The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $        */
    2 
    3 /*-
    4  * Copyright (c) 2004 Olivier Houchard
    5  * Copyright (c) 1994-1998 Mark Brinicombe.
    6  * Copyright (c) 1994 Brini.
    7  * All rights reserved.
    8  *
    9  * This code is derived from software written for Brini by Mark Brinicombe
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by Mark Brinicombe
   22  *      for the NetBSD Project.
   23  * 4. The name of the company nor the name of the author may be used to
   24  *    endorse or promote products derived from this software without specific
   25  *    prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
   28  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   29  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   30  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   31  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   32  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   33  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  * Machine dependant functions for kernel setup
   40  *
   41  * Created      : 17/09/94
   42  * Updated      : 18/04/01 updated for new wscons
   43  */
   44 
   45 #include "opt_compat.h"
   46 #include "opt_ddb.h"
   47 #include "opt_platform.h"
   48 #include "opt_sched.h"
   49 #include "opt_timer.h"
   50 
   51 #include <sys/cdefs.h>
   52 __FBSDID("$FreeBSD: releng/10.1/sys/arm/arm/machdep.c 270077 2014-08-17 01:48:12Z ian $");
   53 
   54 #include <sys/param.h>
   55 #include <sys/proc.h>
   56 #include <sys/systm.h>
   57 #include <sys/bio.h>
   58 #include <sys/buf.h>
   59 #include <sys/bus.h>
   60 #include <sys/cons.h>
   61 #include <sys/cpu.h>
   62 #include <sys/exec.h>
   63 #include <sys/imgact.h>
   64 #include <sys/kdb.h>
   65 #include <sys/kernel.h>
   66 #include <sys/ktr.h>
   67 #include <sys/linker.h>
   68 #include <sys/lock.h>
   69 #include <sys/malloc.h>
   70 #include <sys/msgbuf.h>
   71 #include <sys/mutex.h>
   72 #include <sys/pcpu.h>
   73 #include <sys/ptrace.h>
   74 #include <sys/rwlock.h>
   75 #include <sys/sched.h>
   76 #include <sys/signalvar.h>
   77 #include <sys/syscallsubr.h>
   78 #include <sys/sysctl.h>
   79 #include <sys/sysent.h>
   80 #include <sys/sysproto.h>
   81 #include <sys/uio.h>
   82 
   83 #include <vm/vm.h>
   84 #include <vm/pmap.h>
   85 #include <vm/vm_map.h>
   86 #include <vm/vm_object.h>
   87 #include <vm/vm_page.h>
   88 #include <vm/vm_pager.h>
   89 
   90 #include <machine/armreg.h>
   91 #include <machine/atags.h>
   92 #include <machine/cpu.h>
   93 #include <machine/devmap.h>
   94 #include <machine/frame.h>
   95 #include <machine/intr.h>
   96 #include <machine/machdep.h>
   97 #include <machine/md_var.h>
   98 #include <machine/metadata.h>
   99 #include <machine/pcb.h>
  100 #include <machine/physmem.h>
  101 #include <machine/reg.h>
  102 #include <machine/trap.h>
  103 #include <machine/undefined.h>
  104 #include <machine/vfp.h>
  105 #include <machine/vmparam.h>
  106 #include <machine/sysarch.h>
  107 
  108 #ifdef FDT
  109 #include <dev/fdt/fdt_common.h>
  110 #include <dev/ofw/openfirm.h>
  111 #endif
  112 
  113 #ifdef DEBUG
  114 #define debugf(fmt, args...) printf(fmt, ##args)
  115 #else
  116 #define debugf(fmt, args...)
  117 #endif
  118 
  119 struct pcpu __pcpu[MAXCPU];
  120 struct pcpu *pcpup = &__pcpu[0];
  121 
  122 static struct trapframe proc0_tf;
  123 uint32_t cpu_reset_address = 0;
  124 int cold = 1;
  125 vm_offset_t vector_page;
  126 
  127 int (*_arm_memcpy)(void *, void *, int, int) = NULL;
  128 int (*_arm_bzero)(void *, int, int) = NULL;
  129 int _min_memcpy_size = 0;
  130 int _min_bzero_size = 0;
  131 
  132 extern int *end;
  133 #ifdef DDB
  134 extern vm_offset_t ksym_start, ksym_end;
  135 #endif
  136 
  137 #ifdef FDT
  138 /*
  139  * This is the number of L2 page tables required for covering max
  140  * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
  141  * stacks etc.), uprounded to be divisible by 4.
  142  */
  143 #define KERNEL_PT_MAX   78
  144 
  145 static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
  146 
  147 vm_paddr_t pmap_pa;
  148 
  149 struct pv_addr systempage;
  150 static struct pv_addr msgbufpv;
  151 struct pv_addr irqstack;
  152 struct pv_addr undstack;
  153 struct pv_addr abtstack;
  154 static struct pv_addr kernelstack;
  155 
  156 #endif
  157 
  158 #if defined(LINUX_BOOT_ABI)
  159 #define LBABI_MAX_BANKS 10
  160 
  161 uint32_t board_id;
  162 struct arm_lbabi_tag *atag_list;
  163 char linux_command_line[LBABI_MAX_COMMAND_LINE + 1];
  164 char atags[LBABI_MAX_COMMAND_LINE * 2];
  165 uint32_t memstart[LBABI_MAX_BANKS];
  166 uint32_t memsize[LBABI_MAX_BANKS];
  167 uint32_t membanks;
  168 #endif
  169 
  170 static uint32_t board_revision;
  171 /* hex representation of uint64_t */
  172 static char board_serial[32];
  173 
  174 SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes");
  175 SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD,
  176     &board_revision, 0, "Board revision");
  177 SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD,
  178     board_serial, 0, "Board serial");
  179 
  180 int vfp_exists;
  181 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  182     &vfp_exists, 0, "Floating point support enabled");
  183 
  184 void
  185 board_set_serial(uint64_t serial)
  186 {
  187 
  188         snprintf(board_serial, sizeof(board_serial)-1, 
  189                     "%016jx", serial);
  190 }
  191 
  192 void
  193 board_set_revision(uint32_t revision)
  194 {
  195 
  196         board_revision = revision;
  197 }
  198 
  199 void
  200 sendsig(catcher, ksi, mask)
  201         sig_t catcher;
  202         ksiginfo_t *ksi;
  203         sigset_t *mask;
  204 {
  205         struct thread *td;
  206         struct proc *p;
  207         struct trapframe *tf;
  208         struct sigframe *fp, frame;
  209         struct sigacts *psp;
  210         int onstack;
  211         int sig;
  212         int code;
  213 
  214         td = curthread;
  215         p = td->td_proc;
  216         PROC_LOCK_ASSERT(p, MA_OWNED);
  217         sig = ksi->ksi_signo;
  218         code = ksi->ksi_code;
  219         psp = p->p_sigacts;
  220         mtx_assert(&psp->ps_mtx, MA_OWNED);
  221         tf = td->td_frame;
  222         onstack = sigonstack(tf->tf_usr_sp);
  223 
  224         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  225             catcher, sig);
  226 
  227         /* Allocate and validate space for the signal handler context. */
  228         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
  229             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  230                 fp = (struct sigframe *)(td->td_sigstk.ss_sp +
  231                     td->td_sigstk.ss_size);
  232 #if defined(COMPAT_43)
  233                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  234 #endif
  235         } else
  236                 fp = (struct sigframe *)td->td_frame->tf_usr_sp;
  237 
  238         /* make room on the stack */
  239         fp--;
  240         
  241         /* make the stack aligned */
  242         fp = (struct sigframe *)STACKALIGN(fp);
  243         /* Populate the siginfo frame. */
  244         get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
  245         frame.sf_si = ksi->ksi_info;
  246         frame.sf_uc.uc_sigmask = *mask;
  247         frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
  248             ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  249         frame.sf_uc.uc_stack = td->td_sigstk;
  250         mtx_unlock(&psp->ps_mtx);
  251         PROC_UNLOCK(td->td_proc);
  252 
  253         /* Copy the sigframe out to the user's stack. */
  254         if (copyout(&frame, fp, sizeof(*fp)) != 0) {
  255                 /* Process has trashed its stack. Kill it. */
  256                 CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
  257                 PROC_LOCK(p);
  258                 sigexit(td, SIGILL);
  259         }
  260 
  261         /* Translate the signal if appropriate. */
  262         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  263                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  264 
  265         /*
  266          * Build context to run handler in.  We invoke the handler
  267          * directly, only returning via the trampoline.  Note the
  268          * trampoline version numbers are coordinated with machine-
  269          * dependent code in libc.
  270          */
  271         
  272         tf->tf_r0 = sig;
  273         tf->tf_r1 = (register_t)&fp->sf_si;
  274         tf->tf_r2 = (register_t)&fp->sf_uc;
  275 
  276         /* the trampoline uses r5 as the uc address */
  277         tf->tf_r5 = (register_t)&fp->sf_uc;
  278         tf->tf_pc = (register_t)catcher;
  279         tf->tf_usr_sp = (register_t)fp;
  280         tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
  281 
  282         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
  283             tf->tf_usr_sp);
  284 
  285         PROC_LOCK(p);
  286         mtx_lock(&psp->ps_mtx);
  287 }
  288 
  289 struct kva_md_info kmi;
  290 
  291 /*
  292  * arm32_vector_init:
  293  *
  294  *      Initialize the vector page, and select whether or not to
  295  *      relocate the vectors.
  296  *
  297  *      NOTE: We expect the vector page to be mapped at its expected
  298  *      destination.
  299  */
  300 
  301 extern unsigned int page0[], page0_data[];
  302 void
  303 arm_vector_init(vm_offset_t va, int which)
  304 {
  305         unsigned int *vectors = (int *) va;
  306         unsigned int *vectors_data = vectors + (page0_data - page0);
  307         int vec;
  308 
  309         /*
  310          * Loop through the vectors we're taking over, and copy the
  311          * vector's insn and data word.
  312          */
  313         for (vec = 0; vec < ARM_NVEC; vec++) {
  314                 if ((which & (1 << vec)) == 0) {
  315                         /* Don't want to take over this vector. */
  316                         continue;
  317                 }
  318                 vectors[vec] = page0[vec];
  319                 vectors_data[vec] = page0_data[vec];
  320         }
  321 
  322         /* Now sync the vectors. */
  323         cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));
  324 
  325         vector_page = va;
  326 
  327         if (va == ARM_VECTORS_HIGH) {
  328                 /*
  329                  * Assume the MD caller knows what it's doing here, and
  330                  * really does want the vector page relocated.
  331                  *
  332                  * Note: This has to be done here (and not just in
  333                  * cpu_setup()) because the vector page needs to be
  334                  * accessible *before* cpu_startup() is called.
  335                  * Think ddb(9) ...
  336                  *
  337                  * NOTE: If the CPU control register is not readable,
  338                  * this will totally fail!  We'll just assume that
  339                  * any system that has high vector support has a
  340                  * readable CPU control register, for now.  If we
  341                  * ever encounter one that does not, we'll have to
  342                  * rethink this.
  343                  */
  344                 cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
  345         }
  346 }
  347 
  348 static void
  349 cpu_startup(void *dummy)
  350 {
  351         struct pcb *pcb = thread0.td_pcb;
  352         const unsigned int mbyte = 1024 * 1024;
  353 #ifdef ARM_TP_ADDRESS
  354 #ifndef ARM_CACHE_LOCK_ENABLE
  355         vm_page_t m;
  356 #endif
  357 #endif
  358 
  359         identify_arm_cpu();
  360 
  361         vm_ksubmap_init(&kmi);
  362 
  363         /*
  364          * Display the RAM layout.
  365          */
  366         printf("real memory  = %ju (%ju MB)\n", 
  367             (uintmax_t)arm32_ptob(realmem),
  368             (uintmax_t)arm32_ptob(realmem) / mbyte);
  369         printf("avail memory = %ju (%ju MB)\n",
  370             (uintmax_t)arm32_ptob(cnt.v_free_count),
  371             (uintmax_t)arm32_ptob(cnt.v_free_count) / mbyte);
  372         if (bootverbose) {
  373                 arm_physmem_print_tables();
  374                 arm_devmap_print_table();
  375         }
  376 
  377         bufinit();
  378         vm_pager_bufferinit();
  379         pcb->un_32.pcb32_sp = (u_int)thread0.td_kstack +
  380             USPACE_SVC_STACK_TOP;
  381         vector_page_setprot(VM_PROT_READ);
  382         pmap_set_pcb_pagedir(pmap_kernel(), pcb);
  383         pmap_postinit();
  384 #ifdef ARM_TP_ADDRESS
  385 #ifdef ARM_CACHE_LOCK_ENABLE
  386         pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
  387         arm_lock_cache_line(ARM_TP_ADDRESS);
  388 #else
  389         m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
  390         pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
  391 #endif
  392         *(uint32_t *)ARM_RAS_START = 0;
  393         *(uint32_t *)ARM_RAS_END = 0xffffffff;
  394 #endif
  395 }
  396 
  397 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  398 
  399 /*
  400  * Flush the D-cache for non-DMA I/O so that the I-cache can
  401  * be made coherent later.
  402  */
  403 void
  404 cpu_flush_dcache(void *ptr, size_t len)
  405 {
  406 
  407         cpu_dcache_wb_range((uintptr_t)ptr, len);
  408 #ifdef ARM_L2_PIPT
  409         cpu_l2cache_wb_range((uintptr_t)vtophys(ptr), len);
  410 #else
  411         cpu_l2cache_wb_range((uintptr_t)ptr, len);
  412 #endif
  413 }
  414 
  415 /* Get current clock frequency for the given cpu id. */
  416 int
  417 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  418 {
  419 
  420         return (ENXIO);
  421 }
  422 
  423 void
  424 cpu_idle(int busy)
  425 {
  426         
  427         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
  428         spinlock_enter();
  429 #ifndef NO_EVENTTIMERS
  430         if (!busy)
  431                 cpu_idleclock();
  432 #endif
  433         if (!sched_runnable())
  434                 cpu_sleep(0);
  435 #ifndef NO_EVENTTIMERS
  436         if (!busy)
  437                 cpu_activeclock();
  438 #endif
  439         spinlock_exit();
  440         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
  441 }
  442 
  443 int
  444 cpu_idle_wakeup(int cpu)
  445 {
  446 
  447         return (0);
  448 }
  449 
  450 /*
  451  * Most ARM platforms don't need to do anything special to init their clocks
  452  * (they get intialized during normal device attachment), and by not defining a
  453  * cpu_initclocks() function they get this generic one.  Any platform that needs
  454  * to do something special can just provide their own implementation, which will
  455  * override this one due to the weak linkage.
  456  */
  457 void
  458 arm_generic_initclocks(void)
  459 {
  460 
  461 #ifndef NO_EVENTTIMERS
  462 #ifdef SMP
  463         if (PCPU_GET(cpuid) == 0)
  464                 cpu_initclocks_bsp();
  465         else
  466                 cpu_initclocks_ap();
  467 #else
  468         cpu_initclocks_bsp();
  469 #endif
  470 #endif
  471 }
  472 __weak_reference(arm_generic_initclocks, cpu_initclocks);
  473 
  474 int
  475 fill_regs(struct thread *td, struct reg *regs)
  476 {
  477         struct trapframe *tf = td->td_frame;
  478         bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
  479         regs->r_sp = tf->tf_usr_sp;
  480         regs->r_lr = tf->tf_usr_lr;
  481         regs->r_pc = tf->tf_pc;
  482         regs->r_cpsr = tf->tf_spsr;
  483         return (0);
  484 }
  485 int
  486 fill_fpregs(struct thread *td, struct fpreg *regs)
  487 {
  488         bzero(regs, sizeof(*regs));
  489         return (0);
  490 }
  491 
  492 int
  493 set_regs(struct thread *td, struct reg *regs)
  494 {
  495         struct trapframe *tf = td->td_frame;
  496         
  497         bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
  498         tf->tf_usr_sp = regs->r_sp;
  499         tf->tf_usr_lr = regs->r_lr;
  500         tf->tf_pc = regs->r_pc;
  501         tf->tf_spsr &=  ~PSR_FLAGS;
  502         tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
  503         return (0);                                                             
  504 }
  505 
  506 int
  507 set_fpregs(struct thread *td, struct fpreg *regs)
  508 {
  509         return (0);
  510 }
  511 
  512 int
  513 fill_dbregs(struct thread *td, struct dbreg *regs)
  514 {
  515         return (0);
  516 }
  517 int
  518 set_dbregs(struct thread *td, struct dbreg *regs)
  519 {
  520         return (0);
  521 }
  522 
  523 
  524 static int
  525 ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v)
  526 {
  527         struct iovec iov;
  528         struct uio uio;
  529 
  530         PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
  531         iov.iov_base = (caddr_t) v;
  532         iov.iov_len = sizeof(u_int32_t);
  533         uio.uio_iov = &iov;
  534         uio.uio_iovcnt = 1;
  535         uio.uio_offset = (off_t)addr;
  536         uio.uio_resid = sizeof(u_int32_t);
  537         uio.uio_segflg = UIO_SYSSPACE;
  538         uio.uio_rw = UIO_READ;
  539         uio.uio_td = td;
  540         return proc_rwmem(td->td_proc, &uio);
  541 }
  542 
  543 static int
  544 ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v)
  545 {
  546         struct iovec iov;
  547         struct uio uio;
  548 
  549         PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
  550         iov.iov_base = (caddr_t) &v;
  551         iov.iov_len = sizeof(u_int32_t);
  552         uio.uio_iov = &iov;
  553         uio.uio_iovcnt = 1;
  554         uio.uio_offset = (off_t)addr;
  555         uio.uio_resid = sizeof(u_int32_t);
  556         uio.uio_segflg = UIO_SYSSPACE;
  557         uio.uio_rw = UIO_WRITE;
  558         uio.uio_td = td;
  559         return proc_rwmem(td->td_proc, &uio);
  560 }
  561 
  562 int
  563 ptrace_single_step(struct thread *td)
  564 {
  565         struct proc *p;
  566         int error;
  567         
  568         KASSERT(td->td_md.md_ptrace_instr == 0,
  569          ("Didn't clear single step"));
  570         p = td->td_proc;
  571         PROC_UNLOCK(p);
  572         error = ptrace_read_int(td, td->td_frame->tf_pc + 4,
  573             &td->td_md.md_ptrace_instr);
  574         if (error)
  575                 goto out;
  576         error = ptrace_write_int(td, td->td_frame->tf_pc + 4,
  577             PTRACE_BREAKPOINT);
  578         if (error)
  579                 td->td_md.md_ptrace_instr = 0;
  580         td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4;
  581 out:
  582         PROC_LOCK(p);
  583         return (error);
  584 }
  585 
  586 int
  587 ptrace_clear_single_step(struct thread *td)
  588 {
  589         struct proc *p;
  590 
  591         if (td->td_md.md_ptrace_instr) {
  592                 p = td->td_proc;
  593                 PROC_UNLOCK(p);
  594                 ptrace_write_int(td, td->td_md.md_ptrace_addr,
  595                     td->td_md.md_ptrace_instr);
  596                 PROC_LOCK(p);
  597                 td->td_md.md_ptrace_instr = 0;
  598         }
  599         return (0);
  600 }
  601 
  602 int
  603 ptrace_set_pc(struct thread *td, unsigned long addr)
  604 {
  605         td->td_frame->tf_pc = addr;
  606         return (0);
  607 }
  608 
  609 void
  610 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  611 {
  612 }
  613 
  614 void
  615 spinlock_enter(void)
  616 {
  617         struct thread *td;
  618         register_t cspr;
  619 
  620         td = curthread;
  621         if (td->td_md.md_spinlock_count == 0) {
  622                 cspr = disable_interrupts(I32_bit | F32_bit);
  623                 td->td_md.md_spinlock_count = 1;
  624                 td->td_md.md_saved_cspr = cspr;
  625         } else
  626                 td->td_md.md_spinlock_count++;
  627         critical_enter();
  628 }
  629 
  630 void
  631 spinlock_exit(void)
  632 {
  633         struct thread *td;
  634         register_t cspr;
  635 
  636         td = curthread;
  637         critical_exit();
  638         cspr = td->td_md.md_saved_cspr;
  639         td->td_md.md_spinlock_count--;
  640         if (td->td_md.md_spinlock_count == 0)
  641                 restore_interrupts(cspr);
  642 }
  643 
  644 /*
  645  * Clear registers on exec
  646  */
  647 void
  648 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  649 {
  650         struct trapframe *tf = td->td_frame;
  651 
  652         memset(tf, 0, sizeof(*tf));
  653         tf->tf_usr_sp = stack;
  654         tf->tf_usr_lr = imgp->entry_addr;
  655         tf->tf_svc_lr = 0x77777777;
  656         tf->tf_pc = imgp->entry_addr;
  657         tf->tf_spsr = PSR_USR32_MODE;
  658 }
  659 
  660 /*
  661  * Get machine context.
  662  */
  663 int
  664 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
  665 {
  666         struct trapframe *tf = td->td_frame;
  667         __greg_t *gr = mcp->__gregs;
  668 
  669         if (clear_ret & GET_MC_CLEAR_RET)
  670                 gr[_REG_R0] = 0;
  671         else
  672                 gr[_REG_R0]   = tf->tf_r0;
  673         gr[_REG_R1]   = tf->tf_r1;
  674         gr[_REG_R2]   = tf->tf_r2;
  675         gr[_REG_R3]   = tf->tf_r3;
  676         gr[_REG_R4]   = tf->tf_r4;
  677         gr[_REG_R5]   = tf->tf_r5;
  678         gr[_REG_R6]   = tf->tf_r6;
  679         gr[_REG_R7]   = tf->tf_r7;
  680         gr[_REG_R8]   = tf->tf_r8;
  681         gr[_REG_R9]   = tf->tf_r9;
  682         gr[_REG_R10]  = tf->tf_r10;
  683         gr[_REG_R11]  = tf->tf_r11;
  684         gr[_REG_R12]  = tf->tf_r12;
  685         gr[_REG_SP]   = tf->tf_usr_sp;
  686         gr[_REG_LR]   = tf->tf_usr_lr;
  687         gr[_REG_PC]   = tf->tf_pc;
  688         gr[_REG_CPSR] = tf->tf_spsr;
  689 
  690         return (0);
  691 }
  692 
  693 /*
  694  * Set machine context.
  695  *
  696  * However, we don't set any but the user modifiable flags, and we won't
  697  * touch the cs selector.
  698  */
  699 int
  700 set_mcontext(struct thread *td, const mcontext_t *mcp)
  701 {
  702         struct trapframe *tf = td->td_frame;
  703         const __greg_t *gr = mcp->__gregs;
  704 
  705         tf->tf_r0 = gr[_REG_R0];
  706         tf->tf_r1 = gr[_REG_R1];
  707         tf->tf_r2 = gr[_REG_R2];
  708         tf->tf_r3 = gr[_REG_R3];
  709         tf->tf_r4 = gr[_REG_R4];
  710         tf->tf_r5 = gr[_REG_R5];
  711         tf->tf_r6 = gr[_REG_R6];
  712         tf->tf_r7 = gr[_REG_R7];
  713         tf->tf_r8 = gr[_REG_R8];
  714         tf->tf_r9 = gr[_REG_R9];
  715         tf->tf_r10 = gr[_REG_R10];
  716         tf->tf_r11 = gr[_REG_R11];
  717         tf->tf_r12 = gr[_REG_R12];
  718         tf->tf_usr_sp = gr[_REG_SP];
  719         tf->tf_usr_lr = gr[_REG_LR];
  720         tf->tf_pc = gr[_REG_PC];
  721         tf->tf_spsr = gr[_REG_CPSR];
  722 
  723         return (0);
  724 }
  725 
  726 /*
  727  * MPSAFE
  728  */
  729 int
  730 sys_sigreturn(td, uap)
  731         struct thread *td;
  732         struct sigreturn_args /* {
  733                 const struct __ucontext *sigcntxp;
  734         } */ *uap;
  735 {
  736         ucontext_t uc;
  737         int spsr;
  738         
  739         if (uap == NULL)
  740                 return (EFAULT);
  741         if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
  742                 return (EFAULT);
  743         /*
  744          * Make sure the processor mode has not been tampered with and
  745          * interrupts have not been disabled.
  746          */
  747         spsr = uc.uc_mcontext.__gregs[_REG_CPSR];
  748         if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
  749             (spsr & (I32_bit | F32_bit)) != 0)
  750                 return (EINVAL);
  751                 /* Restore register context. */
  752         set_mcontext(td, &uc.uc_mcontext);
  753 
  754         /* Restore signal mask. */
  755         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  756 
  757         return (EJUSTRETURN);
  758 }
  759 
  760 
  761 /*
  762  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  763  * we want to start a backtrace from the function that caused us to enter
  764  * the debugger. We have the context in the trapframe, but base the trace
  765  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  766  * enough for a backtrace.
  767  */
  768 void
  769 makectx(struct trapframe *tf, struct pcb *pcb)
  770 {
  771         pcb->un_32.pcb32_r8 = tf->tf_r8;
  772         pcb->un_32.pcb32_r9 = tf->tf_r9;
  773         pcb->un_32.pcb32_r10 = tf->tf_r10;
  774         pcb->un_32.pcb32_r11 = tf->tf_r11;
  775         pcb->un_32.pcb32_r12 = tf->tf_r12;
  776         pcb->un_32.pcb32_pc = tf->tf_pc;
  777         pcb->un_32.pcb32_lr = tf->tf_usr_lr;
  778         pcb->un_32.pcb32_sp = tf->tf_usr_sp;
  779 }
  780 
  781 /*
  782  * Fake up a boot descriptor table
  783  */
  784 vm_offset_t
  785 fake_preload_metadata(struct arm_boot_params *abp __unused)
  786 {
  787 #ifdef DDB
  788         vm_offset_t zstart = 0, zend = 0;
  789 #endif
  790         vm_offset_t lastaddr;
  791         int i = 0;
  792         static uint32_t fake_preload[35];
  793 
  794         fake_preload[i++] = MODINFO_NAME;
  795         fake_preload[i++] = strlen("kernel") + 1;
  796         strcpy((char*)&fake_preload[i++], "kernel");
  797         i += 1;
  798         fake_preload[i++] = MODINFO_TYPE;
  799         fake_preload[i++] = strlen("elf kernel") + 1;
  800         strcpy((char*)&fake_preload[i++], "elf kernel");
  801         i += 2;
  802         fake_preload[i++] = MODINFO_ADDR;
  803         fake_preload[i++] = sizeof(vm_offset_t);
  804         fake_preload[i++] = KERNVIRTADDR;
  805         fake_preload[i++] = MODINFO_SIZE;
  806         fake_preload[i++] = sizeof(uint32_t);
  807         fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
  808 #ifdef DDB
  809         if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
  810                 fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
  811                 fake_preload[i++] = sizeof(vm_offset_t);
  812                 fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
  813                 fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
  814                 fake_preload[i++] = sizeof(vm_offset_t);
  815                 fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
  816                 lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
  817                 zend = lastaddr;
  818                 zstart = *(uint32_t *)(KERNVIRTADDR + 4);
  819                 ksym_start = zstart;
  820                 ksym_end = zend;
  821         } else
  822 #endif
  823                 lastaddr = (vm_offset_t)&end;
  824         fake_preload[i++] = 0;
  825         fake_preload[i] = 0;
  826         preload_metadata = (void *)fake_preload;
  827 
  828         return (lastaddr);
  829 }
  830 
  831 void
  832 pcpu0_init(void)
  833 {
  834 #if ARM_ARCH_6 || ARM_ARCH_7A || defined(CPU_MV_PJ4B)
  835         set_curthread(&thread0);
  836 #endif
  837         pcpu_init(pcpup, 0, sizeof(struct pcpu));
  838         PCPU_SET(curthread, &thread0);
  839 #ifdef VFP
  840         PCPU_SET(cpu, 0);
  841 #endif
  842 }
  843 
  844 #if defined(LINUX_BOOT_ABI)
  845 vm_offset_t
  846 linux_parse_boot_param(struct arm_boot_params *abp)
  847 {
  848         struct arm_lbabi_tag *walker;
  849         uint32_t revision;
  850         uint64_t serial;
  851 
  852         /*
  853          * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2
  854          * is atags or dtb pointer.  If all of these aren't satisfied,
  855          * then punt.
  856          */
  857         if (!(abp->abp_r0 == 0 && abp->abp_r1 != 0 && abp->abp_r2 != 0))
  858                 return 0;
  859 
  860         board_id = abp->abp_r1;
  861         walker = (struct arm_lbabi_tag *)
  862             (abp->abp_r2 + KERNVIRTADDR - abp->abp_physaddr);
  863 
  864         /* xxx - Need to also look for binary device tree */
  865         if (ATAG_TAG(walker) != ATAG_CORE)
  866                 return 0;
  867 
  868         atag_list = walker;
  869         while (ATAG_TAG(walker) != ATAG_NONE) {
  870                 switch (ATAG_TAG(walker)) {
  871                 case ATAG_CORE:
  872                         break;
  873                 case ATAG_MEM:
  874                         arm_physmem_hardware_region(walker->u.tag_mem.start,
  875                             walker->u.tag_mem.size);
  876                         break;
  877                 case ATAG_INITRD2:
  878                         break;
  879                 case ATAG_SERIAL:
  880                         serial = walker->u.tag_sn.low |
  881                             ((uint64_t)walker->u.tag_sn.high << 32);
  882                         board_set_serial(serial);
  883                         break;
  884                 case ATAG_REVISION:
  885                         revision = walker->u.tag_rev.rev;
  886                         board_set_revision(revision);
  887                         break;
  888                 case ATAG_CMDLINE:
  889                         /* XXX open question: Parse this for boothowto? */
  890                         bcopy(walker->u.tag_cmd.command, linux_command_line,
  891                               ATAG_SIZE(walker));
  892                         break;
  893                 default:
  894                         break;
  895                 }
  896                 walker = ATAG_NEXT(walker);
  897         }
  898 
  899         /* Save a copy for later */
  900         bcopy(atag_list, atags,
  901             (char *)walker - (char *)atag_list + ATAG_SIZE(walker));
  902 
  903         return fake_preload_metadata(abp);
  904 }
  905 #endif
  906 
  907 #if defined(FREEBSD_BOOT_LOADER)
  908 vm_offset_t
  909 freebsd_parse_boot_param(struct arm_boot_params *abp)
  910 {
  911         vm_offset_t lastaddr = 0;
  912         void *mdp;
  913         void *kmdp;
  914 
  915         /*
  916          * Mask metadata pointer: it is supposed to be on page boundary. If
  917          * the first argument (mdp) doesn't point to a valid address the
  918          * bootloader must have passed us something else than the metadata
  919          * ptr, so we give up.  Also give up if we cannot find metadta section
  920          * the loader creates that we get all this data out of.
  921          */
  922 
  923         if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL)
  924                 return 0;
  925         preload_metadata = mdp;
  926         kmdp = preload_search_by_type("elf kernel");
  927         if (kmdp == NULL)
  928                 return 0;
  929 
  930         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  931         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  932         lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  933 #ifdef DDB
  934         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
  935         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
  936 #endif
  937         preload_addr_relocate = KERNVIRTADDR - abp->abp_physaddr;
  938         return lastaddr;
  939 }
  940 #endif
  941 
  942 vm_offset_t
  943 default_parse_boot_param(struct arm_boot_params *abp)
  944 {
  945         vm_offset_t lastaddr;
  946 
  947 #if defined(LINUX_BOOT_ABI)
  948         if ((lastaddr = linux_parse_boot_param(abp)) != 0)
  949                 return lastaddr;
  950 #endif
  951 #if defined(FREEBSD_BOOT_LOADER)
  952         if ((lastaddr = freebsd_parse_boot_param(abp)) != 0)
  953                 return lastaddr;
  954 #endif
  955         /* Fall back to hardcoded metadata. */
  956         lastaddr = fake_preload_metadata(abp);
  957 
  958         return lastaddr;
  959 }
  960 
  961 /*
  962  * Stub version of the boot parameter parsing routine.  We are
  963  * called early in initarm, before even VM has been initialized.
  964  * This routine needs to preserve any data that the boot loader
  965  * has passed in before the kernel starts to grow past the end
  966  * of the BSS, traditionally the place boot-loaders put this data.
  967  *
  968  * Since this is called so early, things that depend on the vm system
  969  * being setup (including access to some SoC's serial ports), about
  970  * all that can be done in this routine is to copy the arguments.
  971  *
  972  * This is the default boot parameter parsing routine.  Individual
  973  * kernels/boards can override this weak function with one of their
  974  * own.  We just fake metadata...
  975  */
  976 __weak_reference(default_parse_boot_param, parse_boot_param);
  977 
  978 /*
  979  * Initialize proc0
  980  */
  981 void
  982 init_proc0(vm_offset_t kstack)
  983 {
  984         proc_linkup0(&proc0, &thread0);
  985         thread0.td_kstack = kstack;
  986         thread0.td_pcb = (struct pcb *)
  987                 (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  988         thread0.td_pcb->pcb_flags = 0;
  989         thread0.td_pcb->pcb_vfpcpu = -1;
  990         thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN | VFPSCR_FZ;
  991         thread0.td_frame = &proc0_tf;
  992         pcpup->pc_curpcb = thread0.td_pcb;
  993 }
  994 
  995 void
  996 set_stackptrs(int cpu)
  997 {
  998 
  999         set_stackptr(PSR_IRQ32_MODE,
 1000             irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
 1001         set_stackptr(PSR_ABT32_MODE,
 1002             abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
 1003         set_stackptr(PSR_UND32_MODE,
 1004             undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
 1005 }
 1006 
 1007 #ifdef FDT
 1008 static char *
 1009 kenv_next(char *cp)
 1010 {
 1011 
 1012         if (cp != NULL) {
 1013                 while (*cp != 0)
 1014                         cp++;
 1015                 cp++;
 1016                 if (*cp == 0)
 1017                         cp = NULL;
 1018         }
 1019         return (cp);
 1020 }
 1021 
 1022 static void
 1023 print_kenv(void)
 1024 {
 1025         int len;
 1026         char *cp;
 1027 
 1028         debugf("loader passed (static) kenv:\n");
 1029         if (kern_envp == NULL) {
 1030                 debugf(" no env, null ptr\n");
 1031                 return;
 1032         }
 1033         debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
 1034 
 1035         len = 0;
 1036         for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
 1037                 debugf(" %x %s\n", (uint32_t)cp, cp);
 1038 }
 1039 
 1040 void *
 1041 initarm(struct arm_boot_params *abp)
 1042 {
 1043         struct mem_region mem_regions[FDT_MEM_REGIONS];
 1044         struct pv_addr kernel_l1pt;
 1045         struct pv_addr dpcpu;
 1046         vm_offset_t dtbp, freemempos, l2_start, lastaddr;
 1047         uint32_t memsize, l2size;
 1048         char *env;
 1049         void *kmdp;
 1050         u_int l1pagetable;
 1051         int i, j, err_devmap, mem_regions_sz;
 1052 
 1053         lastaddr = parse_boot_param(abp);
 1054         arm_physmem_kernaddr = abp->abp_physaddr;
 1055 
 1056         memsize = 0;
 1057         set_cpufuncs();
 1058 
 1059         /*
 1060          * Find the dtb passed in by the boot loader.
 1061          */
 1062         kmdp = preload_search_by_type("elf kernel");
 1063         if (kmdp != NULL)
 1064                 dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
 1065         else
 1066                 dtbp = (vm_offset_t)NULL;
 1067 
 1068 #if defined(FDT_DTB_STATIC)
 1069         /*
 1070          * In case the device tree blob was not retrieved (from metadata) try
 1071          * to use the statically embedded one.
 1072          */
 1073         if (dtbp == (vm_offset_t)NULL)
 1074                 dtbp = (vm_offset_t)&fdt_static_dtb;
 1075 #endif
 1076 
 1077         if (OF_install(OFW_FDT, 0) == FALSE)
 1078                 panic("Cannot install FDT");
 1079 
 1080         if (OF_init((void *)dtbp) != 0)
 1081                 panic("OF_init failed with the found device tree");
 1082 
 1083         /* Grab physical memory regions information from device tree. */
 1084         if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
 1085                 panic("Cannot get physical memory regions");
 1086         arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
 1087 
 1088         /* Grab reserved memory regions information from device tree. */
 1089         if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
 1090                 arm_physmem_exclude_regions(mem_regions, mem_regions_sz, 
 1091                     EXFLAG_NODUMP | EXFLAG_NOALLOC);
 1092 
 1093         /* Platform-specific initialisation */
 1094         initarm_early_init();
 1095 
 1096         pcpu0_init();
 1097 
 1098         /* Do basic tuning, hz etc */
 1099         init_param1();
 1100 
 1101         /* Calculate number of L2 tables needed for mapping vm_page_array */
 1102         l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
 1103         l2size = (l2size >> L1_S_SHIFT) + 1;
 1104 
 1105         /*
 1106          * Add one table for end of kernel map, one for stacks, msgbuf and
 1107          * L1 and L2 tables map and one for vectors map.
 1108          */
 1109         l2size += 3;
 1110 
 1111         /* Make it divisible by 4 */
 1112         l2size = (l2size + 3) & ~3;
 1113 
 1114         freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
 1115 
 1116         /* Define a macro to simplify memory allocation */
 1117 #define valloc_pages(var, np)                                           \
 1118         alloc_pages((var).pv_va, (np));                                 \
 1119         (var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
 1120 
 1121 #define alloc_pages(var, np)                                            \
 1122         (var) = freemempos;                                             \
 1123         freemempos += (np * PAGE_SIZE);                                 \
 1124         memset((char *)(var), 0, ((np) * PAGE_SIZE));
 1125 
 1126         while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
 1127                 freemempos += PAGE_SIZE;
 1128         valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
 1129 
 1130         for (i = 0, j = 0; i < l2size; ++i) {
 1131                 if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
 1132                         valloc_pages(kernel_pt_table[i],
 1133                             L2_TABLE_SIZE / PAGE_SIZE);
 1134                         j = i;
 1135                 } else {
 1136                         kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
 1137                             L2_TABLE_SIZE_REAL * (i - j);
 1138                         kernel_pt_table[i].pv_pa =
 1139                             kernel_pt_table[i].pv_va - KERNVIRTADDR +
 1140                             abp->abp_physaddr;
 1141 
 1142                 }
 1143         }
 1144         /*
 1145          * Allocate a page for the system page mapped to 0x00000000
 1146          * or 0xffff0000. This page will just contain the system vectors
 1147          * and can be shared by all processes.
 1148          */
 1149         valloc_pages(systempage, 1);
 1150 
 1151         /* Allocate dynamic per-cpu area. */
 1152         valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
 1153         dpcpu_init((void *)dpcpu.pv_va, 0);
 1154 
 1155         /* Allocate stacks for all modes */
 1156         valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
 1157         valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
 1158         valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
 1159         valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
 1160         valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
 1161 
 1162         /*
 1163          * Now we start construction of the L1 page table
 1164          * We start by mapping the L2 page tables into the L1.
 1165          * This means that we can replace L1 mappings later on if necessary
 1166          */
 1167         l1pagetable = kernel_l1pt.pv_va;
 1168 
 1169         /*
 1170          * Try to map as much as possible of kernel text and data using
 1171          * 1MB section mapping and for the rest of initial kernel address
 1172          * space use L2 coarse tables.
 1173          *
 1174          * Link L2 tables for mapping remainder of kernel (modulo 1MB)
 1175          * and kernel structures
 1176          */
 1177         l2_start = lastaddr & ~(L1_S_OFFSET);
 1178         for (i = 0 ; i < l2size - 1; i++)
 1179                 pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
 1180                     &kernel_pt_table[i]);
 1181 
 1182         pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
 1183 
 1184         /* Map kernel code and data */
 1185         pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
 1186            (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
 1187             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
 1188 
 1189         /* Map L1 directory and allocated L2 page tables */
 1190         pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
 1191             L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
 1192 
 1193         pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
 1194             kernel_pt_table[0].pv_pa,
 1195             L2_TABLE_SIZE_REAL * l2size,
 1196             VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
 1197 
 1198         /* Map allocated DPCPU, stacks and msgbuf */
 1199         pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
 1200             freemempos - dpcpu.pv_va,
 1201             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
 1202 
 1203         /* Link and map the vector page */
 1204         pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
 1205             &kernel_pt_table[l2size - 1]);
 1206         pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
 1207             VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
 1208 
 1209         /* Establish static device mappings. */
 1210         err_devmap = initarm_devmap_init();
 1211         arm_devmap_bootstrap(l1pagetable, NULL);
 1212         vm_max_kernel_address = initarm_lastaddr();
 1213 
 1214         cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
 1215         pmap_pa = kernel_l1pt.pv_pa;
 1216         setttb(kernel_l1pt.pv_pa);
 1217         cpu_tlb_flushID();
 1218         cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
 1219 
 1220         /*
 1221          * Now that proper page tables are installed, call cpu_setup() to enable
 1222          * instruction and data caches and other chip-specific features.
 1223          */
 1224         cpu_setup("");
 1225 
 1226         /*
 1227          * Only after the SOC registers block is mapped we can perform device
 1228          * tree fixups, as they may attempt to read parameters from hardware.
 1229          */
 1230         OF_interpret("perform-fixup", 0);
 1231 
 1232         initarm_gpio_init();
 1233 
 1234         cninit();
 1235 
 1236         debugf("initarm: console initialized\n");
 1237         debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
 1238         debugf(" boothowto = 0x%08x\n", boothowto);
 1239         debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
 1240         print_kenv();
 1241 
 1242         env = getenv("kernelname");
 1243         if (env != NULL)
 1244                 strlcpy(kernelname, env, sizeof(kernelname));
 1245 
 1246         if (err_devmap != 0)
 1247                 printf("WARNING: could not fully configure devmap, error=%d\n",
 1248                     err_devmap);
 1249 
 1250         initarm_late_init();
 1251 
 1252         /*
 1253          * Pages were allocated during the secondary bootstrap for the
 1254          * stacks for different CPU modes.
 1255          * We must now set the r13 registers in the different CPU modes to
 1256          * point to these stacks.
 1257          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
 1258          * of the stack memory.
 1259          */
 1260         cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
 1261 
 1262         set_stackptrs(0);
 1263 
 1264         /*
 1265          * We must now clean the cache again....
 1266          * Cleaning may be done by reading new data to displace any
 1267          * dirty data in the cache. This will have happened in setttb()
 1268          * but since we are boot strapping the addresses used for the read
 1269          * may have just been remapped and thus the cache could be out
 1270          * of sync. A re-clean after the switch will cure this.
 1271          * After booting there are no gross relocations of the kernel thus
 1272          * this problem will not occur after initarm().
 1273          */
 1274         cpu_idcache_wbinv_all();
 1275 
 1276         undefined_init();
 1277 
 1278         init_proc0(kernelstack.pv_va);
 1279 
 1280         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
 1281         pmap_bootstrap(freemempos, &kernel_l1pt);
 1282         msgbufp = (void *)msgbufpv.pv_va;
 1283         msgbufinit(msgbufp, msgbufsize);
 1284         mutex_init();
 1285 
 1286         /*
 1287          * Exclude the kernel (and all the things we allocated which immediately
 1288          * follow the kernel) from the VM allocation pool but not from crash
 1289          * dumps.  virtual_avail is a global variable which tracks the kva we've
 1290          * "allocated" while setting up pmaps.
 1291          *
 1292          * Prepare the list of physical memory available to the vm subsystem.
 1293          */
 1294         arm_physmem_exclude_region(abp->abp_physaddr, 
 1295             (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
 1296         arm_physmem_init_kernel_globals();
 1297 
 1298         init_param2(physmem);
 1299         kdb_init();
 1300 
 1301         return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
 1302             sizeof(struct pcb)));
 1303 }
 1304 #endif

Cache object: de67465e8b0319f722fa209222b3775b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.