The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $        */
    2 
    3 /*-
    4  * Copyright (c) 2004 Olivier Houchard
    5  * Copyright (c) 1994-1998 Mark Brinicombe.
    6  * Copyright (c) 1994 Brini.
    7  * All rights reserved.
    8  *
    9  * This code is derived from software written for Brini by Mark Brinicombe
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by Mark Brinicombe
   22  *      for the NetBSD Project.
   23  * 4. The name of the company nor the name of the author may be used to
   24  *    endorse or promote products derived from this software without specific
   25  *    prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
   28  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   29  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   30  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   31  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   32  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   33  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  * Machine dependent functions for kernel setup
   40  *
   41  * Created      : 17/09/94
   42  * Updated      : 18/04/01 updated for new wscons
   43  */
   44 
   45 #include "opt_compat.h"
   46 #include "opt_ddb.h"
   47 #include "opt_kstack_pages.h"
   48 #include "opt_platform.h"
   49 #include "opt_sched.h"
   50 #include "opt_timer.h"
   51 
   52 #include <sys/cdefs.h>
   53 __FBSDID("$FreeBSD$");
   54 
   55 #include <sys/param.h>
   56 #include <sys/buf.h>
   57 #include <sys/bus.h>
   58 #include <sys/cons.h>
   59 #include <sys/cpu.h>
   60 #include <sys/devmap.h>
   61 #include <sys/efi.h>
   62 #include <sys/imgact.h>
   63 #include <sys/kdb.h>
   64 #include <sys/kernel.h>
   65 #include <sys/linker.h>
   66 #include <sys/msgbuf.h>
   67 #include <sys/reboot.h>
   68 #include <sys/rwlock.h>
   69 #include <sys/sched.h>
   70 #include <sys/syscallsubr.h>
   71 #include <sys/sysent.h>
   72 #include <sys/sysproto.h>
   73 #include <sys/vmmeter.h>
   74 
   75 #include <vm/vm_object.h>
   76 #include <vm/vm_page.h>
   77 #include <vm/vm_pager.h>
   78 
   79 #include <machine/debug_monitor.h>
   80 #include <machine/machdep.h>
   81 #include <machine/metadata.h>
   82 #include <machine/pcb.h>
   83 #include <machine/physmem.h>
   84 #include <machine/platform.h>
   85 #include <machine/sysarch.h>
   86 #include <machine/undefined.h>
   87 #include <machine/vfp.h>
   88 #include <machine/vmparam.h>
   89 
   90 #ifdef FDT
   91 #include <dev/fdt/fdt_common.h>
   92 #include <machine/ofw_machdep.h>
   93 #endif
   94 
   95 #ifdef DEBUG
   96 #define debugf(fmt, args...) printf(fmt, ##args)
   97 #else
   98 #define debugf(fmt, args...)
   99 #endif
  100 
  101 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  102     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) || \
  103     defined(COMPAT_FREEBSD9)
  104 #error FreeBSD/arm doesn't provide compatibility with releases prior to 10
  105 #endif
  106 
  107 struct pcpu __pcpu[MAXCPU];
  108 struct pcpu *pcpup = &__pcpu[0];
  109 
  110 static struct trapframe proc0_tf;
  111 uint32_t cpu_reset_address = 0;
  112 int cold = 1;
  113 vm_offset_t vector_page;
  114 
  115 int (*_arm_memcpy)(void *, void *, int, int) = NULL;
  116 int (*_arm_bzero)(void *, int, int) = NULL;
  117 int _min_memcpy_size = 0;
  118 int _min_bzero_size = 0;
  119 
  120 extern int *end;
  121 
  122 #ifdef FDT
  123 vm_paddr_t pmap_pa;
  124 #if __ARM_ARCH >= 6
  125 vm_offset_t systempage;
  126 vm_offset_t irqstack;
  127 vm_offset_t undstack;
  128 vm_offset_t abtstack;
  129 #else
  130 /*
  131  * This is the number of L2 page tables required for covering max
  132  * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
  133  * stacks etc.), uprounded to be divisible by 4.
  134  */
  135 #define KERNEL_PT_MAX   78
  136 static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
  137 struct pv_addr systempage;
  138 static struct pv_addr msgbufpv;
  139 struct pv_addr irqstack;
  140 struct pv_addr undstack;
  141 struct pv_addr abtstack;
  142 static struct pv_addr kernelstack;
  143 #endif /* __ARM_ARCH >= 6 */
  144 #endif /* FDT */
  145 
  146 #ifdef MULTIDELAY
  147 static delay_func *delay_impl;
  148 static void *delay_arg;
  149 #endif
  150 
  151 struct kva_md_info kmi;
  152 
  153 /*
  154  * arm32_vector_init:
  155  *
  156  *      Initialize the vector page, and select whether or not to
  157  *      relocate the vectors.
  158  *
  159  *      NOTE: We expect the vector page to be mapped at its expected
  160  *      destination.
  161  */
  162 
  163 extern unsigned int page0[], page0_data[];
  164 void
  165 arm_vector_init(vm_offset_t va, int which)
  166 {
  167         unsigned int *vectors = (int *) va;
  168         unsigned int *vectors_data = vectors + (page0_data - page0);
  169         int vec;
  170 
  171         /*
  172          * Loop through the vectors we're taking over, and copy the
  173          * vector's insn and data word.
  174          */
  175         for (vec = 0; vec < ARM_NVEC; vec++) {
  176                 if ((which & (1 << vec)) == 0) {
  177                         /* Don't want to take over this vector. */
  178                         continue;
  179                 }
  180                 vectors[vec] = page0[vec];
  181                 vectors_data[vec] = page0_data[vec];
  182         }
  183 
  184         /* Now sync the vectors. */
  185         icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int));
  186 
  187         vector_page = va;
  188 #if __ARM_ARCH < 6
  189         if (va == ARM_VECTORS_HIGH) {
  190                 /*
  191                  * Enable high vectors in the system control reg (SCTLR).
  192                  *
  193                  * Assume the MD caller knows what it's doing here, and really
  194                  * does want the vector page relocated.
  195                  *
  196                  * Note: This has to be done here (and not just in
  197                  * cpu_setup()) because the vector page needs to be
  198                  * accessible *before* cpu_startup() is called.
  199                  * Think ddb(9) ...
  200                  */
  201                 cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
  202         }
  203 #endif
  204 }
  205 
  206 static void
  207 cpu_startup(void *dummy)
  208 {
  209         struct pcb *pcb = thread0.td_pcb;
  210         const unsigned int mbyte = 1024 * 1024;
  211 #if __ARM_ARCH < 6 && !defined(ARM_CACHE_LOCK_ENABLE)
  212         vm_page_t m;
  213 #endif
  214 
  215         identify_arm_cpu();
  216 
  217         vm_ksubmap_init(&kmi);
  218 
  219         /*
  220          * Display the RAM layout.
  221          */
  222         printf("real memory  = %ju (%ju MB)\n",
  223             (uintmax_t)arm32_ptob(realmem),
  224             (uintmax_t)arm32_ptob(realmem) / mbyte);
  225         printf("avail memory = %ju (%ju MB)\n",
  226             (uintmax_t)arm32_ptob(vm_cnt.v_free_count),
  227             (uintmax_t)arm32_ptob(vm_cnt.v_free_count) / mbyte);
  228         if (bootverbose) {
  229                 arm_physmem_print_tables();
  230                 devmap_print_table();
  231         }
  232 
  233         bufinit();
  234         vm_pager_bufferinit();
  235         pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
  236             USPACE_SVC_STACK_TOP;
  237         pmap_set_pcb_pagedir(kernel_pmap, pcb);
  238 #if __ARM_ARCH < 6
  239         vector_page_setprot(VM_PROT_READ);
  240         pmap_postinit();
  241 #ifdef ARM_CACHE_LOCK_ENABLE
  242         pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
  243         arm_lock_cache_line(ARM_TP_ADDRESS);
  244 #else
  245         m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
  246         pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
  247 #endif
  248         *(uint32_t *)ARM_RAS_START = 0;
  249         *(uint32_t *)ARM_RAS_END = 0xffffffff;
  250 #endif
  251 }
  252 
  253 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
  254 
  255 /*
  256  * Flush the D-cache for non-DMA I/O so that the I-cache can
  257  * be made coherent later.
  258  */
  259 void
  260 cpu_flush_dcache(void *ptr, size_t len)
  261 {
  262 
  263         dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len);
  264 }
  265 
  266 /* Get current clock frequency for the given cpu id. */
  267 int
  268 cpu_est_clockrate(int cpu_id, uint64_t *rate)
  269 {
  270 
  271         return (ENXIO);
  272 }
  273 
  274 void
  275 cpu_idle(int busy)
  276 {
  277 
  278         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
  279         spinlock_enter();
  280 #ifndef NO_EVENTTIMERS
  281         if (!busy)
  282                 cpu_idleclock();
  283 #endif
  284         if (!sched_runnable())
  285                 cpu_sleep(0);
  286 #ifndef NO_EVENTTIMERS
  287         if (!busy)
  288                 cpu_activeclock();
  289 #endif
  290         spinlock_exit();
  291         CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
  292 }
  293 
  294 int
  295 cpu_idle_wakeup(int cpu)
  296 {
  297 
  298         return (0);
  299 }
  300 
  301 /*
  302  * Most ARM platforms don't need to do anything special to init their clocks
  303  * (they get intialized during normal device attachment), and by not defining a
  304  * cpu_initclocks() function they get this generic one.  Any platform that needs
  305  * to do something special can just provide their own implementation, which will
  306  * override this one due to the weak linkage.
  307  */
  308 void
  309 arm_generic_initclocks(void)
  310 {
  311 
  312 #ifndef NO_EVENTTIMERS
  313 #ifdef SMP
  314         if (PCPU_GET(cpuid) == 0)
  315                 cpu_initclocks_bsp();
  316         else
  317                 cpu_initclocks_ap();
  318 #else
  319         cpu_initclocks_bsp();
  320 #endif
  321 #endif
  322 }
  323 __weak_reference(arm_generic_initclocks, cpu_initclocks);
  324 
  325 #ifdef MULTIDELAY
  326 void
  327 arm_set_delay(delay_func *impl, void *arg)
  328 {
  329 
  330         KASSERT(impl != NULL, ("No DELAY implementation"));
  331         delay_impl = impl;
  332         delay_arg = arg;
  333 }
  334 
  335 void
  336 DELAY(int usec)
  337 {
  338 
  339         delay_impl(usec, delay_arg);
  340 }
  341 #endif
  342 
  343 void
  344 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
  345 {
  346 }
  347 
  348 void
  349 spinlock_enter(void)
  350 {
  351         struct thread *td;
  352         register_t cspr;
  353 
  354         td = curthread;
  355         if (td->td_md.md_spinlock_count == 0) {
  356                 cspr = disable_interrupts(PSR_I | PSR_F);
  357                 td->td_md.md_spinlock_count = 1;
  358                 td->td_md.md_saved_cspr = cspr;
  359         } else
  360                 td->td_md.md_spinlock_count++;
  361         critical_enter();
  362 }
  363 
  364 void
  365 spinlock_exit(void)
  366 {
  367         struct thread *td;
  368         register_t cspr;
  369 
  370         td = curthread;
  371         critical_exit();
  372         cspr = td->td_md.md_saved_cspr;
  373         td->td_md.md_spinlock_count--;
  374         if (td->td_md.md_spinlock_count == 0)
  375                 restore_interrupts(cspr);
  376 }
  377 
  378 /*
  379  * Clear registers on exec
  380  */
  381 void
  382 exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
  383 {
  384         struct trapframe *tf = td->td_frame;
  385 
  386         memset(tf, 0, sizeof(*tf));
  387         tf->tf_usr_sp = stack;
  388         tf->tf_usr_lr = imgp->entry_addr;
  389         tf->tf_svc_lr = 0x77777777;
  390         tf->tf_pc = imgp->entry_addr;
  391         tf->tf_spsr = PSR_USR32_MODE;
  392 }
  393 
  394 
  395 #ifdef VFP
  396 /*
  397  * Get machine VFP context.
  398  */
  399 void
  400 get_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
  401 {
  402         struct pcb *pcb;
  403 
  404         pcb = td->td_pcb;
  405         if (td == curthread) {
  406                 critical_enter();
  407                 vfp_store(&pcb->pcb_vfpstate, false);
  408                 critical_exit();
  409         } else
  410                 MPASS(TD_IS_SUSPENDED(td));
  411         memcpy(vfp->mcv_reg, pcb->pcb_vfpstate.reg,
  412             sizeof(vfp->mcv_reg));
  413         vfp->mcv_fpscr = pcb->pcb_vfpstate.fpscr;
  414 }
  415 
  416 /*
  417  * Set machine VFP context.
  418  */
  419 void
  420 set_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
  421 {
  422         struct pcb *pcb;
  423 
  424         pcb = td->td_pcb;
  425         if (td == curthread) {
  426                 critical_enter();
  427                 vfp_discard(td);
  428                 critical_exit();
  429         } else
  430                 MPASS(TD_IS_SUSPENDED(td));
  431         memcpy(pcb->pcb_vfpstate.reg, vfp->mcv_reg,
  432             sizeof(pcb->pcb_vfpstate.reg));
  433         pcb->pcb_vfpstate.fpscr = vfp->mcv_fpscr;
  434 }
  435 #endif
  436 
  437 int
  438 arm_get_vfpstate(struct thread *td, void *args)
  439 {
  440         int rv;
  441         struct arm_get_vfpstate_args ua;
  442         mcontext_vfp_t  mcontext_vfp;
  443 
  444         rv = copyin(args, &ua, sizeof(ua));
  445         if (rv != 0)
  446                 return (rv);
  447         if (ua.mc_vfp_size != sizeof(mcontext_vfp_t))
  448                 return (EINVAL);
  449 #ifdef VFP
  450         get_vfpcontext(td, &mcontext_vfp);
  451 #else
  452         bzero(&mcontext_vfp, sizeof(mcontext_vfp));
  453 #endif
  454 
  455         rv = copyout(&mcontext_vfp, ua.mc_vfp,  sizeof(mcontext_vfp));
  456         if (rv != 0)
  457                 return (rv);
  458         return (0);
  459 }
  460 
  461 /*
  462  * Get machine context.
  463  */
  464 int
  465 get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
  466 {
  467         struct trapframe *tf = td->td_frame;
  468         __greg_t *gr = mcp->__gregs;
  469 
  470         if (clear_ret & GET_MC_CLEAR_RET) {
  471                 gr[_REG_R0] = 0;
  472                 gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C;
  473         } else {
  474                 gr[_REG_R0]   = tf->tf_r0;
  475                 gr[_REG_CPSR] = tf->tf_spsr;
  476         }
  477         gr[_REG_R1]   = tf->tf_r1;
  478         gr[_REG_R2]   = tf->tf_r2;
  479         gr[_REG_R3]   = tf->tf_r3;
  480         gr[_REG_R4]   = tf->tf_r4;
  481         gr[_REG_R5]   = tf->tf_r5;
  482         gr[_REG_R6]   = tf->tf_r6;
  483         gr[_REG_R7]   = tf->tf_r7;
  484         gr[_REG_R8]   = tf->tf_r8;
  485         gr[_REG_R9]   = tf->tf_r9;
  486         gr[_REG_R10]  = tf->tf_r10;
  487         gr[_REG_R11]  = tf->tf_r11;
  488         gr[_REG_R12]  = tf->tf_r12;
  489         gr[_REG_SP]   = tf->tf_usr_sp;
  490         gr[_REG_LR]   = tf->tf_usr_lr;
  491         gr[_REG_PC]   = tf->tf_pc;
  492 
  493         mcp->mc_vfp_size = 0;
  494         mcp->mc_vfp_ptr = NULL;
  495         memset(&mcp->mc_spare, 0, sizeof(mcp->mc_spare));
  496 
  497         return (0);
  498 }
  499 
  500 /*
  501  * Set machine context.
  502  *
  503  * However, we don't set any but the user modifiable flags, and we won't
  504  * touch the cs selector.
  505  */
  506 int
  507 set_mcontext(struct thread *td, mcontext_t *mcp)
  508 {
  509         mcontext_vfp_t mc_vfp, *vfp;
  510         struct trapframe *tf = td->td_frame;
  511         const __greg_t *gr = mcp->__gregs;
  512         int spsr;
  513 
  514         /*
  515          * Make sure the processor mode has not been tampered with and
  516          * interrupts have not been disabled.
  517          */
  518         spsr = gr[_REG_CPSR];
  519         if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
  520             (spsr & (PSR_I | PSR_F)) != 0)
  521                 return (EINVAL);
  522 
  523 #ifdef WITNESS
  524         if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_size != sizeof(mc_vfp)) {
  525                 printf("%s: %s: Malformed mc_vfp_size: %d (0x%08X)\n",
  526                     td->td_proc->p_comm, __func__,
  527                     mcp->mc_vfp_size, mcp->mc_vfp_size);
  528         } else if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_ptr == NULL) {
  529                 printf("%s: %s: c_vfp_size != 0 but mc_vfp_ptr == NULL\n",
  530                     td->td_proc->p_comm, __func__);
  531         }
  532 #endif
  533 
  534         if (mcp->mc_vfp_size == sizeof(mc_vfp) && mcp->mc_vfp_ptr != NULL) {
  535                 if (copyin(mcp->mc_vfp_ptr, &mc_vfp, sizeof(mc_vfp)) != 0)
  536                         return (EFAULT);
  537                 vfp = &mc_vfp;
  538         } else {
  539                 vfp = NULL;
  540         }
  541 
  542         tf->tf_r0 = gr[_REG_R0];
  543         tf->tf_r1 = gr[_REG_R1];
  544         tf->tf_r2 = gr[_REG_R2];
  545         tf->tf_r3 = gr[_REG_R3];
  546         tf->tf_r4 = gr[_REG_R4];
  547         tf->tf_r5 = gr[_REG_R5];
  548         tf->tf_r6 = gr[_REG_R6];
  549         tf->tf_r7 = gr[_REG_R7];
  550         tf->tf_r8 = gr[_REG_R8];
  551         tf->tf_r9 = gr[_REG_R9];
  552         tf->tf_r10 = gr[_REG_R10];
  553         tf->tf_r11 = gr[_REG_R11];
  554         tf->tf_r12 = gr[_REG_R12];
  555         tf->tf_usr_sp = gr[_REG_SP];
  556         tf->tf_usr_lr = gr[_REG_LR];
  557         tf->tf_pc = gr[_REG_PC];
  558         tf->tf_spsr = gr[_REG_CPSR];
  559 #ifdef VFP
  560         if (vfp != NULL)
  561                 set_vfpcontext(td, vfp);
  562 #endif
  563         return (0);
  564 }
  565 
  566 void
  567 sendsig(catcher, ksi, mask)
  568         sig_t catcher;
  569         ksiginfo_t *ksi;
  570         sigset_t *mask;
  571 {
  572         struct thread *td;
  573         struct proc *p;
  574         struct trapframe *tf;
  575         struct sigframe *fp, frame;
  576         struct sigacts *psp;
  577         struct sysentvec *sysent;
  578         int onstack;
  579         int sig;
  580         int code;
  581 
  582         td = curthread;
  583         p = td->td_proc;
  584         PROC_LOCK_ASSERT(p, MA_OWNED);
  585         sig = ksi->ksi_signo;
  586         code = ksi->ksi_code;
  587         psp = p->p_sigacts;
  588         mtx_assert(&psp->ps_mtx, MA_OWNED);
  589         tf = td->td_frame;
  590         onstack = sigonstack(tf->tf_usr_sp);
  591 
  592         CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
  593             catcher, sig);
  594 
  595         /* Allocate and validate space for the signal handler context. */
  596         if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
  597             SIGISMEMBER(psp->ps_sigonstack, sig)) {
  598                 fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
  599                     td->td_sigstk.ss_size);
  600 #if defined(COMPAT_43)
  601                 td->td_sigstk.ss_flags |= SS_ONSTACK;
  602 #endif
  603         } else
  604                 fp = (struct sigframe *)td->td_frame->tf_usr_sp;
  605 
  606         /* make room on the stack */
  607         fp--;
  608 
  609         /* make the stack aligned */
  610         fp = (struct sigframe *)STACKALIGN(fp);
  611         /* Populate the siginfo frame. */
  612         bzero(&frame, sizeof(frame));
  613         get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
  614 #ifdef VFP
  615         get_vfpcontext(td, &frame.sf_vfp);
  616         frame.sf_uc.uc_mcontext.mc_vfp_size = sizeof(fp->sf_vfp);
  617         frame.sf_uc.uc_mcontext.mc_vfp_ptr = &fp->sf_vfp;
  618 #else
  619         frame.sf_uc.uc_mcontext.mc_vfp_size = 0;
  620         frame.sf_uc.uc_mcontext.mc_vfp_ptr = NULL;
  621 #endif
  622         frame.sf_si = ksi->ksi_info;
  623         frame.sf_uc.uc_sigmask = *mask;
  624         frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
  625             ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
  626         frame.sf_uc.uc_stack = td->td_sigstk;
  627         mtx_unlock(&psp->ps_mtx);
  628         PROC_UNLOCK(td->td_proc);
  629 
  630         /* Copy the sigframe out to the user's stack. */
  631         if (copyout(&frame, fp, sizeof(*fp)) != 0) {
  632                 /* Process has trashed its stack. Kill it. */
  633                 CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
  634                 PROC_LOCK(p);
  635                 sigexit(td, SIGILL);
  636         }
  637 
  638         /*
  639          * Build context to run handler in.  We invoke the handler
  640          * directly, only returning via the trampoline.  Note the
  641          * trampoline version numbers are coordinated with machine-
  642          * dependent code in libc.
  643          */
  644 
  645         tf->tf_r0 = sig;
  646         tf->tf_r1 = (register_t)&fp->sf_si;
  647         tf->tf_r2 = (register_t)&fp->sf_uc;
  648 
  649         /* the trampoline uses r5 as the uc address */
  650         tf->tf_r5 = (register_t)&fp->sf_uc;
  651         tf->tf_pc = (register_t)catcher;
  652         tf->tf_usr_sp = (register_t)fp;
  653         sysent = p->p_sysent;
  654         if (sysent->sv_sigcode_base != 0)
  655                 tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base;
  656         else
  657                 tf->tf_usr_lr = (register_t)(sysent->sv_psstrings -
  658                     *(sysent->sv_szsigcode));
  659         /* Set the mode to enter in the signal handler */
  660 #if __ARM_ARCH >= 7
  661         if ((register_t)catcher & 1)
  662                 tf->tf_spsr |= PSR_T;
  663         else
  664                 tf->tf_spsr &= ~PSR_T;
  665 #endif
  666 
  667         CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
  668             tf->tf_usr_sp);
  669 
  670         PROC_LOCK(p);
  671         mtx_lock(&psp->ps_mtx);
  672 }
  673 
  674 int
  675 sys_sigreturn(td, uap)
  676         struct thread *td;
  677         struct sigreturn_args /* {
  678                 const struct __ucontext *sigcntxp;
  679         } */ *uap;
  680 {
  681         ucontext_t uc;
  682         int error;
  683 
  684         if (uap == NULL)
  685                 return (EFAULT);
  686         if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
  687                 return (EFAULT);
  688         /* Restore register context. */
  689         error = set_mcontext(td, &uc.uc_mcontext);
  690         if (error != 0)
  691                 return (error);
  692 
  693         /* Restore signal mask. */
  694         kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
  695 
  696         return (EJUSTRETURN);
  697 }
  698 
  699 /*
  700  * Construct a PCB from a trapframe. This is called from kdb_trap() where
  701  * we want to start a backtrace from the function that caused us to enter
  702  * the debugger. We have the context in the trapframe, but base the trace
  703  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
  704  * enough for a backtrace.
  705  */
  706 void
  707 makectx(struct trapframe *tf, struct pcb *pcb)
  708 {
  709         pcb->pcb_regs.sf_r4 = tf->tf_r4;
  710         pcb->pcb_regs.sf_r5 = tf->tf_r5;
  711         pcb->pcb_regs.sf_r6 = tf->tf_r6;
  712         pcb->pcb_regs.sf_r7 = tf->tf_r7;
  713         pcb->pcb_regs.sf_r8 = tf->tf_r8;
  714         pcb->pcb_regs.sf_r9 = tf->tf_r9;
  715         pcb->pcb_regs.sf_r10 = tf->tf_r10;
  716         pcb->pcb_regs.sf_r11 = tf->tf_r11;
  717         pcb->pcb_regs.sf_r12 = tf->tf_r12;
  718         pcb->pcb_regs.sf_pc = tf->tf_pc;
  719         pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
  720         pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
  721 }
  722 
  723 void
  724 pcpu0_init(void)
  725 {
  726 #if __ARM_ARCH >= 6
  727         set_curthread(&thread0);
  728 #endif
  729         pcpu_init(pcpup, 0, sizeof(struct pcpu));
  730         PCPU_SET(curthread, &thread0);
  731 }
  732 
  733 /*
  734  * Initialize proc0
  735  */
  736 void
  737 init_proc0(vm_offset_t kstack)
  738 {
  739         proc_linkup0(&proc0, &thread0);
  740         thread0.td_kstack = kstack;
  741         thread0.td_pcb = (struct pcb *)
  742                 (thread0.td_kstack + kstack_pages * PAGE_SIZE) - 1;
  743         thread0.td_pcb->pcb_flags = 0;
  744         thread0.td_pcb->pcb_vfpcpu = -1;
  745         thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN;
  746         thread0.td_frame = &proc0_tf;
  747         pcpup->pc_curpcb = thread0.td_pcb;
  748 }
  749 
  750 #if __ARM_ARCH >= 6
  751 void
  752 set_stackptrs(int cpu)
  753 {
  754 
  755         set_stackptr(PSR_IRQ32_MODE,
  756             irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  757         set_stackptr(PSR_ABT32_MODE,
  758             abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  759         set_stackptr(PSR_UND32_MODE,
  760             undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  761 }
  762 #else
  763 void
  764 set_stackptrs(int cpu)
  765 {
  766 
  767         set_stackptr(PSR_IRQ32_MODE,
  768             irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  769         set_stackptr(PSR_ABT32_MODE,
  770             abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  771         set_stackptr(PSR_UND32_MODE,
  772             undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
  773 }
  774 #endif
  775 
  776 static void
  777 arm_kdb_init(void)
  778 {
  779 
  780         kdb_init();
  781 #ifdef KDB
  782         if (boothowto & RB_KDB)
  783                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
  784 #endif
  785 }
  786 
  787 #ifdef FDT
  788 #if __ARM_ARCH < 6
  789 void *
  790 initarm(struct arm_boot_params *abp)
  791 {
  792         struct mem_region mem_regions[FDT_MEM_REGIONS];
  793         struct pv_addr kernel_l1pt;
  794         struct pv_addr dpcpu;
  795         vm_offset_t dtbp, freemempos, l2_start, lastaddr;
  796         uint64_t memsize;
  797         uint32_t l2size;
  798         char *env;
  799         void *kmdp;
  800         u_int l1pagetable;
  801         int i, j, err_devmap, mem_regions_sz;
  802 
  803         lastaddr = parse_boot_param(abp);
  804         arm_physmem_kernaddr = abp->abp_physaddr;
  805 
  806         memsize = 0;
  807 
  808         cpuinfo_init();
  809         set_cpufuncs();
  810 
  811         /*
  812          * Find the dtb passed in by the boot loader.
  813          */
  814         kmdp = preload_search_by_type("elf kernel");
  815         if (kmdp != NULL)
  816                 dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
  817         else
  818                 dtbp = (vm_offset_t)NULL;
  819 
  820 #if defined(FDT_DTB_STATIC)
  821         /*
  822          * In case the device tree blob was not retrieved (from metadata) try
  823          * to use the statically embedded one.
  824          */
  825         if (dtbp == (vm_offset_t)NULL)
  826                 dtbp = (vm_offset_t)&fdt_static_dtb;
  827 #endif
  828 
  829         if (OF_install(OFW_FDT, 0) == FALSE)
  830                 panic("Cannot install FDT");
  831 
  832         if (OF_init((void *)dtbp) != 0)
  833                 panic("OF_init failed with the found device tree");
  834 
  835         /* Grab physical memory regions information from device tree. */
  836         if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
  837                 panic("Cannot get physical memory regions");
  838         arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
  839 
  840         /* Grab reserved memory regions information from device tree. */
  841         if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
  842                 arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
  843                     EXFLAG_NODUMP | EXFLAG_NOALLOC);
  844 
  845         /* Platform-specific initialisation */
  846         platform_probe_and_attach();
  847 
  848         pcpu0_init();
  849 
  850         /* Do basic tuning, hz etc */
  851         init_param1();
  852 
  853         /* Calculate number of L2 tables needed for mapping vm_page_array */
  854         l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
  855         l2size = (l2size >> L1_S_SHIFT) + 1;
  856 
  857         /*
  858          * Add one table for end of kernel map, one for stacks, msgbuf and
  859          * L1 and L2 tables map and one for vectors map.
  860          */
  861         l2size += 3;
  862 
  863         /* Make it divisible by 4 */
  864         l2size = (l2size + 3) & ~3;
  865 
  866         freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
  867 
  868         /* Define a macro to simplify memory allocation */
  869 #define valloc_pages(var, np)                                           \
  870         alloc_pages((var).pv_va, (np));                                 \
  871         (var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
  872 
  873 #define alloc_pages(var, np)                                            \
  874         (var) = freemempos;                                             \
  875         freemempos += (np * PAGE_SIZE);                                 \
  876         memset((char *)(var), 0, ((np) * PAGE_SIZE));
  877 
  878         while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
  879                 freemempos += PAGE_SIZE;
  880         valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
  881 
  882         for (i = 0, j = 0; i < l2size; ++i) {
  883                 if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
  884                         valloc_pages(kernel_pt_table[i],
  885                             L2_TABLE_SIZE / PAGE_SIZE);
  886                         j = i;
  887                 } else {
  888                         kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
  889                             L2_TABLE_SIZE_REAL * (i - j);
  890                         kernel_pt_table[i].pv_pa =
  891                             kernel_pt_table[i].pv_va - KERNVIRTADDR +
  892                             abp->abp_physaddr;
  893 
  894                 }
  895         }
  896         /*
  897          * Allocate a page for the system page mapped to 0x00000000
  898          * or 0xffff0000. This page will just contain the system vectors
  899          * and can be shared by all processes.
  900          */
  901         valloc_pages(systempage, 1);
  902 
  903         /* Allocate dynamic per-cpu area. */
  904         valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
  905         dpcpu_init((void *)dpcpu.pv_va, 0);
  906 
  907         /* Allocate stacks for all modes */
  908         valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
  909         valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
  910         valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
  911         valloc_pages(kernelstack, kstack_pages);
  912         valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
  913 
  914         /*
  915          * Now we start construction of the L1 page table
  916          * We start by mapping the L2 page tables into the L1.
  917          * This means that we can replace L1 mappings later on if necessary
  918          */
  919         l1pagetable = kernel_l1pt.pv_va;
  920 
  921         /*
  922          * Try to map as much as possible of kernel text and data using
  923          * 1MB section mapping and for the rest of initial kernel address
  924          * space use L2 coarse tables.
  925          *
  926          * Link L2 tables for mapping remainder of kernel (modulo 1MB)
  927          * and kernel structures
  928          */
  929         l2_start = lastaddr & ~(L1_S_OFFSET);
  930         for (i = 0 ; i < l2size - 1; i++)
  931                 pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
  932                     &kernel_pt_table[i]);
  933 
  934         pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
  935 
  936         /* Map kernel code and data */
  937         pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
  938            (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
  939             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  940 
  941         /* Map L1 directory and allocated L2 page tables */
  942         pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
  943             L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  944 
  945         pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
  946             kernel_pt_table[0].pv_pa,
  947             L2_TABLE_SIZE_REAL * l2size,
  948             VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  949 
  950         /* Map allocated DPCPU, stacks and msgbuf */
  951         pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
  952             freemempos - dpcpu.pv_va,
  953             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  954 
  955         /* Link and map the vector page */
  956         pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
  957             &kernel_pt_table[l2size - 1]);
  958         pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
  959             VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
  960 
  961         /* Establish static device mappings. */
  962         err_devmap = platform_devmap_init();
  963         devmap_bootstrap(l1pagetable, NULL);
  964         vm_max_kernel_address = platform_lastaddr();
  965 
  966         cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
  967         pmap_pa = kernel_l1pt.pv_pa;
  968         cpu_setttb(kernel_l1pt.pv_pa);
  969         cpu_tlb_flushID();
  970         cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
  971 
  972         /*
  973          * Now that proper page tables are installed, call cpu_setup() to enable
  974          * instruction and data caches and other chip-specific features.
  975          */
  976         cpu_setup();
  977 
  978         /*
  979          * Only after the SOC registers block is mapped we can perform device
  980          * tree fixups, as they may attempt to read parameters from hardware.
  981          */
  982         OF_interpret("perform-fixup", 0);
  983 
  984         platform_gpio_init();
  985 
  986         cninit();
  987 
  988         debugf("initarm: console initialized\n");
  989         debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
  990         debugf(" boothowto = 0x%08x\n", boothowto);
  991         debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
  992         arm_print_kenv();
  993 
  994         env = kern_getenv("kernelname");
  995         if (env != NULL) {
  996                 strlcpy(kernelname, env, sizeof(kernelname));
  997                 freeenv(env);
  998         }
  999 
 1000         if (err_devmap != 0)
 1001                 printf("WARNING: could not fully configure devmap, error=%d\n",
 1002                     err_devmap);
 1003 
 1004         platform_late_init();
 1005 
 1006         /*
 1007          * Pages were allocated during the secondary bootstrap for the
 1008          * stacks for different CPU modes.
 1009          * We must now set the r13 registers in the different CPU modes to
 1010          * point to these stacks.
 1011          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
 1012          * of the stack memory.
 1013          */
 1014         cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
 1015 
 1016         set_stackptrs(0);
 1017 
 1018         /*
 1019          * We must now clean the cache again....
 1020          * Cleaning may be done by reading new data to displace any
 1021          * dirty data in the cache. This will have happened in cpu_setttb()
 1022          * but since we are boot strapping the addresses used for the read
 1023          * may have just been remapped and thus the cache could be out
 1024          * of sync. A re-clean after the switch will cure this.
 1025          * After booting there are no gross relocations of the kernel thus
 1026          * this problem will not occur after initarm().
 1027          */
 1028         cpu_idcache_wbinv_all();
 1029 
 1030         undefined_init();
 1031 
 1032         init_proc0(kernelstack.pv_va);
 1033 
 1034         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
 1035         pmap_bootstrap(freemempos, &kernel_l1pt);
 1036         msgbufp = (void *)msgbufpv.pv_va;
 1037         msgbufinit(msgbufp, msgbufsize);
 1038         mutex_init();
 1039 
 1040         /*
 1041          * Exclude the kernel (and all the things we allocated which immediately
 1042          * follow the kernel) from the VM allocation pool but not from crash
 1043          * dumps.  virtual_avail is a global variable which tracks the kva we've
 1044          * "allocated" while setting up pmaps.
 1045          *
 1046          * Prepare the list of physical memory available to the vm subsystem.
 1047          */
 1048         arm_physmem_exclude_region(abp->abp_physaddr,
 1049             (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
 1050         arm_physmem_init_kernel_globals();
 1051 
 1052         init_param2(physmem);
 1053         dbg_monitor_init();
 1054         arm_kdb_init();
 1055 
 1056         return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
 1057             sizeof(struct pcb)));
 1058 }
 1059 #else /* __ARM_ARCH < 6 */
 1060 void *
 1061 initarm(struct arm_boot_params *abp)
 1062 {
 1063         struct mem_region mem_regions[FDT_MEM_REGIONS];
 1064         vm_paddr_t lastaddr;
 1065         vm_offset_t dtbp, kernelstack, dpcpu;
 1066         char *env;
 1067         void *kmdp;
 1068         int err_devmap, mem_regions_sz;
 1069 #ifdef EFI
 1070         struct efi_map_header *efihdr;
 1071 #endif
 1072 
 1073         /* get last allocated physical address */
 1074         arm_physmem_kernaddr = abp->abp_physaddr;
 1075         lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr;
 1076 
 1077         set_cpufuncs();
 1078         cpuinfo_init();
 1079 
 1080         /*
 1081          * Find the dtb passed in by the boot loader.
 1082          */
 1083         kmdp = preload_search_by_type("elf kernel");
 1084         dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
 1085 #if defined(FDT_DTB_STATIC)
 1086         /*
 1087          * In case the device tree blob was not retrieved (from metadata) try
 1088          * to use the statically embedded one.
 1089          */
 1090         if (dtbp == (vm_offset_t)NULL)
 1091                 dtbp = (vm_offset_t)&fdt_static_dtb;
 1092 #endif
 1093 
 1094         if (OF_install(OFW_FDT, 0) == FALSE)
 1095                 panic("Cannot install FDT");
 1096 
 1097         if (OF_init((void *)dtbp) != 0)
 1098                 panic("OF_init failed with the found device tree");
 1099 
 1100 #if defined(LINUX_BOOT_ABI)
 1101         arm_parse_fdt_bootargs();
 1102 #endif
 1103 
 1104 #ifdef EFI
 1105         efihdr = (struct efi_map_header *)preload_search_info(kmdp,
 1106             MODINFO_METADATA | MODINFOMD_EFI_MAP);
 1107         if (efihdr != NULL) {
 1108                 arm_add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz);
 1109         } else
 1110 #endif
 1111         {
 1112                 /* Grab physical memory regions information from device tree. */
 1113                 if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0)
 1114                         panic("Cannot get physical memory regions");
 1115         }
 1116         arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
 1117 
 1118         /* Grab reserved memory regions information from device tree. */
 1119         if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
 1120                 arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
 1121                     EXFLAG_NODUMP | EXFLAG_NOALLOC);
 1122 
 1123         /*
 1124          * Set TEX remapping registers.
 1125          * Setup kernel page tables and switch to kernel L1 page table.
 1126          */
 1127         pmap_set_tex();
 1128         pmap_bootstrap_prepare(lastaddr);
 1129 
 1130         /*
 1131          * If EARLY_PRINTF support is enabled, we need to re-establish the
 1132          * mapping after pmap_bootstrap_prepare() switches to new page tables.
 1133          * Note that we can only do the remapping if the VA is outside the
 1134          * kernel, now that we have real virtual (not VA=PA) mappings in effect.
 1135          * Early printf does not work between the time pmap_set_tex() does
 1136          * cp15_prrr_set() and this code remaps the VA.
 1137          */
 1138 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
 1139         pmap_preboot_map_attr(SOCDEV_PA, SOCDEV_VA, 1024 * 1024, 
 1140             VM_PROT_READ | VM_PROT_WRITE, VM_MEMATTR_DEVICE);
 1141 #endif
 1142 
 1143         /*
 1144          * Now that proper page tables are installed, call cpu_setup() to enable
 1145          * instruction and data caches and other chip-specific features.
 1146          */
 1147         cpu_setup();
 1148 
 1149         /* Platform-specific initialisation */
 1150         platform_probe_and_attach();
 1151         pcpu0_init();
 1152 
 1153         /* Do basic tuning, hz etc */
 1154         init_param1();
 1155 
 1156         /*
 1157          * Allocate a page for the system page mapped to 0xffff0000
 1158          * This page will just contain the system vectors and can be
 1159          * shared by all processes.
 1160          */
 1161         systempage = pmap_preboot_get_pages(1);
 1162 
 1163         /* Map the vector page. */
 1164         pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH,  1);
 1165         if (virtual_end >= ARM_VECTORS_HIGH)
 1166                 virtual_end = ARM_VECTORS_HIGH - 1;
 1167 
 1168         /* Allocate dynamic per-cpu area. */
 1169         dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE);
 1170         dpcpu_init((void *)dpcpu, 0);
 1171 
 1172         /* Allocate stacks for all modes */
 1173         irqstack    = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU);
 1174         abtstack    = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU);
 1175         undstack    = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU );
 1176         kernelstack = pmap_preboot_get_vpages(kstack_pages);
 1177 
 1178         /* Allocate message buffer. */
 1179         msgbufp = (void *)pmap_preboot_get_vpages(
 1180             round_page(msgbufsize) / PAGE_SIZE);
 1181 
 1182         /*
 1183          * Pages were allocated during the secondary bootstrap for the
 1184          * stacks for different CPU modes.
 1185          * We must now set the r13 registers in the different CPU modes to
 1186          * point to these stacks.
 1187          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
 1188          * of the stack memory.
 1189          */
 1190         set_stackptrs(0);
 1191         mutex_init();
 1192 
 1193         /* Establish static device mappings. */
 1194         err_devmap = platform_devmap_init();
 1195         devmap_bootstrap(0, NULL);
 1196         vm_max_kernel_address = platform_lastaddr();
 1197 
 1198         /*
 1199          * Only after the SOC registers block is mapped we can perform device
 1200          * tree fixups, as they may attempt to read parameters from hardware.
 1201          */
 1202         OF_interpret("perform-fixup", 0);
 1203         platform_gpio_init();
 1204         cninit();
 1205 
 1206         /*
 1207          * If we made a mapping for EARLY_PRINTF after pmap_bootstrap_prepare(),
 1208          * undo it now that the normal console printf works.
 1209          */
 1210 #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE
 1211         pmap_kremove(SOCDEV_VA);
 1212 #endif
 1213 
 1214         debugf("initarm: console initialized\n");
 1215         debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
 1216         debugf(" boothowto = 0x%08x\n", boothowto);
 1217         debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
 1218         debugf(" lastaddr1: 0x%08x\n", lastaddr);
 1219         arm_print_kenv();
 1220 
 1221         env = kern_getenv("kernelname");
 1222         if (env != NULL)
 1223                 strlcpy(kernelname, env, sizeof(kernelname));
 1224 
 1225         if (err_devmap != 0)
 1226                 printf("WARNING: could not fully configure devmap, error=%d\n",
 1227                     err_devmap);
 1228 
 1229         platform_late_init();
 1230 
 1231         /*
 1232          * We must now clean the cache again....
 1233          * Cleaning may be done by reading new data to displace any
 1234          * dirty data in the cache. This will have happened in cpu_setttb()
 1235          * but since we are boot strapping the addresses used for the read
 1236          * may have just been remapped and thus the cache could be out
 1237          * of sync. A re-clean after the switch will cure this.
 1238          * After booting there are no gross relocations of the kernel thus
 1239          * this problem will not occur after initarm().
 1240          */
 1241         /* Set stack for exception handlers */
 1242         undefined_init();
 1243         init_proc0(kernelstack);
 1244         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
 1245         enable_interrupts(PSR_A);
 1246         pmap_bootstrap(0);
 1247 
 1248         /* Exclude the kernel (and all the things we allocated which immediately
 1249          * follow the kernel) from the VM allocation pool but not from crash
 1250          * dumps.  virtual_avail is a global variable which tracks the kva we've
 1251          * "allocated" while setting up pmaps.
 1252          *
 1253          * Prepare the list of physical memory available to the vm subsystem.
 1254          */
 1255         arm_physmem_exclude_region(abp->abp_physaddr,
 1256                 pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC);
 1257         arm_physmem_init_kernel_globals();
 1258 
 1259         init_param2(physmem);
 1260         /* Init message buffer. */
 1261         msgbufinit(msgbufp, msgbufsize);
 1262         dbg_monitor_init();
 1263         arm_kdb_init();
 1264         /* Apply possible BP hardening. */
 1265         cpuinfo_init_bp_hardening();
 1266         return ((void *)STACKALIGN(thread0.td_pcb));
 1267 
 1268 }
 1269 
 1270 #endif /* __ARM_ARCH < 6 */
 1271 #endif /* FDT */

Cache object: 0442eb6b28a72025a9ad8f7201aa77a2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.