The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $        */
    2 
    3 /*-
    4  * Copyright (c) 2004 Olivier Houchard
    5  * Copyright (c) 1994-1998 Mark Brinicombe.
    6  * Copyright (c) 1994 Brini.
    7  * All rights reserved.
    8  *
    9  * This code is derived from software written for Brini by Mark Brinicombe
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by Mark Brinicombe
   22  *      for the NetBSD Project.
   23  * 4. The name of the company nor the name of the author may be used to
   24  *    endorse or promote products derived from this software without specific
   25  *    prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
   28  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   29  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   30  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   31  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   32  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   33  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  * Machine dependent functions for kernel setup
   40  *
   41  * Created      : 17/09/94
   42  * Updated      : 18/04/01 updated for new wscons
   43  */
   44 
   45 #include "opt_compat.h"
   46 #include "opt_ddb.h"
   47 #include "opt_kstack_pages.h"
   48 #include "opt_platform.h"
   49 #include "opt_sched.h"
   50 #include "opt_timer.h"
   51 
   52 #include <sys/cdefs.h>
   53 __FBSDID("$FreeBSD: releng/11.2/sys/arm/arm/machdep.c 331988 2018-04-04 06:11:05Z mmel $");
   54 
   55 #include <sys/param.h>
   56 #include <sys/buf.h>
   57 #include <sys/bus.h>
   58 #include <sys/cons.h>
   59 #include <sys/cpu.h>
   60 #include <sys/devmap.h>
   61 #include <sys/efi.h>
   62 #include <sys/imgact.h>
   63 #include <sys/kdb.h>
   64 #include <sys/kernel.h>
   65 #include <sys/linker.h>
   66 #include <sys/msgbuf.h>
   67 #include <sys/reboot.h>
   68 #include <sys/rwlock.h>
   69 #include <sys/sched.h>
   70 #include <sys/syscallsubr.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/vmmeter.h>
   74 
   75 #include <vm/vm_object.h>
   76 #include <vm/vm_page.h>
   77 #include <vm/vm_pager.h>
   78 
   79 #include <machine/debug_monitor.h>
   80 #include <machine/machdep.h>
   81 #include <machine/metadata.h>
   82 #include <machine/pcb.h>
   83 #include <machine/physmem.h>
   84 #include <machine/platform.h>
   85 #include <machine/sysarch.h>
   86 #include <machine/undefined.h>
   87 #include <machine/vfp.h>
   88 #include <machine/vmparam.h>
   89 
   90 #ifdef FDT
   91 #include <dev/fdt/fdt_common.h>
   92 #include <machine/ofw_machdep.h>
   93 #endif
   94 
   95 #ifdef DEBUG
   96 #define debugf(fmt, args...) printf(fmt, ##args)
   97 #else
   98 #define debugf(fmt, args...)
   99 #endif
  100 
  101 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  102     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) || \
  103     defined(COMPAT_FREEBSD9)
  104 #error FreeBSD/arm doesn't provide compatibility with releases prior to 10
  105 #endif
  106 
  107 struct pcpu __pcpu[MAXCPU];
  108 struct pcpu *pcpup = &__pcpu[0];
  109 
  110 static struct trapframe proc0_tf;
  111 uint32_t cpu_reset_address = 0;
  112 int cold = 1;
  113 vm_offset_t vector_page;
  114 
  115 int (*_arm_memcpy)(void *, void *, int, int) = NULL;
  116 int (*_arm_bzero)(void *, int, int) = NULL;
  117 int _min_memcpy_size = 0;
  118 int _min_bzero_size = 0;
  119 
  120 extern int *end;
  121 
  122 #ifdef FDT
  123 vm_paddr_t pmap_pa;
  124 #if __ARM_ARCH >= 6
  125 vm_offset_t systempage;
  126 vm_offset_t irqstack;
  127 vm_offset_t undstack;
  128 vm_offset_t abtstack;
  129 #else
  130 /*
  131  * This is the number of L2 page tables required for covering max
  132  * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
  133  * stacks etc.), uprounded to be divisible by 4.
  134  */
  135 #define KERNEL_PT_MAX   78
  136 static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
  137 struct pv_addr systempage;
  138 static struct pv_addr msgbufpv;
  139 struct pv_addr irqstack;
  140 struct pv_addr undstack;
  141 struct pv_addr abtstack;
  142 static struct pv_addr kernelstack;
  143 #endif /* __ARM_ARCH >= 6 */
  144 #endif /* FDT */
  145 
  146 #ifdef MULTIDELAY
  147 static delay_func *delay_impl;
  148 static void *delay_arg;
  149 #endif
  150 
  151 struct kva_md_info kmi;
  152 
  153 /*
  154  * arm32_vector_init:
  155  *
  156  *      Initialize the vector page, and select whether or not to
  157  *      relocate the vectors.
  158  *
  159  *      NOTE: We expect the vector page to be mapped at its expected
  160  *      destination.
  161  */
  162 
  163 extern unsigned int page0[], page0_data[];
  164 void
  165 arm_vector_init(vm_offset_t va, int which)
  166 {
  167         unsigned int *vectors = (int *) va;
  168         unsigned int *vectors_data = vectors + (page0_data - page0);
  169         int vec;
  170 
  171         /*
  172          * Loop through the vectors we're taking over, and copy the
  173          * vector's insn and data word.
  174          */
  175         for (vec = 0; vec < ARM_NVEC; vec++) {
  176                 if ((which & (1 << vec)) == 0) {
  177                         /* Don't want to take over this vector. */
  178                         continue;
  179                 }
  180                 vectors[vec] = page0[vec];
  181                 vectors_data[vec] = page0_data[vec];
  182         }
  183 
  184         /* Now sync the vectors. */
  185         icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int));
  186 
  187         vector_page = va;
  188 #if __ARM_ARCH < 6
  189         if (va == ARM_VECTORS_HIGH) {
  190                 /*
  191                  * Enable high vectors in the system control reg (SCTLR).
  192                  *
  193                  * Assume the MD caller knows what it's doing here, and really
  194                  * does want the vector page relocated.
  195                  *
  196                  * Note: This has to be done here (and not just in
  197                  * cpu_setup()) because the vector page needs to be
  198                  * accessible *before* cpu_startup() is called.
  199                  * Think ddb(9) ...
  200                  */
  201                 cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
  202         }
  203 #endif
  204 }
  205 
  206 static void
  207 cpu_startup(void *dummy)
  208 {
  209         struct pcb *pcb = thread0.td_pcb;
  210         const unsigned int mbyte = 1024 * 1024;
  211 #if __ARM_ARCH < 6 && !defined(ARM_CACHE_LOCK_ENABLE)
  212         vm_page_t m;
  213 #endif
  214 
  215         identify_arm_cpu();
  216 
  217         vm_ksubmap_init(&kmi);
  218 
  219         /*
  220          * Display the RAM layout.
  221          */
  222         printf("real memory  = %ju (%ju MB)\n",
  223             (uintmax_t)arm32_ptob(realmem),
  224             (uintmax_t)arm32_ptob(realmem) / mbyte);
  225         printf("avail memory = %ju (%ju MB)\n",
  226             (uintmax_t)arm32_ptob(vm_cnt.v_free_count),
  227             (uintmax_t)arm32_ptob(vm_cnt.v_free_count) / mbyte);
  228         if (bootverbose) {
  229                 arm_physmem_print_tables();
  230                 devmap_print_table();
  231         }
  232 
  233         bufinit();
  234         vm_pager_bufferinit();
  235         pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
  236             USPACE_SVC_STACK_TOP;
  237         pmap_set_pcb_pagedir(kernel_pmap, pcb);
  238 #if __ARM_ARCH < 6
  239         vector_page_setprot(VM_PROT_READ);
  240         pmap_postinit();
  241 #ifdef ARM_CACHE_LOCK_ENABLE
  242         pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
  243         arm_lock_cache_line(ARM_TP_ADDRESS);
  244 #else
  245         m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
  246         pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
  247 #endif
  248         *(uint32_t *)ARM_RAS_START = 0;
  249         *(uint32_t *)ARM_RAS_END = 0xffffffff;
  250 #endif
  251 }
  252 
  253 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  254 
  255 /*
  256  * Flush the D-cache for non-DMA I/O so that the I-cache can
  257  * be made coherent later.
  258  */
  259 void
  260 cpu_flush_dcache(void *ptr, size_t len)
  261 {
  262 
  263         dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len);
  264 }
  265 
  266 /* Get current clock frequency for the given cpu id. */
  267 int
  268 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  269 {
  270 
  271         return (ENXIO);
  272 }
  273 
  274 void
  275 cpu_idle(int busy)
  276 {
  277 
  278         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
  279         spinlock_enter();
  280 #ifndef NO_EVENTTIMERS
  281         if (!busy)
  282                 cpu_idleclock();
  283 #endif
  284         if (!sched_runnable())
  285                 cpu_sleep(0);
  286 #ifndef NO_EVENTTIMERS
  287         if (!busy)
  288                 cpu_activeclock();
  289 #endif
  290         spinlock_exit();
  291         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
  292 }
  293 
  294 int
  295 cpu_idle_wakeup(int cpu)
  296 {
  297 
  298         return (0);
  299 }
  300 
  301 /*
  302  * Most ARM platforms don't need to do anything special to init their clocks
  303  * (they get intialized during normal device attachment), and by not defining a
  304  * cpu_initclocks() function they get this generic one.  Any platform that needs
  305  * to do something special can just provide their own implementation, which will
  306  * override this one due to the weak linkage.
  307  */
  308 void
  309 arm_generic_initclocks(void)
  310 {
  311 
  312 #ifndef NO_EVENTTIMERS
  313 #ifdef SMP
  314         if (PCPU_GET(cpuid) == 0)
  315                 cpu_initclocks_bsp();
  316         else
  317                 cpu_initclocks_ap();
  318 #else
  319         cpu_initclocks_bsp();
  320 #endif
  321 #endif
  322 }
  323 __weak_reference(arm_generic_initclocks, cpu_initclocks);
  324 
  325 #ifdef MULTIDELAY
  326 void
  327 arm_set_delay(delay_func *impl, void *arg)
  328 {
  329 
  330         KASSERT(impl != NULL, ("No DELAY implementation"));
  331         delay_impl = impl;
  332         delay_arg = arg;
  333 }
  334 
  335 void
  336 DELAY(int usec)
  337 {
  338 
  339         delay_impl(usec, delay_arg);
  340 }
  341 #endif
  342 
  343 void
  344 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  345 {
  346 }
  347 
  348 void
  349 spinlock_enter(void)
  350 {
  351         struct thread *td;
  352         register_t cspr;
  353 
  354         td = curthread;
  355         if (td->td_md.md_spinlock_count == 0) {
  356                 cspr = disable_interrupts(PSR_I | PSR_F);
  357                 td->td_md.md_spinlock_count = 1;
  358                 td->td_md.md_saved_cspr = cspr;
  359         } else
  360                 td->td_md.md_spinlock_count++;
  361         critical_enter();
  362 }
  363 
  364 void
  365 spinlock_exit(void)
  366 {
  367         struct thread *td;
  368         register_t cspr;
  369 
  370         td = curthread;
  371         critical_exit();
  372         cspr = td->td_md.md_saved_cspr;
  373         td->td_md.md_spinlock_count--;
  374         if (td->td_md.md_spinlock_count == 0)
  375                 restore_interrupts(cspr);
  376 }
  377 
  378 /*
  379  * Clear registers on exec
  380  */
  381 void
  382 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  383 {
  384         struct trapframe *tf = td->td_frame;
  385 
  386         memset(tf, 0, sizeof(*tf));
  387         tf->tf_usr_sp = stack;
  388         tf->tf_usr_lr = imgp->entry_addr;
  389         tf->tf_svc_lr = 0x77777777;
  390         tf->tf_pc = imgp->entry_addr;
  391         tf->tf_spsr = PSR_USR32_MODE;
  392 }
  393 
  394 
  395 #ifdef VFP
  396 /*
  397  * Get machine VFP context.
  398  */
  399 void
  400 get_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
  401 {
  402         struct pcb *pcb;
  403 
  404         pcb = td->td_pcb;
  405         if (td == curthread) {
  406                 critical_enter();
  407                 vfp_store(&pcb->pcb_vfpstate, false);
  408                 critical_exit();
  409         } else
  410                 MPASS(TD_IS_SUSPENDED(td));
  411         memcpy(vfp->mcv_reg, pcb->pcb_vfpstate.reg,
  412             sizeof(vfp->mcv_reg));
  413         vfp->mcv_fpscr = pcb->pcb_vfpstate.fpscr;
  414 }
  415 
  416 /*
  417  * Set machine VFP context.
  418  */
  419 void
  420 set_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
  421 {
  422         struct pcb *pcb;
  423 
  424         pcb = td->td_pcb;
  425         if (td == curthread) {
  426                 critical_enter();
  427                 vfp_discard(td);
  428                 critical_exit();
  429         } else
  430                 MPASS(TD_IS_SUSPENDED(td));
  431         memcpy(pcb->pcb_vfpstate.reg, vfp->mcv_reg,
  432             sizeof(pcb->pcb_vfpstate.reg));
  433         pcb->pcb_vfpstate.fpscr = vfp->mcv_fpscr;
  434 }
  435 #endif
  436 
  437 int
  438 arm_get_vfpstate(struct thread *td, void *args)
  439 {
  440         int rv;
  441         struct arm_get_vfpstate_args ua;
  442         mcontext_vfp_t  mcontext_vfp;
  443 
  444         rv = copyin(args, &ua, sizeof(ua));
  445         if (rv != 0)
  446                 return (rv);
  447         if (ua.mc_vfp_size != sizeof(mcontext_vfp_t))
  448                 return (EINVAL);
  449 #ifdef VFP
  450         get_vfpcontext(td, &mcontext_vfp);
  451 #else
  452         bzero(&mcontext_vfp, sizeof(mcontext_vfp));
  453 #endif
  454 
  455         rv = copyout(&mcontext_vfp, ua.mc_vfp,  sizeof(mcontext_vfp));
  456         if (rv != 0)
  457                 return (rv);
  458         return (0);
  459 }
  460 
  461 /*
  462  * Get machine context.
  463  */
  464 int
  465 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
  466 {
  467         struct trapframe *tf = td->td_frame;
  468         __greg_t *gr = mcp->__gregs;
  469 
  470         if (clear_ret & GET_MC_CLEAR_RET) {
  471                 gr[_REG_R0] = 0;
  472                 gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C;
  473         } else {
  474                 gr[_REG_R0]   = tf->tf_r0;
  475                 gr[_REG_CPSR] = tf->tf_spsr;
  476         }
  477         gr[_REG_R1]   = tf->tf_r1;
  478         gr[_REG_R2]   = tf->tf_r2;
  479         gr[_REG_R3]   = tf->tf_r3;
  480         gr[_REG_R4]   = tf->tf_r4;
  481         gr[_REG_R5]   = tf->tf_r5;
  482         gr[_REG_R6]   = tf->tf_r6;
  483         gr[_REG_R7]   = tf->tf_r7;
  484         gr[_REG_R8]   = tf->tf_r8;
  485         gr[_REG_R9]   = tf->tf_r9;
  486         gr[_REG_R10]  = tf->tf_r10;
  487         gr[_REG_R11]  = tf->tf_r11;
  488         gr[_REG_R12]  = tf->tf_r12;
  489         gr[_REG_SP]   = tf->tf_usr_sp;
  490         gr[_REG_LR]   = tf->tf_usr_lr;
  491         gr[_REG_PC]   = tf->tf_pc;
  492 
  493         mcp->mc_vfp_size = 0;
  494         mcp->mc_vfp_ptr = NULL;
  495         memset(&mcp->mc_spare, 0, sizeof(mcp->mc_spare));
  496 
  497         return (0);
  498 }
  499 
  500 /*
  501  * Set machine context.
  502  *
  503  * However, we don't set any but the user modifiable flags, and we won't
  504  * touch the cs selector.
  505  */
  506 int
  507 set_mcontext(struct thread *td, mcontext_t *mcp)
  508 {
  509         mcontext_vfp_t mc_vfp, *vfp;
  510         struct trapframe *tf = td->td_frame;
  511         const __greg_t *gr = mcp->__gregs;
  512         int spsr;
  513 
  514         /*
  515          * Make sure the processor mode has not been tampered with and
  516          * interrupts have not been disabled.
  517          */
  518         spsr = gr[_REG_CPSR];
  519         if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
  520             (spsr & (PSR_I | PSR_F)) != 0)
  521                 return (EINVAL);
  522 
  523 #ifdef WITNESS
  524         if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_size != sizeof(mc_vfp)) {
  525                 printf("%s: %s: Malformed mc_vfp_size: %d (0x%08X)\n",
  526                     td->td_proc->p_comm, __func__,
  527                     mcp->mc_vfp_size, mcp->mc_vfp_size);
  528         } else if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_ptr == NULL) {
  529                 printf("%s: %s: c_vfp_size != 0 but mc_vfp_ptr == NULL\n",
  530                     td->td_proc->p_comm, __func__);
  531         }
  532 #endif
  533 
  534         if (mcp->mc_vfp_size == sizeof(mc_vfp) && mcp->mc_vfp_ptr != NULL) {
  535                 if (copyin(mcp->mc_vfp_ptr, &mc_vfp, sizeof(mc_vfp)) != 0)
  536                         return (EFAULT);
  537                 vfp = &mc_vfp;
  538         } else {
  539                 vfp = NULL;
  540         }
  541 
  542         tf->tf_r0 = gr[_REG_R0];
  543         tf->tf_r1 = gr[_REG_R1];
  544         tf->tf_r2 = gr[_REG_R2];
  545         tf->tf_r3 = gr[_REG_R3];
  546         tf->tf_r4 = gr[_REG_R4];
  547         tf->tf_r5 = gr[_REG_R5];
  548         tf->tf_r6 = gr[_REG_R6];
  549         tf->tf_r7 = gr[_REG_R7];
  550         tf->tf_r8 = gr[_REG_R8];
  551         tf->tf_r9 = gr[_REG_R9];
  552         tf->tf_r10 = gr[_REG_R10];
  553         tf->tf_r11 = gr[_REG_R11];
  554         tf->tf_r12 = gr[_REG_R12];
  555         tf->tf_usr_sp = gr[_REG_SP];
  556         tf->tf_usr_lr = gr[_REG_LR];
  557         tf->tf_pc = gr[_REG_PC];
  558         tf->tf_spsr = gr[_REG_CPSR];
  559 #ifdef VFP
  560         if (vfp != NULL)
  561                 set_vfpcontext(td, vfp);
  562 #endif
  563         return (0);
  564 }
  565 
  566 void
  567 sendsig(catcher, ksi, mask)
  568         sig_t catcher;
  569         ksiginfo_t *ksi;
  570         sigset_t *mask;
  571 {
  572         struct thread *td;
  573         struct proc *p;
  574         struct trapframe *tf;
  575         struct sigframe *fp, frame;
  576         struct sigacts *psp;
  577         struct sysentvec *sysent;
  578         int onstack;
  579         int sig;
  580         int code;
  581 
  582         td = curthread;
  583         p = td->td_proc;
  584         PROC_LOCK_ASSERT(p, MA_OWNED);
  585         sig = ksi->ksi_signo;
  586         code = ksi->ksi_code;
  587         psp = p->p_sigacts;
  588         mtx_assert(&psp->ps_mtx, MA_OWNED);
  589         tf = td->td_frame;
  590         onstack = sigonstack(tf->tf_usr_sp);
  591 
  592         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  593             catcher, sig);
  594 
  595         /* Allocate and validate space for the signal handler context. */
  596         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
  597             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  598                 fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
  599                     td->td_sigstk.ss_size);
  600 #if defined(COMPAT_43)
  601                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  602 #endif
  603         } else
  604                 fp = (struct sigframe *)td->td_frame->tf_usr_sp;
  605 
  606         /* make room on the stack */
  607         fp--;
  608 
  609         /* make the stack aligned */
  610         fp = (struct sigframe *)STACKALIGN(fp);
  611         /* Populate the siginfo frame. */
  612         get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
  613 #ifdef VFP
  614         get_vfpcontext(td, &frame.sf_vfp);
  615         frame.sf_uc.uc_mcontext.mc_vfp_size = sizeof(fp->sf_vfp);
  616         frame.sf_uc.uc_mcontext.mc_vfp_ptr = &fp->sf_vfp;
  617 #else
  618         frame.sf_uc.uc_mcontext.mc_vfp_size = 0;
  619         frame.sf_uc.uc_mcontext.mc_vfp_ptr = NULL;
  620 #endif
  621         frame.sf_si = ksi->ksi_info;
  622         frame.sf_uc.uc_sigmask = *mask;
  623         frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
  624             ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  625         frame.sf_uc.uc_stack = td->td_sigstk;
  626         mtx_unlock(&psp->ps_mtx);
  627         PROC_UNLOCK(td->td_proc);
  628 
  629         /* Copy the sigframe out to the user's stack. */
  630         if (copyout(&frame, fp, sizeof(*fp)) != 0) {
  631                 /* Process has trashed its stack. Kill it. */
  632                 CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
  633                 PROC_LOCK(p);
  634                 sigexit(td, SIGILL);
  635         }
  636 
  637         /*
  638          * Build context to run handler in.  We invoke the handler
  639          * directly, only returning via the trampoline.  Note the
  640          * trampoline version numbers are coordinated with machine-
  641          * dependent code in libc.
  642          */
  643 
  644         tf->tf_r0 = sig;
  645         tf->tf_r1 = (register_t)&fp->sf_si;
  646         tf->tf_r2 = (register_t)&fp->sf_uc;
  647 
  648         /* the trampoline uses r5 as the uc address */
  649         tf->tf_r5 = (register_t)&fp->sf_uc;
  650         tf->tf_pc = (register_t)catcher;
  651         tf->tf_usr_sp = (register_t)fp;
  652         sysent = p->p_sysent;
  653         if (sysent->sv_sigcode_base != 0)
  654                 tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base;
  655         else
  656                 tf->tf_usr_lr = (register_t)(sysent->sv_psstrings -
  657                     *(sysent->sv_szsigcode));
  658         /* Set the mode to enter in the signal handler */
  659 #if __ARM_ARCH >= 7
  660         if ((register_t)catcher & 1)
  661                 tf->tf_spsr |= PSR_T;
  662         else
  663                 tf->tf_spsr &= ~PSR_T;
  664 #endif
  665 
  666         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
  667             tf->tf_usr_sp);
  668 
  669         PROC_LOCK(p);
  670         mtx_lock(&psp->ps_mtx);
  671 }
  672 
  673 int
  674 sys_sigreturn(td, uap)
  675         struct thread *td;
  676         struct sigreturn_args /* {
  677                 const struct __ucontext *sigcntxp;
  678         } */ *uap;
  679 {
  680         ucontext_t uc;
  681         int error;
  682 
  683         if (uap == NULL)
  684                 return (EFAULT);
  685         if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
  686                 return (EFAULT);
  687         /* Restore register context. */
  688         error = set_mcontext(td, &uc.uc_mcontext);
  689         if (error != 0)
  690                 return (error);
  691 
  692         /* Restore signal mask. */
  693         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  694 
  695         return (EJUSTRETURN);
  696 }
  697 
  698 /*
  699  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  700  * we want to start a backtrace from the function that caused us to enter
  701  * the debugger. We have the context in the trapframe, but base the trace
  702  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  703  * enough for a backtrace.
  704  */
  705 void
  706 makectx(struct trapframe *tf, struct pcb *pcb)
  707 {
  708         pcb->pcb_regs.sf_r4 = tf->tf_r4;
  709         pcb->pcb_regs.sf_r5 = tf->tf_r5;
  710         pcb->pcb_regs.sf_r6 = tf->tf_r6;
  711         pcb->pcb_regs.sf_r7 = tf->tf_r7;
  712         pcb->pcb_regs.sf_r8 = tf->tf_r8;
  713         pcb->pcb_regs.sf_r9 = tf->tf_r9;
  714         pcb->pcb_regs.sf_r10 = tf->tf_r10;
  715         pcb->pcb_regs.sf_r11 = tf->tf_r11;
  716         pcb->pcb_regs.sf_r12 = tf->tf_r12;
  717         pcb->pcb_regs.sf_pc = tf->tf_pc;
  718         pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
  719         pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
  720 }
  721 
  722 void
  723 pcpu0_init(void)
  724 {
  725 #if __ARM_ARCH >= 6
  726         set_curthread(&thread0);
  727 #endif
  728         pcpu_init(pcpup, 0, sizeof(struct pcpu));
  729         PCPU_SET(curthread, &thread0);
  730 }
  731 
  732 /*
  733  * Initialize proc0
  734  */
  735 void
  736 init_proc0(vm_offset_t kstack)
  737 {
  738         proc_linkup0(&proc0, &thread0);
  739         thread0.td_kstack = kstack;
  740         thread0.td_pcb = (struct pcb *)
  741                 (thread0.td_kstack + kstack_pages * PAGE_SIZE) - 1;
  742         thread0.td_pcb->pcb_flags = 0;
  743         thread0.td_pcb->pcb_vfpcpu = -1;
  744         thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN;
  745         thread0.td_frame = &proc0_tf;
  746         pcpup->pc_curpcb = thread0.td_pcb;
  747 }
  748 
  749 #if __ARM_ARCH >= 6
  750 void
  751 set_stackptrs(int cpu)
  752 {
  753 
  754         set_stackptr(PSR_IRQ32_MODE,
  755             irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  756         set_stackptr(PSR_ABT32_MODE,
  757             abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  758         set_stackptr(PSR_UND32_MODE,
  759             undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  760 }
  761 #else
  762 void
  763 set_stackptrs(int cpu)
  764 {
  765 
  766         set_stackptr(PSR_IRQ32_MODE,
  767             irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  768         set_stackptr(PSR_ABT32_MODE,
  769             abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  770         set_stackptr(PSR_UND32_MODE,
  771             undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  772 }
  773 #endif
  774 
  775 static void
  776 arm_kdb_init(void)
  777 {
  778 
  779         kdb_init();
  780 #ifdef KDB
  781         if (boothowto & RB_KDB)
  782                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  783 #endif
  784 }
  785 
  786 #ifdef FDT
  787 #if __ARM_ARCH < 6
  788 void *
  789 initarm(struct arm_boot_params *abp)
  790 {
  791         struct mem_region mem_regions[FDT_MEM_REGIONS];
  792         struct pv_addr kernel_l1pt;
  793         struct pv_addr dpcpu;
  794         vm_offset_t dtbp, freemempos, l2_start, lastaddr;
  795         uint64_t memsize;
  796         uint32_t l2size;
  797         char *env;
  798         void *kmdp;
  799         u_int l1pagetable;
  800         int i, j, err_devmap, mem_regions_sz;
  801 
  802         lastaddr = parse_boot_param(abp);
  803         arm_physmem_kernaddr = abp->abp_physaddr;
  804 
  805         memsize = 0;
  806 
  807         cpuinfo_init();
  808         set_cpufuncs();
  809 
  810         /*
  811          * Find the dtb passed in by the boot loader.
  812          */
  813         kmdp = preload_search_by_type("elf kernel");
  814         if (kmdp != NULL)
  815                 dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
  816         else
  817                 dtbp = (vm_offset_t)NULL;
  818 
  819 #if defined(FDT_DTB_STATIC)
  820         /*
  821          * In case the device tree blob was not retrieved (from metadata) try
  822          * to use the statically embedded one.
  823          */
  824         if (dtbp == (vm_offset_t)NULL)
  825                 dtbp = (vm_offset_t)&fdt_static_dtb;
  826 #endif
  827 
  828         if (OF_install(OFW_FDT, 0) == FALSE)
  829                 panic("Cannot install FDT");
  830 
  831         if (OF_init((void *)dtbp) != 0)
  832                 panic("OF_init failed with the found device tree");
  833 
  834         /* Grab physical memory regions information from device tree. */
  835         if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
  836                 panic("Cannot get physical memory regions");
  837         arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
  838 
  839         /* Grab reserved memory regions information from device tree. */
  840         if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
  841                 arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
  842                     EXFLAG_NODUMP | EXFLAG_NOALLOC);
  843 
  844         /* Platform-specific initialisation */
  845         platform_probe_and_attach();
  846 
  847         pcpu0_init();
  848 
  849         /* Do basic tuning, hz etc */
  850         init_param1();
  851 
  852         /* Calculate number of L2 tables needed for mapping vm_page_array */
  853         l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
  854         l2size = (l2size >> L1_S_SHIFT) + 1;
  855 
  856         /*
  857          * Add one table for end of kernel map, one for stacks, msgbuf and
  858          * L1 and L2 tables map and one for vectors map.
  859          */
  860         l2size += 3;
  861 
  862         /* Make it divisible by 4 */
  863         l2size = (l2size + 3) & ~3;
  864 
  865         freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
  866 
  867         /* Define a macro to simplify memory allocation */
  868 #define valloc_pages(var, np)                                           \
  869         alloc_pages((var).pv_va, (np));                                 \
  870         (var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
  871 
  872 #define alloc_pages(var, np)                                            \
  873         (var) = freemempos;                                             \
  874         freemempos += (np * PAGE_SIZE);                                 \
  875         memset((char *)(var), 0, ((np) * PAGE_SIZE));
  876 
  877         while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
  878                 freemempos += PAGE_SIZE;
  879         valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
  880 
  881         for (i = 0, j = 0; i < l2size; ++i) {
  882                 if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
  883                         valloc_pages(kernel_pt_table[i],
  884                             L2_TABLE_SIZE / PAGE_SIZE);
  885                         j = i;
  886                 } else {
  887                         kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
  888                             L2_TABLE_SIZE_REAL * (i - j);
  889                         kernel_pt_table[i].pv_pa =
  890                             kernel_pt_table[i].pv_va - KERNVIRTADDR +
  891                             abp->abp_physaddr;
  892 
  893                 }
  894         }
  895         /*
  896          * Allocate a page for the system page mapped to 0x00000000
  897          * or 0xffff0000. This page will just contain the system vectors
  898          * and can be shared by all processes.
  899          */
  900         valloc_pages(systempage, 1);
  901 
  902         /* Allocate dynamic per-cpu area. */
  903         valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
  904         dpcpu_init((void *)dpcpu.pv_va, 0);
  905 
  906         /* Allocate stacks for all modes */
  907         valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
  908         valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
  909         valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
  910         valloc_pages(kernelstack, kstack_pages * MAXCPU);
  911         valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
  912 
  913         /*
  914          * Now we start construction of the L1 page table
  915          * We start by mapping the L2 page tables into the L1.
  916          * This means that we can replace L1 mappings later on if necessary
  917          */
  918         l1pagetable = kernel_l1pt.pv_va;
  919 
  920         /*
  921          * Try to map as much as possible of kernel text and data using
  922          * 1MB section mapping and for the rest of initial kernel address
  923          * space use L2 coarse tables.
  924          *
  925          * Link L2 tables for mapping remainder of kernel (modulo 1MB)
  926          * and kernel structures
  927          */
  928         l2_start = lastaddr & ~(L1_S_OFFSET);
  929         for (i = 0 ; i < l2size - 1; i++)
  930                 pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
  931                     &kernel_pt_table[i]);
  932 
  933         pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
  934 
  935         /* Map kernel code and data */
  936         pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
  937            (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
  938             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  939 
  940         /* Map L1 directory and allocated L2 page tables */
  941         pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
  942             L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  943 
  944         pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
  945             kernel_pt_table[0].pv_pa,
  946             L2_TABLE_SIZE_REAL * l2size,
  947             VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  948 
  949         /* Map allocated DPCPU, stacks and msgbuf */
  950         pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
  951             freemempos - dpcpu.pv_va,
  952             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  953 
  954         /* Link and map the vector page */
  955         pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
  956             &kernel_pt_table[l2size - 1]);
  957         pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
  958             VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
  959 
  960         /* Establish static device mappings. */
  961         err_devmap = platform_devmap_init();
  962         devmap_bootstrap(l1pagetable, NULL);
  963         vm_max_kernel_address = platform_lastaddr();
  964 
  965         cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
  966         pmap_pa = kernel_l1pt.pv_pa;
  967         cpu_setttb(kernel_l1pt.pv_pa);
  968         cpu_tlb_flushID();
  969         cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
  970 
  971         /*
  972          * Now that proper page tables are installed, call cpu_setup() to enable
  973          * instruction and data caches and other chip-specific features.
  974          */
  975         cpu_setup();
  976 
  977         /*
  978          * Only after the SOC registers block is mapped we can perform device
  979          * tree fixups, as they may attempt to read parameters from hardware.
  980          */
  981         OF_interpret("perform-fixup", 0);
  982 
  983         platform_gpio_init();
  984 
  985         cninit();
  986 
  987         debugf("initarm: console initialized\n");
  988         debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
  989         debugf(" boothowto = 0x%08x\n", boothowto);
  990         debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
  991         arm_print_kenv();
  992 
  993         env = kern_getenv("kernelname");
  994         if (env != NULL) {
  995                 strlcpy(kernelname, env, sizeof(kernelname));
  996                 freeenv(env);
  997         }
  998 
  999         if (err_devmap != 0)
 1000                 printf("WARNING: could not fully configure devmap, error=%d\n",
 1001                     err_devmap);
 1002 
 1003         platform_late_init();
 1004 
 1005         /*
 1006          * Pages were allocated during the secondary bootstrap for the
 1007          * stacks for different CPU modes.
 1008          * We must now set the r13 registers in the different CPU modes to
 1009          * point to these stacks.
 1010          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
 1011          * of the stack memory.
 1012          */
 1013         cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
 1014 
 1015         set_stackptrs(0);
 1016 
 1017         /*
 1018          * We must now clean the cache again....
 1019          * Cleaning may be done by reading new data to displace any
 1020          * dirty data in the cache. This will have happened in cpu_setttb()
 1021          * but since we are boot strapping the addresses used for the read
 1022          * may have just been remapped and thus the cache could be out
 1023          * of sync. A re-clean after the switch will cure this.
 1024          * After booting there are no gross relocations of the kernel thus
 1025          * this problem will not occur after initarm().
 1026          */
 1027         cpu_idcache_wbinv_all();
 1028 
 1029         undefined_init();
 1030 
 1031         init_proc0(kernelstack.pv_va);
 1032 
 1033         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
 1034         pmap_bootstrap(freemempos, &kernel_l1pt);
 1035         msgbufp = (void *)msgbufpv.pv_va;
 1036         msgbufinit(msgbufp, msgbufsize);
 1037         mutex_init();
 1038 
 1039         /*
 1040          * Exclude the kernel (and all the things we allocated which immediately
 1041          * follow the kernel) from the VM allocation pool but not from crash
 1042          * dumps.  virtual_avail is a global variable which tracks the kva we've
 1043          * "allocated" while setting up pmaps.
 1044          *
 1045          * Prepare the list of physical memory available to the vm subsystem.
 1046          */
 1047         arm_physmem_exclude_region(abp->abp_physaddr,
 1048             (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
 1049         arm_physmem_init_kernel_globals();
 1050 
 1051         init_param2(physmem);
 1052         dbg_monitor_init();
 1053         arm_kdb_init();
 1054 
 1055         return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
 1056             sizeof(struct pcb)));
 1057 }
 1058 #else /* __ARM_ARCH < 6 */
 1059 void *
 1060 initarm(struct arm_boot_params *abp)
 1061 {
 1062         struct mem_region mem_regions[FDT_MEM_REGIONS];
 1063         vm_paddr_t lastaddr;
 1064         vm_offset_t dtbp, kernelstack, dpcpu;
 1065         char *env;
 1066         void *kmdp;
 1067         int err_devmap, mem_regions_sz;
 1068 #ifdef EFI
 1069         struct efi_map_header *efihdr;
 1070 #endif
 1071 
 1072         /* get last allocated physical address */
 1073         arm_physmem_kernaddr = abp->abp_physaddr;
 1074         lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr;
 1075 
 1076         set_cpufuncs();
 1077         cpuinfo_init();
 1078 
 1079         /*
 1080          * Find the dtb passed in by the boot loader.
 1081          */
 1082         kmdp = preload_search_by_type("elf kernel");
 1083         dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
 1084 #if defined(FDT_DTB_STATIC)
 1085         /*
 1086          * In case the device tree blob was not retrieved (from metadata) try
 1087          * to use the statically embedded one.
 1088          */
 1089         if (dtbp == (vm_offset_t)NULL)
 1090                 dtbp = (vm_offset_t)&fdt_static_dtb;
 1091 #endif
 1092 
 1093         if (OF_install(OFW_FDT, 0) == FALSE)
 1094                 panic("Cannot install FDT");
 1095 
 1096         if (OF_init((void *)dtbp) != 0)
 1097                 panic("OF_init failed with the found device tree");
 1098 
 1099 #if defined(LINUX_BOOT_ABI)
 1100         arm_parse_fdt_bootargs();
 1101 #endif
 1102 
 1103 #ifdef EFI
 1104         efihdr = (struct efi_map_header *)preload_search_info(kmdp,
 1105             MODINFO_METADATA | MODINFOMD_EFI_MAP);
 1106         if (efihdr != NULL) {
 1107                 arm_add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz);
 1108         } else
 1109 #endif
 1110         {
 1111                 /* Grab physical memory regions information from device tree. */
 1112                 if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0)
 1113                         panic("Cannot get physical memory regions");
 1114         }
 1115         arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
 1116 
 1117         /* Grab reserved memory regions information from device tree. */
 1118         if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
 1119                 arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
 1120                     EXFLAG_NODUMP | EXFLAG_NOALLOC);
 1121 
 1122         /*
 1123          * Set TEX remapping registers.
 1124          * Setup kernel page tables and switch to kernel L1 page table.
 1125          */
 1126         pmap_set_tex();
 1127         pmap_bootstrap_prepare(lastaddr);
 1128 
 1129         /*
 1130          * If EARLY_PRINTF support is enabled, we need to re-establish the
 1131          * mapping after pmap_bootstrap_prepare() switches to new page tables.
 1132          * Note that we can only do the remapping if the VA is outside the
 1133          * kernel, now that we have real virtual (not VA=PA) mappings in effect.
 1134          * Early printf does not work between the time pmap_set_tex() does
 1135          * cp15_prrr_set() and this code remaps the VA.
 1136          */
 1137 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
 1138         pmap_preboot_map_attr(SOCDEV_PA, SOCDEV_VA, 1024 * 1024, 
 1139             VM_PROT_READ | VM_PROT_WRITE, VM_MEMATTR_DEVICE);
 1140 #endif
 1141 
 1142         /*
 1143          * Now that proper page tables are installed, call cpu_setup() to enable
 1144          * instruction and data caches and other chip-specific features.
 1145          */
 1146         cpu_setup();
 1147 
 1148         /* Platform-specific initialisation */
 1149         platform_probe_and_attach();
 1150         pcpu0_init();
 1151 
 1152         /* Do basic tuning, hz etc */
 1153         init_param1();
 1154 
 1155         /*
 1156          * Allocate a page for the system page mapped to 0xffff0000
 1157          * This page will just contain the system vectors and can be
 1158          * shared by all processes.
 1159          */
 1160         systempage = pmap_preboot_get_pages(1);
 1161 
 1162         /* Map the vector page. */
 1163         pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH,  1);
 1164         if (virtual_end >= ARM_VECTORS_HIGH)
 1165                 virtual_end = ARM_VECTORS_HIGH - 1;
 1166 
 1167         /* Allocate dynamic per-cpu area. */
 1168         dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE);
 1169         dpcpu_init((void *)dpcpu, 0);
 1170 
 1171         /* Allocate stacks for all modes */
 1172         irqstack    = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU);
 1173         abtstack    = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU);
 1174         undstack    = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU );
 1175         kernelstack = pmap_preboot_get_vpages(kstack_pages * MAXCPU);
 1176 
 1177         /* Allocate message buffer. */
 1178         msgbufp = (void *)pmap_preboot_get_vpages(
 1179             round_page(msgbufsize) / PAGE_SIZE);
 1180 
 1181         /*
 1182          * Pages were allocated during the secondary bootstrap for the
 1183          * stacks for different CPU modes.
 1184          * We must now set the r13 registers in the different CPU modes to
 1185          * point to these stacks.
 1186          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
 1187          * of the stack memory.
 1188          */
 1189         set_stackptrs(0);
 1190         mutex_init();
 1191 
 1192         /* Establish static device mappings. */
 1193         err_devmap = platform_devmap_init();
 1194         devmap_bootstrap(0, NULL);
 1195         vm_max_kernel_address = platform_lastaddr();
 1196 
 1197         /*
 1198          * Only after the SOC registers block is mapped we can perform device
 1199          * tree fixups, as they may attempt to read parameters from hardware.
 1200          */
 1201         OF_interpret("perform-fixup", 0);
 1202         platform_gpio_init();
 1203         cninit();
 1204 
 1205         /*
 1206          * If we made a mapping for EARLY_PRINTF after pmap_bootstrap_prepare(),
 1207          * undo it now that the normal console printf works.
 1208          */
 1209 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
 1210         pmap_kremove(SOCDEV_VA);
 1211 #endif
 1212 
 1213         debugf("initarm: console initialized\n");
 1214         debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
 1215         debugf(" boothowto = 0x%08x\n", boothowto);
 1216         debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
 1217         debugf(" lastaddr1: 0x%08x\n", lastaddr);
 1218         arm_print_kenv();
 1219 
 1220         env = kern_getenv("kernelname");
 1221         if (env != NULL)
 1222                 strlcpy(kernelname, env, sizeof(kernelname));
 1223 
 1224         if (err_devmap != 0)
 1225                 printf("WARNING: could not fully configure devmap, error=%d\n",
 1226                     err_devmap);
 1227 
 1228         platform_late_init();
 1229 
 1230         /*
 1231          * We must now clean the cache again....
 1232          * Cleaning may be done by reading new data to displace any
 1233          * dirty data in the cache. This will have happened in cpu_setttb()
 1234          * but since we are boot strapping the addresses used for the read
 1235          * may have just been remapped and thus the cache could be out
 1236          * of sync. A re-clean after the switch will cure this.
 1237          * After booting there are no gross relocations of the kernel thus
 1238          * this problem will not occur after initarm().
 1239          */
 1240         /* Set stack for exception handlers */
 1241         undefined_init();
 1242         init_proc0(kernelstack);
 1243         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
 1244         enable_interrupts(PSR_A);
 1245         pmap_bootstrap(0);
 1246 
 1247         /* Exclude the kernel (and all the things we allocated which immediately
 1248          * follow the kernel) from the VM allocation pool but not from crash
 1249          * dumps.  virtual_avail is a global variable which tracks the kva we've
 1250          * "allocated" while setting up pmaps.
 1251          *
 1252          * Prepare the list of physical memory available to the vm subsystem.
 1253          */
 1254         arm_physmem_exclude_region(abp->abp_physaddr,
 1255                 pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC);
 1256         arm_physmem_init_kernel_globals();
 1257 
 1258         init_param2(physmem);
 1259         /* Init message buffer. */
 1260         msgbufinit(msgbufp, msgbufsize);
 1261         dbg_monitor_init();
 1262         arm_kdb_init();
 1263         /* Apply possible BP hardening. */
 1264         cpuinfo_init_bp_hardening();
 1265         return ((void *)STACKALIGN(thread0.td_pcb));
 1266 
 1267 }
 1268 
 1269 #endif /* __ARM_ARCH < 6 */
 1270 #endif /* FDT */

Cache object: e52c057de26d91d627ec3ec84e1620f4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.