The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/pmap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
    2 /*-
    3  * Copyright 2004 Olivier Houchard.
    4  * Copyright 2003 Wasabi Systems, Inc.
    5  * All rights reserved.
    6  *
    7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed for the NetBSD Project by
   20  *      Wasabi Systems, Inc.
   21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
   22  *    or promote products derived from this software without specific prior
   23  *    written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
   29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   35  * POSSIBILITY OF SUCH DAMAGE.
   36  */
   37 
   38 /*-
   39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
   40  * Copyright (c) 2001 Richard Earnshaw
   41  * Copyright (c) 2001-2002 Christopher Gilbert
   42  * All rights reserved.
   43  *
   44  * 1. Redistributions of source code must retain the above copyright
   45  *    notice, this list of conditions and the following disclaimer.
   46  * 2. Redistributions in binary form must reproduce the above copyright
   47  *    notice, this list of conditions and the following disclaimer in the
   48  *    documentation and/or other materials provided with the distribution.
   49  * 3. The name of the company nor the name of the author may be used to
   50  *    endorse or promote products derived from this software without specific
   51  *    prior written permission.
   52  *
   53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
   54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   63  * SUCH DAMAGE.
   64  */
   65 /*-
   66  * Copyright (c) 1999 The NetBSD Foundation, Inc.
   67  * All rights reserved.
   68  *
   69  * This code is derived from software contributed to The NetBSD Foundation
   70  * by Charles M. Hannum.
   71  *
   72  * Redistribution and use in source and binary forms, with or without
   73  * modification, are permitted provided that the following conditions
   74  * are met:
   75  * 1. Redistributions of source code must retain the above copyright
   76  *    notice, this list of conditions and the following disclaimer.
   77  * 2. Redistributions in binary form must reproduce the above copyright
   78  *    notice, this list of conditions and the following disclaimer in the
   79  *    documentation and/or other materials provided with the distribution.
   80  * 3. All advertising materials mentioning features or use of this software
   81  *    must display the following acknowledgement:
   82  *        This product includes software developed by the NetBSD
   83  *        Foundation, Inc. and its contributors.
   84  * 4. Neither the name of The NetBSD Foundation nor the names of its
   85  *    contributors may be used to endorse or promote products derived
   86  *    from this software without specific prior written permission.
   87  *
   88  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   89  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   90  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   91  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   92  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   93  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   94  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   95  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   96  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   97  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   98  * POSSIBILITY OF SUCH DAMAGE.
   99  */
  100 
  101 /*-
  102  * Copyright (c) 1994-1998 Mark Brinicombe.
  103  * Copyright (c) 1994 Brini.
  104  * All rights reserved.
  105  *
  106  * This code is derived from software written for Brini by Mark Brinicombe
  107  *
  108  * Redistribution and use in source and binary forms, with or without
  109  * modification, are permitted provided that the following conditions
  110  * are met:
  111  * 1. Redistributions of source code must retain the above copyright
  112  *    notice, this list of conditions and the following disclaimer.
  113  * 2. Redistributions in binary form must reproduce the above copyright
  114  *    notice, this list of conditions and the following disclaimer in the
  115  *    documentation and/or other materials provided with the distribution.
  116  * 3. All advertising materials mentioning features or use of this software
  117  *    must display the following acknowledgement:
  118  *      This product includes software developed by Mark Brinicombe.
  119  * 4. The name of the author may not be used to endorse or promote products
  120  *    derived from this software without specific prior written permission.
  121  *
  122  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  123  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  124  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  125  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  126  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  127  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  128  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  129  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  130  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  131  *
  132  * RiscBSD kernel project
  133  *
  134  * pmap.c
  135  *
  136  * Machine dependant vm stuff
  137  *
  138  * Created      : 20/09/94
  139  */
  140 
  141 /*
  142  * Special compilation symbols
  143  * PMAP_DEBUG           - Build in pmap_debug_level code
  144  */
  145 /* Include header files */
  146 
  147 #include "opt_vm.h"
  148 
  149 #include <sys/cdefs.h>
  150 __FBSDID("$FreeBSD$");
  151 #include <sys/param.h>
  152 #include <sys/systm.h>
  153 #include <sys/kernel.h>
  154 #include <sys/proc.h>
  155 #include <sys/malloc.h>
  156 #include <sys/msgbuf.h>
  157 #include <sys/vmmeter.h>
  158 #include <sys/mman.h>
  159 #include <sys/smp.h>
  160 #include <sys/sched.h>
  161 
  162 #include <vm/vm.h>
  163 #include <vm/uma.h>
  164 #include <vm/pmap.h>
  165 #include <vm/vm_kern.h>
  166 #include <vm/vm_object.h>
  167 #include <vm/vm_map.h>
  168 #include <vm/vm_page.h>
  169 #include <vm/vm_pageout.h>
  170 #include <vm/vm_extern.h>
  171 #include <sys/lock.h>
  172 #include <sys/mutex.h>
  173 #include <machine/md_var.h>
  174 #include <machine/vmparam.h>
  175 #include <machine/cpu.h>
  176 #include <machine/cpufunc.h>
  177 #include <machine/pcb.h>
  178 
  179 #ifdef PMAP_DEBUG
  180 #define PDEBUG(_lev_,_stat_) \
  181         if (pmap_debug_level >= (_lev_)) \
  182                 ((_stat_))
  183 #define dprintf printf
  184 
  185 int pmap_debug_level = 0;
  186 #define PMAP_INLINE 
  187 #else   /* PMAP_DEBUG */
  188 #define PDEBUG(_lev_,_stat_) /* Nothing */
  189 #define dprintf(x, arg...)
  190 #define PMAP_INLINE __inline
  191 #endif  /* PMAP_DEBUG */
  192 
  193 extern struct pv_addr systempage;
  194 /*
  195  * Internal function prototypes
  196  */
  197 static void pmap_free_pv_entry (pv_entry_t);
  198 static pv_entry_t pmap_get_pv_entry(void);
  199 
  200 static void             pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t,
  201     vm_prot_t, boolean_t, int);
  202 static void             pmap_vac_me_harder(struct vm_page *, pmap_t,
  203     vm_offset_t);
  204 static void             pmap_vac_me_kpmap(struct vm_page *, pmap_t, 
  205     vm_offset_t);
  206 static void             pmap_vac_me_user(struct vm_page *, pmap_t, vm_offset_t);
  207 static void             pmap_alloc_l1(pmap_t);
  208 static void             pmap_free_l1(pmap_t);
  209 static void             pmap_use_l1(pmap_t);
  210 
  211 static int              pmap_clearbit(struct vm_page *, u_int);
  212 
  213 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
  214 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
  215 static void             pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
  216 static vm_offset_t      kernel_pt_lookup(vm_paddr_t);
  217 
  218 static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
  219 
  220 vm_offset_t virtual_avail;      /* VA of first avail page (after kernel bss) */
  221 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
  222 vm_offset_t pmap_curmaxkvaddr;
  223 vm_paddr_t kernel_l1pa;
  224 
  225 extern void *end;
  226 vm_offset_t kernel_vm_end = 0;
  227 
  228 struct pmap kernel_pmap_store;
  229 pmap_t kernel_pmap;
  230 
  231 static pt_entry_t *csrc_pte, *cdst_pte;
  232 static vm_offset_t csrcp, cdstp;
  233 static struct mtx cmtx;
  234 
  235 static void             pmap_init_l1(struct l1_ttable *, pd_entry_t *);
  236 /*
  237  * These routines are called when the CPU type is identified to set up
  238  * the PTE prototypes, cache modes, etc.
  239  *
  240  * The variables are always here, just in case LKMs need to reference
  241  * them (though, they shouldn't).
  242  */
  243 
  244 pt_entry_t      pte_l1_s_cache_mode;
  245 pt_entry_t      pte_l1_s_cache_mode_pt;
  246 pt_entry_t      pte_l1_s_cache_mask;
  247 
  248 pt_entry_t      pte_l2_l_cache_mode;
  249 pt_entry_t      pte_l2_l_cache_mode_pt;
  250 pt_entry_t      pte_l2_l_cache_mask;
  251 
  252 pt_entry_t      pte_l2_s_cache_mode;
  253 pt_entry_t      pte_l2_s_cache_mode_pt;
  254 pt_entry_t      pte_l2_s_cache_mask;
  255 
  256 pt_entry_t      pte_l2_s_prot_u;
  257 pt_entry_t      pte_l2_s_prot_w;
  258 pt_entry_t      pte_l2_s_prot_mask;
  259 
  260 pt_entry_t      pte_l1_s_proto;
  261 pt_entry_t      pte_l1_c_proto;
  262 pt_entry_t      pte_l2_s_proto;
  263 
  264 void            (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
  265 void            (*pmap_zero_page_func)(vm_paddr_t, int, int);
  266 /*
  267  * Which pmap is currently 'live' in the cache
  268  *
  269  * XXXSCW: Fix for SMP ...
  270  */
  271 union pmap_cache_state *pmap_cache_state;
  272 
  273 struct msgbuf *msgbufp = 0;
  274 
  275 extern void bcopy_page(vm_offset_t, vm_offset_t);
  276 extern void bzero_page(vm_offset_t);
  277 
  278 extern vm_offset_t alloc_firstaddr;
  279 
  280 char *_tmppt;
  281 
  282 /*
  283  * Metadata for L1 translation tables.
  284  */
  285 struct l1_ttable {
  286         /* Entry on the L1 Table list */
  287         SLIST_ENTRY(l1_ttable) l1_link;
  288 
  289         /* Entry on the L1 Least Recently Used list */
  290         TAILQ_ENTRY(l1_ttable) l1_lru;
  291 
  292         /* Track how many domains are allocated from this L1 */
  293         volatile u_int l1_domain_use_count;
  294 
  295         /*
  296          * A free-list of domain numbers for this L1.
  297          * We avoid using ffs() and a bitmap to track domains since ffs()
  298          * is slow on ARM.
  299          */
  300         u_int8_t l1_domain_first;
  301         u_int8_t l1_domain_free[PMAP_DOMAINS];
  302 
  303         /* Physical address of this L1 page table */
  304         vm_paddr_t l1_physaddr;
  305 
  306         /* KVA of this L1 page table */
  307         pd_entry_t *l1_kva;
  308 };
  309 
  310 /*
  311  * Convert a virtual address into its L1 table index. That is, the
  312  * index used to locate the L2 descriptor table pointer in an L1 table.
  313  * This is basically used to index l1->l1_kva[].
  314  *
  315  * Each L2 descriptor table represents 1MB of VA space.
  316  */
  317 #define L1_IDX(va)              (((vm_offset_t)(va)) >> L1_S_SHIFT)
  318 
  319 /*
  320  * L1 Page Tables are tracked using a Least Recently Used list.
  321  *  - New L1s are allocated from the HEAD.
  322  *  - Freed L1s are added to the TAIl.
  323  *  - Recently accessed L1s (where an 'access' is some change to one of
  324  *    the userland pmaps which owns this L1) are moved to the TAIL.
  325  */
  326 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
  327 /*
  328  * A list of all L1 tables
  329  */
  330 static SLIST_HEAD(, l1_ttable) l1_list;
  331 static struct mtx l1_lru_lock;
  332 
  333 /*
  334  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
  335  *
  336  * This is normally 16MB worth L2 page descriptors for any given pmap.
  337  * Reference counts are maintained for L2 descriptors so they can be
  338  * freed when empty.
  339  */
  340 struct l2_dtable {
  341         /* The number of L2 page descriptors allocated to this l2_dtable */
  342         u_int l2_occupancy;
  343 
  344         /* List of L2 page descriptors */
  345         struct l2_bucket {
  346                 pt_entry_t *l2b_kva;    /* KVA of L2 Descriptor Table */
  347                 vm_paddr_t l2b_phys;    /* Physical address of same */
  348                 u_short l2b_l1idx;      /* This L2 table's L1 index */
  349                 u_short l2b_occupancy;  /* How many active descriptors */
  350         } l2_bucket[L2_BUCKET_SIZE];
  351 };
  352 
  353 /* pmap_kenter_internal flags */
  354 #define KENTER_CACHE    0x1
  355 #define KENTER_USER     0x2
  356 
  357 /*
  358  * Given an L1 table index, calculate the corresponding l2_dtable index
  359  * and bucket index within the l2_dtable.
  360  */
  361 #define L2_IDX(l1idx)           (((l1idx) >> L2_BUCKET_LOG2) & \
  362                                  (L2_SIZE - 1))
  363 #define L2_BUCKET(l1idx)        ((l1idx) & (L2_BUCKET_SIZE - 1))
  364 
  365 /*
  366  * Given a virtual address, this macro returns the
  367  * virtual address required to drop into the next L2 bucket.
  368  */
  369 #define L2_NEXT_BUCKET(va)      (((va) & L1_S_FRAME) + L1_S_SIZE)
  370 
  371 /*
  372  * L2 allocation.
  373  */
  374 #define pmap_alloc_l2_dtable()          \
  375                 (void*)uma_zalloc(l2table_zone, M_NOWAIT|M_USE_RESERVE)
  376 #define pmap_free_l2_dtable(l2)         \
  377                 uma_zfree(l2table_zone, l2)
  378 
  379 /*
  380  * We try to map the page tables write-through, if possible.  However, not
  381  * all CPUs have a write-through cache mode, so on those we have to sync
  382  * the cache when we frob page tables.
  383  *
  384  * We try to evaluate this at compile time, if possible.  However, it's
  385  * not always possible to do that, hence this run-time var.
  386  */
  387 int     pmap_needs_pte_sync;
  388 
  389 /*
  390  * Macro to determine if a mapping might be resident in the
  391  * instruction cache and/or TLB
  392  */
  393 #define PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
  394 
  395 /*
  396  * Macro to determine if a mapping might be resident in the
  397  * data cache and/or TLB
  398  */
  399 #define PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
  400 
  401 #ifndef PMAP_SHPGPERPROC
  402 #define PMAP_SHPGPERPROC 200
  403 #endif
  404 
  405 #define pmap_is_current(pm)     ((pm) == pmap_kernel() || \
  406             curproc->p_vmspace->vm_map.pmap == (pm))
  407 static uma_zone_t pvzone;
  408 uma_zone_t l2zone;
  409 static uma_zone_t l2table_zone;
  410 static vm_offset_t pmap_kernel_l2dtable_kva;
  411 static vm_offset_t pmap_kernel_l2ptp_kva;
  412 static vm_paddr_t pmap_kernel_l2ptp_phys;
  413 static struct vm_object pvzone_obj;
  414 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
  415 
  416 /*
  417  * This list exists for the benefit of pmap_map_chunk().  It keeps track
  418  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
  419  * find them as necessary.
  420  *
  421  * Note that the data on this list MUST remain valid after initarm() returns,
  422  * as pmap_bootstrap() uses it to contruct L2 table metadata.
  423  */
  424 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
  425 
  426 static void
  427 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
  428 {
  429         int i;
  430 
  431         l1->l1_kva = l1pt;
  432         l1->l1_domain_use_count = 0;
  433         l1->l1_domain_first = 0;
  434 
  435         for (i = 0; i < PMAP_DOMAINS; i++)
  436                 l1->l1_domain_free[i] = i + 1;
  437 
  438         /*
  439          * Copy the kernel's L1 entries to each new L1.
  440          */
  441         if (l1pt != pmap_kernel()->pm_l1->l1_kva)
  442                 memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
  443 
  444         if ((l1->l1_physaddr = pmap_extract(pmap_kernel(), (vm_offset_t)l1pt)) == 0)
  445                 panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
  446         SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
  447         TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
  448 }
  449 
  450 static vm_offset_t
  451 kernel_pt_lookup(vm_paddr_t pa)
  452 {
  453         struct pv_addr *pv;
  454 
  455         SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
  456                 if (pv->pv_pa == pa)
  457                         return (pv->pv_va);
  458         }
  459         return (0);
  460 }
  461 
  462 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
  463 void
  464 pmap_pte_init_generic(void)
  465 {
  466 
  467         pte_l1_s_cache_mode = L1_S_B|L1_S_C;
  468         pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
  469 
  470         pte_l2_l_cache_mode = L2_B|L2_C;
  471         pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
  472 
  473         pte_l2_s_cache_mode = L2_B|L2_C;
  474         pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
  475 
  476         /*
  477          * If we have a write-through cache, set B and C.  If
  478          * we have a write-back cache, then we assume setting
  479          * only C will make those pages write-through.
  480          */
  481         if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) {
  482                 pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
  483                 pte_l2_l_cache_mode_pt = L2_B|L2_C;
  484                 pte_l2_s_cache_mode_pt = L2_B|L2_C;
  485         } else {
  486                 pte_l1_s_cache_mode_pt = L1_S_C;
  487                 pte_l2_l_cache_mode_pt = L2_C;
  488                 pte_l2_s_cache_mode_pt = L2_C;
  489         }
  490 
  491         pte_l2_s_prot_u = L2_S_PROT_U_generic;
  492         pte_l2_s_prot_w = L2_S_PROT_W_generic;
  493         pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
  494 
  495         pte_l1_s_proto = L1_S_PROTO_generic;
  496         pte_l1_c_proto = L1_C_PROTO_generic;
  497         pte_l2_s_proto = L2_S_PROTO_generic;
  498 
  499         pmap_copy_page_func = pmap_copy_page_generic;
  500         pmap_zero_page_func = pmap_zero_page_generic;
  501 }
  502 
  503 #if defined(CPU_ARM8)
  504 void
  505 pmap_pte_init_arm8(void)
  506 {
  507 
  508         /*
  509          * ARM8 is compatible with generic, but we need to use
  510          * the page tables uncached.
  511          */
  512         pmap_pte_init_generic();
  513 
  514         pte_l1_s_cache_mode_pt = 0;
  515         pte_l2_l_cache_mode_pt = 0;
  516         pte_l2_s_cache_mode_pt = 0;
  517 }
  518 #endif /* CPU_ARM8 */
  519 
  520 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
  521 void
  522 pmap_pte_init_arm9(void)
  523 {
  524 
  525         /*
  526          * ARM9 is compatible with generic, but we want to use
  527          * write-through caching for now.
  528          */
  529         pmap_pte_init_generic();
  530 
  531         pte_l1_s_cache_mode = L1_S_C;
  532         pte_l2_l_cache_mode = L2_C;
  533         pte_l2_s_cache_mode = L2_C;
  534 
  535         pte_l1_s_cache_mode_pt = L1_S_C;
  536         pte_l2_l_cache_mode_pt = L2_C;
  537         pte_l2_s_cache_mode_pt = L2_C;
  538 }
  539 #endif /* CPU_ARM9 */
  540 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
  541 
  542 #if defined(CPU_ARM10)
  543 void
  544 pmap_pte_init_arm10(void)
  545 {
  546 
  547         /*
  548          * ARM10 is compatible with generic, but we want to use
  549          * write-through caching for now.
  550          */
  551         pmap_pte_init_generic();
  552 
  553         pte_l1_s_cache_mode = L1_S_B | L1_S_C;
  554         pte_l2_l_cache_mode = L2_B | L2_C;
  555         pte_l2_s_cache_mode = L2_B | L2_C;
  556 
  557         pte_l1_s_cache_mode_pt = L1_S_C;
  558         pte_l2_l_cache_mode_pt = L2_C;
  559         pte_l2_s_cache_mode_pt = L2_C;
  560 
  561 }
  562 #endif /* CPU_ARM10 */
  563 
  564 #if  ARM_MMU_SA1 == 1
  565 void
  566 pmap_pte_init_sa1(void)
  567 {
  568 
  569         /*
  570          * The StrongARM SA-1 cache does not have a write-through
  571          * mode.  So, do the generic initialization, then reset
  572          * the page table cache mode to B=1,C=1, and note that
  573          * the PTEs need to be sync'd.
  574          */
  575         pmap_pte_init_generic();
  576 
  577         pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
  578         pte_l2_l_cache_mode_pt = L2_B|L2_C;
  579         pte_l2_s_cache_mode_pt = L2_B|L2_C;
  580 
  581         pmap_needs_pte_sync = 1;
  582 }
  583 #endif /* ARM_MMU_SA1 == 1*/
  584 
  585 #if ARM_MMU_XSCALE == 1
  586 #if (ARM_NMMUS > 1) || defined (CPU_XSCALE_CORE3)
  587 static u_int xscale_use_minidata;
  588 #endif
  589 
  590 void
  591 pmap_pte_init_xscale(void)
  592 {
  593         uint32_t auxctl;
  594         int write_through = 0;
  595 
  596         pte_l1_s_cache_mode = L1_S_B|L1_S_C|L1_S_XSCALE_P;
  597         pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
  598 
  599         pte_l2_l_cache_mode = L2_B|L2_C;
  600         pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
  601 
  602         pte_l2_s_cache_mode = L2_B|L2_C;
  603         pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
  604 
  605         pte_l1_s_cache_mode_pt = L1_S_C;
  606         pte_l2_l_cache_mode_pt = L2_C;
  607         pte_l2_s_cache_mode_pt = L2_C;
  608 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
  609         /*
  610          * The XScale core has an enhanced mode where writes that
  611          * miss the cache cause a cache line to be allocated.  This
  612          * is significantly faster than the traditional, write-through
  613          * behavior of this case.
  614          */
  615         pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X);
  616         pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X);
  617         pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X);
  618 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
  619 #ifdef XSCALE_CACHE_WRITE_THROUGH
  620         /*
  621          * Some versions of the XScale core have various bugs in
  622          * their cache units, the work-around for which is to run
  623          * the cache in write-through mode.  Unfortunately, this
  624          * has a major (negative) impact on performance.  So, we
  625          * go ahead and run fast-and-loose, in the hopes that we
  626          * don't line up the planets in a way that will trip the
  627          * bugs.
  628          *
  629          * However, we give you the option to be slow-but-correct.
  630          */
  631         write_through = 1;
  632 #elif defined(XSCALE_CACHE_WRITE_BACK)
  633         /* force write back cache mode */
  634         write_through = 0;
  635 #elif defined(CPU_XSCALE_PXA2X0)
  636         /*
  637          * Intel PXA2[15]0 processors are known to have a bug in
  638          * write-back cache on revision 4 and earlier (stepping
  639          * A[01] and B[012]).  Fixed for C0 and later.
  640          */
  641         {
  642                 uint32_t id, type;
  643 
  644                 id = cpufunc_id();
  645                 type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
  646 
  647                 if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
  648                         if ((id & CPU_ID_REVISION_MASK) < 5) {
  649                                 /* write through for stepping A0-1 and B0-2 */
  650                                 write_through = 1;
  651                         }
  652                 }
  653         }
  654 #endif /* XSCALE_CACHE_WRITE_THROUGH */
  655 
  656         if (write_through) {
  657                 pte_l1_s_cache_mode = L1_S_C;
  658                 pte_l2_l_cache_mode = L2_C;
  659                 pte_l2_s_cache_mode = L2_C;
  660         }
  661 
  662 #if (ARM_NMMUS > 1)
  663         xscale_use_minidata = 1;
  664 #endif
  665 
  666         pte_l2_s_prot_u = L2_S_PROT_U_xscale;
  667         pte_l2_s_prot_w = L2_S_PROT_W_xscale;
  668         pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
  669 
  670         pte_l1_s_proto = L1_S_PROTO_xscale;
  671         pte_l1_c_proto = L1_C_PROTO_xscale;
  672         pte_l2_s_proto = L2_S_PROTO_xscale;
  673 
  674 #ifdef CPU_XSCALE_CORE3
  675         pmap_copy_page_func = pmap_copy_page_generic;
  676         pmap_zero_page_func = pmap_zero_page_generic;
  677         xscale_use_minidata = 0;
  678         /* Make sure it is L2-cachable */
  679         pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_T);
  680         pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode &~ L1_S_XSCALE_P;
  681         pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_T) ;
  682         pte_l2_l_cache_mode_pt = pte_l1_s_cache_mode;
  683         pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_T);
  684         pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
  685 
  686 #else
  687         pmap_copy_page_func = pmap_copy_page_xscale;
  688         pmap_zero_page_func = pmap_zero_page_xscale;
  689 #endif
  690 
  691         /*
  692          * Disable ECC protection of page table access, for now.
  693          */
  694         __asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
  695         auxctl &= ~XSCALE_AUXCTL_P;
  696         __asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
  697 }
  698 
  699 /*
  700  * xscale_setup_minidata:
  701  *
  702  *      Set up the mini-data cache clean area.  We require the
  703  *      caller to allocate the right amount of physically and
  704  *      virtually contiguous space.
  705  */
  706 extern vm_offset_t xscale_minidata_clean_addr;
  707 extern vm_size_t xscale_minidata_clean_size; /* already initialized */
  708 void
  709 xscale_setup_minidata(vm_offset_t l1pt, vm_offset_t va, vm_paddr_t pa)
  710 {
  711         pd_entry_t *pde = (pd_entry_t *) l1pt;
  712         pt_entry_t *pte;
  713         vm_size_t size;
  714         uint32_t auxctl;
  715 
  716         xscale_minidata_clean_addr = va;
  717 
  718         /* Round it to page size. */
  719         size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
  720 
  721         for (; size != 0;
  722              va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
  723                 pte = (pt_entry_t *) kernel_pt_lookup(
  724                     pde[L1_IDX(va)] & L1_C_ADDR_MASK);
  725                 if (pte == NULL)
  726                         panic("xscale_setup_minidata: can't find L2 table for "
  727                             "VA 0x%08x", (u_int32_t) va);
  728                 pte[l2pte_index(va)] =
  729                     L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
  730                     L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
  731         }
  732 
  733         /*
  734          * Configure the mini-data cache for write-back with
  735          * read/write-allocate.
  736          *
  737          * NOTE: In order to reconfigure the mini-data cache, we must
  738          * make sure it contains no valid data!  In order to do that,
  739          * we must issue a global data cache invalidate command!
  740          *
  741          * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
  742          * THIS IS VERY IMPORTANT!
  743          */
  744 
  745         /* Invalidate data and mini-data. */
  746         __asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
  747         __asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl));
  748         auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
  749         __asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl));
  750 }
  751 #endif
  752 
  753 /*
  754  * Allocate an L1 translation table for the specified pmap.
  755  * This is called at pmap creation time.
  756  */
  757 static void
  758 pmap_alloc_l1(pmap_t pm)
  759 {
  760         struct l1_ttable *l1;
  761         u_int8_t domain;
  762 
  763         /*
  764          * Remove the L1 at the head of the LRU list
  765          */
  766         mtx_lock(&l1_lru_lock);
  767         l1 = TAILQ_FIRST(&l1_lru_list);
  768         TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
  769 
  770         /*
  771          * Pick the first available domain number, and update
  772          * the link to the next number.
  773          */
  774         domain = l1->l1_domain_first;
  775         l1->l1_domain_first = l1->l1_domain_free[domain];
  776 
  777         /*
  778          * If there are still free domain numbers in this L1,
  779          * put it back on the TAIL of the LRU list.
  780          */
  781         if (++l1->l1_domain_use_count < PMAP_DOMAINS)
  782                 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
  783 
  784         mtx_unlock(&l1_lru_lock);
  785 
  786         /*
  787          * Fix up the relevant bits in the pmap structure
  788          */
  789         pm->pm_l1 = l1;
  790         pm->pm_domain = domain + 1;
  791 }
  792 
  793 /*
  794  * Free an L1 translation table.
  795  * This is called at pmap destruction time.
  796  */
  797 static void
  798 pmap_free_l1(pmap_t pm)
  799 {
  800         struct l1_ttable *l1 = pm->pm_l1;
  801 
  802         mtx_lock(&l1_lru_lock);
  803 
  804         /*
  805          * If this L1 is currently on the LRU list, remove it.
  806          */
  807         if (l1->l1_domain_use_count < PMAP_DOMAINS)
  808                 TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
  809 
  810         /*
  811          * Free up the domain number which was allocated to the pmap
  812          */
  813         l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
  814         l1->l1_domain_first = pm->pm_domain - 1;
  815         l1->l1_domain_use_count--;
  816 
  817         /*
  818          * The L1 now must have at least 1 free domain, so add
  819          * it back to the LRU list. If the use count is zero,
  820          * put it at the head of the list, otherwise it goes
  821          * to the tail.
  822          */
  823         if (l1->l1_domain_use_count == 0) {
  824                 TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
  825         }       else
  826                 TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
  827 
  828         mtx_unlock(&l1_lru_lock);
  829 }
  830 
  831 static PMAP_INLINE void
  832 pmap_use_l1(pmap_t pm)
  833 {
  834         struct l1_ttable *l1;
  835 
  836         /*
  837          * Do nothing if we're in interrupt context.
  838          * Access to an L1 by the kernel pmap must not affect
  839          * the LRU list.
  840          */
  841         if (pm == pmap_kernel())
  842                 return;
  843 
  844         l1 = pm->pm_l1;
  845 
  846         /*
  847          * If the L1 is not currently on the LRU list, just return
  848          */
  849         if (l1->l1_domain_use_count == PMAP_DOMAINS)
  850                 return;
  851 
  852         mtx_lock(&l1_lru_lock);
  853 
  854         /*
  855          * Check the use count again, now that we've acquired the lock
  856          */
  857         if (l1->l1_domain_use_count == PMAP_DOMAINS) {
  858                 mtx_unlock(&l1_lru_lock);
  859                 return;
  860         }
  861 
  862         /*
  863          * Move the L1 to the back of the LRU list
  864          */
  865         TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
  866         TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
  867 
  868         mtx_unlock(&l1_lru_lock);
  869 }
  870 
  871 
  872 /*
  873  * Returns a pointer to the L2 bucket associated with the specified pmap
  874  * and VA, or NULL if no L2 bucket exists for the address.
  875  */
  876 static PMAP_INLINE struct l2_bucket *
  877 pmap_get_l2_bucket(pmap_t pm, vm_offset_t va)
  878 {
  879         struct l2_dtable *l2;
  880         struct l2_bucket *l2b;
  881         u_short l1idx;
  882 
  883         l1idx = L1_IDX(va);
  884 
  885         if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
  886             (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
  887                 return (NULL);
  888 
  889         return (l2b);
  890 }
  891 
  892 /*
  893  * Returns a pointer to the L2 bucket associated with the specified pmap
  894  * and VA.
  895  *
  896  * If no L2 bucket exists, perform the necessary allocations to put an L2
  897  * bucket/page table in place.
  898  *
  899  * Note that if a new L2 bucket/page was allocated, the caller *must*
  900  * increment the bucket occupancy counter appropriately *before* 
  901  * releasing the pmap's lock to ensure no other thread or cpu deallocates
  902  * the bucket/page in the meantime.
  903  */
  904 static struct l2_bucket *
  905 pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va)
  906 {
  907         struct l2_dtable *l2;
  908         struct l2_bucket *l2b;
  909         u_short l1idx;
  910 
  911         l1idx = L1_IDX(va);
  912 
  913         PMAP_ASSERT_LOCKED(pm);
  914         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
  915         if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
  916                 /*
  917                  * No mapping at this address, as there is
  918                  * no entry in the L1 table.
  919                  * Need to allocate a new l2_dtable.
  920                  */
  921 again_l2table:
  922                 PMAP_UNLOCK(pm);
  923                 vm_page_unlock_queues();
  924                 if ((l2 = pmap_alloc_l2_dtable()) == NULL) {
  925                         vm_page_lock_queues();
  926                         PMAP_LOCK(pm);
  927                         return (NULL);
  928                 }
  929                 vm_page_lock_queues();
  930                 PMAP_LOCK(pm);
  931                 if (pm->pm_l2[L2_IDX(l1idx)] != NULL) {
  932                         PMAP_UNLOCK(pm);
  933                         vm_page_unlock_queues();
  934                         uma_zfree(l2table_zone, l2);
  935                         vm_page_lock_queues();
  936                         PMAP_LOCK(pm);
  937                         l2 = pm->pm_l2[L2_IDX(l1idx)];
  938                         if (l2 == NULL)
  939                                 goto again_l2table;
  940                         /*
  941                          * Someone already allocated the l2_dtable while
  942                          * we were doing the same.
  943                          */
  944                 } else {
  945                         bzero(l2, sizeof(*l2));
  946                         /*
  947                          * Link it into the parent pmap
  948                          */
  949                         pm->pm_l2[L2_IDX(l1idx)] = l2;
  950                 }
  951         } 
  952 
  953         l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
  954 
  955         /*
  956          * Fetch pointer to the L2 page table associated with the address.
  957          */
  958         if (l2b->l2b_kva == NULL) {
  959                 pt_entry_t *ptep;
  960 
  961                 /*
  962                  * No L2 page table has been allocated. Chances are, this
  963                  * is because we just allocated the l2_dtable, above.
  964                  */
  965 again_ptep:
  966                 PMAP_UNLOCK(pm);
  967                 vm_page_unlock_queues();
  968                 ptep = (void*)uma_zalloc(l2zone, M_NOWAIT|M_USE_RESERVE);
  969                 vm_page_lock_queues();
  970                 PMAP_LOCK(pm);
  971                 if (l2b->l2b_kva != 0) {
  972                         /* We lost the race. */
  973                         PMAP_UNLOCK(pm);
  974                         vm_page_unlock_queues();
  975                         uma_zfree(l2zone, ptep);
  976                         vm_page_lock_queues();
  977                         PMAP_LOCK(pm);
  978                         if (l2b->l2b_kva == 0)
  979                                 goto again_ptep;
  980                         return (l2b);
  981                 }
  982                 l2b->l2b_phys = vtophys(ptep);
  983                 if (ptep == NULL) {
  984                         /*
  985                          * Oops, no more L2 page tables available at this
  986                          * time. We may need to deallocate the l2_dtable
  987                          * if we allocated a new one above.
  988                          */
  989                         if (l2->l2_occupancy == 0) {
  990                                 pm->pm_l2[L2_IDX(l1idx)] = NULL;
  991                                 pmap_free_l2_dtable(l2);
  992                         }
  993                         return (NULL);
  994                 }
  995 
  996                 l2->l2_occupancy++;
  997                 l2b->l2b_kva = ptep;
  998                 l2b->l2b_l1idx = l1idx;
  999         }
 1000 
 1001         return (l2b);
 1002 }
 1003 
 1004 static PMAP_INLINE void
 1005 #ifndef PMAP_INCLUDE_PTE_SYNC
 1006 pmap_free_l2_ptp(pt_entry_t *l2)
 1007 #else
 1008 pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2)
 1009 #endif
 1010 {
 1011 #ifdef PMAP_INCLUDE_PTE_SYNC
 1012         /*
 1013          * Note: With a write-back cache, we may need to sync this
 1014          * L2 table before re-using it.
 1015          * This is because it may have belonged to a non-current
 1016          * pmap, in which case the cache syncs would have been
 1017          * skipped when the pages were being unmapped. If the
 1018          * L2 table were then to be immediately re-allocated to
 1019          * the *current* pmap, it may well contain stale mappings
 1020          * which have not yet been cleared by a cache write-back
 1021          * and so would still be visible to the mmu.
 1022          */
 1023         if (need_sync)
 1024                 PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
 1025 #endif
 1026         uma_zfree(l2zone, l2);
 1027 }
 1028 /*
 1029  * One or more mappings in the specified L2 descriptor table have just been
 1030  * invalidated.
 1031  *
 1032  * Garbage collect the metadata and descriptor table itself if necessary.
 1033  *
 1034  * The pmap lock must be acquired when this is called (not necessary
 1035  * for the kernel pmap).
 1036  */
 1037 static void
 1038 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
 1039 {
 1040         struct l2_dtable *l2;
 1041         pd_entry_t *pl1pd, l1pd;
 1042         pt_entry_t *ptep;
 1043         u_short l1idx;
 1044 
 1045 
 1046         /*
 1047          * Update the bucket's reference count according to how many
 1048          * PTEs the caller has just invalidated.
 1049          */
 1050         l2b->l2b_occupancy -= count;
 1051 
 1052         /*
 1053          * Note:
 1054          *
 1055          * Level 2 page tables allocated to the kernel pmap are never freed
 1056          * as that would require checking all Level 1 page tables and
 1057          * removing any references to the Level 2 page table. See also the
 1058          * comment elsewhere about never freeing bootstrap L2 descriptors.
 1059          *
 1060          * We make do with just invalidating the mapping in the L2 table.
 1061          *
 1062          * This isn't really a big deal in practice and, in fact, leads
 1063          * to a performance win over time as we don't need to continually
 1064          * alloc/free.
 1065          */
 1066         if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
 1067                 return;
 1068 
 1069         /*
 1070          * There are no more valid mappings in this level 2 page table.
 1071          * Go ahead and NULL-out the pointer in the bucket, then
 1072          * free the page table.
 1073          */
 1074         l1idx = l2b->l2b_l1idx;
 1075         ptep = l2b->l2b_kva;
 1076         l2b->l2b_kva = NULL;
 1077 
 1078         pl1pd = &pm->pm_l1->l1_kva[l1idx];
 1079 
 1080         /*
 1081          * If the L1 slot matches the pmap's domain
 1082          * number, then invalidate it.
 1083          */
 1084         l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
 1085         if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
 1086                 *pl1pd = 0;
 1087                 PTE_SYNC(pl1pd);
 1088         }
 1089 
 1090         /*
 1091          * Release the L2 descriptor table back to the pool cache.
 1092          */
 1093 #ifndef PMAP_INCLUDE_PTE_SYNC
 1094         pmap_free_l2_ptp(ptep);
 1095 #else
 1096         pmap_free_l2_ptp(!pmap_is_current(pm), ptep);
 1097 #endif
 1098 
 1099         /*
 1100          * Update the reference count in the associated l2_dtable
 1101          */
 1102         l2 = pm->pm_l2[L2_IDX(l1idx)];
 1103         if (--l2->l2_occupancy > 0)
 1104                 return;
 1105 
 1106         /*
 1107          * There are no more valid mappings in any of the Level 1
 1108          * slots managed by this l2_dtable. Go ahead and NULL-out
 1109          * the pointer in the parent pmap and free the l2_dtable.
 1110          */
 1111         pm->pm_l2[L2_IDX(l1idx)] = NULL;
 1112         pmap_free_l2_dtable(l2);
 1113 }
 1114 
 1115 /*
 1116  * Pool cache constructors for L2 descriptor tables, metadata and pmap
 1117  * structures.
 1118  */
 1119 static int
 1120 pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
 1121 {
 1122 #ifndef PMAP_INCLUDE_PTE_SYNC
 1123         struct l2_bucket *l2b;
 1124         pt_entry_t *ptep, pte;
 1125 #ifdef ARM_USE_SMALL_ALLOC
 1126         pd_entry_t *pde;
 1127 #endif
 1128         vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
 1129 
 1130         /*
 1131          * The mappings for these page tables were initially made using
 1132          * pmap_kenter() by the pool subsystem. Therefore, the cache-
 1133          * mode will not be right for page table mappings. To avoid
 1134          * polluting the pmap_kenter() code with a special case for
 1135          * page tables, we simply fix up the cache-mode here if it's not
 1136          * correct.
 1137          */
 1138 #ifdef ARM_USE_SMALL_ALLOC
 1139         pde = &kernel_pmap->pm_l1->l1_kva[L1_IDX(va)];
 1140         if (!l1pte_section_p(*pde)) {
 1141 #endif
 1142                 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
 1143                 ptep = &l2b->l2b_kva[l2pte_index(va)];
 1144                 pte = *ptep;
 1145                 
 1146                 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
 1147                         /*
 1148                          * Page tables must have the cache-mode set to 
 1149                          * Write-Thru.
 1150                          */
 1151                         *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
 1152                         PTE_SYNC(ptep);
 1153                         cpu_tlb_flushD_SE(va);
 1154                         cpu_cpwait();
 1155                 }
 1156 #ifdef ARM_USE_SMALL_ALLOC
 1157         }
 1158 #endif
 1159 #endif
 1160         memset(mem, 0, L2_TABLE_SIZE_REAL);
 1161         PTE_SYNC_RANGE(mem, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
 1162         return (0);
 1163 }
 1164 
 1165 /*
 1166  * A bunch of routines to conditionally flush the caches/TLB depending
 1167  * on whether the specified pmap actually needs to be flushed at any
 1168  * given time.
 1169  */
 1170 static PMAP_INLINE void
 1171 pmap_tlb_flushID_SE(pmap_t pm, vm_offset_t va)
 1172 {
 1173 
 1174         if (pmap_is_current(pm))
 1175                 cpu_tlb_flushID_SE(va);
 1176 }
 1177 
 1178 static PMAP_INLINE void
 1179 pmap_tlb_flushD_SE(pmap_t pm, vm_offset_t va)
 1180 {
 1181 
 1182         if (pmap_is_current(pm))
 1183                 cpu_tlb_flushD_SE(va);
 1184 }
 1185 
 1186 static PMAP_INLINE void
 1187 pmap_tlb_flushID(pmap_t pm)
 1188 {
 1189 
 1190         if (pmap_is_current(pm))
 1191                 cpu_tlb_flushID();
 1192 }
 1193 static PMAP_INLINE void
 1194 pmap_tlb_flushD(pmap_t pm)
 1195 {
 1196 
 1197         if (pmap_is_current(pm))
 1198                 cpu_tlb_flushD();
 1199 }
 1200 
 1201 static PMAP_INLINE void
 1202 pmap_idcache_wbinv_range(pmap_t pm, vm_offset_t va, vm_size_t len)
 1203 {
 1204 
 1205         if (pmap_is_current(pm))
 1206                 cpu_idcache_wbinv_range(va, len);
 1207 }
 1208 
 1209 static PMAP_INLINE void
 1210 pmap_dcache_wb_range(pmap_t pm, vm_offset_t va, vm_size_t len,
 1211     boolean_t do_inv, boolean_t rd_only)
 1212 {
 1213 
 1214         if (pmap_is_current(pm)) {
 1215                 if (do_inv) {
 1216                         if (rd_only)
 1217                                 cpu_dcache_inv_range(va, len);
 1218                         else
 1219                                 cpu_dcache_wbinv_range(va, len);
 1220                 } else
 1221                 if (!rd_only)
 1222                         cpu_dcache_wb_range(va, len);
 1223         }
 1224 }
 1225 
 1226 static PMAP_INLINE void
 1227 pmap_idcache_wbinv_all(pmap_t pm)
 1228 {
 1229 
 1230         if (pmap_is_current(pm))
 1231                 cpu_idcache_wbinv_all();
 1232 }
 1233 
 1234 static PMAP_INLINE void
 1235 pmap_dcache_wbinv_all(pmap_t pm)
 1236 {
 1237 
 1238         if (pmap_is_current(pm))
 1239                 cpu_dcache_wbinv_all();
 1240 }
 1241 
 1242 /*
 1243  * PTE_SYNC_CURRENT:
 1244  *
 1245  *     Make sure the pte is written out to RAM.
 1246  *     We need to do this for one of two cases:
 1247  *       - We're dealing with the kernel pmap
 1248  *       - There is no pmap active in the cache/tlb.
 1249  *       - The specified pmap is 'active' in the cache/tlb.
 1250  */
 1251 #ifdef PMAP_INCLUDE_PTE_SYNC
 1252 #define PTE_SYNC_CURRENT(pm, ptep)      \
 1253 do {                                    \
 1254         if (PMAP_NEEDS_PTE_SYNC &&      \
 1255             pmap_is_current(pm))        \
 1256                 PTE_SYNC(ptep);         \
 1257 } while (/*CONSTCOND*/0)
 1258 #else
 1259 #define PTE_SYNC_CURRENT(pm, ptep)      /* nothing */
 1260 #endif
 1261 
 1262 /*
 1263  * Since we have a virtually indexed cache, we may need to inhibit caching if
 1264  * there is more than one mapping and at least one of them is writable.
 1265  * Since we purge the cache on every context switch, we only need to check for
 1266  * other mappings within the same pmap, or kernel_pmap.
 1267  * This function is also called when a page is unmapped, to possibly reenable
 1268  * caching on any remaining mappings.
 1269  *
 1270  * The code implements the following logic, where:
 1271  *
 1272  * KW = # of kernel read/write pages
 1273  * KR = # of kernel read only pages
 1274  * UW = # of user read/write pages
 1275  * UR = # of user read only pages
 1276  * 
 1277  * KC = kernel mapping is cacheable
 1278  * UC = user mapping is cacheable
 1279  *
 1280  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
 1281  *             +---------------------------------------------
 1282  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
 1283  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
 1284  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
 1285  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
 1286  */
 1287 
 1288 static const int pmap_vac_flags[4][4] = {
 1289         {-1,            0,              0,              PVF_KNC},
 1290         {0,             0,              PVF_NC,         PVF_NC},
 1291         {0,             PVF_NC,         PVF_NC,         PVF_NC},
 1292         {PVF_UNC,       PVF_NC,         PVF_NC,         PVF_NC}
 1293 };
 1294 
 1295 static PMAP_INLINE int
 1296 pmap_get_vac_flags(const struct vm_page *pg)
 1297 {
 1298         int kidx, uidx;
 1299 
 1300         kidx = 0;
 1301         if (pg->md.kro_mappings || pg->md.krw_mappings > 1)
 1302                 kidx |= 1;
 1303         if (pg->md.krw_mappings)
 1304                 kidx |= 2;
 1305 
 1306         uidx = 0;
 1307         if (pg->md.uro_mappings || pg->md.urw_mappings > 1)
 1308                 uidx |= 1;
 1309         if (pg->md.urw_mappings)
 1310                 uidx |= 2;
 1311 
 1312         return (pmap_vac_flags[uidx][kidx]);
 1313 }
 1314 
 1315 static __inline void
 1316 pmap_vac_me_harder(struct vm_page *pg, pmap_t pm, vm_offset_t va)
 1317 {
 1318         int nattr;
 1319 
 1320         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1321         nattr = pmap_get_vac_flags(pg);
 1322 
 1323         if (nattr < 0) {
 1324                 pg->md.pvh_attrs &= ~PVF_NC;
 1325                 return;
 1326         }
 1327 
 1328         if (nattr == 0 && (pg->md.pvh_attrs & PVF_NC) == 0) {
 1329                 return;
 1330         }
 1331 
 1332         if (pm == pmap_kernel())
 1333                 pmap_vac_me_kpmap(pg, pm, va);
 1334         else
 1335                 pmap_vac_me_user(pg, pm, va);
 1336 
 1337         pg->md.pvh_attrs = (pg->md.pvh_attrs & ~PVF_NC) | nattr;
 1338 }
 1339 
 1340 static void
 1341 pmap_vac_me_kpmap(struct vm_page *pg, pmap_t pm, vm_offset_t va)
 1342 {
 1343         u_int u_cacheable, u_entries;
 1344         struct pv_entry *pv;
 1345         pmap_t last_pmap = pm;
 1346 
 1347         /* 
 1348          * Pass one, see if there are both kernel and user pmaps for
 1349          * this page.  Calculate whether there are user-writable or
 1350          * kernel-writable pages.
 1351          */
 1352         u_cacheable = 0;
 1353         TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
 1354                 if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
 1355                         u_cacheable++;
 1356         }
 1357 
 1358         u_entries = pg->md.urw_mappings + pg->md.uro_mappings;
 1359 
 1360         /* 
 1361          * We know we have just been updating a kernel entry, so if
 1362          * all user pages are already cacheable, then there is nothing
 1363          * further to do.
 1364          */
 1365         if (pg->md.k_mappings == 0 && u_cacheable == u_entries)
 1366                 return;
 1367 
 1368         if (u_entries) {
 1369                 /* 
 1370                  * Scan over the list again, for each entry, if it
 1371                  * might not be set correctly, call pmap_vac_me_user
 1372                  * to recalculate the settings.
 1373                  */
 1374                 TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
 1375                         /* 
 1376                          * We know kernel mappings will get set
 1377                          * correctly in other calls.  We also know
 1378                          * that if the pmap is the same as last_pmap
 1379                          * then we've just handled this entry.
 1380                          */
 1381                         if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
 1382                                 continue;
 1383 
 1384                         /* 
 1385                          * If there are kernel entries and this page
 1386                          * is writable but non-cacheable, then we can
 1387                          * skip this entry also.  
 1388                          */
 1389                         if (pg->md.k_mappings &&
 1390                             (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
 1391                             (PVF_NC | PVF_WRITE))
 1392                                 continue;
 1393 
 1394                         /* 
 1395                          * Similarly if there are no kernel-writable 
 1396                          * entries and the page is already 
 1397                          * read-only/cacheable.
 1398                          */
 1399                         if (pg->md.krw_mappings == 0 &&
 1400                             (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
 1401                                 continue;
 1402 
 1403                         /* 
 1404                          * For some of the remaining cases, we know
 1405                          * that we must recalculate, but for others we
 1406                          * can't tell if they are correct or not, so
 1407                          * we recalculate anyway.
 1408                          */
 1409                         pmap_vac_me_user(pg, (last_pmap = pv->pv_pmap), 0);
 1410                 }
 1411 
 1412                 if (pg->md.k_mappings == 0)
 1413                         return;
 1414         }
 1415 
 1416         pmap_vac_me_user(pg, pm, va);
 1417 }
 1418 
 1419 static void
 1420 pmap_vac_me_user(struct vm_page *pg, pmap_t pm, vm_offset_t va)
 1421 {
 1422         pmap_t kpmap = pmap_kernel();
 1423         struct pv_entry *pv, *npv;
 1424         struct l2_bucket *l2b;
 1425         pt_entry_t *ptep, pte;
 1426         u_int entries = 0;
 1427         u_int writable = 0;
 1428         u_int cacheable_entries = 0;
 1429         u_int kern_cacheable = 0;
 1430         u_int other_writable = 0;
 1431 
 1432         /*
 1433          * Count mappings and writable mappings in this pmap.
 1434          * Include kernel mappings as part of our own.
 1435          * Keep a pointer to the first one.
 1436          */
 1437         npv = TAILQ_FIRST(&pg->md.pv_list);
 1438         TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
 1439                 /* Count mappings in the same pmap */
 1440                 if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
 1441                         if (entries++ == 0)
 1442                                 npv = pv;
 1443 
 1444                         /* Cacheable mappings */
 1445                         if ((pv->pv_flags & PVF_NC) == 0) {
 1446                                 cacheable_entries++;
 1447                                 if (kpmap == pv->pv_pmap)
 1448                                         kern_cacheable++;
 1449                         }
 1450 
 1451                         /* Writable mappings */
 1452                         if (pv->pv_flags & PVF_WRITE)
 1453                                 ++writable;
 1454                 } else
 1455                 if (pv->pv_flags & PVF_WRITE)
 1456                         other_writable = 1;
 1457         }
 1458 
 1459         /*
 1460          * Enable or disable caching as necessary.
 1461          * Note: the first entry might be part of the kernel pmap,
 1462          * so we can't assume this is indicative of the state of the
 1463          * other (maybe non-kpmap) entries.
 1464          */
 1465         if ((entries > 1 && writable) ||
 1466             (entries > 0 && pm == kpmap && other_writable)) {
 1467                 if (cacheable_entries == 0)
 1468                         return;
 1469 
 1470                 for (pv = npv; pv; pv = TAILQ_NEXT(pv, pv_list)) {
 1471                         if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
 1472                             (pv->pv_flags & PVF_NC))
 1473                                 continue;
 1474 
 1475                         pv->pv_flags |= PVF_NC;
 1476 
 1477                         l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
 1478                         ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
 1479                         pte = *ptep & ~L2_S_CACHE_MASK;
 1480 
 1481                         if ((va != pv->pv_va || pm != pv->pv_pmap) &&
 1482                             l2pte_valid(pte)) {
 1483                                 if (PV_BEEN_EXECD(pv->pv_flags)) {
 1484                                         pmap_idcache_wbinv_range(pv->pv_pmap,
 1485                                             pv->pv_va, PAGE_SIZE);
 1486                                         pmap_tlb_flushID_SE(pv->pv_pmap,
 1487                                             pv->pv_va);
 1488                                 } else
 1489                                 if (PV_BEEN_REFD(pv->pv_flags)) {
 1490                                         pmap_dcache_wb_range(pv->pv_pmap,
 1491                                             pv->pv_va, PAGE_SIZE, TRUE,
 1492                                             (pv->pv_flags & PVF_WRITE) == 0);
 1493                                         pmap_tlb_flushD_SE(pv->pv_pmap,
 1494                                             pv->pv_va);
 1495                                 }
 1496                         }
 1497 
 1498                         *ptep = pte;
 1499                         PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
 1500                 }
 1501                 cpu_cpwait();
 1502         } else
 1503         if (entries > cacheable_entries) {
 1504                 /*
 1505                  * Turn cacheing back on for some pages.  If it is a kernel
 1506                  * page, only do so if there are no other writable pages.
 1507                  */
 1508                 for (pv = npv; pv; pv = TAILQ_NEXT(pv, pv_list)) {
 1509                         if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
 1510                             (kpmap != pv->pv_pmap || other_writable)))
 1511                                 continue;
 1512 
 1513                         pv->pv_flags &= ~PVF_NC;
 1514 
 1515                         l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
 1516                         ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
 1517                         pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode;
 1518 
 1519                         if (l2pte_valid(pte)) {
 1520                                 if (PV_BEEN_EXECD(pv->pv_flags)) {
 1521                                         pmap_tlb_flushID_SE(pv->pv_pmap,
 1522                                             pv->pv_va);
 1523                                 } else
 1524                                 if (PV_BEEN_REFD(pv->pv_flags)) {
 1525                                         pmap_tlb_flushD_SE(pv->pv_pmap,
 1526                                             pv->pv_va);
 1527                                 }
 1528                         }
 1529 
 1530                         *ptep = pte;
 1531                         PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
 1532                 }
 1533         }
 1534 }
 1535 
 1536 /*
 1537  * Modify pte bits for all ptes corresponding to the given physical address.
 1538  * We use `maskbits' rather than `clearbits' because we're always passing
 1539  * constants and the latter would require an extra inversion at run-time.
 1540  */
 1541 static int 
 1542 pmap_clearbit(struct vm_page *pg, u_int maskbits)
 1543 {
 1544         struct l2_bucket *l2b;
 1545         struct pv_entry *pv;
 1546         pt_entry_t *ptep, npte, opte;
 1547         pmap_t pm;
 1548         vm_offset_t va;
 1549         u_int oflags;
 1550         int count = 0;
 1551 
 1552         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1553 
 1554         /*
 1555          * Clear saved attributes (modify, reference)
 1556          */
 1557         pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
 1558 
 1559         if (TAILQ_EMPTY(&pg->md.pv_list)) {
 1560                 return (0);
 1561         }
 1562 
 1563         /*
 1564          * Loop over all current mappings setting/clearing as appropos
 1565          */
 1566         TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
 1567                 va = pv->pv_va;
 1568                 pm = pv->pv_pmap;
 1569                 oflags = pv->pv_flags;
 1570                 pv->pv_flags &= ~maskbits;
 1571 
 1572                 PMAP_LOCK(pm);
 1573 
 1574                 l2b = pmap_get_l2_bucket(pm, va);
 1575 
 1576                 ptep = &l2b->l2b_kva[l2pte_index(va)];
 1577                 npte = opte = *ptep;
 1578 
 1579                 if (maskbits & (PVF_WRITE|PVF_MOD)) {
 1580                         if ((pv->pv_flags & PVF_NC)) {
 1581                                 /* 
 1582                                  * Entry is not cacheable:
 1583                                  *
 1584                                  * Don't turn caching on again if this is a 
 1585                                  * modified emulation. This would be
 1586                                  * inconsitent with the settings created by
 1587                                  * pmap_vac_me_harder(). Otherwise, it's safe
 1588                                  * to re-enable cacheing.
 1589                                  *
 1590                                  * There's no need to call pmap_vac_me_harder()
 1591                                  * here: all pages are losing their write
 1592                                  * permission.
 1593                                  */
 1594                                 if (maskbits & PVF_WRITE) {
 1595                                         npte |= pte_l2_s_cache_mode;
 1596                                         pv->pv_flags &= ~PVF_NC;
 1597                                 }
 1598                         } else
 1599                         if (opte & L2_S_PROT_W) {
 1600                                 vm_page_dirty(pg);
 1601                                 /* 
 1602                                  * Entry is writable/cacheable: check if pmap
 1603                                  * is current if it is flush it, otherwise it
 1604                                  * won't be in the cache
 1605                                  */
 1606                                 if (PV_BEEN_EXECD(oflags))
 1607                                         pmap_idcache_wbinv_range(pm, pv->pv_va,
 1608                                             PAGE_SIZE);
 1609                                 else
 1610                                 if (PV_BEEN_REFD(oflags))
 1611                                         pmap_dcache_wb_range(pm, pv->pv_va,
 1612                                             PAGE_SIZE,
 1613                                             (maskbits & PVF_REF) ? TRUE : FALSE,
 1614                                             FALSE);
 1615                         }
 1616 
 1617                         /* make the pte read only */
 1618                         npte &= ~L2_S_PROT_W;
 1619 
 1620                         if (maskbits & PVF_WRITE) {
 1621                                 /*
 1622                                  * Keep alias accounting up to date
 1623                                  */
 1624                                 if (pv->pv_pmap == pmap_kernel()) {
 1625                                         if (oflags & PVF_WRITE) {
 1626                                                 pg->md.krw_mappings--;
 1627                                                 pg->md.kro_mappings++;
 1628                                         }
 1629                                 } else
 1630                                 if (oflags & PVF_WRITE) {
 1631                                         pg->md.urw_mappings--;
 1632                                         pg->md.uro_mappings++;
 1633                                 }
 1634                         }
 1635                 }
 1636 
 1637                 if (maskbits & PVF_REF) {
 1638                         if ((pv->pv_flags & PVF_NC) == 0 &&
 1639                             (maskbits & (PVF_WRITE|PVF_MOD)) == 0) {
 1640                                 /*
 1641                                  * Check npte here; we may have already
 1642                                  * done the wbinv above, and the validity
 1643                                  * of the PTE is the same for opte and
 1644                                  * npte.
 1645                                  */
 1646                                 if (npte & L2_S_PROT_W) {
 1647                                         if (PV_BEEN_EXECD(oflags))
 1648                                                 pmap_idcache_wbinv_range(pm,
 1649                                                     pv->pv_va, PAGE_SIZE);
 1650                                         else
 1651                                         if (PV_BEEN_REFD(oflags))
 1652                                                 pmap_dcache_wb_range(pm,
 1653                                                     pv->pv_va, PAGE_SIZE,
 1654                                                     TRUE, FALSE);
 1655                                 } else
 1656                                 if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) {
 1657                                         /* XXXJRT need idcache_inv_range */
 1658                                         if (PV_BEEN_EXECD(oflags))
 1659                                                 pmap_idcache_wbinv_range(pm,
 1660                                                     pv->pv_va, PAGE_SIZE);
 1661                                         else
 1662                                         if (PV_BEEN_REFD(oflags))
 1663                                                 pmap_dcache_wb_range(pm,
 1664                                                     pv->pv_va, PAGE_SIZE,
 1665                                                     TRUE, TRUE);
 1666                                 }
 1667                         }
 1668 
 1669                         /*
 1670                          * Make the PTE invalid so that we will take a
 1671                          * page fault the next time the mapping is
 1672                          * referenced.
 1673                          */
 1674                         npte &= ~L2_TYPE_MASK;
 1675                         npte |= L2_TYPE_INV;
 1676                 }
 1677 
 1678                 if (npte != opte) {
 1679                         count++;
 1680                         *ptep = npte;
 1681                         PTE_SYNC(ptep);
 1682                         /* Flush the TLB entry if a current pmap. */
 1683                         if (PV_BEEN_EXECD(oflags))
 1684                                 pmap_tlb_flushID_SE(pm, pv->pv_va);
 1685                         else
 1686                         if (PV_BEEN_REFD(oflags))
 1687                                 pmap_tlb_flushD_SE(pm, pv->pv_va);
 1688                 }
 1689 
 1690                 PMAP_UNLOCK(pm);
 1691 
 1692         }
 1693 
 1694         if (maskbits & PVF_WRITE)
 1695                 vm_page_flag_clear(pg, PG_WRITEABLE);
 1696         return (count);
 1697 }
 1698 
 1699 /*
 1700  * main pv_entry manipulation functions:
 1701  *   pmap_enter_pv: enter a mapping onto a vm_page list
 1702  *   pmap_remove_pv: remove a mappiing from a vm_page list
 1703  *
 1704  * NOTE: pmap_enter_pv expects to lock the pvh itself
 1705  *       pmap_remove_pv expects te caller to lock the pvh before calling
 1706  */
 1707 
 1708 /*
 1709  * pmap_enter_pv: enter a mapping onto a vm_page lst
 1710  *
 1711  * => caller should hold the proper lock on pmap_main_lock
 1712  * => caller should have pmap locked
 1713  * => we will gain the lock on the vm_page and allocate the new pv_entry
 1714  * => caller should adjust ptp's wire_count before calling
 1715  * => caller should not adjust pmap's wire_count
 1716  */
 1717 static void
 1718 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
 1719     vm_offset_t va, u_int flags)
 1720 {
 1721 
 1722         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1723         PMAP_ASSERT_LOCKED(pm);
 1724         pve->pv_pmap = pm;
 1725         pve->pv_va = va;
 1726         pve->pv_flags = flags;
 1727 
 1728         TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
 1729         TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist);
 1730         pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
 1731         if (pm == pmap_kernel()) {
 1732                 if (flags & PVF_WRITE)
 1733                         pg->md.krw_mappings++;
 1734                 else
 1735                         pg->md.kro_mappings++;
 1736         } 
 1737         if (flags & PVF_WRITE)
 1738                 pg->md.urw_mappings++;
 1739         else
 1740                 pg->md.uro_mappings++;
 1741         pg->md.pv_list_count++;
 1742         if (pve->pv_flags & PVF_WIRED)
 1743                 ++pm->pm_stats.wired_count;
 1744         vm_page_flag_set(pg, PG_REFERENCED);
 1745 }
 1746 
 1747 /*
 1748  *
 1749  * pmap_find_pv: Find a pv entry
 1750  *
 1751  * => caller should hold lock on vm_page
 1752  */
 1753 static PMAP_INLINE struct pv_entry *
 1754 pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
 1755 {
 1756         struct pv_entry *pv;
 1757 
 1758         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1759         TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list)
 1760             if (pm == pv->pv_pmap && va == pv->pv_va)
 1761                     break;
 1762         return (pv);
 1763 }
 1764 
 1765 /*
 1766  * vector_page_setprot:
 1767  *
 1768  *      Manipulate the protection of the vector page.
 1769  */
 1770 void
 1771 vector_page_setprot(int prot)
 1772 {
 1773         struct l2_bucket *l2b;
 1774         pt_entry_t *ptep;
 1775 
 1776         l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
 1777 
 1778         ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
 1779 
 1780         *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
 1781         PTE_SYNC(ptep);
 1782         cpu_tlb_flushD_SE(vector_page);
 1783         cpu_cpwait();
 1784 }
 1785 
 1786 /*
 1787  * pmap_remove_pv: try to remove a mapping from a pv_list
 1788  *
 1789  * => caller should hold proper lock on pmap_main_lock
 1790  * => pmap should be locked
 1791  * => caller should hold lock on vm_page [so that attrs can be adjusted]
 1792  * => caller should adjust ptp's wire_count and free PTP if needed
 1793  * => caller should NOT adjust pmap's wire_count
 1794  * => we return the removed pve
 1795  */
 1796 
 1797 static void
 1798 pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve)
 1799 {
 1800 
 1801         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1802         PMAP_ASSERT_LOCKED(pm);
 1803         TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list);
 1804         TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist);
 1805         if (pve->pv_flags & PVF_WIRED)
 1806                 --pm->pm_stats.wired_count;
 1807         pg->md.pv_list_count--;
 1808         if (pg->md.pvh_attrs & PVF_MOD)
 1809                 vm_page_dirty(pg);
 1810         if (pm == pmap_kernel()) {
 1811                 if (pve->pv_flags & PVF_WRITE)
 1812                         pg->md.krw_mappings--;
 1813                 else
 1814                         pg->md.kro_mappings--;
 1815         } else
 1816                 if (pve->pv_flags & PVF_WRITE)
 1817                         pg->md.urw_mappings--;
 1818                 else
 1819                         pg->md.uro_mappings--;
 1820         if (TAILQ_FIRST(&pg->md.pv_list) == NULL ||
 1821             (pg->md.krw_mappings == 0 && pg->md.urw_mappings == 0)) {
 1822                 pg->md.pvh_attrs &= ~PVF_MOD;
 1823                 if (TAILQ_FIRST(&pg->md.pv_list) == NULL)
 1824                         pg->md.pvh_attrs &= ~PVF_REF;
 1825                 vm_page_flag_clear(pg, PG_WRITEABLE);
 1826         }
 1827         if (TAILQ_FIRST(&pg->md.pv_list))
 1828                 vm_page_flag_set(pg, PG_REFERENCED);
 1829         if (pve->pv_flags & PVF_WRITE)
 1830                 pmap_vac_me_harder(pg, pm, 0);
 1831 }
 1832 
 1833 static struct pv_entry *
 1834 pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
 1835 {
 1836         struct pv_entry *pve;
 1837 
 1838         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1839         pve = TAILQ_FIRST(&pg->md.pv_list);
 1840 
 1841         while (pve) {
 1842                 if (pve->pv_pmap == pm && pve->pv_va == va) {   /* match? */
 1843                         pmap_nuke_pv(pg, pm, pve);
 1844                         break;
 1845                 }
 1846                 pve = TAILQ_NEXT(pve, pv_list);
 1847         }
 1848 
 1849         return(pve);                            /* return removed pve */
 1850 }
 1851 /*
 1852  *
 1853  * pmap_modify_pv: Update pv flags
 1854  *
 1855  * => caller should hold lock on vm_page [so that attrs can be adjusted]
 1856  * => caller should NOT adjust pmap's wire_count
 1857  * => caller must call pmap_vac_me_harder() if writable status of a page
 1858  *    may have changed.
 1859  * => we return the old flags
 1860  * 
 1861  * Modify a physical-virtual mapping in the pv table
 1862  */
 1863 static u_int
 1864 pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va,
 1865     u_int clr_mask, u_int set_mask)
 1866 {
 1867         struct pv_entry *npv;
 1868         u_int flags, oflags;
 1869 
 1870         PMAP_ASSERT_LOCKED(pm);
 1871         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 1872         if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
 1873                 return (0);
 1874 
 1875         /*
 1876          * There is at least one VA mapping this page.
 1877          */
 1878 
 1879         if (clr_mask & (PVF_REF | PVF_MOD))
 1880                 pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
 1881 
 1882         oflags = npv->pv_flags;
 1883         npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
 1884 
 1885         if ((flags ^ oflags) & PVF_WIRED) {
 1886                 if (flags & PVF_WIRED)
 1887                         ++pm->pm_stats.wired_count;
 1888                 else
 1889                         --pm->pm_stats.wired_count;
 1890         }
 1891 
 1892         if ((flags ^ oflags) & PVF_WRITE) {
 1893                 if (pm == pmap_kernel()) {
 1894                         if (flags & PVF_WRITE) {
 1895                                 pg->md.krw_mappings++;
 1896                                 pg->md.kro_mappings--;
 1897                         } else {
 1898                                 pg->md.kro_mappings++;
 1899                                 pg->md.krw_mappings--;
 1900                         }
 1901                 } else
 1902                 if (flags & PVF_WRITE) {
 1903                         pg->md.urw_mappings++;
 1904                         pg->md.uro_mappings--;
 1905                 } else {
 1906                         pg->md.uro_mappings++;
 1907                         pg->md.urw_mappings--;
 1908                 }
 1909                 if (pg->md.krw_mappings == 0 && pg->md.urw_mappings == 0) {
 1910                         pg->md.pvh_attrs &= ~PVF_MOD;
 1911                         vm_page_flag_clear(pg, PG_WRITEABLE);
 1912                 }
 1913                 pmap_vac_me_harder(pg, pm, 0);
 1914         }
 1915 
 1916         return (oflags);
 1917 }
 1918 
 1919 /* Function to set the debug level of the pmap code */
 1920 #ifdef PMAP_DEBUG
 1921 void
 1922 pmap_debug(int level)
 1923 {
 1924         pmap_debug_level = level;
 1925         dprintf("pmap_debug: level=%d\n", pmap_debug_level);
 1926 }
 1927 #endif  /* PMAP_DEBUG */
 1928 
 1929 void
 1930 pmap_pinit0(struct pmap *pmap)
 1931 {
 1932         PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
 1933 
 1934         dprintf("pmap_pinit0: pmap = %08x, pm_pdir = %08x\n",
 1935                 (u_int32_t) pmap, (u_int32_t) pmap->pm_pdir);
 1936         bcopy(kernel_pmap, pmap, sizeof(*pmap));
 1937         bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx));
 1938         PMAP_LOCK_INIT(pmap);
 1939 }
 1940 
 1941 /*
 1942  *      Initialize a vm_page's machine-dependent fields.
 1943  */
 1944 void
 1945 pmap_page_init(vm_page_t m)
 1946 {
 1947 
 1948         TAILQ_INIT(&m->md.pv_list);
 1949         m->md.pv_list_count = 0;
 1950 }
 1951 
 1952 /*
 1953  *      Initialize the pmap module.
 1954  *      Called by vm_init, to initialize any structures that the pmap
 1955  *      system needs to map virtual memory.
 1956  */
 1957 void
 1958 pmap_init(void)
 1959 {
 1960         int shpgperproc = PMAP_SHPGPERPROC;
 1961 
 1962         PDEBUG(1, printf("pmap_init: phys_start = %08x\n"));
 1963 
 1964         /*
 1965          * init the pv free list
 1966          */
 1967         pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL, 
 1968             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
 1969         /*
 1970          * Now it is safe to enable pv_table recording.
 1971          */
 1972         PDEBUG(1, printf("pmap_init: done!\n"));
 1973 
 1974         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
 1975         
 1976         pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
 1977         pv_entry_high_water = 9 * (pv_entry_max / 10);
 1978         l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
 1979             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
 1980         l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable),
 1981             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
 1982             UMA_ZONE_VM | UMA_ZONE_NOFREE);
 1983 
 1984         uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
 1985 
 1986 }
 1987 
 1988 int
 1989 pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user)
 1990 {
 1991         struct l2_dtable *l2;
 1992         struct l2_bucket *l2b;
 1993         pd_entry_t *pl1pd, l1pd;
 1994         pt_entry_t *ptep, pte;
 1995         vm_paddr_t pa;
 1996         u_int l1idx;
 1997         int rv = 0;
 1998 
 1999         l1idx = L1_IDX(va);
 2000         vm_page_lock_queues();
 2001         PMAP_LOCK(pm);
 2002 
 2003         /*
 2004          * If there is no l2_dtable for this address, then the process
 2005          * has no business accessing it.
 2006          *
 2007          * Note: This will catch userland processes trying to access
 2008          * kernel addresses.
 2009          */
 2010         l2 = pm->pm_l2[L2_IDX(l1idx)];
 2011         if (l2 == NULL)
 2012                 goto out;
 2013 
 2014         /*
 2015          * Likewise if there is no L2 descriptor table
 2016          */
 2017         l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
 2018         if (l2b->l2b_kva == NULL)
 2019                 goto out;
 2020 
 2021         /*
 2022          * Check the PTE itself.
 2023          */
 2024         ptep = &l2b->l2b_kva[l2pte_index(va)];
 2025         pte = *ptep;
 2026         if (pte == 0)
 2027                 goto out;
 2028 
 2029         /*
 2030          * Catch a userland access to the vector page mapped at 0x0
 2031          */
 2032         if (user && (pte & L2_S_PROT_U) == 0)
 2033                 goto out;
 2034         if (va == vector_page)
 2035                 goto out;
 2036 
 2037         pa = l2pte_pa(pte);
 2038 
 2039         if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) {
 2040                 /*
 2041                  * This looks like a good candidate for "page modified"
 2042                  * emulation...
 2043                  */
 2044                 struct pv_entry *pv;
 2045                 struct vm_page *pg;
 2046 
 2047                 /* Extract the physical address of the page */
 2048                 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
 2049                         goto out;
 2050                 }
 2051                 /* Get the current flags for this page. */
 2052 
 2053                 pv = pmap_find_pv(pg, pm, va);
 2054                 if (pv == NULL) {
 2055                         goto out;
 2056                 }
 2057 
 2058                 /*
 2059                  * Do the flags say this page is writable? If not then it
 2060                  * is a genuine write fault. If yes then the write fault is
 2061                  * our fault as we did not reflect the write access in the
 2062                  * PTE. Now we know a write has occurred we can correct this
 2063                  * and also set the modified bit
 2064                  */
 2065                 if ((pv->pv_flags & PVF_WRITE) == 0) {
 2066                         goto out;
 2067                 }
 2068 
 2069                 pg->md.pvh_attrs |= PVF_REF | PVF_MOD;
 2070                 vm_page_dirty(pg);
 2071                 pv->pv_flags |= PVF_REF | PVF_MOD;
 2072 
 2073                 /* 
 2074                  * Re-enable write permissions for the page.  No need to call
 2075                  * pmap_vac_me_harder(), since this is just a
 2076                  * modified-emulation fault, and the PVF_WRITE bit isn't
 2077                  * changing. We've already set the cacheable bits based on
 2078                  * the assumption that we can write to this page.
 2079                  */
 2080                 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
 2081                 PTE_SYNC(ptep);
 2082                 rv = 1;
 2083         } else
 2084         if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
 2085                 /*
 2086                  * This looks like a good candidate for "page referenced"
 2087                  * emulation.
 2088                  */
 2089                 struct pv_entry *pv;
 2090                 struct vm_page *pg;
 2091 
 2092                 /* Extract the physical address of the page */
 2093                 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
 2094                         goto out;
 2095                 /* Get the current flags for this page. */
 2096 
 2097                 pv = pmap_find_pv(pg, pm, va);
 2098                 if (pv == NULL)
 2099                         goto out;
 2100 
 2101                 pg->md.pvh_attrs |= PVF_REF;
 2102                 pv->pv_flags |= PVF_REF;
 2103 
 2104 
 2105                 *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
 2106                 PTE_SYNC(ptep);
 2107                 rv = 1;
 2108         }
 2109 
 2110         /*
 2111          * We know there is a valid mapping here, so simply
 2112          * fix up the L1 if necessary.
 2113          */
 2114         pl1pd = &pm->pm_l1->l1_kva[l1idx];
 2115         l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
 2116         if (*pl1pd != l1pd) {
 2117                 *pl1pd = l1pd;
 2118                 PTE_SYNC(pl1pd);
 2119                 rv = 1;
 2120         }
 2121 
 2122 #ifdef CPU_SA110
 2123         /*
 2124          * There are bugs in the rev K SA110.  This is a check for one
 2125          * of them.
 2126          */
 2127         if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
 2128             curcpu()->ci_arm_cpurev < 3) {
 2129                 /* Always current pmap */
 2130                 if (l2pte_valid(pte)) {
 2131                         extern int kernel_debug;
 2132                         if (kernel_debug & 1) {
 2133                                 struct proc *p = curlwp->l_proc;
 2134                                 printf("prefetch_abort: page is already "
 2135                                     "mapped - pte=%p *pte=%08x\n", ptep, pte);
 2136                                 printf("prefetch_abort: pc=%08lx proc=%p "
 2137                                     "process=%s\n", va, p, p->p_comm);
 2138                                 printf("prefetch_abort: far=%08x fs=%x\n",
 2139                                     cpu_faultaddress(), cpu_faultstatus());
 2140                         }
 2141 #ifdef DDB
 2142                         if (kernel_debug & 2)
 2143                                 Debugger();
 2144 #endif
 2145                         rv = 1;
 2146                 }
 2147         }
 2148 #endif /* CPU_SA110 */
 2149 
 2150 #ifdef DEBUG
 2151         /*
 2152          * If 'rv == 0' at this point, it generally indicates that there is a
 2153          * stale TLB entry for the faulting address. This happens when two or
 2154          * more processes are sharing an L1. Since we don't flush the TLB on
 2155          * a context switch between such processes, we can take domain faults
 2156          * for mappings which exist at the same VA in both processes. EVEN IF
 2157          * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
 2158          * example.
 2159          *
 2160          * This is extremely likely to happen if pmap_enter() updated the L1
 2161          * entry for a recently entered mapping. In this case, the TLB is
 2162          * flushed for the new mapping, but there may still be TLB entries for
 2163          * other mappings belonging to other processes in the 1MB range
 2164          * covered by the L1 entry.
 2165          *
 2166          * Since 'rv == 0', we know that the L1 already contains the correct
 2167          * value, so the fault must be due to a stale TLB entry.
 2168          *
 2169          * Since we always need to flush the TLB anyway in the case where we
 2170          * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
 2171          * stale TLB entries dynamically.
 2172          *
 2173          * However, the above condition can ONLY happen if the current L1 is
 2174          * being shared. If it happens when the L1 is unshared, it indicates
 2175          * that other parts of the pmap are not doing their job WRT managing
 2176          * the TLB.
 2177          */
 2178         if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
 2179                 extern int last_fault_code;
 2180                 printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
 2181                     pm, va, ftype);
 2182                 printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
 2183                     l2, l2b, ptep, pl1pd);
 2184                 printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
 2185                     pte, l1pd, last_fault_code);
 2186 #ifdef DDB
 2187                 Debugger();
 2188 #endif
 2189         }
 2190 #endif
 2191 
 2192         cpu_tlb_flushID_SE(va);
 2193         cpu_cpwait();
 2194 
 2195         rv = 1;
 2196 
 2197 out:
 2198         vm_page_unlock_queues();
 2199         PMAP_UNLOCK(pm);
 2200         return (rv);
 2201 }
 2202 
 2203 void
 2204 pmap_postinit(void)
 2205 {
 2206         struct l2_bucket *l2b;
 2207         struct l1_ttable *l1;
 2208         pd_entry_t *pl1pt;
 2209         pt_entry_t *ptep, pte;
 2210         vm_offset_t va, eva;
 2211         u_int loop, needed;
 2212         
 2213         needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
 2214         needed -= 1;
 2215         l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
 2216 
 2217         for (loop = 0; loop < needed; loop++, l1++) {
 2218                 /* Allocate a L1 page table */
 2219                 va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
 2220                     0xffffffff, L1_TABLE_SIZE, 0);
 2221 
 2222                 if (va == 0)
 2223                         panic("Cannot allocate L1 KVM");
 2224 
 2225                 eva = va + L1_TABLE_SIZE;
 2226                 pl1pt = (pd_entry_t *)va;
 2227                 
 2228                 while (va < eva) {
 2229                                 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
 2230                                 ptep = &l2b->l2b_kva[l2pte_index(va)];
 2231                                 pte = *ptep;
 2232                                 pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
 2233                                 *ptep = pte;
 2234                                 PTE_SYNC(ptep);
 2235                                 cpu_tlb_flushD_SE(va);
 2236                                 
 2237                                 va += PAGE_SIZE;
 2238                 }
 2239                 pmap_init_l1(l1, pl1pt);
 2240         }
 2241 
 2242 
 2243 #ifdef DEBUG
 2244         printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
 2245             needed);
 2246 #endif
 2247 }
 2248 
 2249 /*
 2250  * This is used to stuff certain critical values into the PCB where they
 2251  * can be accessed quickly from cpu_switch() et al.
 2252  */
 2253 void
 2254 pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
 2255 {
 2256         struct l2_bucket *l2b;
 2257 
 2258         pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
 2259         pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
 2260             (DOMAIN_CLIENT << (pm->pm_domain * 2));
 2261 
 2262         if (vector_page < KERNBASE) {
 2263                 pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
 2264                 l2b = pmap_get_l2_bucket(pm, vector_page);
 2265                 pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
 2266                     L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
 2267         } else
 2268                 pcb->pcb_pl1vec = NULL;
 2269 }
 2270 
 2271 void
 2272 pmap_activate(struct thread *td)
 2273 {
 2274         pmap_t pm;
 2275         struct pcb *pcb;
 2276 
 2277         pm = vmspace_pmap(td->td_proc->p_vmspace);
 2278         pcb = td->td_pcb;
 2279 
 2280         critical_enter();
 2281         pmap_set_pcb_pagedir(pm, pcb);
 2282 
 2283         if (td == curthread) {
 2284                 u_int cur_dacr, cur_ttb;
 2285 
 2286                 __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
 2287                 __asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
 2288 
 2289                 cur_ttb &= ~(L1_TABLE_SIZE - 1);
 2290 
 2291                 if (cur_ttb == (u_int)pcb->pcb_pagedir &&
 2292                     cur_dacr == pcb->pcb_dacr) {
 2293                         /*
 2294                          * No need to switch address spaces.
 2295                          */
 2296                         critical_exit();
 2297                         return;
 2298                 }
 2299 
 2300 
 2301                 /*
 2302                  * We MUST, I repeat, MUST fix up the L1 entry corresponding
 2303                  * to 'vector_page' in the incoming L1 table before switching
 2304                  * to it otherwise subsequent interrupts/exceptions (including
 2305                  * domain faults!) will jump into hyperspace.
 2306                  */
 2307                 if (pcb->pcb_pl1vec) {
 2308 
 2309                         *pcb->pcb_pl1vec = pcb->pcb_l1vec;
 2310                         /*
 2311                          * Don't need to PTE_SYNC() at this point since
 2312                          * cpu_setttb() is about to flush both the cache
 2313                          * and the TLB.
 2314                          */
 2315                 }
 2316 
 2317                 cpu_domains(pcb->pcb_dacr);
 2318                 cpu_setttb(pcb->pcb_pagedir);
 2319         }
 2320         critical_exit();
 2321 }
 2322 
 2323 static int
 2324 pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
 2325 {
 2326         pd_entry_t *pdep, pde;
 2327         pt_entry_t *ptep, pte;
 2328         vm_offset_t pa;
 2329         int rv = 0;
 2330 
 2331         /*
 2332          * Make sure the descriptor itself has the correct cache mode
 2333          */
 2334         pdep = &kl1[L1_IDX(va)];
 2335         pde = *pdep;
 2336 
 2337         if (l1pte_section_p(pde)) {
 2338                 if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
 2339                         *pdep = (pde & ~L1_S_CACHE_MASK) |
 2340                             pte_l1_s_cache_mode_pt;
 2341                         PTE_SYNC(pdep);
 2342                         cpu_dcache_wbinv_range((vm_offset_t)pdep,
 2343                             sizeof(*pdep));
 2344                         rv = 1;
 2345                 }
 2346         } else {
 2347                 pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
 2348                 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
 2349                 if (ptep == NULL)
 2350                         panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
 2351 
 2352                 ptep = &ptep[l2pte_index(va)];
 2353                 pte = *ptep;
 2354                 if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
 2355                         *ptep = (pte & ~L2_S_CACHE_MASK) |
 2356                             pte_l2_s_cache_mode_pt;
 2357                         PTE_SYNC(ptep);
 2358                         cpu_dcache_wbinv_range((vm_offset_t)ptep,
 2359                             sizeof(*ptep));
 2360                         rv = 1;
 2361                 }
 2362         }
 2363 
 2364         return (rv);
 2365 }
 2366 
 2367 static void
 2368 pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap, 
 2369     pt_entry_t **ptep)
 2370 {
 2371         vm_offset_t va = *availp;
 2372         struct l2_bucket *l2b;
 2373 
 2374         if (ptep) {
 2375                 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
 2376                 if (l2b == NULL)
 2377                         panic("pmap_alloc_specials: no l2b for 0x%x", va);
 2378 
 2379                 *ptep = &l2b->l2b_kva[l2pte_index(va)];
 2380         }
 2381 
 2382         *vap = va;
 2383         *availp = va + (PAGE_SIZE * pages);
 2384 }
 2385 
 2386 /*
 2387  *      Bootstrap the system enough to run with virtual memory.
 2388  *
 2389  *      On the arm this is called after mapping has already been enabled
 2390  *      and just syncs the pmap module with what has already been done.
 2391  *      [We can't call it easily with mapping off since the kernel is not
 2392  *      mapped with PA == VA, hence we would have to relocate every address
 2393  *      from the linked base (virtual) address "KERNBASE" to the actual
 2394  *      (physical) address starting relative to 0]
 2395  */
 2396 #define PMAP_STATIC_L2_SIZE 16
 2397 #ifdef ARM_USE_SMALL_ALLOC
 2398 extern struct mtx smallalloc_mtx;
 2399 #endif
 2400 
 2401 void
 2402 pmap_bootstrap(vm_offset_t firstaddr, vm_offset_t lastaddr, struct pv_addr *l1pt)
 2403 {
 2404         static struct l1_ttable static_l1;
 2405         static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
 2406         struct l1_ttable *l1 = &static_l1;
 2407         struct l2_dtable *l2;
 2408         struct l2_bucket *l2b;
 2409         pd_entry_t pde;
 2410         pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
 2411         pt_entry_t *ptep;
 2412         vm_paddr_t pa;
 2413         vm_offset_t va;
 2414         vm_size_t size;
 2415         int l1idx, l2idx, l2next = 0;
 2416 
 2417         PDEBUG(1, printf("firstaddr = %08x, loadaddr = %08x\n",
 2418             firstaddr, loadaddr));
 2419         
 2420         virtual_avail = firstaddr;
 2421         kernel_pmap = &kernel_pmap_store;
 2422         kernel_pmap->pm_l1 = l1;
 2423         kernel_l1pa = l1pt->pv_pa;
 2424         
 2425         /*
 2426          * Scan the L1 translation table created by initarm() and create
 2427          * the required metadata for all valid mappings found in it.
 2428          */
 2429         for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
 2430                 pde = kernel_l1pt[l1idx];
 2431 
 2432                 /*
 2433                  * We're only interested in Coarse mappings.
 2434                  * pmap_extract() can deal with section mappings without
 2435                  * recourse to checking L2 metadata.
 2436                  */
 2437                 if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
 2438                         continue;
 2439 
 2440                 /*
 2441                  * Lookup the KVA of this L2 descriptor table
 2442                  */
 2443                 pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
 2444                 ptep = (pt_entry_t *)kernel_pt_lookup(pa);
 2445                 
 2446                 if (ptep == NULL) {
 2447                         panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
 2448                             (u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
 2449                 }
 2450 
 2451                 /*
 2452                  * Fetch the associated L2 metadata structure.
 2453                  * Allocate a new one if necessary.
 2454                  */
 2455                 if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
 2456                         if (l2next == PMAP_STATIC_L2_SIZE)
 2457                                 panic("pmap_bootstrap: out of static L2s");
 2458                         kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 = 
 2459                             &static_l2[l2next++];
 2460                 }
 2461 
 2462                 /*
 2463                  * One more L1 slot tracked...
 2464                  */
 2465                 l2->l2_occupancy++;
 2466 
 2467                 /*
 2468                  * Fill in the details of the L2 descriptor in the
 2469                  * appropriate bucket.
 2470                  */
 2471                 l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
 2472                 l2b->l2b_kva = ptep;
 2473                 l2b->l2b_phys = pa;
 2474                 l2b->l2b_l1idx = l1idx;
 2475 
 2476                 /*
 2477                  * Establish an initial occupancy count for this descriptor
 2478                  */
 2479                 for (l2idx = 0;
 2480                     l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
 2481                     l2idx++) {
 2482                         if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
 2483                                 l2b->l2b_occupancy++;
 2484                         }
 2485                 }
 2486 
 2487                 /*
 2488                  * Make sure the descriptor itself has the correct cache mode.
 2489                  * If not, fix it, but whine about the problem. Port-meisters
 2490                  * should consider this a clue to fix up their initarm()
 2491                  * function. :)
 2492                  */
 2493                 if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
 2494                         printf("pmap_bootstrap: WARNING! wrong cache mode for "
 2495                             "L2 pte @ %p\n", ptep);
 2496                 }
 2497         }
 2498 
 2499         
 2500         /*
 2501          * Ensure the primary (kernel) L1 has the correct cache mode for
 2502          * a page table. Bitch if it is not correctly set.
 2503          */
 2504         for (va = (vm_offset_t)kernel_l1pt;
 2505             va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
 2506                 if (pmap_set_pt_cache_mode(kernel_l1pt, va))
 2507                         printf("pmap_bootstrap: WARNING! wrong cache mode for "
 2508                             "primary L1 @ 0x%x\n", va);
 2509         }
 2510 
 2511         cpu_dcache_wbinv_all();
 2512         cpu_tlb_flushID();
 2513         cpu_cpwait();
 2514 
 2515         PMAP_LOCK_INIT(kernel_pmap);
 2516         kernel_pmap->pm_active = -1;
 2517         kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
 2518         TAILQ_INIT(&kernel_pmap->pm_pvlist);
 2519         
 2520         /*
 2521          * Reserve some special page table entries/VA space for temporary
 2522          * mapping of pages.
 2523          */
 2524 #define SYSMAP(c, p, v, n)                                              \
 2525     v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
 2526     
 2527         pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
 2528         pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
 2529         pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
 2530         pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
 2531         size = ((lastaddr - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
 2532         pmap_alloc_specials(&virtual_avail,
 2533             round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
 2534             &pmap_kernel_l2ptp_kva, NULL);
 2535         
 2536         size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
 2537         pmap_alloc_specials(&virtual_avail,
 2538             round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
 2539             &pmap_kernel_l2dtable_kva, NULL);
 2540 
 2541         pmap_alloc_specials(&virtual_avail,
 2542             1, (vm_offset_t*)&_tmppt, NULL);
 2543         SLIST_INIT(&l1_list);
 2544         TAILQ_INIT(&l1_lru_list);
 2545         mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
 2546         pmap_init_l1(l1, kernel_l1pt);
 2547         cpu_dcache_wbinv_all();
 2548 
 2549         virtual_avail = round_page(virtual_avail);
 2550         virtual_end = lastaddr;
 2551         kernel_vm_end = pmap_curmaxkvaddr;
 2552         arm_nocache_startaddr = lastaddr;
 2553         mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF);
 2554 
 2555 #ifdef ARM_USE_SMALL_ALLOC
 2556         mtx_init(&smallalloc_mtx, "Small alloc page list", NULL, MTX_DEF);
 2557         arm_init_smallalloc();
 2558 #endif
 2559         pmap_set_pcb_pagedir(kernel_pmap, thread0.td_pcb);
 2560 }
 2561 
 2562 /***************************************************
 2563  * Pmap allocation/deallocation routines.
 2564  ***************************************************/
 2565 
 2566 /*
 2567  * Release any resources held by the given physical map.
 2568  * Called when a pmap initialized by pmap_pinit is being released.
 2569  * Should only be called if the map contains no valid mappings.
 2570  */
 2571 void
 2572 pmap_release(pmap_t pmap)
 2573 {
 2574         struct pcb *pcb;
 2575         
 2576         pmap_idcache_wbinv_all(pmap);
 2577         pmap_tlb_flushID(pmap);
 2578         cpu_cpwait();
 2579         if (vector_page < KERNBASE) {
 2580                 struct pcb *curpcb = PCPU_GET(curpcb);
 2581                 pcb = thread0.td_pcb;
 2582                 if (pmap_is_current(pmap)) {
 2583                         /*
 2584                          * Frob the L1 entry corresponding to the vector
 2585                          * page so that it contains the kernel pmap's domain
 2586                          * number. This will ensure pmap_remove() does not
 2587                          * pull the current vector page out from under us.
 2588                          */
 2589                         critical_enter();
 2590                         *pcb->pcb_pl1vec = pcb->pcb_l1vec;
 2591                         cpu_domains(pcb->pcb_dacr);
 2592                         cpu_setttb(pcb->pcb_pagedir);
 2593                         critical_exit();
 2594                 }
 2595                 pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
 2596                 /*
 2597                  * Make sure cpu_switch(), et al, DTRT. This is safe to do
 2598                  * since this process has no remaining mappings of its own.
 2599                  */
 2600                 curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
 2601                 curpcb->pcb_l1vec = pcb->pcb_l1vec;
 2602                 curpcb->pcb_dacr = pcb->pcb_dacr;
 2603                 curpcb->pcb_pagedir = pcb->pcb_pagedir;
 2604 
 2605         }
 2606         pmap_free_l1(pmap);
 2607         PMAP_LOCK_DESTROY(pmap);
 2608         
 2609         dprintf("pmap_release()\n");
 2610 }
 2611 
 2612 
 2613 
 2614 /*
 2615  * Helper function for pmap_grow_l2_bucket()
 2616  */
 2617 static __inline int
 2618 pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
 2619 {
 2620         struct l2_bucket *l2b;
 2621         pt_entry_t *ptep;
 2622         vm_paddr_t pa;
 2623         struct vm_page *pg;
 2624         
 2625         pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
 2626         if (pg == NULL)
 2627                 return (1);
 2628         pa = VM_PAGE_TO_PHYS(pg);
 2629 
 2630         if (pap)
 2631                 *pap = pa;
 2632 
 2633         l2b = pmap_get_l2_bucket(pmap_kernel(), va);
 2634 
 2635         ptep = &l2b->l2b_kva[l2pte_index(va)];
 2636         *ptep = L2_S_PROTO | pa | cache_mode |
 2637             L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE);
 2638         PTE_SYNC(ptep);
 2639         return (0);
 2640 }
 2641 
 2642 /*
 2643  * This is the same as pmap_alloc_l2_bucket(), except that it is only
 2644  * used by pmap_growkernel().
 2645  */
 2646 static __inline struct l2_bucket *
 2647 pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va)
 2648 {
 2649         struct l2_dtable *l2;
 2650         struct l2_bucket *l2b;
 2651         struct l1_ttable *l1;
 2652         pd_entry_t *pl1pd;
 2653         u_short l1idx;
 2654         vm_offset_t nva;
 2655 
 2656         l1idx = L1_IDX(va);
 2657 
 2658         if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
 2659                 /*
 2660                  * No mapping at this address, as there is
 2661                  * no entry in the L1 table.
 2662                  * Need to allocate a new l2_dtable.
 2663                  */
 2664                 nva = pmap_kernel_l2dtable_kva;
 2665                 if ((nva & PAGE_MASK) == 0) {
 2666                         /*
 2667                          * Need to allocate a backing page
 2668                          */
 2669                         if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
 2670                                 return (NULL);
 2671                 }
 2672 
 2673                 l2 = (struct l2_dtable *)nva;
 2674                 nva += sizeof(struct l2_dtable);
 2675 
 2676                 if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva & 
 2677                     PAGE_MASK)) {
 2678                         /*
 2679                          * The new l2_dtable straddles a page boundary.
 2680                          * Map in another page to cover it.
 2681                          */
 2682                         if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
 2683                                 return (NULL);
 2684                 }
 2685 
 2686                 pmap_kernel_l2dtable_kva = nva;
 2687 
 2688                 /*
 2689                  * Link it into the parent pmap
 2690                  */
 2691                 pm->pm_l2[L2_IDX(l1idx)] = l2;
 2692                 memset(l2, 0, sizeof(*l2));
 2693         }
 2694 
 2695         l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
 2696 
 2697         /*
 2698          * Fetch pointer to the L2 page table associated with the address.
 2699          */
 2700         if (l2b->l2b_kva == NULL) {
 2701                 pt_entry_t *ptep;
 2702 
 2703                 /*
 2704                  * No L2 page table has been allocated. Chances are, this
 2705                  * is because we just allocated the l2_dtable, above.
 2706                  */
 2707                 nva = pmap_kernel_l2ptp_kva;
 2708                 ptep = (pt_entry_t *)nva;
 2709                 if ((nva & PAGE_MASK) == 0) {
 2710                         /*
 2711                          * Need to allocate a backing page
 2712                          */
 2713                         if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
 2714                             &pmap_kernel_l2ptp_phys))
 2715                                 return (NULL);
 2716                         PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
 2717                 }
 2718                 memset(ptep, 0, L2_TABLE_SIZE_REAL);
 2719                 l2->l2_occupancy++;
 2720                 l2b->l2b_kva = ptep;
 2721                 l2b->l2b_l1idx = l1idx;
 2722                 l2b->l2b_phys = pmap_kernel_l2ptp_phys;
 2723 
 2724                 pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
 2725                 pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
 2726         }
 2727 
 2728         /* Distribute new L1 entry to all other L1s */
 2729         SLIST_FOREACH(l1, &l1_list, l1_link) {
 2730                         pl1pd = &l1->l1_kva[L1_IDX(va)];
 2731                         *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
 2732                             L1_C_PROTO;
 2733                         PTE_SYNC(pl1pd);
 2734         }
 2735 
 2736         return (l2b);
 2737 }
 2738 
 2739 
 2740 /*
 2741  * grow the number of kernel page table entries, if needed
 2742  */
 2743 void
 2744 pmap_growkernel(vm_offset_t addr)
 2745 {
 2746         pmap_t kpm = pmap_kernel();
 2747 
 2748         if (addr <= pmap_curmaxkvaddr)
 2749                 return;         /* we are OK */
 2750 
 2751         /*
 2752          * whoops!   we need to add kernel PTPs
 2753          */
 2754 
 2755         /* Map 1MB at a time */
 2756         for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
 2757                 pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
 2758 
 2759         /*
 2760          * flush out the cache, expensive but growkernel will happen so
 2761          * rarely
 2762          */
 2763         cpu_dcache_wbinv_all();
 2764         cpu_tlb_flushD();
 2765         cpu_cpwait();
 2766         kernel_vm_end = pmap_curmaxkvaddr;
 2767 
 2768 }
 2769 
 2770 
 2771 /*
 2772  * Remove all pages from specified address space
 2773  * this aids process exit speeds.  Also, this code
 2774  * is special cased for current process only, but
 2775  * can have the more generic (and slightly slower)
 2776  * mode enabled.  This is much faster than pmap_remove
 2777  * in the case of running down an entire address space.
 2778  */
 2779 void
 2780 pmap_remove_pages(pmap_t pmap)
 2781 {
 2782         struct pv_entry *pv, *npv;
 2783         struct l2_bucket *l2b = NULL;
 2784         vm_page_t m;
 2785         pt_entry_t *pt;
 2786         
 2787         vm_page_lock_queues();
 2788         PMAP_LOCK(pmap);
 2789         for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
 2790                 if (pv->pv_flags & PVF_WIRED) {
 2791                         /* The page is wired, cannot remove it now. */
 2792                         npv = TAILQ_NEXT(pv, pv_plist);
 2793                         continue;
 2794                 }
 2795                 pmap->pm_stats.resident_count--;
 2796                 l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
 2797                 KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages"));
 2798                 pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
 2799                 m = PHYS_TO_VM_PAGE(*pt & L2_ADDR_MASK);
 2800 #ifdef ARM_USE_SMALL_ALLOC
 2801                 KASSERT((vm_offset_t)m >= alloc_firstaddr, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt));
 2802 #else
 2803                 KASSERT((vm_offset_t)m >= KERNBASE, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt));
 2804 #endif
 2805                 *pt = 0;
 2806                 PTE_SYNC(pt);
 2807                 npv = TAILQ_NEXT(pv, pv_plist);
 2808                 pmap_nuke_pv(m, pmap, pv);
 2809                 if (TAILQ_EMPTY(&m->md.pv_list))
 2810                         vm_page_flag_clear(m, PG_WRITEABLE);
 2811                 pmap_free_pv_entry(pv);
 2812                 pmap_free_l2_bucket(pmap, l2b, 1);
 2813         }
 2814         vm_page_unlock_queues();
 2815         cpu_idcache_wbinv_all();
 2816         cpu_tlb_flushID();
 2817         cpu_cpwait();
 2818         PMAP_UNLOCK(pmap);
 2819 }
 2820 
 2821 
 2822 /***************************************************
 2823  * Low level mapping routines.....
 2824  ***************************************************/
 2825 
 2826 #ifdef ARM_HAVE_SUPERSECTIONS
 2827 /* Map a super section into the KVA. */
 2828 
 2829 void
 2830 pmap_kenter_supersection(vm_offset_t va, uint64_t pa, int flags)
 2831 {
 2832         pd_entry_t pd = L1_S_PROTO | L1_S_SUPERSEC | (pa & L1_SUP_FRAME) |
 2833             (((pa >> 32) & 0xf) << 20) | L1_S_PROT(PTE_KERNEL,
 2834             VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
 2835         struct l1_ttable *l1;   
 2836         vm_offset_t va0, va_end;
 2837 
 2838         KASSERT(((va | pa) & L1_SUP_OFFSET) == 0,
 2839             ("Not a valid super section mapping"));
 2840         if (flags & SECTION_CACHE)
 2841                 pd |= pte_l1_s_cache_mode;
 2842         else if (flags & SECTION_PT)
 2843                 pd |= pte_l1_s_cache_mode_pt;
 2844         va0 = va & L1_SUP_FRAME;
 2845         va_end = va + L1_SUP_SIZE;
 2846         SLIST_FOREACH(l1, &l1_list, l1_link) {
 2847                 va = va0;
 2848                 for (; va < va_end; va += L1_S_SIZE) {
 2849                         l1->l1_kva[L1_IDX(va)] = pd;
 2850                         PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
 2851                 }
 2852         }
 2853 }
 2854 #endif
 2855 
 2856 /* Map a section into the KVA. */
 2857 
 2858 void
 2859 pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags)
 2860 {
 2861         pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL,
 2862             VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
 2863         struct l1_ttable *l1;
 2864 
 2865         KASSERT(((va | pa) & L1_S_OFFSET) == 0,
 2866             ("Not a valid section mapping"));
 2867         if (flags & SECTION_CACHE)
 2868                 pd |= pte_l1_s_cache_mode;
 2869         else if (flags & SECTION_PT)
 2870                 pd |= pte_l1_s_cache_mode_pt;
 2871         SLIST_FOREACH(l1, &l1_list, l1_link) {
 2872                 l1->l1_kva[L1_IDX(va)] = pd;
 2873                 PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
 2874         }
 2875 }
 2876 
 2877 /*
 2878  * add a wired page to the kva
 2879  * note that in order for the mapping to take effect -- you
 2880  * should do a invltlb after doing the pmap_kenter...
 2881  */
 2882 static PMAP_INLINE void
 2883 pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
 2884 {
 2885         struct l2_bucket *l2b;
 2886         pt_entry_t *pte;
 2887         pt_entry_t opte;
 2888         PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
 2889             (uint32_t) va, (uint32_t) pa));
 2890 
 2891 
 2892         l2b = pmap_get_l2_bucket(pmap_kernel(), va);
 2893         if (l2b == NULL)
 2894                 l2b = pmap_grow_l2_bucket(pmap_kernel(), va);
 2895         KASSERT(l2b != NULL, ("No L2 Bucket"));
 2896         pte = &l2b->l2b_kva[l2pte_index(va)];
 2897         opte = *pte;
 2898         PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
 2899             (uint32_t) pte, opte, *pte));
 2900         if (l2pte_valid(opte)) {
 2901                 cpu_dcache_wbinv_range(va, PAGE_SIZE);
 2902                 cpu_tlb_flushD_SE(va);
 2903                 cpu_cpwait();
 2904         } else {
 2905                 if (opte == 0)
 2906                         l2b->l2b_occupancy++;
 2907         }
 2908         *pte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, 
 2909             VM_PROT_READ | VM_PROT_WRITE);
 2910         if (flags & KENTER_CACHE)
 2911                 *pte |= pte_l2_s_cache_mode;
 2912         if (flags & KENTER_USER)
 2913                 *pte |= L2_S_PROT_U;
 2914         PTE_SYNC(pte);
 2915 }
 2916 
 2917 void
 2918 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 2919 {
 2920         pmap_kenter_internal(va, pa, KENTER_CACHE);
 2921 }
 2922 
 2923 void
 2924 pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa)
 2925 {
 2926 
 2927         pmap_kenter_internal(va, pa, 0);
 2928 }
 2929 
 2930 void
 2931 pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
 2932 {
 2933 
 2934         pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
 2935         /*
 2936          * Call pmap_fault_fixup now, to make sure we'll have no exception
 2937          * at the first use of the new address, or bad things will happen,
 2938          * as we use one of these addresses in the exception handlers.
 2939          */
 2940         pmap_fault_fixup(pmap_kernel(), va, VM_PROT_READ|VM_PROT_WRITE, 1);
 2941 }
 2942 
 2943 /*
 2944  * remove a page rom the kernel pagetables
 2945  */
 2946 void
 2947 pmap_kremove(vm_offset_t va)
 2948 {
 2949         struct l2_bucket *l2b;
 2950         pt_entry_t *pte, opte;
 2951                 
 2952         l2b = pmap_get_l2_bucket(pmap_kernel(), va);
 2953         if (!l2b)
 2954                 return;
 2955         KASSERT(l2b != NULL, ("No L2 Bucket"));
 2956         pte = &l2b->l2b_kva[l2pte_index(va)];
 2957         opte = *pte;
 2958         if (l2pte_valid(opte)) {
 2959                 cpu_dcache_wbinv_range(va, PAGE_SIZE);
 2960                 cpu_tlb_flushD_SE(va);
 2961                 cpu_cpwait();
 2962                 *pte = 0;
 2963         }
 2964 }
 2965 
 2966 
 2967 /*
 2968  *      Used to map a range of physical addresses into kernel
 2969  *      virtual address space.
 2970  *
 2971  *      The value passed in '*virt' is a suggested virtual address for
 2972  *      the mapping. Architectures which can support a direct-mapped
 2973  *      physical to virtual region can return the appropriate address
 2974  *      within that region, leaving '*virt' unchanged. Other
 2975  *      architectures should map the pages starting at '*virt' and
 2976  *      update '*virt' with the first usable address after the mapped
 2977  *      region.
 2978  */
 2979 vm_offset_t
 2980 pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
 2981 {
 2982 #ifdef ARM_USE_SMALL_ALLOC
 2983         return (arm_ptovirt(start));
 2984 #else
 2985         vm_offset_t sva = *virt;
 2986         vm_offset_t va = sva;
 2987 
 2988         PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
 2989             "prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
 2990             prot));
 2991             
 2992         while (start < end) {
 2993                 pmap_kenter(va, start);
 2994                 va += PAGE_SIZE;
 2995                 start += PAGE_SIZE;
 2996         }
 2997         *virt = va;
 2998         return (sva);
 2999 #endif
 3000 }
 3001 
 3002 static void
 3003 pmap_wb_page(vm_page_t m)
 3004 {
 3005         struct pv_entry *pv;
 3006 
 3007         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
 3008             pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, FALSE,
 3009                 (pv->pv_flags & PVF_WRITE) == 0);
 3010 }
 3011 
 3012 static void
 3013 pmap_inv_page(vm_page_t m)
 3014 {
 3015         struct pv_entry *pv;
 3016 
 3017         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
 3018             pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, TRUE, TRUE);
 3019 }
 3020 /*
 3021  * Add a list of wired pages to the kva
 3022  * this routine is only used for temporary
 3023  * kernel mappings that do not need to have
 3024  * page modification or references recorded.
 3025  * Note that old mappings are simply written
 3026  * over.  The page *must* be wired.
 3027  */
 3028 void
 3029 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
 3030 {
 3031         int i;
 3032 
 3033         for (i = 0; i < count; i++) {
 3034                 pmap_wb_page(m[i]);
 3035                 pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]), 
 3036                     KENTER_CACHE);
 3037                 va += PAGE_SIZE;
 3038         }
 3039 }
 3040 
 3041 
 3042 /*
 3043  * this routine jerks page mappings from the
 3044  * kernel -- it is meant only for temporary mappings.
 3045  */
 3046 void
 3047 pmap_qremove(vm_offset_t va, int count)
 3048 {
 3049         vm_paddr_t pa;
 3050         int i;
 3051 
 3052         for (i = 0; i < count; i++) {
 3053                 pa = vtophys(va);
 3054                 if (pa) {
 3055                         pmap_inv_page(PHYS_TO_VM_PAGE(pa));
 3056                         pmap_kremove(va);
 3057                 }
 3058                 va += PAGE_SIZE;
 3059         }
 3060 }
 3061 
 3062 
 3063 /*
 3064  * pmap_object_init_pt preloads the ptes for a given object
 3065  * into the specified pmap.  This eliminates the blast of soft
 3066  * faults on process startup and immediately after an mmap.
 3067  */
 3068 void
 3069 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
 3070     vm_pindex_t pindex, vm_size_t size)
 3071 {
 3072 
 3073         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 3074         KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 3075             ("pmap_object_init_pt: non-device object"));
 3076 }
 3077 
 3078 
 3079 /*
 3080  *      pmap_is_prefaultable:
 3081  *
 3082  *      Return whether or not the specified virtual address is elgible
 3083  *      for prefault.
 3084  */
 3085 boolean_t
 3086 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 3087 {
 3088         pd_entry_t *pde;
 3089         pt_entry_t *pte;
 3090 
 3091         if (!pmap_get_pde_pte(pmap, addr, &pde, &pte))
 3092                 return (FALSE);
 3093         KASSERT(pte != NULL, ("Valid mapping but no pte ?"));
 3094         if (*pte == 0)
 3095                 return (TRUE);
 3096         return (FALSE);
 3097 }
 3098 
 3099 /*
 3100  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
 3101  * Returns TRUE if the mapping exists, else FALSE.
 3102  *
 3103  * NOTE: This function is only used by a couple of arm-specific modules.
 3104  * It is not safe to take any pmap locks here, since we could be right
 3105  * in the middle of debugging the pmap anyway...
 3106  *
 3107  * It is possible for this routine to return FALSE even though a valid
 3108  * mapping does exist. This is because we don't lock, so the metadata
 3109  * state may be inconsistent.
 3110  *
 3111  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
 3112  * a "section" mapping.
 3113  */
 3114 boolean_t
 3115 pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp)
 3116 {
 3117         struct l2_dtable *l2;
 3118         pd_entry_t *pl1pd, l1pd;
 3119         pt_entry_t *ptep;
 3120         u_short l1idx;
 3121 
 3122         if (pm->pm_l1 == NULL)
 3123                 return (FALSE);
 3124 
 3125         l1idx = L1_IDX(va);
 3126         *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
 3127         l1pd = *pl1pd;
 3128 
 3129         if (l1pte_section_p(l1pd)) {
 3130                 *ptp = NULL;
 3131                 return (TRUE);
 3132         }
 3133 
 3134         if (pm->pm_l2 == NULL)
 3135                 return (FALSE);
 3136 
 3137         l2 = pm->pm_l2[L2_IDX(l1idx)];
 3138 
 3139         if (l2 == NULL ||
 3140             (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
 3141                 return (FALSE);
 3142         }
 3143 
 3144         *ptp = &ptep[l2pte_index(va)];
 3145         return (TRUE);
 3146 }
 3147 
 3148 /*
 3149  *      Routine:        pmap_remove_all
 3150  *      Function:
 3151  *              Removes this physical page from
 3152  *              all physical maps in which it resides.
 3153  *              Reflects back modify bits to the pager.
 3154  *
 3155  *      Notes:
 3156  *              Original versions of this routine were very
 3157  *              inefficient because they iteratively called
 3158  *              pmap_remove (slow...)
 3159  */
 3160 void
 3161 pmap_remove_all(vm_page_t m)
 3162 {
 3163         pv_entry_t pv;
 3164         pt_entry_t *ptep, pte;
 3165         struct l2_bucket *l2b;
 3166         boolean_t flush = FALSE;
 3167         pmap_t curpm;
 3168         int flags = 0;
 3169 
 3170 #if defined(PMAP_DEBUG)
 3171         /*
 3172          * XXX this makes pmap_page_protect(NONE) illegal for non-managed
 3173          * pages!
 3174          */
 3175         if (m->flags & PG_FICTITIOUS) {
 3176                 panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
 3177         }
 3178 #endif
 3179 
 3180         if (TAILQ_EMPTY(&m->md.pv_list))
 3181                 return;
 3182         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3183         curpm = vmspace_pmap(curproc->p_vmspace);
 3184         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 3185                 if (flush == FALSE && (pv->pv_pmap == curpm ||
 3186                     pv->pv_pmap == pmap_kernel()))
 3187                         flush = TRUE;
 3188                 PMAP_LOCK(pv->pv_pmap);
 3189                 l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
 3190                 KASSERT(l2b != NULL, ("No l2 bucket"));
 3191                 ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
 3192                 pte = *ptep;
 3193                 *ptep = 0;
 3194                 PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
 3195                 pmap_free_l2_bucket(pv->pv_pmap, l2b, 1);
 3196                 if (pv->pv_flags & PVF_WIRED)
 3197                         pv->pv_pmap->pm_stats.wired_count--;
 3198                 pv->pv_pmap->pm_stats.resident_count--;
 3199                 flags |= pv->pv_flags;
 3200                 pmap_nuke_pv(m, pv->pv_pmap, pv);
 3201                 PMAP_UNLOCK(pv->pv_pmap);
 3202                 pmap_free_pv_entry(pv);
 3203         }
 3204 
 3205         if (flush) {
 3206                 if (PV_BEEN_EXECD(flags))
 3207                         pmap_tlb_flushID(curpm);
 3208                 else
 3209                         pmap_tlb_flushD(curpm);
 3210         }
 3211         vm_page_flag_clear(m, PG_WRITEABLE);
 3212 }
 3213 
 3214 
 3215 /*
 3216  *      Set the physical protection on the
 3217  *      specified range of this map as requested.
 3218  */
 3219 void
 3220 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 3221 {
 3222         struct l2_bucket *l2b;
 3223         pt_entry_t *ptep, pte;
 3224         vm_offset_t next_bucket;
 3225         u_int flags;
 3226         int flush;
 3227 
 3228         if ((prot & VM_PROT_READ) == 0) {
 3229                 pmap_remove(pm, sva, eva);
 3230                 return;
 3231         }
 3232 
 3233         if (prot & VM_PROT_WRITE) {
 3234                 /*
 3235                  * If this is a read->write transition, just ignore it and let
 3236                  * vm_fault() take care of it later.
 3237                  */
 3238                 return;
 3239         }
 3240 
 3241         vm_page_lock_queues();
 3242         PMAP_LOCK(pm);
 3243 
 3244         /*
 3245          * OK, at this point, we know we're doing write-protect operation.
 3246          * If the pmap is active, write-back the range.
 3247          */
 3248         pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE);
 3249 
 3250         flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
 3251         flags = 0;
 3252 
 3253         while (sva < eva) {
 3254                 next_bucket = L2_NEXT_BUCKET(sva);
 3255                 if (next_bucket > eva)
 3256                         next_bucket = eva;
 3257 
 3258                 l2b = pmap_get_l2_bucket(pm, sva);
 3259                 if (l2b == NULL) {
 3260                         sva = next_bucket;
 3261                         continue;
 3262                 }
 3263 
 3264                 ptep = &l2b->l2b_kva[l2pte_index(sva)];
 3265 
 3266                 while (sva < next_bucket) {
 3267                         if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) {
 3268                                 struct vm_page *pg;
 3269                                 u_int f;
 3270 
 3271                                 pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
 3272                                 pte &= ~L2_S_PROT_W;
 3273                                 *ptep = pte;
 3274                                 PTE_SYNC(ptep);
 3275 
 3276                                 if (pg != NULL) {
 3277                                         f = pmap_modify_pv(pg, pm, sva,
 3278                                             PVF_WRITE, 0);
 3279                                         pmap_vac_me_harder(pg, pm, sva);
 3280                                         vm_page_dirty(pg);
 3281                                 } else
 3282                                         f = PVF_REF | PVF_EXEC;
 3283 
 3284                                 if (flush >= 0) {
 3285                                         flush++;
 3286                                         flags |= f;
 3287                                 } else
 3288                                 if (PV_BEEN_EXECD(f))
 3289                                         pmap_tlb_flushID_SE(pm, sva);
 3290                                 else
 3291                                 if (PV_BEEN_REFD(f))
 3292                                         pmap_tlb_flushD_SE(pm, sva);
 3293                         }
 3294 
 3295                         sva += PAGE_SIZE;
 3296                         ptep++;
 3297                 }
 3298         }
 3299 
 3300 
 3301         if (flush) {
 3302                 if (PV_BEEN_EXECD(flags))
 3303                         pmap_tlb_flushID(pm);
 3304                 else
 3305                 if (PV_BEEN_REFD(flags))
 3306                         pmap_tlb_flushD(pm);
 3307         }
 3308         vm_page_unlock_queues();
 3309 
 3310         PMAP_UNLOCK(pm);
 3311 }
 3312 
 3313 
 3314 /*
 3315  *      Insert the given physical page (p) at
 3316  *      the specified virtual address (v) in the
 3317  *      target physical map with the protection requested.
 3318  *
 3319  *      If specified, the page will be wired down, meaning
 3320  *      that the related pte can not be reclaimed.
 3321  *
 3322  *      NB:  This is the only routine which MAY NOT lazy-evaluate
 3323  *      or lose information.  That is, this routine must actually
 3324  *      insert this page into the given map NOW.
 3325  */
 3326 
 3327 void
 3328 pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
 3329     vm_prot_t prot, boolean_t wired)
 3330 {
 3331 
 3332         vm_page_lock_queues();
 3333         PMAP_LOCK(pmap);
 3334         pmap_enter_locked(pmap, va, m, prot, wired, M_WAITOK);
 3335         vm_page_unlock_queues();
 3336         PMAP_UNLOCK(pmap);
 3337 }
 3338 
 3339 /*
 3340  *      The page queues and pmap must be locked.
 3341  */
 3342 static void
 3343 pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
 3344     boolean_t wired, int flags)
 3345 {
 3346         struct l2_bucket *l2b = NULL;
 3347         struct vm_page *opg;
 3348         struct pv_entry *pve = NULL;
 3349         pt_entry_t *ptep, npte, opte;
 3350         u_int nflags;
 3351         u_int oflags;
 3352         vm_paddr_t pa;
 3353 
 3354         PMAP_ASSERT_LOCKED(pmap);
 3355         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3356         if (va == vector_page) {
 3357                 pa = systempage.pv_pa;
 3358                 m = NULL;
 3359         } else
 3360                 pa = VM_PAGE_TO_PHYS(m);
 3361         nflags = 0;
 3362         if (prot & VM_PROT_WRITE)
 3363                 nflags |= PVF_WRITE;
 3364         if (prot & VM_PROT_EXECUTE)
 3365                 nflags |= PVF_EXEC;
 3366         if (wired)
 3367                 nflags |= PVF_WIRED;
 3368         PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, "
 3369             "wired = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, wired));
 3370             
 3371         if (pmap == pmap_kernel()) {
 3372                 l2b = pmap_get_l2_bucket(pmap, va);
 3373                 if (l2b == NULL)
 3374                         l2b = pmap_grow_l2_bucket(pmap, va);
 3375         } else {
 3376 do_l2b_alloc:
 3377                 l2b = pmap_alloc_l2_bucket(pmap, va);
 3378                 if (l2b == NULL) {
 3379                         if (flags & M_WAITOK) {
 3380                                 PMAP_UNLOCK(pmap);
 3381                                 vm_page_unlock_queues();
 3382                                 VM_WAIT;
 3383                                 vm_page_lock_queues();
 3384                                 PMAP_LOCK(pmap);
 3385                                 goto do_l2b_alloc;
 3386                         }
 3387                         return;
 3388                 }
 3389         }
 3390 
 3391         ptep = &l2b->l2b_kva[l2pte_index(va)];
 3392                     
 3393         opte = *ptep;
 3394         npte = pa;
 3395         oflags = 0;
 3396         if (opte) {
 3397                 /*
 3398                  * There is already a mapping at this address.
 3399                  * If the physical address is different, lookup the
 3400                  * vm_page.
 3401                  */
 3402                 if (l2pte_pa(opte) != pa)
 3403                         opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
 3404                 else
 3405                         opg = m;
 3406         } else
 3407                 opg = NULL;
 3408 
 3409         if ((prot & (VM_PROT_ALL)) ||
 3410             (!m || m->md.pvh_attrs & PVF_REF)) {
 3411                 /*
 3412                  * - The access type indicates that we don't need
 3413                  *   to do referenced emulation.
 3414                  * OR
 3415                  * - The physical page has already been referenced
 3416                  *   so no need to re-do referenced emulation here.
 3417                  */
 3418                 npte |= L2_S_PROTO;
 3419                 
 3420                 nflags |= PVF_REF;
 3421                 
 3422                 if (m && ((prot & VM_PROT_WRITE) != 0 ||
 3423                     (m->md.pvh_attrs & PVF_MOD))) {
 3424                         /*
 3425                          * This is a writable mapping, and the
 3426                          * page's mod state indicates it has
 3427                          * already been modified. Make it
 3428                          * writable from the outset.
 3429                          */
 3430                         nflags |= PVF_MOD;
 3431                         if (!(m->md.pvh_attrs & PVF_MOD))
 3432                                 vm_page_dirty(m);
 3433                 }
 3434                 if (m && opte)
 3435                         vm_page_flag_set(m, PG_REFERENCED);
 3436         } else {
 3437                 /*
 3438                  * Need to do page referenced emulation.
 3439                  */
 3440                 npte |= L2_TYPE_INV;
 3441         }
 3442         
 3443         if (prot & VM_PROT_WRITE) {
 3444                 npte |= L2_S_PROT_W;
 3445                 if (m != NULL)
 3446                         vm_page_flag_set(m, PG_WRITEABLE);
 3447         }
 3448         npte |= pte_l2_s_cache_mode;
 3449         if (m && m == opg) {
 3450                 /*
 3451                  * We're changing the attrs of an existing mapping.
 3452                  */
 3453                 oflags = pmap_modify_pv(m, pmap, va,
 3454                     PVF_WRITE | PVF_EXEC | PVF_WIRED |
 3455                     PVF_MOD | PVF_REF, nflags);
 3456                 
 3457                 /*
 3458                  * We may need to flush the cache if we're
 3459                  * doing rw-ro...
 3460                  */
 3461                 if (pmap_is_current(pmap) &&
 3462                     (oflags & PVF_NC) == 0 &&
 3463                             (opte & L2_S_PROT_W) != 0 &&
 3464                             (prot & VM_PROT_WRITE) == 0)
 3465                         cpu_dcache_wb_range(va, PAGE_SIZE);
 3466         } else {
 3467                 /*
 3468                  * New mapping, or changing the backing page
 3469                  * of an existing mapping.
 3470                  */
 3471                 if (opg) {
 3472                         /*
 3473                          * Replacing an existing mapping with a new one.
 3474                          * It is part of our managed memory so we
 3475                          * must remove it from the PV list
 3476                          */
 3477                         pve = pmap_remove_pv(opg, pmap, va);
 3478                         if (m && (m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) &&
 3479                             pve)
 3480                                 pmap_free_pv_entry(pve);
 3481                         else if (!pve && 
 3482                             !(m->flags & (PG_UNMANAGED | PG_FICTITIOUS)))
 3483                                 pve = pmap_get_pv_entry();
 3484                         KASSERT(pve != NULL || m->flags & (PG_UNMANAGED | 
 3485                             PG_FICTITIOUS), ("No pv"));
 3486                         oflags = pve->pv_flags;
 3487                         
 3488                         /*
 3489                          * If the old mapping was valid (ref/mod
 3490                          * emulation creates 'invalid' mappings
 3491                          * initially) then make sure to frob
 3492                          * the cache.
 3493                          */
 3494                         if ((oflags & PVF_NC) == 0 &&
 3495                             l2pte_valid(opte)) {
 3496                                 if (PV_BEEN_EXECD(oflags)) {
 3497                                         pmap_idcache_wbinv_range(pmap, va,
 3498                                             PAGE_SIZE);
 3499                                 } else
 3500                                         if (PV_BEEN_REFD(oflags)) {
 3501                                                 pmap_dcache_wb_range(pmap, va,
 3502                                                     PAGE_SIZE, TRUE,
 3503                                                     (oflags & PVF_WRITE) == 0);
 3504                                         }
 3505                         }
 3506                 } else if (m && !(m->flags & (PG_UNMANAGED | PG_FICTITIOUS)))
 3507                         if ((pve = pmap_get_pv_entry()) == NULL) {
 3508                                 panic("pmap_enter: no pv entries");     
 3509                         }
 3510                 if (m && !(m->flags & (PG_UNMANAGED | PG_FICTITIOUS))) {
 3511                         KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
 3512                             ("pmap_enter: managed mapping within the clean submap"));
 3513                         pmap_enter_pv(m, pve, pmap, va, nflags);
 3514                 }
 3515         }
 3516         /*
 3517          * Make sure userland mappings get the right permissions
 3518          */
 3519         if (pmap != pmap_kernel() && va != vector_page) {
 3520                 npte |= L2_S_PROT_U;
 3521         }
 3522 
 3523         /*
 3524          * Keep the stats up to date
 3525          */
 3526         if (opte == 0) {
 3527                 l2b->l2b_occupancy++;
 3528                 pmap->pm_stats.resident_count++;
 3529         } 
 3530 
 3531 
 3532         /*
 3533          * If this is just a wiring change, the two PTEs will be
 3534          * identical, so there's no need to update the page table.
 3535          */
 3536         if (npte != opte) {
 3537                 boolean_t is_cached = pmap_is_current(pmap);
 3538 
 3539                 *ptep = npte;
 3540                 if (is_cached) {
 3541                         /*
 3542                          * We only need to frob the cache/tlb if this pmap
 3543                          * is current
 3544                          */
 3545                         PTE_SYNC(ptep);
 3546                         if (L1_IDX(va) != L1_IDX(vector_page) && 
 3547                             l2pte_valid(npte)) {
 3548                                 /*
 3549                                  * This mapping is likely to be accessed as
 3550                                  * soon as we return to userland. Fix up the
 3551                                  * L1 entry to avoid taking another
 3552                                  * page/domain fault.
 3553                                  */
 3554                                 pd_entry_t *pl1pd, l1pd;
 3555 
 3556                                 pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
 3557                                 l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) |
 3558                                     L1_C_PROTO;
 3559                                 if (*pl1pd != l1pd) {
 3560                                         *pl1pd = l1pd;
 3561                                         PTE_SYNC(pl1pd);
 3562                                 }
 3563                         }
 3564                 }
 3565 
 3566                 if (PV_BEEN_EXECD(oflags))
 3567                         pmap_tlb_flushID_SE(pmap, va);
 3568                 else if (PV_BEEN_REFD(oflags))
 3569                         pmap_tlb_flushD_SE(pmap, va);
 3570 
 3571 
 3572                 if (m)
 3573                         pmap_vac_me_harder(m, pmap, va);
 3574         }
 3575 }
 3576 
 3577 /*
 3578  * Maps a sequence of resident pages belonging to the same object.
 3579  * The sequence begins with the given page m_start.  This page is
 3580  * mapped at the given virtual address start.  Each subsequent page is
 3581  * mapped at a virtual address that is offset from start by the same
 3582  * amount as the page is offset from m_start within the object.  The
 3583  * last page in the sequence is the page with the largest offset from
 3584  * m_start that can be mapped at a virtual address less than the given
 3585  * virtual address end.  Not every virtual page between start and end
 3586  * is mapped; only those for which a resident page exists with the
 3587  * corresponding offset from m_start are mapped.
 3588  */
 3589 void
 3590 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
 3591     vm_page_t m_start, vm_prot_t prot)
 3592 {
 3593         vm_page_t m;
 3594         vm_pindex_t diff, psize;
 3595 
 3596         psize = atop(end - start);
 3597         m = m_start;
 3598         PMAP_LOCK(pmap);
 3599         while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 3600                 pmap_enter_locked(pmap, start + ptoa(diff), m, prot &
 3601                     (VM_PROT_READ | VM_PROT_EXECUTE), FALSE, M_NOWAIT);
 3602                 m = TAILQ_NEXT(m, listq);
 3603         }
 3604         PMAP_UNLOCK(pmap);
 3605 }
 3606 
 3607 /*
 3608  * this code makes some *MAJOR* assumptions:
 3609  * 1. Current pmap & pmap exists.
 3610  * 2. Not wired.
 3611  * 3. Read access.
 3612  * 4. No page table pages.
 3613  * but is *MUCH* faster than pmap_enter...
 3614  */
 3615 
 3616 void
 3617 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 3618 {
 3619 
 3620         PMAP_LOCK(pmap);
 3621         pmap_enter_locked(pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
 3622             FALSE, M_NOWAIT);
 3623         PMAP_UNLOCK(pmap);
 3624 }
 3625 
 3626 /*
 3627  *      Routine:        pmap_change_wiring
 3628  *      Function:       Change the wiring attribute for a map/virtual-address
 3629  *                      pair.
 3630  *      In/out conditions:
 3631  *                      The mapping must already exist in the pmap.
 3632  */
 3633 void
 3634 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
 3635 {
 3636         struct l2_bucket *l2b;
 3637         pt_entry_t *ptep, pte;
 3638         vm_page_t pg;
 3639 
 3640         vm_page_lock_queues();
 3641         PMAP_LOCK(pmap);
 3642         l2b = pmap_get_l2_bucket(pmap, va);
 3643         KASSERT(l2b, ("No l2b bucket in pmap_change_wiring"));
 3644         ptep = &l2b->l2b_kva[l2pte_index(va)];
 3645         pte = *ptep;
 3646         pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
 3647         if (pg) 
 3648                 pmap_modify_pv(pg, pmap, va, PVF_WIRED, wired);
 3649         vm_page_unlock_queues();
 3650         PMAP_UNLOCK(pmap);
 3651 }
 3652 
 3653 
 3654 /*
 3655  *      Copy the range specified by src_addr/len
 3656  *      from the source map to the range dst_addr/len
 3657  *      in the destination map.
 3658  *
 3659  *      This routine is only advisory and need not do anything.
 3660  */
 3661 void
 3662 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
 3663     vm_size_t len, vm_offset_t src_addr)
 3664 {
 3665 }
 3666 
 3667 
 3668 /*
 3669  *      Routine:        pmap_extract
 3670  *      Function:
 3671  *              Extract the physical page address associated
 3672  *              with the given map/virtual_address pair.
 3673  */
 3674 vm_paddr_t
 3675 pmap_extract(pmap_t pm, vm_offset_t va)
 3676 {
 3677         struct l2_dtable *l2;
 3678         pd_entry_t l1pd;
 3679         pt_entry_t *ptep, pte;
 3680         vm_paddr_t pa;
 3681         u_int l1idx;
 3682         l1idx = L1_IDX(va);
 3683 
 3684         PMAP_LOCK(pm);
 3685         l1pd = pm->pm_l1->l1_kva[l1idx];
 3686         if (l1pte_section_p(l1pd)) {
 3687                 /*
 3688                  * These should only happen for pmap_kernel()
 3689                  */
 3690                 KASSERT(pm == pmap_kernel(), ("huh"));
 3691                 /* XXX: what to do about the bits > 32 ? */
 3692                 if (l1pd & L1_S_SUPERSEC) 
 3693                         pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
 3694                 else
 3695                         pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
 3696         } else {
 3697                 /*
 3698                  * Note that we can't rely on the validity of the L1
 3699                  * descriptor as an indication that a mapping exists.
 3700                  * We have to look it up in the L2 dtable.
 3701                  */
 3702                 l2 = pm->pm_l2[L2_IDX(l1idx)];
 3703 
 3704                 if (l2 == NULL ||
 3705                     (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
 3706                         PMAP_UNLOCK(pm);
 3707                         return (0);
 3708                 }
 3709 
 3710                 ptep = &ptep[l2pte_index(va)];
 3711                 pte = *ptep;
 3712 
 3713                 if (pte == 0) {
 3714                         PMAP_UNLOCK(pm);
 3715                         return (0);
 3716                 }
 3717 
 3718                 switch (pte & L2_TYPE_MASK) {
 3719                 case L2_TYPE_L:
 3720                         pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
 3721                         break;
 3722 
 3723                 default:
 3724                         pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
 3725                         break;
 3726                 }
 3727         }
 3728 
 3729         PMAP_UNLOCK(pm);
 3730         return (pa);
 3731 }
 3732 
 3733 /*
 3734  * Atomically extract and hold the physical page with the given
 3735  * pmap and virtual address pair if that mapping permits the given
 3736  * protection.
 3737  *
 3738  */
 3739 vm_page_t
 3740 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 3741 {
 3742         struct l2_dtable *l2;
 3743         pd_entry_t l1pd;
 3744         pt_entry_t *ptep, pte;
 3745         vm_paddr_t pa;
 3746         vm_page_t m = NULL;
 3747         u_int l1idx;
 3748         l1idx = L1_IDX(va);
 3749 
 3750         vm_page_lock_queues();
 3751         PMAP_LOCK(pmap);
 3752         l1pd = pmap->pm_l1->l1_kva[l1idx];
 3753         if (l1pte_section_p(l1pd)) {
 3754                 /*
 3755                  * These should only happen for pmap_kernel()
 3756                  */
 3757                 KASSERT(pmap == pmap_kernel(), ("huh"));
 3758                 /* XXX: what to do about the bits > 32 ? */
 3759                 if (l1pd & L1_S_SUPERSEC) 
 3760                         pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
 3761                 else
 3762                         pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
 3763                 if (l1pd & L1_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
 3764                         m = PHYS_TO_VM_PAGE(pa);
 3765                         vm_page_hold(m);
 3766                 }
 3767                         
 3768         } else {
 3769                 /*
 3770                  * Note that we can't rely on the validity of the L1
 3771                  * descriptor as an indication that a mapping exists.
 3772                  * We have to look it up in the L2 dtable.
 3773                  */
 3774                 l2 = pmap->pm_l2[L2_IDX(l1idx)];
 3775 
 3776                 if (l2 == NULL ||
 3777                     (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
 3778                         PMAP_UNLOCK(pmap);
 3779                         vm_page_unlock_queues();
 3780                         return (NULL);
 3781                 }
 3782 
 3783                 ptep = &ptep[l2pte_index(va)];
 3784                 pte = *ptep;
 3785 
 3786                 if (pte == 0) {
 3787                         PMAP_UNLOCK(pmap);
 3788                         vm_page_unlock_queues();
 3789                         return (NULL);
 3790                 }
 3791                 if (pte & L2_S_PROT_W || (prot & VM_PROT_WRITE) == 0) {
 3792                         switch (pte & L2_TYPE_MASK) {
 3793                         case L2_TYPE_L:
 3794                                 pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
 3795                                 break;
 3796                                 
 3797                         default:
 3798                                 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
 3799                                 break;
 3800                         }
 3801                         m = PHYS_TO_VM_PAGE(pa);
 3802                         vm_page_hold(m);
 3803                 }
 3804         }
 3805 
 3806         PMAP_UNLOCK(pmap);
 3807         vm_page_unlock_queues();
 3808         return (m);
 3809 }
 3810 
 3811 /*
 3812  * Initialize a preallocated and zeroed pmap structure,
 3813  * such as one in a vmspace structure.
 3814  */
 3815 
 3816 int
 3817 pmap_pinit(pmap_t pmap)
 3818 {
 3819         PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
 3820         
 3821         PMAP_LOCK_INIT(pmap);
 3822         pmap_alloc_l1(pmap);
 3823         bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
 3824 
 3825         pmap->pm_count = 1;
 3826         pmap->pm_active = 0;
 3827                 
 3828         TAILQ_INIT(&pmap->pm_pvlist);
 3829         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 3830         pmap->pm_stats.resident_count = 1;
 3831         if (vector_page < KERNBASE) {
 3832                 pmap_enter(pmap, vector_page, 
 3833                     VM_PROT_READ, PHYS_TO_VM_PAGE(systempage.pv_pa),
 3834                     VM_PROT_READ, 1);
 3835         } 
 3836         return (1);
 3837 }
 3838 
 3839 
 3840 /***************************************************
 3841  * page management routines.
 3842  ***************************************************/
 3843 
 3844 
 3845 static void
 3846 pmap_free_pv_entry(pv_entry_t pv)
 3847 {
 3848         pv_entry_count--;
 3849         uma_zfree(pvzone, pv);
 3850 }
 3851 
 3852 
 3853 /*
 3854  * get a new pv_entry, allocating a block from the system
 3855  * when needed.
 3856  * the memory allocation is performed bypassing the malloc code
 3857  * because of the possibility of allocations at interrupt time.
 3858  */
 3859 static pv_entry_t
 3860 pmap_get_pv_entry(void)
 3861 {
 3862         pv_entry_t ret_value;
 3863         
 3864         pv_entry_count++;
 3865         if (pv_entry_count > pv_entry_high_water)
 3866                 pagedaemon_wakeup();
 3867         ret_value = uma_zalloc(pvzone, M_NOWAIT);
 3868         return ret_value;
 3869 }
 3870 
 3871 
 3872 /*
 3873  *      Remove the given range of addresses from the specified map.
 3874  *
 3875  *      It is assumed that the start and end are properly
 3876  *      rounded to the page size.
 3877  */
 3878 #define  PMAP_REMOVE_CLEAN_LIST_SIZE     3
 3879 void
 3880 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
 3881 {
 3882         struct l2_bucket *l2b;
 3883         vm_offset_t next_bucket;
 3884         pt_entry_t *ptep;
 3885         u_int cleanlist_idx, total, cnt;
 3886         struct {
 3887                 vm_offset_t va;
 3888                 pt_entry_t *pte;
 3889         } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
 3890         u_int mappings, is_exec, is_refd;
 3891         int flushall = 0;
 3892 
 3893 
 3894         /*
 3895          * we lock in the pmap => pv_head direction
 3896          */
 3897 
 3898         vm_page_lock_queues();
 3899         PMAP_LOCK(pm);
 3900         if (!pmap_is_current(pm)) {
 3901                 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
 3902         } else
 3903                 cleanlist_idx = 0;
 3904 
 3905         total = 0;
 3906         while (sva < eva) {
 3907                 /*
 3908                  * Do one L2 bucket's worth at a time.
 3909                  */
 3910                 next_bucket = L2_NEXT_BUCKET(sva);
 3911                 if (next_bucket > eva)
 3912                         next_bucket = eva;
 3913 
 3914                 l2b = pmap_get_l2_bucket(pm, sva);
 3915                 if (l2b == NULL) {
 3916                         sva = next_bucket;
 3917                         continue;
 3918                 }
 3919 
 3920                 ptep = &l2b->l2b_kva[l2pte_index(sva)];
 3921                 mappings = 0;
 3922 
 3923                 while (sva < next_bucket) {
 3924                         struct vm_page *pg;
 3925                         pt_entry_t pte;
 3926                         vm_paddr_t pa;
 3927 
 3928                         pte = *ptep;
 3929 
 3930                         if (pte == 0) {
 3931                                 /*
 3932                                  * Nothing here, move along
 3933                                  */
 3934                                 sva += PAGE_SIZE;
 3935                                 ptep++;
 3936                                 continue;
 3937                         }
 3938 
 3939                         pm->pm_stats.resident_count--;
 3940                         pa = l2pte_pa(pte);
 3941                         is_exec = 0;
 3942                         is_refd = 1;
 3943 
 3944                         /*
 3945                          * Update flags. In a number of circumstances,
 3946                          * we could cluster a lot of these and do a
 3947                          * number of sequential pages in one go.
 3948                          */
 3949                         if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
 3950                                 struct pv_entry *pve;
 3951 
 3952                                 pve = pmap_remove_pv(pg, pm, sva);
 3953                                 if (pve) {
 3954                                         is_exec = PV_BEEN_EXECD(pve->pv_flags);
 3955                                         is_refd = PV_BEEN_REFD(pve->pv_flags);
 3956                                         pmap_free_pv_entry(pve);
 3957                                 }
 3958                         }
 3959 
 3960                         if (!l2pte_valid(pte)) {
 3961                                 *ptep = 0;
 3962                                 PTE_SYNC_CURRENT(pm, ptep);
 3963                                 sva += PAGE_SIZE;
 3964                                 ptep++;
 3965                                 mappings++;
 3966                                 continue;
 3967                         }
 3968 
 3969                         if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
 3970                                 /* Add to the clean list. */
 3971                                 cleanlist[cleanlist_idx].pte = ptep;
 3972                                 cleanlist[cleanlist_idx].va =
 3973                                     sva | (is_exec & 1);
 3974                                 cleanlist_idx++;
 3975                         } else
 3976                         if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
 3977                                 /* Nuke everything if needed. */
 3978                                 pmap_idcache_wbinv_all(pm);
 3979                                 pmap_tlb_flushID(pm);
 3980 
 3981                                 /*
 3982                                  * Roll back the previous PTE list,
 3983                                  * and zero out the current PTE.
 3984                                  */
 3985                                 for (cnt = 0;
 3986                                      cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
 3987                                         *cleanlist[cnt].pte = 0;
 3988                                 }
 3989                                 *ptep = 0;
 3990                                 PTE_SYNC(ptep);
 3991                                 cleanlist_idx++;
 3992                                 flushall = 1;
 3993                         } else {
 3994                                 *ptep = 0;
 3995                                 PTE_SYNC(ptep);
 3996                                         if (is_exec)
 3997                                                 pmap_tlb_flushID_SE(pm, sva);
 3998                                         else
 3999                                         if (is_refd)
 4000                                                 pmap_tlb_flushD_SE(pm, sva);
 4001                         }
 4002 
 4003                         sva += PAGE_SIZE;
 4004                         ptep++;
 4005                         mappings++;
 4006                 }
 4007 
 4008                 /*
 4009                  * Deal with any left overs
 4010                  */
 4011                 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
 4012                         total += cleanlist_idx;
 4013                         for (cnt = 0; cnt < cleanlist_idx; cnt++) {
 4014                                 vm_offset_t clva =
 4015                                     cleanlist[cnt].va & ~1;
 4016                                 if (cleanlist[cnt].va & 1) {
 4017                                         pmap_idcache_wbinv_range(pm,
 4018                                             clva, PAGE_SIZE);
 4019                                         pmap_tlb_flushID_SE(pm, clva);
 4020                                 } else {
 4021                                         pmap_dcache_wb_range(pm,
 4022                                             clva, PAGE_SIZE, TRUE,
 4023                                             FALSE);
 4024                                         pmap_tlb_flushD_SE(pm, clva);
 4025                                 }
 4026                                 *cleanlist[cnt].pte = 0;
 4027                                 PTE_SYNC_CURRENT(pm, cleanlist[cnt].pte);
 4028                         }
 4029 
 4030                         if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
 4031                                 cleanlist_idx = 0;
 4032                         else {
 4033                                 /*
 4034                                  * We are removing so much entries it's just
 4035                                  * easier to flush the whole cache.
 4036                                  */
 4037                                 cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
 4038                                 pmap_idcache_wbinv_all(pm);
 4039                                 flushall = 1;
 4040                         }
 4041                 }
 4042 
 4043                 pmap_free_l2_bucket(pm, l2b, mappings);
 4044         }
 4045 
 4046         vm_page_unlock_queues();
 4047         if (flushall)
 4048                 cpu_tlb_flushID();
 4049         PMAP_UNLOCK(pm);
 4050 }
 4051 
 4052 
 4053 
 4054 
 4055 /*
 4056  * pmap_zero_page()
 4057  * 
 4058  * Zero a given physical page by mapping it at a page hook point.
 4059  * In doing the zero page op, the page we zero is mapped cachable, as with
 4060  * StrongARM accesses to non-cached pages are non-burst making writing
 4061  * _any_ bulk data very slow.
 4062  */
 4063 #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_CORE3)
 4064 void
 4065 pmap_zero_page_generic(vm_paddr_t phys, int off, int size)
 4066 {
 4067 #ifdef ARM_USE_SMALL_ALLOC
 4068         char *dstpg;
 4069 #endif
 4070 
 4071 #ifdef DEBUG
 4072         struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
 4073 
 4074         if (pg->md.pvh_list != NULL)
 4075                 panic("pmap_zero_page: page has mappings");
 4076 #endif
 4077 
 4078         if (_arm_bzero && size >= _min_bzero_size &&
 4079             _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
 4080                 return;
 4081 
 4082 #ifdef ARM_USE_SMALL_ALLOC
 4083         dstpg = (char *)arm_ptovirt(phys);
 4084         if (off || size != PAGE_SIZE) {
 4085                 bzero(dstpg + off, size);
 4086                 cpu_dcache_wbinv_range((vm_offset_t)(dstpg + off), size);
 4087         } else {
 4088                 bzero_page((vm_offset_t)dstpg);
 4089                 cpu_dcache_wbinv_range((vm_offset_t)dstpg, PAGE_SIZE);
 4090         }
 4091 #else
 4092 
 4093         mtx_lock(&cmtx);
 4094         /*
 4095          * Hook in the page, zero it, and purge the cache for that
 4096          * zeroed page. Invalidate the TLB as needed.
 4097          */
 4098         *cdst_pte = L2_S_PROTO | phys |
 4099             L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
 4100         PTE_SYNC(cdst_pte);
 4101         cpu_tlb_flushD_SE(cdstp);
 4102         cpu_cpwait();
 4103         if (off || size != PAGE_SIZE) {
 4104                 bzero((void *)(cdstp + off), size);
 4105                 cpu_dcache_wbinv_range(cdstp + off, size);
 4106         } else {
 4107                 bzero_page(cdstp);
 4108                 cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
 4109         }
 4110         mtx_unlock(&cmtx);
 4111 #endif
 4112 }
 4113 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
 4114 
 4115 #if ARM_MMU_XSCALE == 1
 4116 void
 4117 pmap_zero_page_xscale(vm_paddr_t phys, int off, int size)
 4118 {
 4119         if (_arm_bzero && size >= _min_bzero_size &&
 4120             _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0)
 4121                 return;
 4122         mtx_lock(&cmtx);
 4123         /*
 4124          * Hook in the page, zero it, and purge the cache for that
 4125          * zeroed page. Invalidate the TLB as needed.
 4126          */
 4127         *cdst_pte = L2_S_PROTO | phys |
 4128             L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
 4129             L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);       /* mini-data */
 4130         PTE_SYNC(cdst_pte);
 4131         cpu_tlb_flushD_SE(cdstp);
 4132         cpu_cpwait();
 4133         if (off || size != PAGE_SIZE)
 4134                 bzero((void *)(cdstp + off), size);
 4135         else
 4136                 bzero_page(cdstp);
 4137         mtx_unlock(&cmtx);
 4138         xscale_cache_clean_minidata();
 4139 }
 4140 
 4141 /*
 4142  * Change the PTEs for the specified kernel mappings such that they
 4143  * will use the mini data cache instead of the main data cache.
 4144  */
 4145 void
 4146 pmap_use_minicache(vm_offset_t va, vm_size_t size)
 4147 {
 4148         struct l2_bucket *l2b;
 4149         pt_entry_t *ptep, *sptep, pte;
 4150         vm_offset_t next_bucket, eva;
 4151 
 4152 #if (ARM_NMMUS > 1) || defined(CPU_XSCALE_CORE3)
 4153         if (xscale_use_minidata == 0)
 4154                 return;
 4155 #endif
 4156 
 4157         eva = va + size;
 4158 
 4159         while (va < eva) {
 4160                 next_bucket = L2_NEXT_BUCKET(va);
 4161                 if (next_bucket > eva)
 4162                         next_bucket = eva;
 4163 
 4164                 l2b = pmap_get_l2_bucket(pmap_kernel(), va);
 4165 
 4166                 sptep = ptep = &l2b->l2b_kva[l2pte_index(va)];
 4167 
 4168                 while (va < next_bucket) {
 4169                         pte = *ptep;
 4170                         if (!l2pte_minidata(pte)) {
 4171                                 cpu_dcache_wbinv_range(va, PAGE_SIZE);
 4172                                 cpu_tlb_flushD_SE(va);
 4173                                 *ptep = pte & ~L2_B;
 4174                         }
 4175                         ptep++;
 4176                         va += PAGE_SIZE;
 4177                 }
 4178                 PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
 4179         }
 4180         cpu_cpwait();
 4181 }
 4182 #endif /* ARM_MMU_XSCALE == 1 */
 4183 
 4184 /*
 4185  *      pmap_zero_page zeros the specified hardware page by mapping 
 4186  *      the page into KVM and using bzero to clear its contents.
 4187  */
 4188 void
 4189 pmap_zero_page(vm_page_t m)
 4190 {
 4191         pmap_zero_page_func(VM_PAGE_TO_PHYS(m), 0, PAGE_SIZE);
 4192 }
 4193 
 4194 
 4195 /*
 4196  *      pmap_zero_page_area zeros the specified hardware page by mapping 
 4197  *      the page into KVM and using bzero to clear its contents.
 4198  *
 4199  *      off and size may not cover an area beyond a single hardware page.
 4200  */
 4201 void
 4202 pmap_zero_page_area(vm_page_t m, int off, int size)
 4203 {
 4204 
 4205         pmap_zero_page_func(VM_PAGE_TO_PHYS(m), off, size);
 4206 }
 4207 
 4208 
 4209 /*
 4210  *      pmap_zero_page_idle zeros the specified hardware page by mapping 
 4211  *      the page into KVM and using bzero to clear its contents.  This
 4212  *      is intended to be called from the vm_pagezero process only and
 4213  *      outside of Giant.
 4214  */
 4215 void
 4216 pmap_zero_page_idle(vm_page_t m)
 4217 {
 4218 
 4219         pmap_zero_page(m);
 4220 }
 4221 
 4222 #if 0
 4223 /*
 4224  * pmap_clean_page()
 4225  *
 4226  * This is a local function used to work out the best strategy to clean
 4227  * a single page referenced by its entry in the PV table. It's used by
 4228  * pmap_copy_page, pmap_zero page and maybe some others later on.
 4229  *
 4230  * Its policy is effectively:
 4231  *  o If there are no mappings, we don't bother doing anything with the cache.
 4232  *  o If there is one mapping, we clean just that page.
 4233  *  o If there are multiple mappings, we clean the entire cache.
 4234  *
 4235  * So that some functions can be further optimised, it returns 0 if it didn't
 4236  * clean the entire cache, or 1 if it did.
 4237  *
 4238  * XXX One bug in this routine is that if the pv_entry has a single page
 4239  * mapped at 0x00000000 a whole cache clean will be performed rather than
 4240  * just the 1 page. Since this should not occur in everyday use and if it does
 4241  * it will just result in not the most efficient clean for the page.
 4242  */
 4243 static int
 4244 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
 4245 {
 4246         pmap_t pm, pm_to_clean = NULL;
 4247         struct pv_entry *npv;
 4248         u_int cache_needs_cleaning = 0;
 4249         u_int flags = 0;
 4250         vm_offset_t page_to_clean = 0;
 4251 
 4252         if (pv == NULL) {
 4253                 /* nothing mapped in so nothing to flush */
 4254                 return (0);
 4255         }
 4256 
 4257         /*
 4258          * Since we flush the cache each time we change to a different
 4259          * user vmspace, we only need to flush the page if it is in the
 4260          * current pmap.
 4261          */
 4262         if (curthread)
 4263                 pm = vmspace_pmap(curproc->p_vmspace);
 4264         else
 4265                 pm = pmap_kernel();
 4266 
 4267         for (npv = pv; npv; npv = TAILQ_NEXT(npv, pv_list)) {
 4268                 if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) {
 4269                         flags |= npv->pv_flags;
 4270                         /*
 4271                          * The page is mapped non-cacheable in 
 4272                          * this map.  No need to flush the cache.
 4273                          */
 4274                         if (npv->pv_flags & PVF_NC) {
 4275 #ifdef DIAGNOSTIC
 4276                                 if (cache_needs_cleaning)
 4277                                         panic("pmap_clean_page: "
 4278                                             "cache inconsistency");
 4279 #endif
 4280                                 break;
 4281                         } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
 4282                                 continue;
 4283                         if (cache_needs_cleaning) {
 4284                                 page_to_clean = 0;
 4285                                 break;
 4286                         } else {
 4287                                 page_to_clean = npv->pv_va;
 4288                                 pm_to_clean = npv->pv_pmap;
 4289                         }
 4290                         cache_needs_cleaning = 1;
 4291                 }
 4292         }
 4293         if (page_to_clean) {
 4294                 if (PV_BEEN_EXECD(flags))
 4295                         pmap_idcache_wbinv_range(pm_to_clean, page_to_clean,
 4296                             PAGE_SIZE);
 4297                 else
 4298                         pmap_dcache_wb_range(pm_to_clean, page_to_clean,
 4299                             PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0);
 4300         } else if (cache_needs_cleaning) {
 4301                 if (PV_BEEN_EXECD(flags))
 4302                         pmap_idcache_wbinv_all(pm);
 4303                 else
 4304                         pmap_dcache_wbinv_all(pm);
 4305                 return (1);
 4306         }
 4307         return (0);
 4308 }
 4309 #endif
 4310 
 4311 /*
 4312  *      pmap_copy_page copies the specified (machine independent)
 4313  *      page by mapping the page into virtual memory and using
 4314  *      bcopy to copy the page, one machine dependent page at a
 4315  *      time.
 4316  */
 4317 
 4318 /*
 4319  * pmap_copy_page()
 4320  *
 4321  * Copy one physical page into another, by mapping the pages into
 4322  * hook points. The same comment regarding cachability as in
 4323  * pmap_zero_page also applies here.
 4324  */
 4325 #if  (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined (CPU_XSCALE_CORE3)
 4326 void
 4327 pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
 4328 {
 4329 #if 0
 4330         struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
 4331 #endif
 4332 #ifdef DEBUG
 4333         struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
 4334 
 4335         if (dst_pg->md.pvh_list != NULL)
 4336                 panic("pmap_copy_page: dst page has mappings");
 4337 #endif
 4338 
 4339 
 4340         /*
 4341          * Clean the source page.  Hold the source page's lock for
 4342          * the duration of the copy so that no other mappings can
 4343          * be created while we have a potentially aliased mapping.
 4344          */
 4345 #if 0
 4346         /*
 4347          * XXX: Not needed while we call cpu_dcache_wbinv_all() in
 4348          * pmap_copy_page().
 4349          */
 4350         (void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
 4351 #endif
 4352         /*
 4353          * Map the pages into the page hook points, copy them, and purge
 4354          * the cache for the appropriate page. Invalidate the TLB
 4355          * as required.
 4356          */
 4357         mtx_lock(&cmtx);
 4358         *csrc_pte = L2_S_PROTO | src |
 4359             L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
 4360         PTE_SYNC(csrc_pte);
 4361         *cdst_pte = L2_S_PROTO | dst |
 4362             L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
 4363         PTE_SYNC(cdst_pte);
 4364         cpu_tlb_flushD_SE(csrcp);
 4365         cpu_tlb_flushD_SE(cdstp);
 4366         cpu_cpwait();
 4367         bcopy_page(csrcp, cdstp);
 4368         mtx_unlock(&cmtx);
 4369         cpu_dcache_inv_range(csrcp, PAGE_SIZE);
 4370         cpu_dcache_wbinv_range(cdstp, PAGE_SIZE);
 4371 }
 4372 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
 4373 
 4374 #if ARM_MMU_XSCALE == 1
 4375 void
 4376 pmap_copy_page_xscale(vm_paddr_t src, vm_paddr_t dst)
 4377 {
 4378 #if 0
 4379         /* XXX: Only needed for pmap_clean_page(), which is commented out. */
 4380         struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
 4381 #endif
 4382 #ifdef DEBUG
 4383         struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
 4384 
 4385         if (dst_pg->md.pvh_list != NULL)
 4386                 panic("pmap_copy_page: dst page has mappings");
 4387 #endif
 4388 
 4389 
 4390         /*
 4391          * Clean the source page.  Hold the source page's lock for
 4392          * the duration of the copy so that no other mappings can
 4393          * be created while we have a potentially aliased mapping.
 4394          */
 4395 #if 0
 4396         /*
 4397          * XXX: Not needed while we call cpu_dcache_wbinv_all() in
 4398          * pmap_copy_page().
 4399          */
 4400         (void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE);
 4401 #endif
 4402         /*
 4403          * Map the pages into the page hook points, copy them, and purge
 4404          * the cache for the appropriate page. Invalidate the TLB
 4405          * as required.
 4406          */
 4407         mtx_lock(&cmtx);
 4408         *csrc_pte = L2_S_PROTO | src |
 4409             L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
 4410             L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);       /* mini-data */
 4411         PTE_SYNC(csrc_pte);
 4412         *cdst_pte = L2_S_PROTO | dst |
 4413             L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
 4414             L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);       /* mini-data */
 4415         PTE_SYNC(cdst_pte);
 4416         cpu_tlb_flushD_SE(csrcp);
 4417         cpu_tlb_flushD_SE(cdstp);
 4418         cpu_cpwait();
 4419         bcopy_page(csrcp, cdstp);
 4420         mtx_unlock(&cmtx);
 4421         xscale_cache_clean_minidata();
 4422 }
 4423 #endif /* ARM_MMU_XSCALE == 1 */
 4424 
 4425 void
 4426 pmap_copy_page(vm_page_t src, vm_page_t dst)
 4427 {
 4428 #ifdef ARM_USE_SMALL_ALLOC
 4429         vm_offset_t srcpg, dstpg;
 4430 #endif
 4431 
 4432         cpu_dcache_wbinv_all();
 4433         if (_arm_memcpy && PAGE_SIZE >= _min_memcpy_size &&
 4434             _arm_memcpy((void *)VM_PAGE_TO_PHYS(dst), 
 4435             (void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0)
 4436                 return;
 4437 #ifdef ARM_USE_SMALL_ALLOC
 4438         srcpg = arm_ptovirt(VM_PAGE_TO_PHYS(src));
 4439         dstpg = arm_ptovirt(VM_PAGE_TO_PHYS(dst));
 4440         bcopy_page(srcpg, dstpg);
 4441         cpu_dcache_wbinv_range(dstpg, PAGE_SIZE);
 4442 #else
 4443         pmap_copy_page_func(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
 4444 #endif
 4445 }
 4446 
 4447 
 4448 
 4449 
 4450 /*
 4451  * this routine returns true if a physical page resides
 4452  * in the given pmap.
 4453  */
 4454 boolean_t
 4455 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 4456 {
 4457         pv_entry_t pv;
 4458         int loops = 0;
 4459         
 4460         if (m->flags & PG_FICTITIOUS)
 4461                 return (FALSE);
 4462                 
 4463         /*
 4464          * Not found, check current mappings returning immediately
 4465          */
 4466         for (pv = TAILQ_FIRST(&m->md.pv_list);
 4467             pv;
 4468             pv = TAILQ_NEXT(pv, pv_list)) {
 4469                 if (pv->pv_pmap == pmap) {
 4470                         return (TRUE);
 4471                 }
 4472                 loops++;
 4473                 if (loops >= 16)
 4474                         break;
 4475         }
 4476         return (FALSE);
 4477 }
 4478 
 4479 
 4480 /*
 4481  *      pmap_ts_referenced:
 4482  *
 4483  *      Return the count of reference bits for a page, clearing all of them.
 4484  */
 4485 int
 4486 pmap_ts_referenced(vm_page_t m)
 4487 {
 4488 
 4489         if (m->flags & PG_FICTITIOUS)
 4490                 return (0);
 4491         return (pmap_clearbit(m, PVF_REF));
 4492 }
 4493 
 4494 
 4495 boolean_t
 4496 pmap_is_modified(vm_page_t m)
 4497 {
 4498 
 4499         if (m->md.pvh_attrs & PVF_MOD)
 4500                 return (TRUE);
 4501         
 4502         return(FALSE);
 4503 }
 4504 
 4505 
 4506 /*
 4507  *      Clear the modify bits on the specified physical page.
 4508  */
 4509 void
 4510 pmap_clear_modify(vm_page_t m)
 4511 {
 4512 
 4513         if (m->md.pvh_attrs & PVF_MOD)
 4514                 pmap_clearbit(m, PVF_MOD);
 4515 }
 4516 
 4517 
 4518 /*
 4519  *      pmap_clear_reference:
 4520  *
 4521  *      Clear the reference bit on the specified physical page.
 4522  */
 4523 void
 4524 pmap_clear_reference(vm_page_t m)
 4525 {
 4526 
 4527         if (m->md.pvh_attrs & PVF_REF) 
 4528                 pmap_clearbit(m, PVF_REF);
 4529 }
 4530 
 4531 
 4532 /*
 4533  * Clear the write and modified bits in each of the given page's mappings.
 4534  */
 4535 void
 4536 pmap_remove_write(vm_page_t m)
 4537 {
 4538 
 4539         if (m->flags & PG_WRITEABLE)
 4540                 pmap_clearbit(m, PVF_WRITE);
 4541 }
 4542 
 4543 
 4544 /*
 4545  * perform the pmap work for mincore
 4546  */
 4547 int
 4548 pmap_mincore(pmap_t pmap, vm_offset_t addr)
 4549 {
 4550         printf("pmap_mincore()\n");
 4551         
 4552         return (0);
 4553 }
 4554 
 4555 
 4556 vm_offset_t
 4557 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
 4558 {
 4559 
 4560         return(addr);
 4561 }
 4562 
 4563 /*
 4564  *      Increase the starting virtual address of the given mapping if a
 4565  *      different alignment might result in more superpage mappings.
 4566  */
 4567 void
 4568 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
 4569     vm_offset_t *addr, vm_size_t size)
 4570 {
 4571 }
 4572 
 4573 
 4574 /*
 4575  * Map a set of physical memory pages into the kernel virtual
 4576  * address space. Return a pointer to where it is mapped. This
 4577  * routine is intended to be used for mapping device memory,
 4578  * NOT real memory.
 4579  */
 4580 void *
 4581 pmap_mapdev(vm_offset_t pa, vm_size_t size)
 4582 {
 4583         vm_offset_t va, tmpva, offset;
 4584         
 4585         offset = pa & PAGE_MASK;
 4586         size = roundup(size, PAGE_SIZE);
 4587         
 4588         GIANT_REQUIRED;
 4589         
 4590         va = kmem_alloc_nofault(kernel_map, size);
 4591         if (!va)
 4592                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
 4593         for (tmpva = va; size > 0;) {
 4594                 pmap_kenter_internal(tmpva, pa, 0);
 4595                 size -= PAGE_SIZE;
 4596                 tmpva += PAGE_SIZE;
 4597                 pa += PAGE_SIZE;
 4598         }
 4599         
 4600         return ((void *)(va + offset));
 4601 }
 4602 
 4603 #define BOOTSTRAP_DEBUG
 4604 
 4605 /*
 4606  * pmap_map_section:
 4607  *
 4608  *      Create a single section mapping.
 4609  */
 4610 void
 4611 pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
 4612     int prot, int cache)
 4613 {
 4614         pd_entry_t *pde = (pd_entry_t *) l1pt;
 4615         pd_entry_t fl;
 4616 
 4617         KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2"));
 4618 
 4619         switch (cache) {
 4620         case PTE_NOCACHE:
 4621         default:
 4622                 fl = 0;
 4623                 break;
 4624 
 4625         case PTE_CACHE:
 4626                 fl = pte_l1_s_cache_mode;
 4627                 break;
 4628 
 4629         case PTE_PAGETABLE:
 4630                 fl = pte_l1_s_cache_mode_pt;
 4631                 break;
 4632         }
 4633 
 4634         pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
 4635             L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
 4636         PTE_SYNC(&pde[va >> L1_S_SHIFT]);
 4637 
 4638 }
 4639 
 4640 /*
 4641  * pmap_link_l2pt:
 4642  *
 4643  *      Link the L2 page table specified by l2pv.pv_pa into the L1
 4644  *      page table at the slot for "va".
 4645  */
 4646 void
 4647 pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
 4648 {
 4649         pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
 4650         u_int slot = va >> L1_S_SHIFT;
 4651 
 4652         proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
 4653 
 4654 #ifdef VERBOSE_INIT_ARM     
 4655         printf("pmap_link_l2pt: pa=0x%x va=0x%x\n", l2pv->pv_pa, l2pv->pv_va);
 4656 #endif
 4657 
 4658         pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
 4659 
 4660         PTE_SYNC(&pde[slot]);
 4661 
 4662         SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
 4663 
 4664         
 4665 }
 4666 
 4667 /*
 4668  * pmap_map_entry
 4669  *
 4670  *      Create a single page mapping.
 4671  */
 4672 void
 4673 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
 4674     int cache)
 4675 {
 4676         pd_entry_t *pde = (pd_entry_t *) l1pt;
 4677         pt_entry_t fl;
 4678         pt_entry_t *pte;
 4679 
 4680         KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
 4681 
 4682         switch (cache) {
 4683         case PTE_NOCACHE:
 4684         default:
 4685                 fl = 0;
 4686                 break;
 4687 
 4688         case PTE_CACHE:
 4689                 fl = pte_l2_s_cache_mode;
 4690                 break;
 4691 
 4692         case PTE_PAGETABLE:
 4693                 fl = pte_l2_s_cache_mode_pt;
 4694                 break;
 4695         }
 4696 
 4697         if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
 4698                 panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
 4699 
 4700         pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
 4701 
 4702         if (pte == NULL)
 4703                 panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
 4704 
 4705         pte[l2pte_index(va)] =
 4706             L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl;
 4707         PTE_SYNC(&pte[l2pte_index(va)]);
 4708 }
 4709 
 4710 /*
 4711  * pmap_map_chunk:
 4712  *
 4713  *      Map a chunk of memory using the most efficient mappings
 4714  *      possible (section. large page, small page) into the
 4715  *      provided L1 and L2 tables at the specified virtual address.
 4716  */
 4717 vm_size_t
 4718 pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
 4719     vm_size_t size, int prot, int cache)
 4720 {
 4721         pd_entry_t *pde = (pd_entry_t *) l1pt;
 4722         pt_entry_t *pte, f1, f2s, f2l;
 4723         vm_size_t resid;  
 4724         int i;
 4725 
 4726         resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
 4727 
 4728         if (l1pt == 0)
 4729                 panic("pmap_map_chunk: no L1 table provided");
 4730 
 4731 #ifdef VERBOSE_INIT_ARM     
 4732         printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x "
 4733             "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
 4734 #endif
 4735 
 4736         switch (cache) {
 4737         case PTE_NOCACHE:
 4738         default:
 4739                 f1 = 0;
 4740                 f2l = 0;
 4741                 f2s = 0;
 4742                 break;
 4743 
 4744         case PTE_CACHE:
 4745                 f1 = pte_l1_s_cache_mode;
 4746                 f2l = pte_l2_l_cache_mode;
 4747                 f2s = pte_l2_s_cache_mode;
 4748                 break;
 4749 
 4750         case PTE_PAGETABLE:
 4751                 f1 = pte_l1_s_cache_mode_pt;
 4752                 f2l = pte_l2_l_cache_mode_pt;
 4753                 f2s = pte_l2_s_cache_mode_pt;
 4754                 break;
 4755         }
 4756 
 4757         size = resid;
 4758 
 4759         while (resid > 0) {
 4760                 /* See if we can use a section mapping. */
 4761                 if (L1_S_MAPPABLE_P(va, pa, resid)) {
 4762 #ifdef VERBOSE_INIT_ARM
 4763                         printf("S");
 4764 #endif
 4765                         pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
 4766                             L1_S_PROT(PTE_KERNEL, prot) | f1 |
 4767                             L1_S_DOM(PMAP_DOMAIN_KERNEL);
 4768                         PTE_SYNC(&pde[va >> L1_S_SHIFT]);
 4769                         va += L1_S_SIZE;
 4770                         pa += L1_S_SIZE;
 4771                         resid -= L1_S_SIZE;
 4772                         continue;
 4773                 }
 4774 
 4775                 /*
 4776                  * Ok, we're going to use an L2 table.  Make sure
 4777                  * one is actually in the corresponding L1 slot
 4778                  * for the current VA.
 4779                  */
 4780                 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
 4781                         panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
 4782 
 4783                 pte = (pt_entry_t *) kernel_pt_lookup(
 4784                     pde[L1_IDX(va)] & L1_C_ADDR_MASK);
 4785                 if (pte == NULL)
 4786                         panic("pmap_map_chunk: can't find L2 table for VA"
 4787                             "0x%08x", va);
 4788                 /* See if we can use a L2 large page mapping. */
 4789                 if (L2_L_MAPPABLE_P(va, pa, resid)) {
 4790 #ifdef VERBOSE_INIT_ARM
 4791                         printf("L");
 4792 #endif
 4793                         for (i = 0; i < 16; i++) {
 4794                                 pte[l2pte_index(va) + i] =
 4795                                     L2_L_PROTO | pa |
 4796                                     L2_L_PROT(PTE_KERNEL, prot) | f2l;
 4797                                 PTE_SYNC(&pte[l2pte_index(va) + i]);
 4798                         }
 4799                         va += L2_L_SIZE;
 4800                         pa += L2_L_SIZE;
 4801                         resid -= L2_L_SIZE;
 4802                         continue;
 4803                 }
 4804 
 4805                 /* Use a small page mapping. */
 4806 #ifdef VERBOSE_INIT_ARM
 4807                 printf("P");
 4808 #endif
 4809                 pte[l2pte_index(va)] =
 4810                     L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s;
 4811                 PTE_SYNC(&pte[l2pte_index(va)]);
 4812                 va += PAGE_SIZE;
 4813                 pa += PAGE_SIZE;
 4814                 resid -= PAGE_SIZE;
 4815         }
 4816 #ifdef VERBOSE_INIT_ARM
 4817         printf("\n");
 4818 #endif
 4819         return (size);
 4820 
 4821 }
 4822 
 4823 /********************** Static device map routines ***************************/
 4824 
 4825 static const struct pmap_devmap *pmap_devmap_table;
 4826 
 4827 /*
 4828  * Register the devmap table.  This is provided in case early console
 4829  * initialization needs to register mappings created by bootstrap code
 4830  * before pmap_devmap_bootstrap() is called.
 4831  */
 4832 void
 4833 pmap_devmap_register(const struct pmap_devmap *table)
 4834 {
 4835 
 4836         pmap_devmap_table = table;
 4837 }
 4838 
 4839 /*
 4840  * Map all of the static regions in the devmap table, and remember
 4841  * the devmap table so other parts of the kernel can look up entries
 4842  * later.
 4843  */
 4844 void
 4845 pmap_devmap_bootstrap(vm_offset_t l1pt, const struct pmap_devmap *table)
 4846 {
 4847         int i;
 4848 
 4849         pmap_devmap_table = table;
 4850 
 4851         for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
 4852 #ifdef VERBOSE_INIT_ARM
 4853                 printf("devmap: %08x -> %08x @ %08x\n",
 4854                     pmap_devmap_table[i].pd_pa,
 4855                     pmap_devmap_table[i].pd_pa +
 4856                         pmap_devmap_table[i].pd_size - 1,
 4857                     pmap_devmap_table[i].pd_va);
 4858 #endif
 4859                 pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
 4860                     pmap_devmap_table[i].pd_pa,
 4861                     pmap_devmap_table[i].pd_size,
 4862                     pmap_devmap_table[i].pd_prot,
 4863                     pmap_devmap_table[i].pd_cache);
 4864         }
 4865 }
 4866 
 4867 const struct pmap_devmap *
 4868 pmap_devmap_find_pa(vm_paddr_t pa, vm_size_t size)
 4869 {
 4870         int i;
 4871 
 4872         if (pmap_devmap_table == NULL)
 4873                 return (NULL);
 4874 
 4875         for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
 4876                 if (pa >= pmap_devmap_table[i].pd_pa &&
 4877                     pa + size <= pmap_devmap_table[i].pd_pa +
 4878                                  pmap_devmap_table[i].pd_size)
 4879                         return (&pmap_devmap_table[i]);
 4880         }
 4881 
 4882         return (NULL);
 4883 }
 4884 
 4885 const struct pmap_devmap *
 4886 pmap_devmap_find_va(vm_offset_t va, vm_size_t size)
 4887 {
 4888         int i;
 4889 
 4890         if (pmap_devmap_table == NULL)
 4891                 return (NULL);
 4892 
 4893         for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
 4894                 if (va >= pmap_devmap_table[i].pd_va &&
 4895                     va + size <= pmap_devmap_table[i].pd_va +
 4896                                  pmap_devmap_table[i].pd_size)
 4897                         return (&pmap_devmap_table[i]);
 4898         }
 4899 
 4900         return (NULL);
 4901 }
 4902 

Cache object: 3d1fe574e71582dc10886b5d8fb7383b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.