULL) {
1336 if ((dmat->flags & BUS_DMA_COHERENT) == 0)
1337 dcache_inv_poc_dma(bpage->vaddr,
1338 bpage->busaddr, bpage->datacount);
1339 bpage = STAILQ_NEXT(bpage, links);
1340 }
1341 }
1342
1343 /*
1344 * Re-invalidate the caches on a POSTREAD, even though they were
1345 * already invalidated at PREREAD time. Aggressive prefetching
1346 * due to accesses to other data near the dma buffer could have
1347 * brought buffer data into the caches which is now stale. The
1348 * caches are invalidated from the outermost to innermost; the
1349 * prefetches could be happening right now, and if L1 were
1350 * invalidated first, stale L2 data could be prefetched into L1.
1351 */
1352 if (op & BUS_DMASYNC_POSTREAD) {
1353 while (bpage != NULL) {
1354 if ((dmat->flags & BUS_DMA_COHERENT) == 0)
1355 dcache_inv_poc(bpage->vaddr,
1356 bpage->busaddr, bpage->datacount);
1357 tempvaddr = 0;
1358 datavaddr = bpage->datavaddr;
1359 if (datavaddr == 0) {
1360 tempvaddr = pmap_quick_enter_page(
1361 bpage->datapage);
1362 datavaddr = tempvaddr | bpage->dataoffs;
1363 }
1364 bcopy((void *)bpage->vaddr, (void *)datavaddr,
1365 bpage->datacount);
1366 if (tempvaddr != 0)
1367 pmap_quick_remove_page(tempvaddr);
1368 bpage = STAILQ_NEXT(bpage, links);
1369 }
1370 dmat->bounce_zone->total_bounced++;
1371 }
1372 }
1373
1374 /*
1375 * For COHERENT memory no cache maintenance is necessary, but ensure all
1376 * writes have reached memory for the PREWRITE case. No action is
1377 * needed for a PREREAD without PREWRITE also set, because that would
1378 * imply that the cpu had written to the COHERENT buffer and expected
1379 * the dma device to see that change, and by definition a PREWRITE sync
1380 * is required to make that happen.
1381 */
1382 if (map->flags & DMAMAP_COHERENT) {
1383 if (op & BUS_DMASYNC_PREWRITE) {
1384 dsb();
1385 if ((dmat->flags & BUS_DMA_COHERENT) == 0)
1386 cpu_l2cache_drain_writebuf();
1387 }
1388 return;
1389 }
1390
1391 /*
1392 * Cache maintenance for normal (non-COHERENT non-bounce) buffers. All
1393 * the comments about the sequences for flushing cache levels in the
1394 * bounce buffer code above apply here as well. In particular, the fact
1395 * that the sequence is inner-to-outer for PREREAD invalidation and
1396 * outer-to-inner for POSTREAD invalidation is not a mistake.
1397 */
1398 if (map->sync_count != 0) {
1399 sl = &map->slist[0];
1400 end = &map->slist[map->sync_count];
1401 CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
1402 "performing sync", __func__, dmat, dmat->flags, op);
1403
1404 for ( ; sl != end; ++sl)
1405 dma_dcache_sync(sl, op);
1406 }
1407 }
Cache object: 3c53d1dede1a5855009fd22ae7c2bb09
|