The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $        */
    2 
    3 /*-
    4  * Copyright (c) 2004 Olivier Houchard
    5  * Copyright (c) 1994-1998 Mark Brinicombe.
    6  * Copyright (c) 1994 Brini.
    7  * All rights reserved.
    8  *
    9  * This code is derived from software written for Brini by Mark Brinicombe
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by Mark Brinicombe
   22  *      for the NetBSD Project.
   23  * 4. The name of the company nor the name of the author may be used to
   24  *    endorse or promote products derived from this software without specific
   25  *    prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
   28  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   29  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   30  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   31  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   32  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   33  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  * Machine dependant functions for kernel setup
   40  *
   41  * Created      : 17/09/94
   42  * Updated      : 18/04/01 updated for new wscons
   43  */
   44 
   45 #include "opt_compat.h"
   46 #include "opt_ddb.h"
   47 #include "opt_platform.h"
   48 #include "opt_sched.h"
   49 #include "opt_timer.h"
   50 
   51 #include <sys/cdefs.h>
   52 __FBSDID("$FreeBSD: releng/10.2/sys/arm/arm/machdep.c 283510 2015-05-25 01:29:45Z ian $");
   53 
   54 #include <sys/param.h>
   55 #include <sys/proc.h>
   56 #include <sys/systm.h>
   57 #include <sys/bio.h>
   58 #include <sys/buf.h>
   59 #include <sys/bus.h>
   60 #include <sys/cons.h>
   61 #include <sys/cpu.h>
   62 #include <sys/exec.h>
   63 #include <sys/imgact.h>
   64 #include <sys/kdb.h>
   65 #include <sys/kernel.h>
   66 #include <sys/ktr.h>
   67 #include <sys/linker.h>
   68 #include <sys/lock.h>
   69 #include <sys/malloc.h>
   70 #include <sys/msgbuf.h>
   71 #include <sys/mutex.h>
   72 #include <sys/pcpu.h>
   73 #include <sys/ptrace.h>
   74 #include <sys/rwlock.h>
   75 #include <sys/sched.h>
   76 #include <sys/signalvar.h>
   77 #include <sys/syscallsubr.h>
   78 #include <sys/sysctl.h>
   79 #include <sys/sysent.h>
   80 #include <sys/sysproto.h>
   81 #include <sys/uio.h>
   82 
   83 #include <vm/vm.h>
   84 #include <vm/pmap.h>
   85 #include <vm/vm_map.h>
   86 #include <vm/vm_object.h>
   87 #include <vm/vm_page.h>
   88 #include <vm/vm_pager.h>
   89 
   90 #include <machine/armreg.h>
   91 #include <machine/atags.h>
   92 #include <machine/cpu.h>
   93 #include <machine/cpuinfo.h>
   94 #include <machine/devmap.h>
   95 #include <machine/frame.h>
   96 #include <machine/intr.h>
   97 #include <machine/machdep.h>
   98 #include <machine/md_var.h>
   99 #include <machine/metadata.h>
  100 #include <machine/pcb.h>
  101 #include <machine/physmem.h>
  102 #include <machine/reg.h>
  103 #include <machine/trap.h>
  104 #include <machine/undefined.h>
  105 #include <machine/vfp.h>
  106 #include <machine/vmparam.h>
  107 #include <machine/sysarch.h>
  108 
  109 #ifdef FDT
  110 #include <dev/fdt/fdt_common.h>
  111 #include <dev/ofw/openfirm.h>
  112 #endif
  113 
  114 #ifdef DEBUG
  115 #define debugf(fmt, args...) printf(fmt, ##args)
  116 #else
  117 #define debugf(fmt, args...)
  118 #endif
  119 
  120 struct pcpu __pcpu[MAXCPU];
  121 struct pcpu *pcpup = &__pcpu[0];
  122 
  123 static struct trapframe proc0_tf;
  124 uint32_t cpu_reset_address = 0;
  125 int cold = 1;
  126 vm_offset_t vector_page;
  127 
  128 int (*_arm_memcpy)(void *, void *, int, int) = NULL;
  129 int (*_arm_bzero)(void *, int, int) = NULL;
  130 int _min_memcpy_size = 0;
  131 int _min_bzero_size = 0;
  132 
  133 extern int *end;
  134 #ifdef DDB
  135 extern vm_offset_t ksym_start, ksym_end;
  136 #endif
  137 
  138 #ifdef FDT
  139 /*
  140  * This is the number of L2 page tables required for covering max
  141  * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
  142  * stacks etc.), uprounded to be divisible by 4.
  143  */
  144 #define KERNEL_PT_MAX   78
  145 
  146 static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
  147 
  148 vm_paddr_t pmap_pa;
  149 
  150 struct pv_addr systempage;
  151 static struct pv_addr msgbufpv;
  152 struct pv_addr irqstack;
  153 struct pv_addr undstack;
  154 struct pv_addr abtstack;
  155 static struct pv_addr kernelstack;
  156 
  157 #endif
  158 
  159 #if defined(LINUX_BOOT_ABI)
  160 #define LBABI_MAX_BANKS 10
  161 
  162 uint32_t board_id;
  163 struct arm_lbabi_tag *atag_list;
  164 char linux_command_line[LBABI_MAX_COMMAND_LINE + 1];
  165 char atags[LBABI_MAX_COMMAND_LINE * 2];
  166 uint32_t memstart[LBABI_MAX_BANKS];
  167 uint32_t memsize[LBABI_MAX_BANKS];
  168 uint32_t membanks;
  169 #endif
  170 
  171 static uint32_t board_revision;
  172 /* hex representation of uint64_t */
  173 static char board_serial[32];
  174 
  175 SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes");
  176 SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD,
  177     &board_revision, 0, "Board revision");
  178 SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD,
  179     board_serial, 0, "Board serial");
  180 
  181 int vfp_exists;
  182 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
  183     &vfp_exists, 0, "Floating point support enabled");
  184 
  185 void
  186 board_set_serial(uint64_t serial)
  187 {
  188 
  189         snprintf(board_serial, sizeof(board_serial)-1, 
  190                     "%016jx", serial);
  191 }
  192 
  193 void
  194 board_set_revision(uint32_t revision)
  195 {
  196 
  197         board_revision = revision;
  198 }
  199 
  200 void
  201 sendsig(catcher, ksi, mask)
  202         sig_t catcher;
  203         ksiginfo_t *ksi;
  204         sigset_t *mask;
  205 {
  206         struct thread *td;
  207         struct proc *p;
  208         struct trapframe *tf;
  209         struct sigframe *fp, frame;
  210         struct sigacts *psp;
  211         int onstack;
  212         int sig;
  213         int code;
  214 
  215         td = curthread;
  216         p = td->td_proc;
  217         PROC_LOCK_ASSERT(p, MA_OWNED);
  218         sig = ksi->ksi_signo;
  219         code = ksi->ksi_code;
  220         psp = p->p_sigacts;
  221         mtx_assert(&psp->ps_mtx, MA_OWNED);
  222         tf = td->td_frame;
  223         onstack = sigonstack(tf->tf_usr_sp);
  224 
  225         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  226             catcher, sig);
  227 
  228         /* Allocate and validate space for the signal handler context. */
  229         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
  230             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  231                 fp = (struct sigframe *)(td->td_sigstk.ss_sp +
  232                     td->td_sigstk.ss_size);
  233 #if defined(COMPAT_43)
  234                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  235 #endif
  236         } else
  237                 fp = (struct sigframe *)td->td_frame->tf_usr_sp;
  238 
  239         /* make room on the stack */
  240         fp--;
  241         
  242         /* make the stack aligned */
  243         fp = (struct sigframe *)STACKALIGN(fp);
  244         /* Populate the siginfo frame. */
  245         get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
  246         frame.sf_si = ksi->ksi_info;
  247         frame.sf_uc.uc_sigmask = *mask;
  248         frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
  249             ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  250         frame.sf_uc.uc_stack = td->td_sigstk;
  251         mtx_unlock(&psp->ps_mtx);
  252         PROC_UNLOCK(td->td_proc);
  253 
  254         /* Copy the sigframe out to the user's stack. */
  255         if (copyout(&frame, fp, sizeof(*fp)) != 0) {
  256                 /* Process has trashed its stack. Kill it. */
  257                 CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
  258                 PROC_LOCK(p);
  259                 sigexit(td, SIGILL);
  260         }
  261 
  262         /* Translate the signal if appropriate. */
  263         if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
  264                 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
  265 
  266         /*
  267          * Build context to run handler in.  We invoke the handler
  268          * directly, only returning via the trampoline.  Note the
  269          * trampoline version numbers are coordinated with machine-
  270          * dependent code in libc.
  271          */
  272         
  273         tf->tf_r0 = sig;
  274         tf->tf_r1 = (register_t)&fp->sf_si;
  275         tf->tf_r2 = (register_t)&fp->sf_uc;
  276 
  277         /* the trampoline uses r5 as the uc address */
  278         tf->tf_r5 = (register_t)&fp->sf_uc;
  279         tf->tf_pc = (register_t)catcher;
  280         tf->tf_usr_sp = (register_t)fp;
  281         tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
  282 
  283         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
  284             tf->tf_usr_sp);
  285 
  286         PROC_LOCK(p);
  287         mtx_lock(&psp->ps_mtx);
  288 }
  289 
  290 struct kva_md_info kmi;
  291 
  292 /*
  293  * arm32_vector_init:
  294  *
  295  *      Initialize the vector page, and select whether or not to
  296  *      relocate the vectors.
  297  *
  298  *      NOTE: We expect the vector page to be mapped at its expected
  299  *      destination.
  300  */
  301 
  302 extern unsigned int page0[], page0_data[];
  303 void
  304 arm_vector_init(vm_offset_t va, int which)
  305 {
  306         unsigned int *vectors = (int *) va;
  307         unsigned int *vectors_data = vectors + (page0_data - page0);
  308         int vec;
  309 
  310         /*
  311          * Loop through the vectors we're taking over, and copy the
  312          * vector's insn and data word.
  313          */
  314         for (vec = 0; vec < ARM_NVEC; vec++) {
  315                 if ((which & (1 << vec)) == 0) {
  316                         /* Don't want to take over this vector. */
  317                         continue;
  318                 }
  319                 vectors[vec] = page0[vec];
  320                 vectors_data[vec] = page0_data[vec];
  321         }
  322 
  323         /* Now sync the vectors. */
  324         cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));
  325 
  326         vector_page = va;
  327 
  328         if (va == ARM_VECTORS_HIGH) {
  329                 /*
  330                  * Assume the MD caller knows what it's doing here, and
  331                  * really does want the vector page relocated.
  332                  *
  333                  * Note: This has to be done here (and not just in
  334                  * cpu_setup()) because the vector page needs to be
  335                  * accessible *before* cpu_startup() is called.
  336                  * Think ddb(9) ...
  337                  *
  338                  * NOTE: If the CPU control register is not readable,
  339                  * this will totally fail!  We'll just assume that
  340                  * any system that has high vector support has a
  341                  * readable CPU control register, for now.  If we
  342                  * ever encounter one that does not, we'll have to
  343                  * rethink this.
  344                  */
  345                 cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
  346         }
  347 }
  348 
  349 static void
  350 cpu_startup(void *dummy)
  351 {
  352         struct pcb *pcb = thread0.td_pcb;
  353         const unsigned int mbyte = 1024 * 1024;
  354 #ifdef ARM_TP_ADDRESS
  355 #ifndef ARM_CACHE_LOCK_ENABLE
  356         vm_page_t m;
  357 #endif
  358 #endif
  359 
  360         identify_arm_cpu();
  361 
  362         vm_ksubmap_init(&kmi);
  363 
  364         /*
  365          * Display the RAM layout.
  366          */
  367         printf("real memory  = %ju (%ju MB)\n", 
  368             (uintmax_t)arm32_ptob(realmem),
  369             (uintmax_t)arm32_ptob(realmem) / mbyte);
  370         printf("avail memory = %ju (%ju MB)\n",
  371             (uintmax_t)arm32_ptob(cnt.v_free_count),
  372             (uintmax_t)arm32_ptob(cnt.v_free_count) / mbyte);
  373         if (bootverbose) {
  374                 arm_physmem_print_tables();
  375                 arm_devmap_print_table();
  376         }
  377 
  378         bufinit();
  379         vm_pager_bufferinit();
  380         pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
  381             USPACE_SVC_STACK_TOP;
  382         vector_page_setprot(VM_PROT_READ);
  383         pmap_set_pcb_pagedir(pmap_kernel(), pcb);
  384         pmap_postinit();
  385 #ifdef ARM_TP_ADDRESS
  386 #ifdef ARM_CACHE_LOCK_ENABLE
  387         pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
  388         arm_lock_cache_line(ARM_TP_ADDRESS);
  389 #else
  390         m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
  391         pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
  392 #endif
  393         *(uint32_t *)ARM_RAS_START = 0;
  394         *(uint32_t *)ARM_RAS_END = 0xffffffff;
  395 #endif
  396 }
  397 
  398 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  399 
  400 /*
  401  * Flush the D-cache for non-DMA I/O so that the I-cache can
  402  * be made coherent later.
  403  */
  404 void
  405 cpu_flush_dcache(void *ptr, size_t len)
  406 {
  407 
  408         cpu_dcache_wb_range((uintptr_t)ptr, len);
  409 #ifdef ARM_L2_PIPT
  410         cpu_l2cache_wb_range((uintptr_t)vtophys(ptr), len);
  411 #else
  412         cpu_l2cache_wb_range((uintptr_t)ptr, len);
  413 #endif
  414 }
  415 
  416 /* Get current clock frequency for the given cpu id. */
  417 int
  418 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  419 {
  420 
  421         return (ENXIO);
  422 }
  423 
  424 void
  425 cpu_idle(int busy)
  426 {
  427         
  428         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
  429         spinlock_enter();
  430 #ifndef NO_EVENTTIMERS
  431         if (!busy)
  432                 cpu_idleclock();
  433 #endif
  434         if (!sched_runnable())
  435                 cpu_sleep(0);
  436 #ifndef NO_EVENTTIMERS
  437         if (!busy)
  438                 cpu_activeclock();
  439 #endif
  440         spinlock_exit();
  441         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
  442 }
  443 
  444 int
  445 cpu_idle_wakeup(int cpu)
  446 {
  447 
  448         return (0);
  449 }
  450 
  451 /*
  452  * Most ARM platforms don't need to do anything special to init their clocks
  453  * (they get intialized during normal device attachment), and by not defining a
  454  * cpu_initclocks() function they get this generic one.  Any platform that needs
  455  * to do something special can just provide their own implementation, which will
  456  * override this one due to the weak linkage.
  457  */
  458 void
  459 arm_generic_initclocks(void)
  460 {
  461 
  462 #ifndef NO_EVENTTIMERS
  463 #ifdef SMP
  464         if (PCPU_GET(cpuid) == 0)
  465                 cpu_initclocks_bsp();
  466         else
  467                 cpu_initclocks_ap();
  468 #else
  469         cpu_initclocks_bsp();
  470 #endif
  471 #endif
  472 }
  473 __weak_reference(arm_generic_initclocks, cpu_initclocks);
  474 
  475 int
  476 fill_regs(struct thread *td, struct reg *regs)
  477 {
  478         struct trapframe *tf = td->td_frame;
  479         bcopy(&tf->tf_r0, regs->r, sizeof(regs->r));
  480         regs->r_sp = tf->tf_usr_sp;
  481         regs->r_lr = tf->tf_usr_lr;
  482         regs->r_pc = tf->tf_pc;
  483         regs->r_cpsr = tf->tf_spsr;
  484         return (0);
  485 }
  486 int
  487 fill_fpregs(struct thread *td, struct fpreg *regs)
  488 {
  489         bzero(regs, sizeof(*regs));
  490         return (0);
  491 }
  492 
  493 int
  494 set_regs(struct thread *td, struct reg *regs)
  495 {
  496         struct trapframe *tf = td->td_frame;
  497         
  498         bcopy(regs->r, &tf->tf_r0, sizeof(regs->r));
  499         tf->tf_usr_sp = regs->r_sp;
  500         tf->tf_usr_lr = regs->r_lr;
  501         tf->tf_pc = regs->r_pc;
  502         tf->tf_spsr &=  ~PSR_FLAGS;
  503         tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS;
  504         return (0);                                                             
  505 }
  506 
  507 int
  508 set_fpregs(struct thread *td, struct fpreg *regs)
  509 {
  510         return (0);
  511 }
  512 
  513 int
  514 fill_dbregs(struct thread *td, struct dbreg *regs)
  515 {
  516         return (0);
  517 }
  518 int
  519 set_dbregs(struct thread *td, struct dbreg *regs)
  520 {
  521         return (0);
  522 }
  523 
  524 
  525 static int
  526 ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v)
  527 {
  528         struct iovec iov;
  529         struct uio uio;
  530 
  531         PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
  532         iov.iov_base = (caddr_t) v;
  533         iov.iov_len = sizeof(u_int32_t);
  534         uio.uio_iov = &iov;
  535         uio.uio_iovcnt = 1;
  536         uio.uio_offset = (off_t)addr;
  537         uio.uio_resid = sizeof(u_int32_t);
  538         uio.uio_segflg = UIO_SYSSPACE;
  539         uio.uio_rw = UIO_READ;
  540         uio.uio_td = td;
  541         return proc_rwmem(td->td_proc, &uio);
  542 }
  543 
  544 static int
  545 ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v)
  546 {
  547         struct iovec iov;
  548         struct uio uio;
  549 
  550         PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED);
  551         iov.iov_base = (caddr_t) &v;
  552         iov.iov_len = sizeof(u_int32_t);
  553         uio.uio_iov = &iov;
  554         uio.uio_iovcnt = 1;
  555         uio.uio_offset = (off_t)addr;
  556         uio.uio_resid = sizeof(u_int32_t);
  557         uio.uio_segflg = UIO_SYSSPACE;
  558         uio.uio_rw = UIO_WRITE;
  559         uio.uio_td = td;
  560         return proc_rwmem(td->td_proc, &uio);
  561 }
  562 
  563 int
  564 ptrace_single_step(struct thread *td)
  565 {
  566         struct proc *p;
  567         int error;
  568         
  569         KASSERT(td->td_md.md_ptrace_instr == 0,
  570          ("Didn't clear single step"));
  571         p = td->td_proc;
  572         PROC_UNLOCK(p);
  573         error = ptrace_read_int(td, td->td_frame->tf_pc + 4,
  574             &td->td_md.md_ptrace_instr);
  575         if (error)
  576                 goto out;
  577         error = ptrace_write_int(td, td->td_frame->tf_pc + 4,
  578             PTRACE_BREAKPOINT);
  579         if (error)
  580                 td->td_md.md_ptrace_instr = 0;
  581         td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4;
  582 out:
  583         PROC_LOCK(p);
  584         return (error);
  585 }
  586 
  587 int
  588 ptrace_clear_single_step(struct thread *td)
  589 {
  590         struct proc *p;
  591 
  592         if (td->td_md.md_ptrace_instr) {
  593                 p = td->td_proc;
  594                 PROC_UNLOCK(p);
  595                 ptrace_write_int(td, td->td_md.md_ptrace_addr,
  596                     td->td_md.md_ptrace_instr);
  597                 PROC_LOCK(p);
  598                 td->td_md.md_ptrace_instr = 0;
  599         }
  600         return (0);
  601 }
  602 
  603 int
  604 ptrace_set_pc(struct thread *td, unsigned long addr)
  605 {
  606         td->td_frame->tf_pc = addr;
  607         return (0);
  608 }
  609 
  610 void
  611 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  612 {
  613 }
  614 
  615 void
  616 spinlock_enter(void)
  617 {
  618         struct thread *td;
  619         register_t cspr;
  620 
  621         td = curthread;
  622         if (td->td_md.md_spinlock_count == 0) {
  623                 cspr = disable_interrupts(PSR_I | PSR_F);
  624                 td->td_md.md_spinlock_count = 1;
  625                 td->td_md.md_saved_cspr = cspr;
  626         } else
  627                 td->td_md.md_spinlock_count++;
  628         critical_enter();
  629 }
  630 
  631 void
  632 spinlock_exit(void)
  633 {
  634         struct thread *td;
  635         register_t cspr;
  636 
  637         td = curthread;
  638         critical_exit();
  639         cspr = td->td_md.md_saved_cspr;
  640         td->td_md.md_spinlock_count--;
  641         if (td->td_md.md_spinlock_count == 0)
  642                 restore_interrupts(cspr);
  643 }
  644 
  645 /*
  646  * Clear registers on exec
  647  */
  648 void
  649 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  650 {
  651         struct trapframe *tf = td->td_frame;
  652 
  653         memset(tf, 0, sizeof(*tf));
  654         tf->tf_usr_sp = stack;
  655         tf->tf_usr_lr = imgp->entry_addr;
  656         tf->tf_svc_lr = 0x77777777;
  657         tf->tf_pc = imgp->entry_addr;
  658         tf->tf_spsr = PSR_USR32_MODE;
  659 }
  660 
  661 /*
  662  * Get machine context.
  663  */
  664 int
  665 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
  666 {
  667         struct trapframe *tf = td->td_frame;
  668         __greg_t *gr = mcp->__gregs;
  669 
  670         if (clear_ret & GET_MC_CLEAR_RET)
  671                 gr[_REG_R0] = 0;
  672         else
  673                 gr[_REG_R0]   = tf->tf_r0;
  674         gr[_REG_R1]   = tf->tf_r1;
  675         gr[_REG_R2]   = tf->tf_r2;
  676         gr[_REG_R3]   = tf->tf_r3;
  677         gr[_REG_R4]   = tf->tf_r4;
  678         gr[_REG_R5]   = tf->tf_r5;
  679         gr[_REG_R6]   = tf->tf_r6;
  680         gr[_REG_R7]   = tf->tf_r7;
  681         gr[_REG_R8]   = tf->tf_r8;
  682         gr[_REG_R9]   = tf->tf_r9;
  683         gr[_REG_R10]  = tf->tf_r10;
  684         gr[_REG_R11]  = tf->tf_r11;
  685         gr[_REG_R12]  = tf->tf_r12;
  686         gr[_REG_SP]   = tf->tf_usr_sp;
  687         gr[_REG_LR]   = tf->tf_usr_lr;
  688         gr[_REG_PC]   = tf->tf_pc;
  689         gr[_REG_CPSR] = tf->tf_spsr;
  690 
  691         return (0);
  692 }
  693 
  694 /*
  695  * Set machine context.
  696  *
  697  * However, we don't set any but the user modifiable flags, and we won't
  698  * touch the cs selector.
  699  */
  700 int
  701 set_mcontext(struct thread *td, mcontext_t *mcp)
  702 {
  703         struct trapframe *tf = td->td_frame;
  704         const __greg_t *gr = mcp->__gregs;
  705 
  706         tf->tf_r0 = gr[_REG_R0];
  707         tf->tf_r1 = gr[_REG_R1];
  708         tf->tf_r2 = gr[_REG_R2];
  709         tf->tf_r3 = gr[_REG_R3];
  710         tf->tf_r4 = gr[_REG_R4];
  711         tf->tf_r5 = gr[_REG_R5];
  712         tf->tf_r6 = gr[_REG_R6];
  713         tf->tf_r7 = gr[_REG_R7];
  714         tf->tf_r8 = gr[_REG_R8];
  715         tf->tf_r9 = gr[_REG_R9];
  716         tf->tf_r10 = gr[_REG_R10];
  717         tf->tf_r11 = gr[_REG_R11];
  718         tf->tf_r12 = gr[_REG_R12];
  719         tf->tf_usr_sp = gr[_REG_SP];
  720         tf->tf_usr_lr = gr[_REG_LR];
  721         tf->tf_pc = gr[_REG_PC];
  722         tf->tf_spsr = gr[_REG_CPSR];
  723 
  724         return (0);
  725 }
  726 
  727 /*
  728  * MPSAFE
  729  */
  730 int
  731 sys_sigreturn(td, uap)
  732         struct thread *td;
  733         struct sigreturn_args /* {
  734                 const struct __ucontext *sigcntxp;
  735         } */ *uap;
  736 {
  737         ucontext_t uc;
  738         int spsr;
  739         
  740         if (uap == NULL)
  741                 return (EFAULT);
  742         if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
  743                 return (EFAULT);
  744         /*
  745          * Make sure the processor mode has not been tampered with and
  746          * interrupts have not been disabled.
  747          */
  748         spsr = uc.uc_mcontext.__gregs[_REG_CPSR];
  749         if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
  750             (spsr & (PSR_I | PSR_F)) != 0)
  751                 return (EINVAL);
  752                 /* Restore register context. */
  753         set_mcontext(td, &uc.uc_mcontext);
  754 
  755         /* Restore signal mask. */
  756         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  757 
  758         return (EJUSTRETURN);
  759 }
  760 
  761 
  762 /*
  763  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  764  * we want to start a backtrace from the function that caused us to enter
  765  * the debugger. We have the context in the trapframe, but base the trace
  766  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  767  * enough for a backtrace.
  768  */
  769 void
  770 makectx(struct trapframe *tf, struct pcb *pcb)
  771 {
  772         pcb->pcb_regs.sf_r4 = tf->tf_r4;
  773         pcb->pcb_regs.sf_r5 = tf->tf_r5;
  774         pcb->pcb_regs.sf_r6 = tf->tf_r6;
  775         pcb->pcb_regs.sf_r7 = tf->tf_r7;
  776         pcb->pcb_regs.sf_r8 = tf->tf_r8;
  777         pcb->pcb_regs.sf_r9 = tf->tf_r9;
  778         pcb->pcb_regs.sf_r10 = tf->tf_r10;
  779         pcb->pcb_regs.sf_r11 = tf->tf_r11;
  780         pcb->pcb_regs.sf_r12 = tf->tf_r12;
  781         pcb->pcb_regs.sf_pc = tf->tf_pc;
  782         pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
  783         pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
  784 }
  785 
  786 /*
  787  * Fake up a boot descriptor table
  788  */
  789 vm_offset_t
  790 fake_preload_metadata(struct arm_boot_params *abp __unused)
  791 {
  792 #ifdef DDB
  793         vm_offset_t zstart = 0, zend = 0;
  794 #endif
  795         vm_offset_t lastaddr;
  796         int i = 0;
  797         static uint32_t fake_preload[35];
  798 
  799         fake_preload[i++] = MODINFO_NAME;
  800         fake_preload[i++] = strlen("kernel") + 1;
  801         strcpy((char*)&fake_preload[i++], "kernel");
  802         i += 1;
  803         fake_preload[i++] = MODINFO_TYPE;
  804         fake_preload[i++] = strlen("elf kernel") + 1;
  805         strcpy((char*)&fake_preload[i++], "elf kernel");
  806         i += 2;
  807         fake_preload[i++] = MODINFO_ADDR;
  808         fake_preload[i++] = sizeof(vm_offset_t);
  809         fake_preload[i++] = KERNVIRTADDR;
  810         fake_preload[i++] = MODINFO_SIZE;
  811         fake_preload[i++] = sizeof(uint32_t);
  812         fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR;
  813 #ifdef DDB
  814         if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
  815                 fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
  816                 fake_preload[i++] = sizeof(vm_offset_t);
  817                 fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
  818                 fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
  819                 fake_preload[i++] = sizeof(vm_offset_t);
  820                 fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
  821                 lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
  822                 zend = lastaddr;
  823                 zstart = *(uint32_t *)(KERNVIRTADDR + 4);
  824                 ksym_start = zstart;
  825                 ksym_end = zend;
  826         } else
  827 #endif
  828                 lastaddr = (vm_offset_t)&end;
  829         fake_preload[i++] = 0;
  830         fake_preload[i] = 0;
  831         preload_metadata = (void *)fake_preload;
  832 
  833         return (lastaddr);
  834 }
  835 
  836 void
  837 pcpu0_init(void)
  838 {
  839 #if ARM_ARCH_6 || ARM_ARCH_7A || defined(CPU_MV_PJ4B)
  840         set_curthread(&thread0);
  841 #endif
  842         pcpu_init(pcpup, 0, sizeof(struct pcpu));
  843         PCPU_SET(curthread, &thread0);
  844 #ifdef VFP
  845         PCPU_SET(cpu, 0);
  846 #endif
  847 }
  848 
  849 #if defined(LINUX_BOOT_ABI)
  850 vm_offset_t
  851 linux_parse_boot_param(struct arm_boot_params *abp)
  852 {
  853         struct arm_lbabi_tag *walker;
  854         uint32_t revision;
  855         uint64_t serial;
  856 
  857         /*
  858          * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2
  859          * is atags or dtb pointer.  If all of these aren't satisfied,
  860          * then punt.
  861          */
  862         if (!(abp->abp_r0 == 0 && abp->abp_r1 != 0 && abp->abp_r2 != 0))
  863                 return 0;
  864 
  865         board_id = abp->abp_r1;
  866         walker = (struct arm_lbabi_tag *)
  867             (abp->abp_r2 + KERNVIRTADDR - abp->abp_physaddr);
  868 
  869         /* xxx - Need to also look for binary device tree */
  870         if (ATAG_TAG(walker) != ATAG_CORE)
  871                 return 0;
  872 
  873         atag_list = walker;
  874         while (ATAG_TAG(walker) != ATAG_NONE) {
  875                 switch (ATAG_TAG(walker)) {
  876                 case ATAG_CORE:
  877                         break;
  878                 case ATAG_MEM:
  879                         arm_physmem_hardware_region(walker->u.tag_mem.start,
  880                             walker->u.tag_mem.size);
  881                         break;
  882                 case ATAG_INITRD2:
  883                         break;
  884                 case ATAG_SERIAL:
  885                         serial = walker->u.tag_sn.low |
  886                             ((uint64_t)walker->u.tag_sn.high << 32);
  887                         board_set_serial(serial);
  888                         break;
  889                 case ATAG_REVISION:
  890                         revision = walker->u.tag_rev.rev;
  891                         board_set_revision(revision);
  892                         break;
  893                 case ATAG_CMDLINE:
  894                         /* XXX open question: Parse this for boothowto? */
  895                         bcopy(walker->u.tag_cmd.command, linux_command_line,
  896                               ATAG_SIZE(walker));
  897                         break;
  898                 default:
  899                         break;
  900                 }
  901                 walker = ATAG_NEXT(walker);
  902         }
  903 
  904         /* Save a copy for later */
  905         bcopy(atag_list, atags,
  906             (char *)walker - (char *)atag_list + ATAG_SIZE(walker));
  907 
  908         return fake_preload_metadata(abp);
  909 }
  910 #endif
  911 
  912 #if defined(FREEBSD_BOOT_LOADER)
  913 vm_offset_t
  914 freebsd_parse_boot_param(struct arm_boot_params *abp)
  915 {
  916         vm_offset_t lastaddr = 0;
  917         void *mdp;
  918         void *kmdp;
  919 
  920         /*
  921          * Mask metadata pointer: it is supposed to be on page boundary. If
  922          * the first argument (mdp) doesn't point to a valid address the
  923          * bootloader must have passed us something else than the metadata
  924          * ptr, so we give up.  Also give up if we cannot find metadta section
  925          * the loader creates that we get all this data out of.
  926          */
  927 
  928         if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL)
  929                 return 0;
  930         preload_metadata = mdp;
  931         kmdp = preload_search_by_type("elf kernel");
  932         if (kmdp == NULL)
  933                 return 0;
  934 
  935         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  936         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  937         lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  938 #ifdef DDB
  939         ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
  940         ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
  941 #endif
  942         return lastaddr;
  943 }
  944 #endif
  945 
  946 vm_offset_t
  947 default_parse_boot_param(struct arm_boot_params *abp)
  948 {
  949         vm_offset_t lastaddr;
  950 
  951 #if defined(LINUX_BOOT_ABI)
  952         if ((lastaddr = linux_parse_boot_param(abp)) != 0)
  953                 return lastaddr;
  954 #endif
  955 #if defined(FREEBSD_BOOT_LOADER)
  956         if ((lastaddr = freebsd_parse_boot_param(abp)) != 0)
  957                 return lastaddr;
  958 #endif
  959         /* Fall back to hardcoded metadata. */
  960         lastaddr = fake_preload_metadata(abp);
  961 
  962         return lastaddr;
  963 }
  964 
  965 /*
  966  * Stub version of the boot parameter parsing routine.  We are
  967  * called early in initarm, before even VM has been initialized.
  968  * This routine needs to preserve any data that the boot loader
  969  * has passed in before the kernel starts to grow past the end
  970  * of the BSS, traditionally the place boot-loaders put this data.
  971  *
  972  * Since this is called so early, things that depend on the vm system
  973  * being setup (including access to some SoC's serial ports), about
  974  * all that can be done in this routine is to copy the arguments.
  975  *
  976  * This is the default boot parameter parsing routine.  Individual
  977  * kernels/boards can override this weak function with one of their
  978  * own.  We just fake metadata...
  979  */
  980 __weak_reference(default_parse_boot_param, parse_boot_param);
  981 
  982 /*
  983  * Initialize proc0
  984  */
  985 void
  986 init_proc0(vm_offset_t kstack)
  987 {
  988         proc_linkup0(&proc0, &thread0);
  989         thread0.td_kstack = kstack;
  990         thread0.td_pcb = (struct pcb *)
  991                 (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  992         thread0.td_pcb->pcb_flags = 0;
  993         thread0.td_pcb->pcb_vfpcpu = -1;
  994         thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN | VFPSCR_FZ;
  995         thread0.td_frame = &proc0_tf;
  996         pcpup->pc_curpcb = thread0.td_pcb;
  997 }
  998 
  999 void
 1000 set_stackptrs(int cpu)
 1001 {
 1002 
 1003         set_stackptr(PSR_IRQ32_MODE,
 1004             irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
 1005         set_stackptr(PSR_ABT32_MODE,
 1006             abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
 1007         set_stackptr(PSR_UND32_MODE,
 1008             undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
 1009 }
 1010 
 1011 #ifdef FDT
 1012 static char *
 1013 kenv_next(char *cp)
 1014 {
 1015 
 1016         if (cp != NULL) {
 1017                 while (*cp != 0)
 1018                         cp++;
 1019                 cp++;
 1020                 if (*cp == 0)
 1021                         cp = NULL;
 1022         }
 1023         return (cp);
 1024 }
 1025 
 1026 static void
 1027 print_kenv(void)
 1028 {
 1029         int len;
 1030         char *cp;
 1031 
 1032         debugf("loader passed (static) kenv:\n");
 1033         if (kern_envp == NULL) {
 1034                 debugf(" no env, null ptr\n");
 1035                 return;
 1036         }
 1037         debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
 1038 
 1039         len = 0;
 1040         for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
 1041                 debugf(" %x %s\n", (uint32_t)cp, cp);
 1042 }
 1043 
 1044 void *
 1045 initarm(struct arm_boot_params *abp)
 1046 {
 1047         struct mem_region mem_regions[FDT_MEM_REGIONS];
 1048         struct pv_addr kernel_l1pt;
 1049         struct pv_addr dpcpu;
 1050         vm_offset_t dtbp, freemempos, l2_start, lastaddr;
 1051         uint32_t memsize, l2size;
 1052         char *env;
 1053         void *kmdp;
 1054         u_int l1pagetable;
 1055         int i, j, err_devmap, mem_regions_sz;
 1056 
 1057         lastaddr = parse_boot_param(abp);
 1058         arm_physmem_kernaddr = abp->abp_physaddr;
 1059 
 1060         memsize = 0;
 1061 
 1062         cpuinfo_init();
 1063         set_cpufuncs();
 1064 
 1065         /*
 1066          * Find the dtb passed in by the boot loader.
 1067          */
 1068         kmdp = preload_search_by_type("elf kernel");
 1069         if (kmdp != NULL)
 1070                 dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
 1071         else
 1072                 dtbp = (vm_offset_t)NULL;
 1073 
 1074 #if defined(FDT_DTB_STATIC)
 1075         /*
 1076          * In case the device tree blob was not retrieved (from metadata) try
 1077          * to use the statically embedded one.
 1078          */
 1079         if (dtbp == (vm_offset_t)NULL)
 1080                 dtbp = (vm_offset_t)&fdt_static_dtb;
 1081 #endif
 1082 
 1083         if (OF_install(OFW_FDT, 0) == FALSE)
 1084                 panic("Cannot install FDT");
 1085 
 1086         if (OF_init((void *)dtbp) != 0)
 1087                 panic("OF_init failed with the found device tree");
 1088 
 1089         /* Grab physical memory regions information from device tree. */
 1090         if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
 1091                 panic("Cannot get physical memory regions");
 1092         arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
 1093 
 1094         /* Grab reserved memory regions information from device tree. */
 1095         if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
 1096                 arm_physmem_exclude_regions(mem_regions, mem_regions_sz, 
 1097                     EXFLAG_NODUMP | EXFLAG_NOALLOC);
 1098 
 1099         /* Platform-specific initialisation */
 1100         initarm_early_init();
 1101 
 1102         pcpu0_init();
 1103 
 1104         /* Do basic tuning, hz etc */
 1105         init_param1();
 1106 
 1107         /* Calculate number of L2 tables needed for mapping vm_page_array */
 1108         l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
 1109         l2size = (l2size >> L1_S_SHIFT) + 1;
 1110 
 1111         /*
 1112          * Add one table for end of kernel map, one for stacks, msgbuf and
 1113          * L1 and L2 tables map and one for vectors map.
 1114          */
 1115         l2size += 3;
 1116 
 1117         /* Make it divisible by 4 */
 1118         l2size = (l2size + 3) & ~3;
 1119 
 1120         freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
 1121 
 1122         /* Define a macro to simplify memory allocation */
 1123 #define valloc_pages(var, np)                                           \
 1124         alloc_pages((var).pv_va, (np));                                 \
 1125         (var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
 1126 
 1127 #define alloc_pages(var, np)                                            \
 1128         (var) = freemempos;                                             \
 1129         freemempos += (np * PAGE_SIZE);                                 \
 1130         memset((char *)(var), 0, ((np) * PAGE_SIZE));
 1131 
 1132         while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
 1133                 freemempos += PAGE_SIZE;
 1134         valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
 1135 
 1136         for (i = 0, j = 0; i < l2size; ++i) {
 1137                 if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
 1138                         valloc_pages(kernel_pt_table[i],
 1139                             L2_TABLE_SIZE / PAGE_SIZE);
 1140                         j = i;
 1141                 } else {
 1142                         kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
 1143                             L2_TABLE_SIZE_REAL * (i - j);
 1144                         kernel_pt_table[i].pv_pa =
 1145                             kernel_pt_table[i].pv_va - KERNVIRTADDR +
 1146                             abp->abp_physaddr;
 1147 
 1148                 }
 1149         }
 1150         /*
 1151          * Allocate a page for the system page mapped to 0x00000000
 1152          * or 0xffff0000. This page will just contain the system vectors
 1153          * and can be shared by all processes.
 1154          */
 1155         valloc_pages(systempage, 1);
 1156 
 1157         /* Allocate dynamic per-cpu area. */
 1158         valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
 1159         dpcpu_init((void *)dpcpu.pv_va, 0);
 1160 
 1161         /* Allocate stacks for all modes */
 1162         valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
 1163         valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
 1164         valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
 1165         valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
 1166         valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
 1167 
 1168         /*
 1169          * Now we start construction of the L1 page table
 1170          * We start by mapping the L2 page tables into the L1.
 1171          * This means that we can replace L1 mappings later on if necessary
 1172          */
 1173         l1pagetable = kernel_l1pt.pv_va;
 1174 
 1175         /*
 1176          * Try to map as much as possible of kernel text and data using
 1177          * 1MB section mapping and for the rest of initial kernel address
 1178          * space use L2 coarse tables.
 1179          *
 1180          * Link L2 tables for mapping remainder of kernel (modulo 1MB)
 1181          * and kernel structures
 1182          */
 1183         l2_start = lastaddr & ~(L1_S_OFFSET);
 1184         for (i = 0 ; i < l2size - 1; i++)
 1185                 pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
 1186                     &kernel_pt_table[i]);
 1187 
 1188         pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
 1189 
 1190         /* Map kernel code and data */
 1191         pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
 1192            (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
 1193             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
 1194 
 1195         /* Map L1 directory and allocated L2 page tables */
 1196         pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
 1197             L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
 1198 
 1199         pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
 1200             kernel_pt_table[0].pv_pa,
 1201             L2_TABLE_SIZE_REAL * l2size,
 1202             VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
 1203 
 1204         /* Map allocated DPCPU, stacks and msgbuf */
 1205         pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
 1206             freemempos - dpcpu.pv_va,
 1207             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
 1208 
 1209         /* Link and map the vector page */
 1210         pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
 1211             &kernel_pt_table[l2size - 1]);
 1212         pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
 1213             VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
 1214 
 1215         /* Establish static device mappings. */
 1216         err_devmap = initarm_devmap_init();
 1217         arm_devmap_bootstrap(l1pagetable, NULL);
 1218         vm_max_kernel_address = initarm_lastaddr();
 1219 
 1220         cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
 1221         pmap_pa = kernel_l1pt.pv_pa;
 1222         setttb(kernel_l1pt.pv_pa);
 1223         cpu_tlb_flushID();
 1224         cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
 1225 
 1226         /*
 1227          * Now that proper page tables are installed, call cpu_setup() to enable
 1228          * instruction and data caches and other chip-specific features.
 1229          */
 1230         cpu_setup("");
 1231 
 1232         /*
 1233          * Only after the SOC registers block is mapped we can perform device
 1234          * tree fixups, as they may attempt to read parameters from hardware.
 1235          */
 1236         OF_interpret("perform-fixup", 0);
 1237 
 1238         initarm_gpio_init();
 1239 
 1240         cninit();
 1241 
 1242         debugf("initarm: console initialized\n");
 1243         debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
 1244         debugf(" boothowto = 0x%08x\n", boothowto);
 1245         debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
 1246         print_kenv();
 1247 
 1248         env = getenv("kernelname");
 1249         if (env != NULL)
 1250                 strlcpy(kernelname, env, sizeof(kernelname));
 1251 
 1252         if (err_devmap != 0)
 1253                 printf("WARNING: could not fully configure devmap, error=%d\n",
 1254                     err_devmap);
 1255 
 1256         initarm_late_init();
 1257 
 1258         /*
 1259          * Pages were allocated during the secondary bootstrap for the
 1260          * stacks for different CPU modes.
 1261          * We must now set the r13 registers in the different CPU modes to
 1262          * point to these stacks.
 1263          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
 1264          * of the stack memory.
 1265          */
 1266         cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
 1267 
 1268         set_stackptrs(0);
 1269 
 1270         /*
 1271          * We must now clean the cache again....
 1272          * Cleaning may be done by reading new data to displace any
 1273          * dirty data in the cache. This will have happened in setttb()
 1274          * but since we are boot strapping the addresses used for the read
 1275          * may have just been remapped and thus the cache could be out
 1276          * of sync. A re-clean after the switch will cure this.
 1277          * After booting there are no gross relocations of the kernel thus
 1278          * this problem will not occur after initarm().
 1279          */
 1280         cpu_idcache_wbinv_all();
 1281 
 1282         undefined_init();
 1283 
 1284         init_proc0(kernelstack.pv_va);
 1285 
 1286         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
 1287         pmap_bootstrap(freemempos, &kernel_l1pt);
 1288         msgbufp = (void *)msgbufpv.pv_va;
 1289         msgbufinit(msgbufp, msgbufsize);
 1290         mutex_init();
 1291 
 1292         /*
 1293          * Exclude the kernel (and all the things we allocated which immediately
 1294          * follow the kernel) from the VM allocation pool but not from crash
 1295          * dumps.  virtual_avail is a global variable which tracks the kva we've
 1296          * "allocated" while setting up pmaps.
 1297          *
 1298          * Prepare the list of physical memory available to the vm subsystem.
 1299          */
 1300         arm_physmem_exclude_region(abp->abp_physaddr, 
 1301             (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
 1302         arm_physmem_init_kernel_globals();
 1303 
 1304         init_param2(physmem);
 1305         kdb_init();
 1306 
 1307         return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
 1308             sizeof(struct pcb)));
 1309 }
 1310 #endif

Cache object: 1d69ccfa2ff9b8f0e0fcd61f799f7dcb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.