The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/mpcore_timer.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2011 The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * Developed by Ben Gray <ben.r.gray@gmail.com>
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. The name of the company nor the name of the author may be used to
   18  *    endorse or promote products derived from this software without specific
   19  *    prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  */
   33 
   34 /**
   35  * The ARM Cortex-A9 core can support a global timer plus a private and
   36  * watchdog timer per core.  This driver reserves memory and interrupt
   37  * resources for accessing both timer register sets, these resources are
   38  * stored globally and used to setup the timecount and eventtimer.
   39  *
   40  * The timecount timer uses the global 64-bit counter, whereas the
   41  * per-CPU eventtimer uses the private 32-bit counters.
   42  *
   43  *
   44  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
   45  */
   46 
   47 #include <sys/cdefs.h>
   48 __FBSDID("$FreeBSD$");
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/bus.h>
   53 #include <sys/kernel.h>
   54 #include <sys/module.h>
   55 #include <sys/malloc.h>
   56 #include <sys/rman.h>
   57 #include <sys/timeet.h>
   58 #include <sys/timetc.h>
   59 #include <sys/watchdog.h>
   60 #include <machine/bus.h>
   61 #include <machine/cpu.h>
   62 #include <machine/intr.h>
   63 
   64 #include <machine/machdep.h> /* For arm_set_delay */
   65 
   66 #include <dev/ofw/openfirm.h>
   67 #include <dev/ofw/ofw_bus.h>
   68 #include <dev/ofw/ofw_bus_subr.h>
   69 
   70 #include <machine/bus.h>
   71 
   72 #include <arm/arm/mpcore_timervar.h>
   73 
   74 /* Private (per-CPU) timer register map */
   75 #define PRV_TIMER_LOAD                 0x0000
   76 #define PRV_TIMER_COUNT                0x0004
   77 #define PRV_TIMER_CTRL                 0x0008
   78 #define PRV_TIMER_INTR                 0x000C
   79 
   80 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
   81 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
   82 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
   83 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
   84 
   85 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
   86 
   87 /* Global timer register map */
   88 #define GBL_TIMER_COUNT_LOW            0x0000
   89 #define GBL_TIMER_COUNT_HIGH           0x0004
   90 #define GBL_TIMER_CTRL                 0x0008
   91 #define GBL_TIMER_INTR                 0x000C
   92 
   93 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
   94 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
   95 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
   96 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
   97 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
   98 
   99 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
  100 
  101 struct arm_tmr_softc {
  102         device_t                dev;
  103         int                     irqrid;
  104         int                     memrid;
  105         struct resource *       gbl_mem;
  106         struct resource *       prv_mem;
  107         struct resource *       prv_irq;
  108         uint64_t                clkfreq;
  109         struct eventtimer       et;
  110 };
  111 
  112 static struct eventtimer *arm_tmr_et;
  113 static struct timecounter *arm_tmr_tc;
  114 static uint64_t arm_tmr_freq;
  115 static boolean_t arm_tmr_freq_varies;
  116 
  117 #define tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
  118 #define tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
  119 #define tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
  120 #define tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
  121 
  122 static void arm_tmr_delay(int, void *);
  123 
  124 static timecounter_get_t arm_tmr_get_timecount;
  125 
  126 static struct timecounter arm_tmr_timecount = {
  127         .tc_name           = "MPCore",
  128         .tc_get_timecount  = arm_tmr_get_timecount,
  129         .tc_poll_pps       = NULL,
  130         .tc_counter_mask   = ~0u,
  131         .tc_frequency      = 0,
  132         .tc_quality        = 800,
  133 };
  134 
  135 #define TMR_GBL         0x01
  136 #define TMR_PRV         0x02
  137 #define TMR_BOTH        (TMR_GBL | TMR_PRV)
  138 #define TMR_NONE        0
  139 
  140 static struct ofw_compat_data compat_data[] = {
  141         {"arm,mpcore-timers",           TMR_BOTH}, /* Non-standard, FreeBSD. */
  142         {"arm,cortex-a9-global-timer",  TMR_GBL},
  143         {"arm,cortex-a5-global-timer",  TMR_GBL},
  144         {"arm,cortex-a9-twd-timer",     TMR_PRV},
  145         {"arm,cortex-a5-twd-timer",     TMR_PRV},
  146         {"arm,arm11mp-twd-timer",       TMR_PRV},
  147         {NULL,                          TMR_NONE}
  148 };
  149 
  150 /**
  151  *      arm_tmr_get_timecount - reads the timecount (global) timer
  152  *      @tc: pointer to arm_tmr_timecount struct
  153  *
  154  *      We only read the lower 32-bits, the timecount stuff only uses 32-bits
  155  *      so (for now?) ignore the upper 32-bits.
  156  *
  157  *      RETURNS
  158  *      The lower 32-bits of the counter.
  159  */
  160 static unsigned
  161 arm_tmr_get_timecount(struct timecounter *tc)
  162 {
  163         struct arm_tmr_softc *sc;
  164 
  165         sc = tc->tc_priv;
  166         return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
  167 }
  168 
  169 /**
  170  *      arm_tmr_start - starts the eventtimer (private) timer
  171  *      @et: pointer to eventtimer struct
  172  *      @first: the number of seconds and fractional sections to trigger in
  173  *      @period: the period (in seconds and fractional sections) to set
  174  *
  175  *      If the eventtimer is required to be in oneshot mode, period will be
  176  *      NULL and first will point to the time to trigger.  If in periodic mode
  177  *      period will contain the time period and first may optionally contain
  178  *      the time for the first period.
  179  *
  180  *      RETURNS
  181  *      Always returns 0
  182  */
  183 static int
  184 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
  185 {
  186         struct arm_tmr_softc *sc;
  187         uint32_t load, count;
  188         uint32_t ctrl;
  189 
  190         sc = et->et_priv;
  191         tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
  192         tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
  193 
  194         ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
  195 
  196         if (period != 0) {
  197                 load = ((uint32_t)et->et_frequency * period) >> 32;
  198                 ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
  199         } else
  200                 load = 0;
  201 
  202         if (first != 0)
  203                 count = (uint32_t)((et->et_frequency * first) >> 32);
  204         else
  205                 count = load;
  206 
  207         tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
  208         tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
  209         tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
  210 
  211         return (0);
  212 }
  213 
  214 /**
  215  *      arm_tmr_stop - stops the eventtimer (private) timer
  216  *      @et: pointer to eventtimer struct
  217  *
  218  *      Simply stops the private timer by clearing all bits in the ctrl register.
  219  *
  220  *      RETURNS
  221  *      Always returns 0
  222  */
  223 static int
  224 arm_tmr_stop(struct eventtimer *et)
  225 {
  226         struct arm_tmr_softc *sc;
  227 
  228         sc = et->et_priv;
  229         tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
  230         tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
  231         return (0);
  232 }
  233 
  234 /**
  235  *      arm_tmr_intr - ISR for the eventtimer (private) timer
  236  *      @arg: pointer to arm_tmr_softc struct
  237  *
  238  *      Clears the event register and then calls the eventtimer callback.
  239  *
  240  *      RETURNS
  241  *      Always returns FILTER_HANDLED
  242  */
  243 static int
  244 arm_tmr_intr(void *arg)
  245 {
  246         struct arm_tmr_softc *sc;
  247 
  248         sc = arg;
  249         tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
  250         if (sc->et.et_active)
  251                 sc->et.et_event_cb(&sc->et, sc->et.et_arg);
  252         return (FILTER_HANDLED);
  253 }
  254 
  255 /**
  256  *      arm_tmr_probe - timer probe routine
  257  *      @dev: new device
  258  *
  259  *      The probe function returns success when probed with the fdt compatible
  260  *      string set to "arm,mpcore-timers".
  261  *
  262  *      RETURNS
  263  *      BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
  264  */
  265 static int
  266 arm_tmr_probe(device_t dev)
  267 {
  268 
  269         if (!ofw_bus_status_okay(dev))
  270                 return (ENXIO);
  271 
  272         if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
  273                 return (ENXIO);
  274 
  275         device_set_desc(dev, "ARM MPCore Timers");
  276         return (BUS_PROBE_DEFAULT);
  277 }
  278 
  279 static int
  280 attach_tc(struct arm_tmr_softc *sc)
  281 {
  282         int rid;
  283 
  284         if (arm_tmr_tc != NULL)
  285                 return (EBUSY);
  286 
  287         rid = sc->memrid;
  288         sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
  289             RF_ACTIVE);
  290         if (sc->gbl_mem == NULL) {
  291                 device_printf(sc->dev, "could not allocate gbl mem resources\n");
  292                 return (ENXIO);
  293         }
  294         tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
  295 
  296         arm_tmr_timecount.tc_frequency = sc->clkfreq;
  297         arm_tmr_timecount.tc_priv = sc;
  298         tc_init(&arm_tmr_timecount);
  299         arm_tmr_tc = &arm_tmr_timecount;
  300 
  301         tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
  302 
  303         return (0);
  304 }
  305 
  306 static int
  307 attach_et(struct arm_tmr_softc *sc)
  308 {
  309         void *ihl;
  310         int irid, mrid;
  311 
  312         if (arm_tmr_et != NULL)
  313                 return (EBUSY);
  314 
  315         mrid = sc->memrid;
  316         sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
  317             RF_ACTIVE);
  318         if (sc->prv_mem == NULL) {
  319                 device_printf(sc->dev, "could not allocate prv mem resources\n");
  320                 return (ENXIO);
  321         }
  322         tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
  323 
  324         irid = sc->irqrid;
  325         sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
  326         if (sc->prv_irq == NULL) {
  327                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
  328                 device_printf(sc->dev, "could not allocate prv irq resources\n");
  329                 return (ENXIO);
  330         }
  331 
  332         if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
  333                         NULL, sc, &ihl) != 0) {
  334                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
  335                 bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
  336                 device_printf(sc->dev, "unable to setup the et irq handler.\n");
  337                 return (ENXIO);
  338         }
  339 
  340         /*
  341          * Setup and register the eventtimer.  Most event timers set their min
  342          * and max period values to some value calculated from the clock
  343          * frequency.  We might not know yet what our runtime clock frequency
  344          * will be, so we just use some safe values.  A max of 2 seconds ensures
  345          * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
  346          * we won't overflow our 32-bit timer count register.  A min of 20
  347          * nanoseconds is pretty much completely arbitrary.
  348          */
  349         sc->et.et_name = "MPCore";
  350         sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
  351         sc->et.et_quality = 1000;
  352         sc->et.et_frequency = sc->clkfreq;
  353         sc->et.et_min_period = nstosbt(20);
  354         sc->et.et_max_period =  2 * SBT_1S;
  355         sc->et.et_start = arm_tmr_start;
  356         sc->et.et_stop = arm_tmr_stop;
  357         sc->et.et_priv = sc;
  358         et_register(&sc->et);
  359         arm_tmr_et = &sc->et;
  360 
  361         return (0);
  362 }
  363 
  364 /**
  365  *      arm_tmr_attach - attaches the timer to the simplebus
  366  *      @dev: new device
  367  *
  368  *      Reserves memory and interrupt resources, stores the softc structure
  369  *      globally and registers both the timecount and eventtimer objects.
  370  *
  371  *      RETURNS
  372  *      Zero on success or ENXIO if an error occuried.
  373  */
  374 static int
  375 arm_tmr_attach(device_t dev)
  376 {
  377         struct arm_tmr_softc *sc;
  378         phandle_t node;
  379         pcell_t clock;
  380         int et_err, tc_err, tmrtype;
  381 
  382         sc = device_get_softc(dev);
  383         sc->dev = dev;
  384 
  385         if (arm_tmr_freq_varies) {
  386                 sc->clkfreq = arm_tmr_freq;
  387         } else {
  388                 if (arm_tmr_freq != 0) {
  389                         sc->clkfreq = arm_tmr_freq;
  390                 } else {
  391                         /* Get the base clock frequency */
  392                         node = ofw_bus_get_node(dev);
  393                         if ((OF_getencprop(node, "clock-frequency", &clock,
  394                             sizeof(clock))) <= 0) {
  395                                 device_printf(dev, "missing clock-frequency "
  396                                     "attribute in FDT\n");
  397                                 return (ENXIO);
  398                         }
  399                         sc->clkfreq = clock;
  400                 }
  401         }
  402 
  403         tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
  404         tc_err = ENXIO;
  405         et_err = ENXIO;
  406 
  407         /*
  408          * If we're handling the global timer and it is fixed-frequency, set it
  409          * up to use as a timecounter.  If it's variable frequency it won't work
  410          * as a timecounter.  We also can't use it for DELAY(), so hopefully the
  411          * platform provides its own implementation. If it doesn't, ours will
  412          * get used, but since the frequency isn't set, it will only use the
  413          * bogus loop counter.
  414          */
  415         if (tmrtype & TMR_GBL) {
  416                 if (!arm_tmr_freq_varies)
  417                         tc_err = attach_tc(sc);
  418                 else if (bootverbose)
  419                         device_printf(sc->dev,
  420                             "not using variable-frequency device as timecounter\n");
  421                 sc->memrid++;
  422                 sc->irqrid++;
  423         }
  424 
  425         /* If we are handling the private timer, set it up as an eventtimer. */
  426         if (tmrtype & TMR_PRV) {
  427                 et_err = attach_et(sc);
  428         }
  429 
  430         /*
  431          * If we didn't successfully set up a timecounter or eventtimer then we
  432          * didn't actually attach at all, return error.
  433          */
  434         if (tc_err != 0 && et_err != 0) {
  435                 return (ENXIO);
  436         }
  437 
  438 #ifdef PLATFORM
  439         /*
  440          * We can register as the DELAY() implementation only if we successfully
  441          * set up the global timer.
  442          */
  443         if (tc_err == 0)
  444                 arm_set_delay(arm_tmr_delay, sc);
  445 #endif
  446 
  447         return (0);
  448 }
  449 
  450 static device_method_t arm_tmr_methods[] = {
  451         DEVMETHOD(device_probe,         arm_tmr_probe),
  452         DEVMETHOD(device_attach,        arm_tmr_attach),
  453         { 0, 0 }
  454 };
  455 
  456 static driver_t arm_tmr_driver = {
  457         "mp_tmr",
  458         arm_tmr_methods,
  459         sizeof(struct arm_tmr_softc),
  460 };
  461 
  462 static devclass_t arm_tmr_devclass;
  463 
  464 EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
  465     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
  466 EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
  467     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
  468 
  469 /*
  470  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
  471  * frequency.  When the CPU frequency changes due to power-saving or thermal
  472  * management, the platform-specific code that causes the frequency change calls
  473  * this routine to inform the clock driver, and we in turn inform the event
  474  * timer system, which actually updates the value in et->frequency for us and
  475  * reschedules the current event(s) in a way that's atomic with respect to
  476  * start/stop/intr code that may be running on various CPUs at the time of the
  477  * call.
  478  *
  479  * This routine can also be called by a platform's early init code.  If the
  480  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
  481  * to register as an eventtimer, but not a timecounter.  If the value passed in
  482  * is any other non-zero value it is used as the fixed frequency for the timer.
  483  */
  484 void
  485 arm_tmr_change_frequency(uint64_t newfreq)
  486 {
  487 
  488         if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
  489                 arm_tmr_freq_varies = true;
  490                 return;
  491         }
  492 
  493         arm_tmr_freq = newfreq;
  494         if (arm_tmr_et != NULL)
  495                 et_change_frequency(arm_tmr_et, newfreq);
  496 }
  497 
  498 static void
  499 arm_tmr_delay(int usec, void *arg)
  500 {
  501         struct arm_tmr_softc *sc = arg;
  502         int32_t counts_per_usec;
  503         int32_t counts;
  504         uint32_t first, last;
  505 
  506         /* Get the number of times to count */
  507         counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
  508 
  509         /*
  510          * Clamp the timeout at a maximum value (about 32 seconds with
  511          * a 66MHz clock). *Nobody* should be delay()ing for anywhere
  512          * near that length of time and if they are, they should be hung
  513          * out to dry.
  514          */
  515         if (usec >= (0x80000000U / counts_per_usec))
  516                 counts = (0x80000000U / counts_per_usec) - 1;
  517         else
  518                 counts = usec * counts_per_usec;
  519 
  520         first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
  521 
  522         while (counts > 0) {
  523                 last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
  524                 counts -= (int32_t)(last - first);
  525                 first = last;
  526         }
  527 }
  528 
  529 #ifndef PLATFORM
  530 /**
  531  *      DELAY - Delay for at least usec microseconds.
  532  *      @usec: number of microseconds to delay by
  533  *
  534  *      This function is called all over the kernel and is suppose to provide a
  535  *      consistent delay.  This function may also be called before the console
  536  *      is setup so no printf's can be called here.
  537  *
  538  *      RETURNS:
  539  *      nothing
  540  */
  541 void
  542 DELAY(int usec)
  543 {
  544         struct arm_tmr_softc *sc;
  545         int32_t counts;
  546 
  547         TSENTER();
  548         /* Check the timers are setup, if not just use a for loop for the meantime */
  549         if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
  550                 for (; usec > 0; usec--)
  551                         for (counts = 200; counts > 0; counts--)
  552                                 cpufunc_nullop();       /* Prevent gcc from optimizing
  553                                                          * out the loop
  554                                                          */
  555         } else {
  556                 sc = arm_tmr_tc->tc_priv;
  557                 arm_tmr_delay(usec, sc);
  558         }
  559         TSEXIT();
  560 }
  561 #endif

Cache object: 044046554ac346e07d3f2d5e10564017


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.