The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/trap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $   */
    2 
    3 /*-
    4  * Copyright 2004 Olivier Houchard
    5  * Copyright 2003 Wasabi Systems, Inc.
    6  * All rights reserved.
    7  *
    8  * Written by Steve C. Woodford for Wasabi Systems, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed for the NetBSD Project by
   21  *      Wasabi Systems, Inc.
   22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
   23  *    or promote products derived from this software without specific prior
   24  *    written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
   30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   36  * POSSIBILITY OF SUCH DAMAGE.
   37  */
   38 /*-
   39  * Copyright (c) 1994-1997 Mark Brinicombe.
   40  * Copyright (c) 1994 Brini.
   41  * All rights reserved.
   42  *
   43  * This code is derived from software written for Brini by Mark Brinicombe
   44  *
   45  * Redistribution and use in source and binary forms, with or without
   46  * modification, are permitted provided that the following conditions
   47  * are met:
   48  * 1. Redistributions of source code must retain the above copyright
   49  *    notice, this list of conditions and the following disclaimer.
   50  * 2. Redistributions in binary form must reproduce the above copyright
   51  *    notice, this list of conditions and the following disclaimer in the
   52  *    documentation and/or other materials provided with the distribution.
   53  * 3. All advertising materials mentioning features or use of this software
   54  *    must display the following acknowledgement:
   55  *      This product includes software developed by Brini.
   56  * 4. The name of the company nor the name of the author may be used to
   57  *    endorse or promote products derived from this software without specific
   58  *    prior written permission.
   59  *
   60  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
   61  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   62  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   63  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   64  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   65  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   66  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   70  * SUCH DAMAGE.
   71  *
   72  * RiscBSD kernel project
   73  *
   74  * fault.c
   75  *
   76  * Fault handlers
   77  *
   78  * Created      : 28/11/94
   79  */
   80 
   81 
   82 #include <sys/cdefs.h>
   83 __FBSDID("$FreeBSD$");
   84 
   85 #include <sys/param.h>
   86 #include <sys/systm.h>
   87 #include <sys/proc.h>
   88 #include <sys/lock.h>
   89 #include <sys/mutex.h>
   90 #include <sys/signalvar.h>
   91 
   92 #include <vm/vm.h>
   93 #include <vm/pmap.h>
   94 #include <vm/vm_kern.h>
   95 #include <vm/vm_map.h>
   96 #include <vm/vm_extern.h>
   97 
   98 #include <machine/acle-compat.h>
   99 #include <machine/cpu.h>
  100 #include <machine/frame.h>
  101 #include <machine/machdep.h>
  102 #include <machine/pcb.h>
  103 #include <machine/vmparam.h>
  104 
  105 #ifdef KDB
  106 #include <sys/kdb.h>
  107 #endif
  108 
  109 extern char fusubailout[];
  110 
  111 #ifdef DEBUG
  112 int last_fault_code;    /* For the benefit of pmap_fault_fixup() */
  113 #endif
  114 
  115 struct ksig {
  116         int signb;
  117         u_long code;
  118 };
  119 struct data_abort {
  120         int (*func)(struct trapframe *, u_int, u_int, struct thread *, 
  121             struct ksig *);
  122         const char *desc;
  123 };
  124 
  125 static int dab_fatal(struct trapframe *, u_int, u_int, struct thread *,
  126     struct ksig *);
  127 static int dab_align(struct trapframe *, u_int, u_int, struct thread *,
  128     struct ksig *);
  129 static int dab_buserr(struct trapframe *, u_int, u_int, struct thread *,
  130     struct ksig *);
  131 static void prefetch_abort_handler(struct trapframe *);
  132 
  133 static const struct data_abort data_aborts[] = {
  134         {dab_fatal,     "Vector Exception"},
  135         {dab_align,     "Alignment Fault 1"},
  136         {dab_fatal,     "Terminal Exception"},
  137         {dab_align,     "Alignment Fault 3"},
  138         {dab_buserr,    "External Linefetch Abort (S)"},
  139         {NULL,          "Translation Fault (S)"},
  140 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
  141         {NULL,          "Translation Flag Fault"},
  142 #else
  143         {dab_buserr,    "External Linefetch Abort (P)"},
  144 #endif
  145         {NULL,          "Translation Fault (P)"},
  146         {dab_buserr,    "External Non-Linefetch Abort (S)"},
  147         {NULL,          "Domain Fault (S)"},
  148         {dab_buserr,    "External Non-Linefetch Abort (P)"},
  149         {NULL,          "Domain Fault (P)"},
  150         {dab_buserr,    "External Translation Abort (L1)"},
  151         {NULL,          "Permission Fault (S)"},
  152         {dab_buserr,    "External Translation Abort (L2)"},
  153         {NULL,          "Permission Fault (P)"}
  154 };
  155 
  156 /* Determine if a fault came from user mode */
  157 #define TRAP_USERMODE(tf)       ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
  158 
  159 /* Determine if 'x' is a permission fault */
  160 #define IS_PERMISSION_FAULT(x)                                  \
  161         (((1 << ((x) & FAULT_TYPE_MASK)) &                      \
  162           ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
  163 
  164 static __inline void
  165 call_trapsignal(struct thread *td, int sig, u_long code)
  166 {
  167         ksiginfo_t ksi;
  168 
  169         ksiginfo_init_trap(&ksi);
  170         ksi.ksi_signo = sig;
  171         ksi.ksi_code = (int)code;
  172         trapsignal(td, &ksi);
  173 }
  174 
  175 void
  176 abort_handler(struct trapframe *tf, int type)
  177 {
  178         struct vm_map *map;
  179         struct pcb *pcb;
  180         struct thread *td;
  181         u_int user, far, fsr;
  182         vm_prot_t ftype;
  183         void *onfault;
  184         vm_offset_t va;
  185         int error = 0;
  186         struct ksig ksig;
  187         struct proc *p;
  188 
  189         if (type == 1)
  190                 return (prefetch_abort_handler(tf));
  191 
  192         /* Grab FAR/FSR before enabling interrupts */
  193         far = cpu_faultaddress();
  194         fsr = cpu_faultstatus();
  195 #if 0
  196         printf("data abort: fault address=%p (from pc=%p lr=%p)\n",
  197                (void*)far, (void*)tf->tf_pc, (void*)tf->tf_svc_lr);
  198 #endif
  199 
  200         /* Update vmmeter statistics */
  201 #if 0
  202         vmexp.traps++;
  203 #endif
  204 
  205         td = curthread;
  206         p = td->td_proc;
  207 
  208         PCPU_INC(cnt.v_trap);
  209         /* Data abort came from user mode? */
  210         user = TRAP_USERMODE(tf);
  211 
  212         if (user) {
  213                 td->td_pticks = 0;
  214                 td->td_frame = tf;
  215                 if (td->td_ucred != td->td_proc->p_ucred)
  216                         cred_update_thread(td);
  217 
  218         }
  219         /* Grab the current pcb */
  220         pcb = td->td_pcb;
  221         /* Re-enable interrupts if they were enabled previously */
  222         if (td->td_md.md_spinlock_count == 0) {
  223                 if (__predict_true(tf->tf_spsr & PSR_I) == 0)
  224                         enable_interrupts(PSR_I);
  225                 if (__predict_true(tf->tf_spsr & PSR_F) == 0)
  226                         enable_interrupts(PSR_F);
  227         }
  228 
  229 
  230         /* Invoke the appropriate handler, if necessary */
  231         if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
  232                 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
  233                     td, &ksig)) {
  234                         goto do_trapsignal;
  235                 }
  236                 goto out;
  237         }
  238 
  239         /*
  240          * At this point, we're dealing with one of the following data aborts:
  241          *
  242          *  FAULT_TRANS_S  - Translation -- Section
  243          *  FAULT_TRANS_P  - Translation -- Page
  244          *  FAULT_DOMAIN_S - Domain -- Section
  245          *  FAULT_DOMAIN_P - Domain -- Page
  246          *  FAULT_PERM_S   - Permission -- Section
  247          *  FAULT_PERM_P   - Permission -- Page
  248          *
  249          * These are the main virtual memory-related faults signalled by
  250          * the MMU.
  251          */
  252 
  253         /* fusubailout is used by [fs]uswintr to avoid page faulting */
  254         if (__predict_false(pcb->pcb_onfault == fusubailout)) {
  255                 tf->tf_r0 = EFAULT;
  256                 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
  257                 return;
  258         }
  259 
  260         /*
  261          * Make sure the Program Counter is sane. We could fall foul of
  262          * someone executing Thumb code, in which case the PC might not
  263          * be word-aligned. This would cause a kernel alignment fault
  264          * further down if we have to decode the current instruction.
  265          * XXX: It would be nice to be able to support Thumb at some point.
  266          */
  267         if (__predict_false((tf->tf_pc & 3) != 0)) {
  268                 if (user) {
  269                         /*
  270                          * Give the user an illegal instruction signal.
  271                          */
  272                         /* Deliver a SIGILL to the process */
  273                         ksig.signb = SIGILL;
  274                         ksig.code = 0;
  275                         goto do_trapsignal;
  276                 }
  277 
  278                 /*
  279                  * The kernel never executes Thumb code.
  280                  */
  281                 printf("\ndata_abort_fault: Misaligned Kernel-mode "
  282                     "Program Counter\n");
  283                 dab_fatal(tf, fsr, far, td, &ksig);
  284         }
  285 
  286         va = trunc_page((vm_offset_t)far);
  287 
  288         /*
  289          * It is only a kernel address space fault iff:
  290          *      1. user == 0  and
  291          *      2. pcb_onfault not set or
  292          *      3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
  293          */
  294         if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
  295             (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
  296             __predict_true((pcb->pcb_onfault == NULL ||
  297              (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
  298                 map = kernel_map;
  299 
  300                 /* Was the fault due to the FPE/IPKDB ? */
  301                 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
  302 
  303                         /*
  304                          * Force exit via userret()
  305                          * This is necessary as the FPE is an extension to
  306                          * userland that actually runs in a priveledged mode
  307                          * but uses USR mode permissions for its accesses.
  308                          */
  309                         user = 1;
  310                         ksig.signb = SIGSEGV;
  311                         ksig.code = 0;
  312                         goto do_trapsignal;
  313                 }
  314         } else {
  315                 map = &td->td_proc->p_vmspace->vm_map;
  316         }
  317 
  318         /*
  319          * We need to know whether the page should be mapped as R or R/W.  On
  320          * armv6 and later the fault status register indicates whether the
  321          * access was a read or write.  Prior to armv6, we know that a
  322          * permission fault can only be the result of a write to a read-only
  323          * location, so we can deal with those quickly.  Otherwise we need to
  324          * disassemble the faulting instruction to determine if it was a write.
  325          */
  326 #if __ARM_ARCH >= 6
  327         ftype = (fsr & FAULT_WNR) ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
  328 #else
  329         if (IS_PERMISSION_FAULT(fsr))
  330                 ftype = VM_PROT_WRITE;
  331         else {
  332                 u_int insn = ReadWord(tf->tf_pc);
  333 
  334                 if (((insn & 0x0c100000) == 0x04000000) ||      /* STR/STRB */
  335                     ((insn & 0x0e1000b0) == 0x000000b0) ||      /* STRH/STRD */
  336                     ((insn & 0x0a100000) == 0x08000000)) {      /* STM/CDT */
  337                         ftype = VM_PROT_WRITE;
  338                 } else {
  339                         if ((insn & 0x0fb00ff0) == 0x01000090)  /* SWP */
  340                                 ftype = VM_PROT_READ | VM_PROT_WRITE;
  341                         else
  342                                 ftype = VM_PROT_READ;
  343                 }
  344         }
  345 #endif
  346 
  347         /*
  348          * See if the fault is as a result of ref/mod emulation,
  349          * or domain mismatch.
  350          */
  351 #ifdef DEBUG
  352         last_fault_code = fsr;
  353 #endif
  354         if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
  355             user)) {
  356                 goto out;
  357         }
  358 
  359         onfault = pcb->pcb_onfault;
  360         pcb->pcb_onfault = NULL;
  361         if (map != kernel_map) {
  362                 PROC_LOCK(p);
  363                 p->p_lock++;
  364                 PROC_UNLOCK(p);
  365         }
  366         error = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
  367         pcb->pcb_onfault = onfault;
  368 
  369         if (map != kernel_map) {
  370                 PROC_LOCK(p);
  371                 p->p_lock--;
  372                 PROC_UNLOCK(p);
  373         }
  374         if (__predict_true(error == 0))
  375                 goto out;
  376         if (user == 0) {
  377                 if (pcb->pcb_onfault) {
  378                         tf->tf_r0 = error;
  379                         tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
  380                         return;
  381                 }
  382 
  383                 printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
  384                     error);
  385                 dab_fatal(tf, fsr, far, td, &ksig);
  386         }
  387 
  388 
  389         if (error == ENOMEM) {
  390                 printf("VM: pid %d (%s), uid %d killed: "
  391                     "out of swap\n", td->td_proc->p_pid, td->td_name,
  392                     (td->td_proc->p_ucred) ?
  393                      td->td_proc->p_ucred->cr_uid : -1);
  394                 ksig.signb = SIGKILL;
  395         } else {
  396                 ksig.signb = SIGSEGV;
  397         }
  398         ksig.code = 0;
  399 do_trapsignal:
  400         call_trapsignal(td, ksig.signb, ksig.code);
  401 out:
  402         /* If returning to user mode, make sure to invoke userret() */
  403         if (user)
  404                 userret(td, tf);
  405 }
  406 
  407 /*
  408  * dab_fatal() handles the following data aborts:
  409  *
  410  *  FAULT_WRTBUF_0 - Vector Exception
  411  *  FAULT_WRTBUF_1 - Terminal Exception
  412  *
  413  * We should never see these on a properly functioning system.
  414  *
  415  * This function is also called by the other handlers if they
  416  * detect a fatal problem.
  417  *
  418  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
  419  */
  420 static int
  421 dab_fatal(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
  422     struct ksig *ksig)
  423 {
  424         const char *mode;
  425 #ifdef KDB
  426         bool handled;
  427 #endif
  428 
  429 #ifdef KDB
  430         if (kdb_active) {
  431                 kdb_reenter();
  432                 return (0);
  433         }
  434 #endif
  435         mode = TRAP_USERMODE(tf) ? "user" : "kernel";
  436 
  437         disable_interrupts(PSR_I|PSR_F);
  438         if (td != NULL) {
  439                 printf("Fatal %s mode data abort: '%s'\n", mode,
  440                     data_aborts[fsr & FAULT_TYPE_MASK].desc);
  441                 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
  442                 if ((fsr & FAULT_IMPRECISE) == 0)
  443                         printf("%08x, ", far);
  444                 else
  445                         printf("Invalid,  ");
  446                 printf("spsr=%08x\n", tf->tf_spsr);
  447         } else {
  448                 printf("Fatal %s mode prefetch abort at 0x%08x\n",
  449                     mode, tf->tf_pc);
  450                 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
  451         }
  452 
  453         printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
  454             tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
  455         printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
  456             tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
  457         printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
  458             tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
  459         printf("r12=%08x, ", tf->tf_r12);
  460 
  461         if (TRAP_USERMODE(tf))
  462                 printf("usp=%08x, ulr=%08x",
  463                     tf->tf_usr_sp, tf->tf_usr_lr);
  464         else
  465                 printf("ssp=%08x, slr=%08x",
  466                     tf->tf_svc_sp, tf->tf_svc_lr);
  467         printf(", pc =%08x\n\n", tf->tf_pc);
  468 
  469 #ifdef KDB
  470         if (debugger_on_panic) {
  471                 kdb_why = KDB_WHY_TRAP;
  472                 handled = kdb_trap(fsr, 0, tf);
  473                 kdb_why = KDB_WHY_UNSET;
  474                 if (handled)
  475                         return (0);
  476         }
  477 #endif
  478         panic("Fatal abort");
  479         /*NOTREACHED*/
  480 }
  481 
  482 /*
  483  * dab_align() handles the following data aborts:
  484  *
  485  *  FAULT_ALIGN_0 - Alignment fault
  486  *  FAULT_ALIGN_1 - Alignment fault
  487  *
  488  * These faults are fatal if they happen in kernel mode. Otherwise, we
  489  * deliver a bus error to the process.
  490  */
  491 static int
  492 dab_align(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
  493     struct ksig *ksig)
  494 {
  495 
  496         /* Alignment faults are always fatal if they occur in kernel mode */
  497         if (!TRAP_USERMODE(tf)) {
  498                 if (!td || !td->td_pcb->pcb_onfault)
  499                         dab_fatal(tf, fsr, far, td, ksig);
  500                 tf->tf_r0 = EFAULT;
  501                 tf->tf_pc = (int)td->td_pcb->pcb_onfault;
  502                 return (0);
  503         }
  504 
  505         /* pcb_onfault *must* be NULL at this point */
  506 
  507         /* Deliver a bus error signal to the process */
  508         ksig->code = 0;
  509         ksig->signb = SIGBUS;
  510         td->td_frame = tf;
  511 
  512         return (1);
  513 }
  514 
  515 /*
  516  * dab_buserr() handles the following data aborts:
  517  *
  518  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
  519  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
  520  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
  521  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
  522  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
  523  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
  524  *
  525  * If pcb_onfault is set, flag the fault and return to the handler.
  526  * If the fault occurred in user mode, give the process a SIGBUS.
  527  *
  528  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
  529  * can be flagged as imprecise in the FSR. This causes a real headache
  530  * since some of the machine state is lost. In this case, tf->tf_pc
  531  * may not actually point to the offending instruction. In fact, if
  532  * we've taken a double abort fault, it generally points somewhere near
  533  * the top of "data_abort_entry" in exception.S.
  534  *
  535  * In all other cases, these data aborts are considered fatal.
  536  */
  537 static int
  538 dab_buserr(struct trapframe *tf, u_int fsr, u_int far, struct thread *td,
  539     struct ksig *ksig)
  540 {
  541         struct pcb *pcb = td->td_pcb;
  542 
  543 #ifdef __XSCALE__
  544         if ((fsr & FAULT_IMPRECISE) != 0 &&
  545             (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
  546                 /*
  547                  * Oops, an imprecise, double abort fault. We've lost the
  548                  * r14_abt/spsr_abt values corresponding to the original
  549                  * abort, and the spsr saved in the trapframe indicates
  550                  * ABT mode.
  551                  */
  552                 tf->tf_spsr &= ~PSR_MODE;
  553 
  554                 /*
  555                  * We use a simple heuristic to determine if the double abort
  556                  * happened as a result of a kernel or user mode access.
  557                  * If the current trapframe is at the top of the kernel stack,
  558                  * the fault _must_ have come from user mode.
  559                  */
  560                 if (tf != ((struct trapframe *)pcb->pcb_regs.sf_sp) - 1) {
  561                         /*
  562                          * Kernel mode. We're either about to die a
  563                          * spectacular death, or pcb_onfault will come
  564                          * to our rescue. Either way, the current value
  565                          * of tf->tf_pc is irrelevant.
  566                          */
  567                         tf->tf_spsr |= PSR_SVC32_MODE;
  568                         if (pcb->pcb_onfault == NULL)
  569                                 printf("\nKernel mode double abort!\n");
  570                 } else {
  571                         /*
  572                          * User mode. We've lost the program counter at the
  573                          * time of the fault (not that it was accurate anyway;
  574                          * it's not called an imprecise fault for nothing).
  575                          * About all we can do is copy r14_usr to tf_pc and
  576                          * hope for the best. The process is about to get a
  577                          * SIGBUS, so it's probably history anyway.
  578                          */
  579                         tf->tf_spsr |= PSR_USR32_MODE;
  580                         tf->tf_pc = tf->tf_usr_lr;
  581                 }
  582         }
  583 
  584         /* FAR is invalid for imprecise exceptions */
  585         if ((fsr & FAULT_IMPRECISE) != 0)
  586                 far = 0;
  587 #endif /* __XSCALE__ */
  588 
  589         if (pcb->pcb_onfault) {
  590                 tf->tf_r0 = EFAULT;
  591                 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
  592                 return (0);
  593         }
  594 
  595         /*
  596          * At this point, if the fault happened in kernel mode, we're toast
  597          */
  598         if (!TRAP_USERMODE(tf))
  599                 dab_fatal(tf, fsr, far, td, ksig);
  600 
  601         /* Deliver a bus error signal to the process */
  602         ksig->signb = SIGBUS;
  603         ksig->code = 0;
  604         td->td_frame = tf;
  605 
  606         return (1);
  607 }
  608 
  609 /*
  610  * void prefetch_abort_handler(struct trapframe *tf)
  611  *
  612  * Abort handler called when instruction execution occurs at
  613  * a non existent or restricted (access permissions) memory page.
  614  * If the address is invalid and we were in SVC mode then panic as
  615  * the kernel should never prefetch abort.
  616  * If the address is invalid and the page is mapped then the user process
  617  * does no have read permission so send it a signal.
  618  * Otherwise fault the page in and try again.
  619  */
  620 static void
  621 prefetch_abort_handler(struct trapframe *tf)
  622 {
  623         struct thread *td;
  624         struct proc * p;
  625         struct vm_map *map;
  626         vm_offset_t fault_pc, va;
  627         int error = 0;
  628         struct ksig ksig;
  629 
  630 
  631 #if 0
  632         /* Update vmmeter statistics */
  633         uvmexp.traps++;
  634 #endif
  635 #if 0
  636         printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
  637             (void*)tf->tf_usr_lr);
  638 #endif
  639 
  640         td = curthread;
  641         p = td->td_proc;
  642         PCPU_INC(cnt.v_trap);
  643 
  644         if (TRAP_USERMODE(tf)) {
  645                 td->td_frame = tf;
  646                 if (td->td_ucred != td->td_proc->p_ucred)
  647                         cred_update_thread(td);
  648         }
  649         fault_pc = tf->tf_pc;
  650         if (td->td_md.md_spinlock_count == 0) {
  651                 if (__predict_true(tf->tf_spsr & PSR_I) == 0)
  652                         enable_interrupts(PSR_I);
  653                 if (__predict_true(tf->tf_spsr & PSR_F) == 0)
  654                         enable_interrupts(PSR_F);
  655         }
  656 
  657         /* Prefetch aborts cannot happen in kernel mode */
  658         if (__predict_false(!TRAP_USERMODE(tf)))
  659                 dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
  660         td->td_pticks = 0;
  661 
  662 
  663         /* Ok validate the address, can only execute in USER space */
  664         if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
  665             (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
  666                 ksig.signb = SIGSEGV;
  667                 ksig.code = 0;
  668                 goto do_trapsignal;
  669         }
  670 
  671         map = &td->td_proc->p_vmspace->vm_map;
  672         va = trunc_page(fault_pc);
  673 
  674         /*
  675          * See if the pmap can handle this fault on its own...
  676          */
  677 #ifdef DEBUG
  678         last_fault_code = -1;
  679 #endif
  680         if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
  681                 goto out;
  682 
  683         if (map != kernel_map) {
  684                 PROC_LOCK(p);
  685                 p->p_lock++;
  686                 PROC_UNLOCK(p);
  687         }
  688 
  689         error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
  690             VM_FAULT_NORMAL);
  691         if (map != kernel_map) {
  692                 PROC_LOCK(p);
  693                 p->p_lock--;
  694                 PROC_UNLOCK(p);
  695         }
  696 
  697         if (__predict_true(error == 0))
  698                 goto out;
  699 
  700         if (error == ENOMEM) {
  701                 printf("VM: pid %d (%s), uid %d killed: "
  702                     "out of swap\n", td->td_proc->p_pid, td->td_name,
  703                     (td->td_proc->p_ucred) ?
  704                      td->td_proc->p_ucred->cr_uid : -1);
  705                 ksig.signb = SIGKILL;
  706         } else {
  707                 ksig.signb = SIGSEGV;
  708         }
  709         ksig.code = 0;
  710 
  711 do_trapsignal:
  712         call_trapsignal(td, ksig.signb, ksig.code);
  713 
  714 out:
  715         userret(td, tf);
  716 
  717 }
  718 
  719 extern int badaddr_read_1(const uint8_t *, uint8_t *);
  720 extern int badaddr_read_2(const uint16_t *, uint16_t *);
  721 extern int badaddr_read_4(const uint32_t *, uint32_t *);
  722 /*
  723  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
  724  * If the read succeeds, the value is written to 'rptr' and zero is returned.
  725  * Else, return EFAULT.
  726  */
  727 int
  728 badaddr_read(void *addr, size_t size, void *rptr)
  729 {
  730         union {
  731                 uint8_t v1;
  732                 uint16_t v2;
  733                 uint32_t v4;
  734         } u;
  735         int rv;
  736 
  737         cpu_drain_writebuf();
  738 
  739         /* Read from the test address. */
  740         switch (size) {
  741         case sizeof(uint8_t):
  742                 rv = badaddr_read_1(addr, &u.v1);
  743                 if (rv == 0 && rptr)
  744                         *(uint8_t *) rptr = u.v1;
  745                 break;
  746 
  747         case sizeof(uint16_t):
  748                 rv = badaddr_read_2(addr, &u.v2);
  749                 if (rv == 0 && rptr)
  750                         *(uint16_t *) rptr = u.v2;
  751                 break;
  752 
  753         case sizeof(uint32_t):
  754                 rv = badaddr_read_4(addr, &u.v4);
  755                 if (rv == 0 && rptr)
  756                         *(uint32_t *) rptr = u.v4;
  757                 break;
  758 
  759         default:
  760                 panic("badaddr: invalid size (%lu)", (u_long) size);
  761         }
  762 
  763         /* Return EFAULT if the address was invalid, else zero */
  764         return (rv);
  765 }

Cache object: 1c0833c58deabbf82427917d30820709


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.