The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/mpcore_timer.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2011 The FreeBSD Foundation
    3  * All rights reserved.
    4  *
    5  * Developed by Ben Gray <ben.r.gray@gmail.com>
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. The name of the company nor the name of the author may be used to
   16  *    endorse or promote products derived from this software without specific
   17  *    prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 /**
   33  * The ARM Cortex-A9 core can support a global timer plus a private and
   34  * watchdog timer per core.  This driver reserves memory and interrupt
   35  * resources for accessing both timer register sets, these resources are
   36  * stored globally and used to setup the timecount and eventtimer.
   37  *
   38  * The timecount timer uses the global 64-bit counter, whereas the
   39  * per-CPU eventtimer uses the private 32-bit counters.
   40  *
   41  *
   42  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD: releng/10.2/sys/arm/arm/mpcore_timer.c 273673 2014-10-26 03:55:09Z ian $");
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/bus.h>
   51 #include <sys/kernel.h>
   52 #include <sys/module.h>
   53 #include <sys/malloc.h>
   54 #include <sys/rman.h>
   55 #include <sys/timeet.h>
   56 #include <sys/timetc.h>
   57 #include <sys/watchdog.h>
   58 #include <machine/bus.h>
   59 #include <machine/cpu.h>
   60 #include <machine/intr.h>
   61 
   62 #include <dev/fdt/fdt_common.h>
   63 #include <dev/ofw/openfirm.h>
   64 #include <dev/ofw/ofw_bus.h>
   65 #include <dev/ofw/ofw_bus_subr.h>
   66 
   67 #include <machine/bus.h>
   68 #include <machine/fdt.h>
   69 
   70 #include <arm/arm/mpcore_timervar.h>
   71 
   72 /* Private (per-CPU) timer register map */
   73 #define PRV_TIMER_LOAD                 0x0000
   74 #define PRV_TIMER_COUNT                0x0004
   75 #define PRV_TIMER_CTRL                 0x0008
   76 #define PRV_TIMER_INTR                 0x000C
   77 
   78 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
   79 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
   80 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
   81 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
   82 
   83 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
   84 
   85 /* Global timer register map */
   86 #define GBL_TIMER_COUNT_LOW            0x0000
   87 #define GBL_TIMER_COUNT_HIGH           0x0004
   88 #define GBL_TIMER_CTRL                 0x0008
   89 #define GBL_TIMER_INTR                 0x000C
   90 
   91 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
   92 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
   93 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
   94 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
   95 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
   96 
   97 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
   98 
   99 struct arm_tmr_softc {
  100         device_t                dev;
  101         int                     irqrid;
  102         int                     memrid;
  103         struct resource *       gbl_mem;
  104         struct resource *       prv_mem;
  105         struct resource *       prv_irq;
  106         uint64_t                clkfreq;
  107         struct eventtimer       et;
  108 };
  109 
  110 static struct eventtimer *arm_tmr_et;
  111 static struct timecounter *arm_tmr_tc;
  112 static uint64_t arm_tmr_freq;
  113 static boolean_t arm_tmr_freq_varies;
  114 
  115 #define tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
  116 #define tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
  117 #define tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
  118 #define tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
  119 
  120 static timecounter_get_t arm_tmr_get_timecount;
  121 
  122 static struct timecounter arm_tmr_timecount = {
  123         .tc_name           = "MPCore",
  124         .tc_get_timecount  = arm_tmr_get_timecount,
  125         .tc_poll_pps       = NULL,
  126         .tc_counter_mask   = ~0u,
  127         .tc_frequency      = 0,
  128         .tc_quality        = 800,
  129 };
  130 
  131 #define TMR_GBL         0x01
  132 #define TMR_PRV         0x02
  133 #define TMR_BOTH        (TMR_GBL | TMR_PRV)
  134 #define TMR_NONE        0
  135 
  136 static struct ofw_compat_data compat_data[] = {
  137         {"arm,mpcore-timers",           TMR_BOTH}, /* Non-standard, FreeBSD. */
  138         {"arm,cortex-a9-global-timer",  TMR_GBL},
  139         {"arm,cortex-a5-global-timer",  TMR_GBL},
  140         {"arm,cortex-a9-twd-timer",     TMR_PRV},
  141         {"arm,cortex-a5-twd-timer",     TMR_PRV},
  142         {"arm,arm11mp-twd-timer",       TMR_PRV},
  143         {NULL,                          TMR_NONE}
  144 };
  145 
  146 /**
  147  *      arm_tmr_get_timecount - reads the timecount (global) timer
  148  *      @tc: pointer to arm_tmr_timecount struct
  149  *
  150  *      We only read the lower 32-bits, the timecount stuff only uses 32-bits
  151  *      so (for now?) ignore the upper 32-bits.
  152  *
  153  *      RETURNS
  154  *      The lower 32-bits of the counter.
  155  */
  156 static unsigned
  157 arm_tmr_get_timecount(struct timecounter *tc)
  158 {
  159         struct arm_tmr_softc *sc;
  160 
  161         sc = tc->tc_priv;
  162         return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
  163 }
  164 
  165 /**
  166  *      arm_tmr_start - starts the eventtimer (private) timer
  167  *      @et: pointer to eventtimer struct
  168  *      @first: the number of seconds and fractional sections to trigger in
  169  *      @period: the period (in seconds and fractional sections) to set
  170  *
  171  *      If the eventtimer is required to be in oneshot mode, period will be
  172  *      NULL and first will point to the time to trigger.  If in periodic mode
  173  *      period will contain the time period and first may optionally contain
  174  *      the time for the first period.
  175  *
  176  *      RETURNS
  177  *      Always returns 0
  178  */
  179 static int
  180 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
  181 {
  182         struct arm_tmr_softc *sc;
  183         uint32_t load, count;
  184         uint32_t ctrl;
  185 
  186         sc = et->et_priv;
  187         tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
  188         tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
  189 
  190         ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
  191 
  192         if (period != 0) {
  193                 load = ((uint32_t)et->et_frequency * period) >> 32;
  194                 ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
  195         } else
  196                 load = 0;
  197 
  198         if (first != 0)
  199                 count = (uint32_t)((et->et_frequency * first) >> 32);
  200         else
  201                 count = load;
  202 
  203         tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
  204         tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
  205         tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
  206 
  207         return (0);
  208 }
  209 
  210 /**
  211  *      arm_tmr_stop - stops the eventtimer (private) timer
  212  *      @et: pointer to eventtimer struct
  213  *
  214  *      Simply stops the private timer by clearing all bits in the ctrl register.
  215  *
  216  *      RETURNS
  217  *      Always returns 0
  218  */
  219 static int
  220 arm_tmr_stop(struct eventtimer *et)
  221 {
  222         struct arm_tmr_softc *sc;
  223 
  224         sc = et->et_priv;
  225         tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
  226         tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
  227         return (0);
  228 }
  229 
  230 /**
  231  *      arm_tmr_intr - ISR for the eventtimer (private) timer
  232  *      @arg: pointer to arm_tmr_softc struct
  233  *
  234  *      Clears the event register and then calls the eventtimer callback.
  235  *
  236  *      RETURNS
  237  *      Always returns FILTER_HANDLED
  238  */
  239 static int
  240 arm_tmr_intr(void *arg)
  241 {
  242         struct arm_tmr_softc *sc;
  243 
  244         sc = arg;
  245         tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
  246         if (sc->et.et_active)
  247                 sc->et.et_event_cb(&sc->et, sc->et.et_arg);
  248         return (FILTER_HANDLED);
  249 }
  250 
  251 
  252 
  253 
  254 /**
  255  *      arm_tmr_probe - timer probe routine
  256  *      @dev: new device
  257  *
  258  *      The probe function returns success when probed with the fdt compatible
  259  *      string set to "arm,mpcore-timers".
  260  *
  261  *      RETURNS
  262  *      BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
  263  */
  264 static int
  265 arm_tmr_probe(device_t dev)
  266 {
  267 
  268         if (!ofw_bus_status_okay(dev))
  269                 return (ENXIO);
  270 
  271         if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
  272                 return (ENXIO);
  273 
  274         device_set_desc(dev, "ARM MPCore Timers");
  275         return (BUS_PROBE_DEFAULT);
  276 }
  277 
  278 static int
  279 attach_tc(struct arm_tmr_softc *sc)
  280 {
  281         int rid;
  282 
  283         if (arm_tmr_tc != NULL)
  284                 return (EBUSY);
  285 
  286         rid = sc->memrid;
  287         sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
  288             RF_ACTIVE);
  289         if (sc->gbl_mem == NULL) {
  290                 device_printf(sc->dev, "could not allocate gbl mem resources\n");
  291                 return (ENXIO);
  292         }
  293         tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
  294 
  295         arm_tmr_timecount.tc_frequency = sc->clkfreq;
  296         arm_tmr_timecount.tc_priv = sc;
  297         tc_init(&arm_tmr_timecount);
  298         arm_tmr_tc = &arm_tmr_timecount;
  299 
  300         tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
  301 
  302         return (0);
  303 }
  304 
  305 static int
  306 attach_et(struct arm_tmr_softc *sc)
  307 {
  308         void *ihl;
  309         int irid, mrid;
  310 
  311         if (arm_tmr_et != NULL)
  312                 return (EBUSY);
  313 
  314         mrid = sc->memrid;
  315         sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
  316             RF_ACTIVE);
  317         if (sc->prv_mem == NULL) {
  318                 device_printf(sc->dev, "could not allocate prv mem resources\n");
  319                 return (ENXIO);
  320         }
  321         tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
  322 
  323         irid = sc->irqrid;
  324         sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
  325         if (sc->prv_irq == NULL) {
  326                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
  327                 device_printf(sc->dev, "could not allocate prv irq resources\n");
  328                 return (ENXIO);
  329         }
  330 
  331         if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
  332                         NULL, sc, &ihl) != 0) {
  333                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
  334                 bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
  335                 device_printf(sc->dev, "unable to setup the et irq handler.\n");
  336                 return (ENXIO);
  337         }
  338 
  339         /*
  340          * Setup and register the eventtimer.  Most event timers set their min
  341          * and max period values to some value calculated from the clock
  342          * frequency.  We might not know yet what our runtime clock frequency
  343          * will be, so we just use some safe values.  A max of 2 seconds ensures
  344          * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
  345          * we won't overflow our 32-bit timer count register.  A min of 20
  346          * nanoseconds is pretty much completely arbitrary.
  347          */
  348         sc->et.et_name = "MPCore";
  349         sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
  350         sc->et.et_quality = 1000;
  351         sc->et.et_frequency = sc->clkfreq;
  352         sc->et.et_min_period = 20 * SBT_1NS;
  353         sc->et.et_max_period =  2 * SBT_1S;
  354         sc->et.et_start = arm_tmr_start;
  355         sc->et.et_stop = arm_tmr_stop;
  356         sc->et.et_priv = sc;
  357         et_register(&sc->et);
  358         arm_tmr_et = &sc->et;
  359 
  360         return (0);
  361 }
  362 
  363 /**
  364  *      arm_tmr_attach - attaches the timer to the simplebus
  365  *      @dev: new device
  366  *
  367  *      Reserves memory and interrupt resources, stores the softc structure
  368  *      globally and registers both the timecount and eventtimer objects.
  369  *
  370  *      RETURNS
  371  *      Zero on sucess or ENXIO if an error occuried.
  372  */
  373 static int
  374 arm_tmr_attach(device_t dev)
  375 {
  376         struct arm_tmr_softc *sc;
  377         phandle_t node;
  378         pcell_t clock;
  379         int et_err, tc_err, tmrtype;
  380 
  381         sc = device_get_softc(dev);
  382         sc->dev = dev;
  383 
  384         if (arm_tmr_freq_varies) {
  385                 sc->clkfreq = arm_tmr_freq;
  386         } else {
  387                 if (arm_tmr_freq != 0) {
  388                         sc->clkfreq = arm_tmr_freq;
  389                 } else {
  390                         /* Get the base clock frequency */
  391                         node = ofw_bus_get_node(dev);
  392                         if ((OF_getencprop(node, "clock-frequency", &clock,
  393                             sizeof(clock))) <= 0) {
  394                                 device_printf(dev, "missing clock-frequency "
  395                                     "attribute in FDT\n");
  396                                 return (ENXIO);
  397                         }
  398                         sc->clkfreq = clock;
  399                 }
  400         }
  401 
  402         tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
  403         tc_err = ENXIO;
  404         et_err = ENXIO;
  405 
  406         /*
  407          * If we're handling the global timer and it is fixed-frequency, set it
  408          * up to use as a timecounter.  If it's variable frequency it won't work
  409          * as a timecounter.  We also can't use it for DELAY(), so hopefully the
  410          * platform provides its own implementation. If it doesn't, ours will
  411          * get used, but since the frequency isn't set, it will only use the
  412          * bogus loop counter.
  413          */
  414         if (tmrtype & TMR_GBL) {
  415                 if (!arm_tmr_freq_varies)
  416                         tc_err = attach_tc(sc);
  417                 else if (bootverbose)
  418                         device_printf(sc->dev, 
  419                             "not using variable-frequency device as timecounter");
  420                 sc->memrid++;
  421                 sc->irqrid++;
  422         }
  423 
  424         /* If we are handling the private timer, set it up as an eventtimer. */
  425         if (tmrtype & TMR_PRV) {
  426                 et_err = attach_et(sc);
  427         }
  428 
  429         /*
  430          * If we didn't successfully set up a timecounter or eventtimer then we
  431          * didn't actually attach at all, return error.
  432          */
  433         if (tc_err != 0 && et_err != 0) {
  434                 return (ENXIO);
  435         }
  436         return (0);
  437 }
  438 
  439 static device_method_t arm_tmr_methods[] = {
  440         DEVMETHOD(device_probe,         arm_tmr_probe),
  441         DEVMETHOD(device_attach,        arm_tmr_attach),
  442         { 0, 0 }
  443 };
  444 
  445 static driver_t arm_tmr_driver = {
  446         "mp_tmr",
  447         arm_tmr_methods,
  448         sizeof(struct arm_tmr_softc),
  449 };
  450 
  451 static devclass_t arm_tmr_devclass;
  452 
  453 EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
  454     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
  455 EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
  456     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
  457 
  458 /*
  459  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
  460  * frequency.  When the CPU frequency changes due to power-saving or thermal
  461  * managment, the platform-specific code that causes the frequency change calls
  462  * this routine to inform the clock driver, and we in turn inform the event
  463  * timer system, which actually updates the value in et->frequency for us and
  464  * reschedules the current event(s) in a way that's atomic with respect to
  465  * start/stop/intr code that may be running on various CPUs at the time of the
  466  * call.
  467  *
  468  * This routine can also be called by a platform's early init code.  If the
  469  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
  470  * to register as an eventtimer, but not a timecounter.  If the value passed in
  471  * is any other non-zero value it is used as the fixed frequency for the timer.
  472  */
  473 void
  474 arm_tmr_change_frequency(uint64_t newfreq)
  475 {
  476 
  477         if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
  478                 arm_tmr_freq_varies = true;
  479                 return;
  480         }
  481 
  482         arm_tmr_freq = newfreq;
  483         if (arm_tmr_et != NULL)
  484                 et_change_frequency(arm_tmr_et, newfreq);
  485 }
  486 
  487 /**
  488  *      DELAY - Delay for at least usec microseconds.
  489  *      @usec: number of microseconds to delay by
  490  *
  491  *      This function is called all over the kernel and is suppose to provide a
  492  *      consistent delay.  This function may also be called before the console 
  493  *      is setup so no printf's can be called here.
  494  *
  495  *      RETURNS:
  496  *      nothing
  497  */
  498 static void __used /* Must emit function code for the weak ref below. */
  499 arm_tmr_DELAY(int usec)
  500 {
  501         struct arm_tmr_softc *sc;
  502         int32_t counts_per_usec;
  503         int32_t counts;
  504         uint32_t first, last;
  505 
  506         /* Check the timers are setup, if not just use a for loop for the meantime */
  507         if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
  508                 for (; usec > 0; usec--)
  509                         for (counts = 200; counts > 0; counts--)
  510                                 cpufunc_nullop();       /* Prevent gcc from optimizing
  511                                                          * out the loop
  512                                                          */
  513                 return;
  514         }
  515 
  516         sc = arm_tmr_tc->tc_priv;
  517 
  518         /* Get the number of times to count */
  519         counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
  520 
  521         /*
  522          * Clamp the timeout at a maximum value (about 32 seconds with
  523          * a 66MHz clock). *Nobody* should be delay()ing for anywhere
  524          * near that length of time and if they are, they should be hung
  525          * out to dry.
  526          */
  527         if (usec >= (0x80000000U / counts_per_usec))
  528                 counts = (0x80000000U / counts_per_usec) - 1;
  529         else
  530                 counts = usec * counts_per_usec;
  531 
  532         first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
  533 
  534         while (counts > 0) {
  535                 last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
  536                 counts -= (int32_t)(last - first);
  537                 first = last;
  538         }
  539 }
  540 
  541 /*
  542  * Supply a DELAY() implementation via weak linkage.  A platform may want to use
  543  * the mpcore per-cpu eventtimers but provide its own DELAY() routine,
  544  * especially when the core frequency can change on the fly.
  545  */
  546 __weak_reference(arm_tmr_DELAY, DELAY);
  547 

Cache object: e0d71c66f190c546412793be2de05ced


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.