The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/trap.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: fault.c,v 1.45 2003/11/20 14:44:36 scw Exp $   */
    2 
    3 /*-
    4  * Copyright 2004 Olivier Houchard
    5  * Copyright 2003 Wasabi Systems, Inc.
    6  * All rights reserved.
    7  *
    8  * Written by Steve C. Woodford for Wasabi Systems, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed for the NetBSD Project by
   21  *      Wasabi Systems, Inc.
   22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
   23  *    or promote products derived from this software without specific prior
   24  *    written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
   30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   36  * POSSIBILITY OF SUCH DAMAGE.
   37  */
   38 /*-
   39  * Copyright (c) 1994-1997 Mark Brinicombe.
   40  * Copyright (c) 1994 Brini.
   41  * All rights reserved.
   42  *
   43  * This code is derived from software written for Brini by Mark Brinicombe
   44  *
   45  * Redistribution and use in source and binary forms, with or without
   46  * modification, are permitted provided that the following conditions
   47  * are met:
   48  * 1. Redistributions of source code must retain the above copyright
   49  *    notice, this list of conditions and the following disclaimer.
   50  * 2. Redistributions in binary form must reproduce the above copyright
   51  *    notice, this list of conditions and the following disclaimer in the
   52  *    documentation and/or other materials provided with the distribution.
   53  * 3. All advertising materials mentioning features or use of this software
   54  *    must display the following acknowledgement:
   55  *      This product includes software developed by Brini.
   56  * 4. The name of the company nor the name of the author may be used to
   57  *    endorse or promote products derived from this software without specific
   58  *    prior written permission.
   59  *
   60  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
   61  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   62  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   63  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   64  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   65  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   66  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   70  * SUCH DAMAGE.
   71  *
   72  * RiscBSD kernel project
   73  *
   74  * fault.c
   75  *
   76  * Fault handlers
   77  *
   78  * Created      : 28/11/94
   79  */
   80 
   81 
   82 #include "opt_ktrace.h"
   83 
   84 #include <sys/cdefs.h>
   85 __FBSDID("$FreeBSD: releng/7.3/sys/arm/arm/trap.c 171672 2007-07-31 17:09:05Z cognet $");
   86 
   87 #include <sys/param.h>
   88 #include <sys/systm.h>
   89 #include <sys/proc.h>
   90 #include <sys/kernel.h>
   91 #include <sys/lock.h>
   92 #include <sys/mutex.h>
   93 #include <sys/syscall.h>
   94 #include <sys/sysent.h>
   95 #include <sys/signalvar.h>
   96 #include <sys/ktr.h>
   97 #ifdef KTRACE
   98 #include <sys/uio.h>
   99 #include <sys/ktrace.h>
  100 #endif
  101 #include <sys/ptrace.h>
  102 #include <sys/pioctl.h>
  103 
  104 #include <vm/vm.h>
  105 #include <vm/pmap.h>
  106 #include <vm/vm_kern.h>
  107 #include <vm/vm_map.h>
  108 #include <vm/vm_extern.h>
  109 
  110 #include <machine/cpuconf.h>
  111 #include <machine/vmparam.h>
  112 #include <machine/frame.h>
  113 #include <machine/cpu.h>
  114 #include <machine/intr.h>
  115 #include <machine/pcb.h>
  116 #include <machine/proc.h>
  117 #include <machine/swi.h>
  118 
  119 #include <security/audit/audit.h>
  120 
  121 #ifdef KDB
  122 #include <sys/kdb.h>
  123 #endif
  124 
  125 
  126 void swi_handler(trapframe_t *);
  127 void undefinedinstruction(trapframe_t *);
  128 
  129 #include <machine/disassem.h>
  130 #include <machine/machdep.h>
  131  
  132 extern char fusubailout[];
  133 extern char *syscallnames[];
  134 
  135 #ifdef DEBUG
  136 int last_fault_code;    /* For the benefit of pmap_fault_fixup() */
  137 #endif
  138 
  139 #if defined(CPU_ARM7TDMI)
  140 /* These CPUs may need data/prefetch abort fixups */
  141 #define CPU_ABORT_FIXUP_REQUIRED
  142 #endif
  143 
  144 struct ksig {
  145         int signb;
  146         u_long code;
  147 };
  148 struct data_abort {
  149         int (*func)(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
  150         const char *desc;
  151 };
  152 
  153 static int dab_fatal(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
  154 static int dab_align(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
  155 static int dab_buserr(trapframe_t *, u_int, u_int, struct thread *, struct ksig *);
  156 
  157 static const struct data_abort data_aborts[] = {
  158         {dab_fatal,     "Vector Exception"},
  159         {dab_align,     "Alignment Fault 1"},
  160         {dab_fatal,     "Terminal Exception"},
  161         {dab_align,     "Alignment Fault 3"},
  162         {dab_buserr,    "External Linefetch Abort (S)"},
  163         {NULL,          "Translation Fault (S)"},
  164         {dab_buserr,    "External Linefetch Abort (P)"},
  165         {NULL,          "Translation Fault (P)"},
  166         {dab_buserr,    "External Non-Linefetch Abort (S)"},
  167         {NULL,          "Domain Fault (S)"},
  168         {dab_buserr,    "External Non-Linefetch Abort (P)"},
  169         {NULL,          "Domain Fault (P)"},
  170         {dab_buserr,    "External Translation Abort (L1)"},
  171         {NULL,          "Permission Fault (S)"},
  172         {dab_buserr,    "External Translation Abort (L2)"},
  173         {NULL,          "Permission Fault (P)"}
  174 };
  175 
  176 /* Determine if a fault came from user mode */
  177 #define TRAP_USERMODE(tf)       ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
  178 
  179 /* Determine if 'x' is a permission fault */
  180 #define IS_PERMISSION_FAULT(x)                                  \
  181         (((1 << ((x) & FAULT_TYPE_MASK)) &                      \
  182           ((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
  183 
  184 static __inline void
  185 call_trapsignal(struct thread *td, int sig, u_long code)
  186 {
  187         ksiginfo_t ksi;
  188 
  189         ksiginfo_init_trap(&ksi);
  190         ksi.ksi_signo = sig;
  191         ksi.ksi_code = (int)code;
  192         trapsignal(td, &ksi);
  193 }
  194 
  195 static __inline int
  196 data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
  197 {
  198 #ifdef CPU_ABORT_FIXUP_REQUIRED
  199         int error;
  200 
  201         /* Call the cpu specific data abort fixup routine */
  202         error = cpu_dataabt_fixup(tf);
  203         if (__predict_true(error != ABORT_FIXUP_FAILED))
  204                 return (error);
  205 
  206         /*
  207          * Oops, couldn't fix up the instruction
  208          */
  209         printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
  210             TRAP_USERMODE(tf) ? "user" : "kernel");
  211         printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
  212             *((u_int *)tf->tf_pc));
  213         disassemble(tf->tf_pc);
  214 
  215         /* Die now if this happened in kernel mode */
  216         if (!TRAP_USERMODE(tf))
  217                 dab_fatal(tf, fsr, far, td, NULL, ksig);
  218 
  219         return (error);
  220 #else
  221         return (ABORT_FIXUP_OK);
  222 #endif /* CPU_ABORT_FIXUP_REQUIRED */
  223 }
  224 
  225 void
  226 data_abort_handler(trapframe_t *tf)
  227 {
  228         struct vm_map *map;
  229         struct pcb *pcb;
  230         struct thread *td;
  231         u_int user, far, fsr;
  232         vm_prot_t ftype;
  233         void *onfault;
  234         vm_offset_t va;
  235         int error = 0;
  236         struct ksig ksig;
  237         struct proc *p;
  238         
  239 
  240         /* Grab FAR/FSR before enabling interrupts */
  241         far = cpu_faultaddress();
  242         fsr = cpu_faultstatus();
  243 #if 0
  244         printf("data abort: %p (from %p %p)\n", (void*)far, (void*)tf->tf_pc,
  245             (void*)tf->tf_svc_lr);
  246 #endif
  247 
  248         /* Update vmmeter statistics */
  249 #if 0
  250         vmexp.traps++;
  251 #endif
  252 
  253         td = curthread;
  254         p = td->td_proc;
  255 
  256         PCPU_INC(cnt.v_trap);
  257         /* Data abort came from user mode? */
  258         user = TRAP_USERMODE(tf);
  259 
  260         if (user) {
  261                 td->td_pticks = 0;
  262                 td->td_frame = tf;              
  263                 if (td->td_ucred != td->td_proc->p_ucred)
  264                         cred_update_thread(td);
  265 #ifdef KSE
  266                 if (td->td_pflags & TDP_SA)
  267                         thread_user_enter(td);
  268 #endif
  269                 
  270         }
  271         /* Grab the current pcb */
  272         pcb = td->td_pcb;
  273         /* Re-enable interrupts if they were enabled previously */
  274         if (td->td_md.md_spinlock_count == 0) {
  275                 if (__predict_true(tf->tf_spsr & I32_bit) == 0)
  276                         enable_interrupts(I32_bit);
  277                 if (__predict_true(tf->tf_spsr & F32_bit) == 0)
  278                         enable_interrupts(F32_bit);
  279         }
  280                 
  281 
  282         /* Invoke the appropriate handler, if necessary */
  283         if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
  284                 if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
  285                     td, &ksig)) {
  286                         goto do_trapsignal;
  287                 }
  288                 goto out;
  289         }
  290 
  291         /*
  292          * At this point, we're dealing with one of the following data aborts:
  293          *
  294          *  FAULT_TRANS_S  - Translation -- Section
  295          *  FAULT_TRANS_P  - Translation -- Page
  296          *  FAULT_DOMAIN_S - Domain -- Section
  297          *  FAULT_DOMAIN_P - Domain -- Page
  298          *  FAULT_PERM_S   - Permission -- Section
  299          *  FAULT_PERM_P   - Permission -- Page
  300          *
  301          * These are the main virtual memory-related faults signalled by
  302          * the MMU.
  303          */
  304 
  305         /* fusubailout is used by [fs]uswintr to avoid page faulting */
  306         if (__predict_false(pcb->pcb_onfault == fusubailout)) {
  307                 tf->tf_r0 = EFAULT;
  308                 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
  309                 return;
  310         }
  311 
  312         /*
  313          * Make sure the Program Counter is sane. We could fall foul of
  314          * someone executing Thumb code, in which case the PC might not
  315          * be word-aligned. This would cause a kernel alignment fault
  316          * further down if we have to decode the current instruction.
  317          * XXX: It would be nice to be able to support Thumb at some point.
  318          */
  319         if (__predict_false((tf->tf_pc & 3) != 0)) {
  320                 if (user) {
  321                         /*
  322                          * Give the user an illegal instruction signal.
  323                          */
  324                         /* Deliver a SIGILL to the process */
  325                         ksig.signb = SIGILL;
  326                         ksig.code = 0;
  327                         goto do_trapsignal;
  328                 }
  329 
  330                 /*
  331                  * The kernel never executes Thumb code.
  332                  */
  333                 printf("\ndata_abort_fault: Misaligned Kernel-mode "
  334                     "Program Counter\n");
  335                 dab_fatal(tf, fsr, far, td, &ksig);
  336         }
  337 
  338         /* See if the cpu state needs to be fixed up */
  339         switch (data_abort_fixup(tf, fsr, far, td, &ksig)) {
  340         case ABORT_FIXUP_RETURN:
  341                 return;
  342         case ABORT_FIXUP_FAILED:
  343                 /* Deliver a SIGILL to the process */
  344                 ksig.signb = SIGILL;
  345                 ksig.code = 0;
  346                 goto do_trapsignal;
  347         default:
  348                 break;
  349         }
  350 
  351         va = trunc_page((vm_offset_t)far);
  352 
  353         /*
  354          * It is only a kernel address space fault iff:
  355          *      1. user == 0  and
  356          *      2. pcb_onfault not set or
  357          *      3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
  358          */
  359         if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
  360             (va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
  361             __predict_true((pcb->pcb_onfault == NULL ||
  362              (ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
  363                 map = kernel_map;
  364 
  365                 /* Was the fault due to the FPE/IPKDB ? */
  366                 if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
  367 
  368                         /*
  369                          * Force exit via userret()
  370                          * This is necessary as the FPE is an extension to
  371                          * userland that actually runs in a priveledged mode
  372                          * but uses USR mode permissions for its accesses.
  373                          */
  374                         user = 1;
  375                         ksig.signb = SIGSEGV;
  376                         ksig.code = 0;
  377                         goto do_trapsignal;
  378                 }
  379         } else {
  380                 map = &td->td_proc->p_vmspace->vm_map;
  381         }
  382 
  383         /*
  384          * We need to know whether the page should be mapped
  385          * as R or R/W. The MMU does not give us the info as
  386          * to whether the fault was caused by a read or a write.
  387          *
  388          * However, we know that a permission fault can only be
  389          * the result of a write to a read-only location, so
  390          * we can deal with those quickly.
  391          *
  392          * Otherwise we need to disassemble the instruction
  393          * responsible to determine if it was a write.
  394          */
  395         if (IS_PERMISSION_FAULT(fsr)) {
  396                 ftype = VM_PROT_WRITE; 
  397         } else {
  398                 u_int insn = ReadWord(tf->tf_pc);
  399 
  400                 if (((insn & 0x0c100000) == 0x04000000) ||      /* STR/STRB */
  401                     ((insn & 0x0e1000b0) == 0x000000b0) ||      /* STRH/STRD */
  402                     ((insn & 0x0a100000) == 0x08000000))        /* STM/CDT */
  403                 {
  404                         ftype = VM_PROT_WRITE; 
  405         }
  406                 else
  407                 if ((insn & 0x0fb00ff0) == 0x01000090)          /* SWP */
  408                         ftype = VM_PROT_READ | VM_PROT_WRITE; 
  409                 else
  410                         ftype = VM_PROT_READ; 
  411         }
  412 
  413         /*
  414          * See if the fault is as a result of ref/mod emulation,
  415          * or domain mismatch.
  416          */
  417 #ifdef DEBUG
  418         last_fault_code = fsr;
  419 #endif
  420         if (pmap_fault_fixup(vmspace_pmap(td->td_proc->p_vmspace), va, ftype,
  421             user)) {
  422                 goto out;
  423         }
  424 
  425         onfault = pcb->pcb_onfault;
  426         pcb->pcb_onfault = NULL;
  427         if (map != kernel_map) {
  428                 PROC_LOCK(p);
  429                 p->p_lock++;
  430                 PROC_UNLOCK(p);
  431         }
  432         error = vm_fault(map, va, ftype, (ftype & VM_PROT_WRITE) ? 
  433             VM_FAULT_DIRTY : VM_FAULT_NORMAL);
  434         pcb->pcb_onfault = onfault;
  435 
  436         if (map != kernel_map) {
  437                 PROC_LOCK(p);
  438                 p->p_lock--;
  439                 PROC_UNLOCK(p);
  440         }
  441         if (__predict_true(error == 0))
  442                 goto out;
  443         if (user == 0) {
  444                 if (pcb->pcb_onfault) {
  445                         tf->tf_r0 = error;
  446                         tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
  447                         return;
  448                 }
  449 
  450                 printf("\nvm_fault(%p, %x, %x, 0) -> %x\n", map, va, ftype,
  451                     error);
  452                 dab_fatal(tf, fsr, far, td, &ksig);
  453         }
  454 
  455 
  456         if (error == ENOMEM) {
  457                 printf("VM: pid %d (%s), uid %d killed: "
  458                     "out of swap\n", td->td_proc->p_pid, td->td_proc->p_comm,
  459                     (td->td_proc->p_ucred) ?
  460                      td->td_proc->p_ucred->cr_uid : -1);
  461                 ksig.signb = SIGKILL;
  462         } else {
  463                 ksig.signb = SIGSEGV;
  464         }
  465         ksig.code = 0;
  466 do_trapsignal:
  467         call_trapsignal(td, ksig.signb, ksig.code);
  468 out:
  469         /* If returning to user mode, make sure to invoke userret() */
  470         if (user)
  471                 userret(td, tf);
  472 }
  473 
  474 /*
  475  * dab_fatal() handles the following data aborts:
  476  *
  477  *  FAULT_WRTBUF_0 - Vector Exception
  478  *  FAULT_WRTBUF_1 - Terminal Exception
  479  *
  480  * We should never see these on a properly functioning system.
  481  *
  482  * This function is also called by the other handlers if they
  483  * detect a fatal problem.
  484  *
  485  * Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
  486  */
  487 static int
  488 dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
  489 {
  490         const char *mode;
  491 
  492         mode = TRAP_USERMODE(tf) ? "user" : "kernel";
  493 
  494         disable_interrupts(I32_bit|F32_bit);
  495         if (td != NULL) {
  496                 printf("Fatal %s mode data abort: '%s'\n", mode,
  497                     data_aborts[fsr & FAULT_TYPE_MASK].desc);
  498                 printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
  499                 if ((fsr & FAULT_IMPRECISE) == 0)
  500                         printf("%08x, ", far);
  501                 else
  502                         printf("Invalid,  ");
  503                 printf("spsr=%08x\n", tf->tf_spsr);
  504         } else {
  505                 printf("Fatal %s mode prefetch abort at 0x%08x\n",
  506                     mode, tf->tf_pc);
  507                 printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
  508         }
  509 
  510         printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
  511             tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
  512         printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
  513             tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
  514         printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
  515             tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
  516         printf("r12=%08x, ", tf->tf_r12);
  517 
  518         if (TRAP_USERMODE(tf))
  519                 printf("usp=%08x, ulr=%08x",
  520                     tf->tf_usr_sp, tf->tf_usr_lr);
  521         else
  522                 printf("ssp=%08x, slr=%08x",
  523                     tf->tf_svc_sp, tf->tf_svc_lr);
  524         printf(", pc =%08x\n\n", tf->tf_pc);
  525 
  526 #ifdef KDB
  527         kdb_trap(fsr, 0, tf);
  528 #endif
  529         panic("Fatal abort");
  530         /*NOTREACHED*/
  531 }
  532 
  533 /*
  534  * dab_align() handles the following data aborts:
  535  *
  536  *  FAULT_ALIGN_0 - Alignment fault
  537  *  FAULT_ALIGN_0 - Alignment fault
  538  *
  539  * These faults are fatal if they happen in kernel mode. Otherwise, we
  540  * deliver a bus error to the process.
  541  */
  542 static int
  543 dab_align(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
  544 {
  545 
  546         /* Alignment faults are always fatal if they occur in kernel mode */
  547         if (!TRAP_USERMODE(tf)) {
  548                 if (!td || !td->td_pcb->pcb_onfault)
  549                         dab_fatal(tf, fsr, far, td, ksig);
  550                 tf->tf_r0 = EFAULT;
  551                 tf->tf_pc = (int)td->td_pcb->pcb_onfault;
  552                 return (0);
  553         }
  554 
  555         /* pcb_onfault *must* be NULL at this point */
  556 
  557         /* See if the cpu state needs to be fixed up */
  558         (void) data_abort_fixup(tf, fsr, far, td, ksig);
  559 
  560         /* Deliver a bus error signal to the process */
  561         ksig->code = 0;
  562         ksig->signb = SIGBUS;
  563         td->td_frame = tf;
  564 
  565         return (1);
  566 }
  567 
  568 /*
  569  * dab_buserr() handles the following data aborts:
  570  *
  571  *  FAULT_BUSERR_0 - External Abort on Linefetch -- Section
  572  *  FAULT_BUSERR_1 - External Abort on Linefetch -- Page
  573  *  FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
  574  *  FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
  575  *  FAULT_BUSTRNL1 - External abort on Translation -- Level 1
  576  *  FAULT_BUSTRNL2 - External abort on Translation -- Level 2
  577  *
  578  * If pcb_onfault is set, flag the fault and return to the handler.
  579  * If the fault occurred in user mode, give the process a SIGBUS.
  580  *
  581  * Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
  582  * can be flagged as imprecise in the FSR. This causes a real headache
  583  * since some of the machine state is lost. In this case, tf->tf_pc
  584  * may not actually point to the offending instruction. In fact, if
  585  * we've taken a double abort fault, it generally points somewhere near
  586  * the top of "data_abort_entry" in exception.S.
  587  *
  588  * In all other cases, these data aborts are considered fatal.
  589  */
  590 static int
  591 dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct thread *td, struct ksig *ksig)
  592 {
  593         struct pcb *pcb = td->td_pcb;
  594 
  595 #ifdef __XSCALE__
  596         if ((fsr & FAULT_IMPRECISE) != 0 &&
  597             (tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
  598                 /*
  599                  * Oops, an imprecise, double abort fault. We've lost the
  600                  * r14_abt/spsr_abt values corresponding to the original
  601                  * abort, and the spsr saved in the trapframe indicates
  602                  * ABT mode.
  603                  */
  604                 tf->tf_spsr &= ~PSR_MODE;
  605 
  606                 /*
  607                  * We use a simple heuristic to determine if the double abort
  608                  * happened as a result of a kernel or user mode access.
  609                  * If the current trapframe is at the top of the kernel stack,
  610                  * the fault _must_ have come from user mode.
  611                  */
  612                 if (tf != ((trapframe_t *)pcb->un_32.pcb32_sp) - 1) {
  613                         /*
  614                          * Kernel mode. We're either about to die a
  615                          * spectacular death, or pcb_onfault will come
  616                          * to our rescue. Either way, the current value
  617                          * of tf->tf_pc is irrelevant.
  618                          */
  619                         tf->tf_spsr |= PSR_SVC32_MODE;
  620                         if (pcb->pcb_onfault == NULL)
  621                                 printf("\nKernel mode double abort!\n");
  622                 } else {
  623                         /*
  624                          * User mode. We've lost the program counter at the
  625                          * time of the fault (not that it was accurate anyway;
  626                          * it's not called an imprecise fault for nothing).
  627                          * About all we can do is copy r14_usr to tf_pc and
  628                          * hope for the best. The process is about to get a
  629                          * SIGBUS, so it's probably history anyway.
  630                          */
  631                         tf->tf_spsr |= PSR_USR32_MODE;
  632                         tf->tf_pc = tf->tf_usr_lr;
  633                 }
  634         }
  635 
  636         /* FAR is invalid for imprecise exceptions */
  637         if ((fsr & FAULT_IMPRECISE) != 0)
  638                 far = 0;
  639 #endif /* __XSCALE__ */
  640 
  641         if (pcb->pcb_onfault) {
  642                 tf->tf_r0 = EFAULT;
  643                 tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
  644                 return (0);
  645         }
  646 
  647         /* See if the cpu state needs to be fixed up */
  648         (void) data_abort_fixup(tf, fsr, far, td, ksig);
  649 
  650         /*
  651          * At this point, if the fault happened in kernel mode, we're toast
  652          */
  653         if (!TRAP_USERMODE(tf))
  654                 dab_fatal(tf, fsr, far, td, ksig);
  655 
  656         /* Deliver a bus error signal to the process */
  657         ksig->signb = SIGBUS;
  658         ksig->code = 0;
  659         td->td_frame = tf;
  660 
  661         return (1);
  662 }
  663 
  664 static __inline int
  665 prefetch_abort_fixup(trapframe_t *tf, struct ksig *ksig)
  666 {
  667 #ifdef CPU_ABORT_FIXUP_REQUIRED
  668         int error;
  669 
  670         /* Call the cpu specific prefetch abort fixup routine */
  671         error = cpu_prefetchabt_fixup(tf);
  672         if (__predict_true(error != ABORT_FIXUP_FAILED))
  673                 return (error);
  674 
  675         /*
  676          * Oops, couldn't fix up the instruction
  677          */
  678         printf(
  679             "prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
  680             TRAP_USERMODE(tf) ? "user" : "kernel");
  681         printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
  682             *((u_int *)tf->tf_pc));
  683         disassemble(tf->tf_pc);
  684 
  685         /* Die now if this happened in kernel mode */
  686         if (!TRAP_USERMODE(tf))
  687                 dab_fatal(tf, 0, tf->tf_pc, NULL, ksig);
  688 
  689         return (error);
  690 #else
  691         return (ABORT_FIXUP_OK);
  692 #endif /* CPU_ABORT_FIXUP_REQUIRED */
  693 }
  694 
  695 /*
  696  * void prefetch_abort_handler(trapframe_t *tf)
  697  *
  698  * Abort handler called when instruction execution occurs at
  699  * a non existent or restricted (access permissions) memory page.
  700  * If the address is invalid and we were in SVC mode then panic as
  701  * the kernel should never prefetch abort.
  702  * If the address is invalid and the page is mapped then the user process
  703  * does no have read permission so send it a signal.
  704  * Otherwise fault the page in and try again.
  705  */
  706 void
  707 prefetch_abort_handler(trapframe_t *tf)
  708 {
  709         struct thread *td;
  710         struct proc * p;
  711         struct vm_map *map;
  712         vm_offset_t fault_pc, va;
  713         int error = 0;
  714         struct ksig ksig;
  715 
  716 
  717 #if 0
  718         /* Update vmmeter statistics */
  719         uvmexp.traps++;
  720 #endif
  721 #if 0
  722         printf("prefetch abort handler: %p %p\n", (void*)tf->tf_pc,
  723             (void*)tf->tf_usr_lr);
  724 #endif
  725         
  726         td = curthread;
  727         p = td->td_proc;
  728         PCPU_INC(cnt.v_trap);
  729 
  730         if (TRAP_USERMODE(tf)) {
  731                 td->td_frame = tf;
  732                 if (td->td_ucred != td->td_proc->p_ucred)
  733                         cred_update_thread(td);
  734 #ifdef KSE
  735                 if (td->td_proc->p_flag & P_SA)
  736                         thread_user_enter(td);
  737 #endif
  738         }
  739         fault_pc = tf->tf_pc;
  740         if (td->td_md.md_spinlock_count == 0) {
  741                 if (__predict_true(tf->tf_spsr & I32_bit) == 0)
  742                         enable_interrupts(I32_bit);
  743                 if (__predict_true(tf->tf_spsr & F32_bit) == 0)
  744                         enable_interrupts(F32_bit);
  745         }
  746          
  747 
  748                        
  749         /* See if the cpu state needs to be fixed up */
  750         switch (prefetch_abort_fixup(tf, &ksig)) {
  751         case ABORT_FIXUP_RETURN:
  752                 return;
  753         case ABORT_FIXUP_FAILED:
  754                 /* Deliver a SIGILL to the process */
  755                 ksig.signb = SIGILL;
  756                 ksig.code = 0;
  757                 td->td_frame = tf;
  758                 goto do_trapsignal;
  759         default:
  760                 break;
  761         }
  762 
  763         /* Prefetch aborts cannot happen in kernel mode */
  764         if (__predict_false(!TRAP_USERMODE(tf)))
  765                 dab_fatal(tf, 0, tf->tf_pc, NULL, &ksig);
  766         td->td_pticks = 0;
  767 
  768 
  769         /* Ok validate the address, can only execute in USER space */
  770         if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
  771             (fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
  772                 ksig.signb = SIGSEGV;
  773                 ksig.code = 0;
  774                 goto do_trapsignal;
  775         }
  776 
  777         map = &td->td_proc->p_vmspace->vm_map;
  778         va = trunc_page(fault_pc);
  779 
  780         /*
  781          * See if the pmap can handle this fault on its own...
  782          */
  783 #ifdef DEBUG
  784         last_fault_code = -1;
  785 #endif
  786         if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
  787                 goto out;
  788 
  789         if (map != kernel_map) {
  790                 PROC_LOCK(p);
  791                 p->p_lock++;
  792                 PROC_UNLOCK(p);
  793         }
  794 
  795         error = vm_fault(map, va, VM_PROT_READ | VM_PROT_EXECUTE,
  796             VM_FAULT_NORMAL);
  797         if (map != kernel_map) {
  798                 PROC_LOCK(p);
  799                 p->p_lock--;
  800                 PROC_UNLOCK(p);
  801         }
  802 
  803         if (__predict_true(error == 0))
  804                 goto out;
  805 
  806         if (error == ENOMEM) {
  807                 printf("VM: pid %d (%s), uid %d killed: "
  808                     "out of swap\n", td->td_proc->p_pid, td->td_proc->p_comm,
  809                     (td->td_proc->p_ucred) ?
  810                      td->td_proc->p_ucred->cr_uid : -1);
  811                 ksig.signb = SIGKILL;
  812         } else {
  813                 ksig.signb = SIGSEGV;
  814         }
  815         ksig.code = 0;
  816 
  817 do_trapsignal:
  818         call_trapsignal(td, ksig.signb, ksig.code);
  819 
  820 out:
  821         userret(td, tf);
  822 
  823 }
  824 
  825 extern int badaddr_read_1(const uint8_t *, uint8_t *);
  826 extern int badaddr_read_2(const uint16_t *, uint16_t *);
  827 extern int badaddr_read_4(const uint32_t *, uint32_t *);
  828 /*
  829  * Tentatively read an 8, 16, or 32-bit value from 'addr'.
  830  * If the read succeeds, the value is written to 'rptr' and zero is returned.
  831  * Else, return EFAULT.
  832  */
  833 int
  834 badaddr_read(void *addr, size_t size, void *rptr)
  835 {
  836         union {
  837                 uint8_t v1;
  838                 uint16_t v2;
  839                 uint32_t v4;
  840         } u;
  841         int rv;
  842 
  843         cpu_drain_writebuf();
  844 
  845         /* Read from the test address. */
  846         switch (size) {
  847         case sizeof(uint8_t):
  848                 rv = badaddr_read_1(addr, &u.v1);
  849                 if (rv == 0 && rptr)
  850                         *(uint8_t *) rptr = u.v1;
  851                 break;
  852 
  853         case sizeof(uint16_t):
  854                 rv = badaddr_read_2(addr, &u.v2);
  855                 if (rv == 0 && rptr)
  856                         *(uint16_t *) rptr = u.v2;
  857                 break;
  858 
  859         case sizeof(uint32_t):
  860                 rv = badaddr_read_4(addr, &u.v4);
  861                 if (rv == 0 && rptr)
  862                         *(uint32_t *) rptr = u.v4;
  863                 break;
  864 
  865         default:
  866                 panic("badaddr: invalid size (%lu)", (u_long) size);
  867         }
  868 
  869         /* Return EFAULT if the address was invalid, else zero */
  870         return (rv);
  871 }
  872 
  873 #define MAXARGS 8
  874 static void
  875 syscall(struct thread *td, trapframe_t *frame, u_int32_t insn)
  876 {
  877         struct proc *p = td->td_proc;
  878         int code, error;
  879         u_int nap, nargs;
  880         register_t *ap, *args, copyargs[MAXARGS];
  881         struct sysent *callp;
  882 
  883         PCPU_INC(cnt.v_syscall);
  884         td->td_pticks = 0;
  885         if (td->td_ucred != td->td_proc->p_ucred)
  886                 cred_update_thread(td);
  887         switch (insn & SWI_OS_MASK) {
  888         case 0: /* XXX: we need our own one. */
  889                 nap = 4;
  890                 break;
  891         default:
  892                 call_trapsignal(td, SIGILL, 0);
  893                 userret(td, frame);
  894                 return;
  895         }
  896         code = insn & 0x000fffff;                
  897         td->td_pticks = 0;
  898         ap = &frame->tf_r0;
  899         if (code == SYS_syscall) {
  900                 code = *ap++;
  901                 
  902                 nap--;
  903         } else if (code == SYS___syscall) {
  904                 code = ap[_QUAD_LOWWORD];
  905                 nap -= 2;
  906                 ap += 2;
  907         }
  908         if (p->p_sysent->sv_mask)
  909                 code &= p->p_sysent->sv_mask;
  910         if (code >= p->p_sysent->sv_size)
  911                 callp = &p->p_sysent->sv_table[0];
  912         else
  913                 callp = &p->p_sysent->sv_table[code];
  914         nargs = callp->sy_narg;
  915         memcpy(copyargs, ap, nap * sizeof(register_t));
  916         if (nargs > nap) {
  917                 error = copyin((void *)frame->tf_usr_sp, copyargs + nap,
  918                     (nargs - nap) * sizeof(register_t));
  919                 if (error)
  920                         goto bad;
  921         }
  922         args = copyargs;
  923         error = 0;
  924 #ifdef KTRACE
  925         if (KTRPOINT(td, KTR_SYSCALL))
  926                 ktrsyscall(code, nargs, args);
  927 #endif
  928                 
  929         CTR4(KTR_SYSC, "syscall enter thread %p pid %d proc %s code %d", td,
  930             td->td_proc->p_pid, td->td_proc->p_comm, code);
  931         if (error == 0) {
  932                 td->td_retval[0] = 0;
  933                 td->td_retval[1] = 0;
  934                 STOPEVENT(p, S_SCE, callp->sy_narg);
  935                 PTRACESTOP_SC(p, td, S_PT_SCE);
  936                 AUDIT_SYSCALL_ENTER(code, td);
  937                 error = (*callp->sy_call)(td, args);
  938                 AUDIT_SYSCALL_EXIT(error, td);
  939                 KASSERT(td->td_ar == NULL, 
  940                     ("returning from syscall with td_ar set!"));
  941         }
  942         switch (error) {
  943         case 0: 
  944 #ifdef __ARMEB__
  945                 if ((insn & 0x000fffff) == SYS___syscall &&
  946                     code != SYS_freebsd6_lseek && code != SYS_lseek) {
  947                         /*
  948                          * 64-bit return, 32-bit syscall. Fixup byte order
  949                          */ 
  950                         frame->tf_r0 = 0;
  951                         frame->tf_r1 = td->td_retval[0];
  952                 } else {
  953                         frame->tf_r0 = td->td_retval[0];
  954                         frame->tf_r1 = td->td_retval[1];
  955                 }
  956 #else
  957                 frame->tf_r0 = td->td_retval[0];
  958                 frame->tf_r1 = td->td_retval[1];
  959 #endif
  960                                               
  961                 frame->tf_spsr &= ~PSR_C_bit;   /* carry bit */
  962                 break;
  963                 
  964         case ERESTART:
  965                 /*
  966                  * Reconstruct the pc to point at the swi.
  967                  */
  968                 frame->tf_pc -= INSN_SIZE;
  969                 break;
  970         case EJUSTRETURN:                                       
  971                 /* nothing to do */  
  972                 break;
  973         default:
  974 bad:
  975                 frame->tf_r0 = error;
  976                 frame->tf_spsr |= PSR_C_bit;    /* carry bit */
  977                 break;
  978         }
  979 
  980         WITNESS_WARN(WARN_PANIC, NULL, "System call %s returning",
  981             (code >= 0 && code < SYS_MAXSYSCALL) ? syscallnames[code] : "???");
  982         KASSERT(td->td_critnest == 0,
  983             ("System call %s returning in a critical section",
  984             (code >= 0 && code < SYS_MAXSYSCALL) ? syscallnames[code] : "???"));
  985         KASSERT(td->td_locks == 0,
  986             ("System call %s returning with %d locks held",
  987             (code >= 0 && code < SYS_MAXSYSCALL) ? syscallnames[code] : "???",
  988             td->td_locks));
  989 
  990         userret(td, frame);
  991         CTR4(KTR_SYSC, "syscall exit thread %p pid %d proc %s code %d", td,
  992             td->td_proc->p_pid, td->td_proc->p_comm, code);
  993         
  994         STOPEVENT(p, S_SCX, code);
  995         PTRACESTOP_SC(p, td, S_PT_SCX);
  996 #ifdef KTRACE
  997         if (KTRPOINT(td, KTR_SYSRET))
  998                 ktrsysret(code, error, td->td_retval[0]);
  999 #endif
 1000 }
 1001 
 1002 void
 1003 swi_handler(trapframe_t *frame)
 1004 {
 1005         struct thread *td = curthread;
 1006         uint32_t insn;
 1007 
 1008         td->td_frame = frame;
 1009         
 1010         td->td_pticks = 0;
 1011 #ifdef KSE
 1012         if (td->td_proc->p_flag & P_SA)
 1013                 thread_user_enter(td);
 1014 #endif
 1015         /*
 1016          * Make sure the program counter is correctly aligned so we
 1017          * don't take an alignment fault trying to read the opcode.
 1018          */
 1019         if (__predict_false(((frame->tf_pc - INSN_SIZE) & 3) != 0)) {
 1020                 call_trapsignal(td, SIGILL, 0);
 1021                 userret(td, frame);
 1022                 return;
 1023         }
 1024         insn = *(u_int32_t *)(frame->tf_pc - INSN_SIZE);
 1025         /*
 1026          * Enable interrupts if they were enabled before the exception.
 1027          * Since all syscalls *should* come from user mode it will always
 1028          * be safe to enable them, but check anyway. 
 1029          */       
 1030         if (td->td_md.md_spinlock_count == 0) {
 1031                 if (__predict_true(frame->tf_spsr & I32_bit) == 0)
 1032                         enable_interrupts(I32_bit);
 1033                 if (__predict_true(frame->tf_spsr & F32_bit) == 0)
 1034                         enable_interrupts(F32_bit);
 1035         }
 1036          
 1037         syscall(td, frame, insn);
 1038 }
 1039 

Cache object: 663229eb2bc216528156d0500dace438


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.