The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/6.2/sys/arm/arm/vm_machdep.c 159889 2006-06-23 17:41:02Z cognet $");
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kernel.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/proc.h>
   52 #include <sys/socketvar.h>
   53 #include <sys/sf_buf.h>
   54 #include <sys/unistd.h>
   55 #include <machine/cpu.h>
   56 #include <machine/pcb.h>
   57 #include <machine/sysarch.h>
   58 #include <vm/vm.h>
   59 #include <vm/pmap.h>
   60 #include <sys/lock.h>
   61 #include <sys/mutex.h>
   62 
   63 #include <vm/vm.h>
   64 #include <vm/vm_extern.h>
   65 #include <vm/vm_kern.h>
   66 #include <vm/vm_page.h>
   67 #include <vm/vm_map.h>
   68 #include <vm/vm_param.h>
   69 #include <vm/uma.h>
   70 #include <vm/uma_int.h>
   71 
   72 #ifndef NSFBUFS
   73 #define NSFBUFS         (512 + maxusers * 16)
   74 #endif
   75 
   76 static void     sf_buf_init(void *arg);
   77 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL)
   78 
   79 LIST_HEAD(sf_head, sf_buf);
   80         
   81 
   82 /*
   83  * A hash table of active sendfile(2) buffers
   84  */
   85 static struct sf_head *sf_buf_active;
   86 static u_long sf_buf_hashmask;
   87 
   88 #define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
   89 
   90 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
   91 static u_int    sf_buf_alloc_want;
   92 
   93 /*
   94  * A lock used to synchronize access to the hash table and free list
   95  */
   96 static struct mtx sf_buf_lock;
   97 
   98 /*
   99  * Finish a fork operation, with process p2 nearly set up.
  100  * Copy and update the pcb, set up the stack so that the child
  101  * ready to run and return to user mode.
  102  */
  103 void
  104 cpu_fork(register struct thread *td1, register struct proc *p2,
  105     struct thread *td2, int flags)
  106 {
  107         struct pcb *pcb1, *pcb2;
  108         struct trapframe *tf;
  109         struct switchframe *sf;
  110         struct mdproc *mdp2;
  111 
  112         if ((flags & RFPROC) == 0)
  113                 return;
  114         pcb1 = td1->td_pcb;
  115         pcb2 = (struct pcb *)(td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1;
  116 #ifdef __XSCALE__
  117         pmap_use_minicache(td2->td_kstack, td2->td_kstack_pages * PAGE_SIZE);
  118         if (td2->td_altkstack)
  119                 pmap_use_minicache(td2->td_altkstack, td2->td_altkstack_pages *
  120                     PAGE_SIZE);
  121 #endif
  122         td2->td_pcb = pcb2;
  123         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  124         mdp2 = &p2->p_md;
  125         bcopy(&td1->td_proc->p_md, mdp2, sizeof(*mdp2));
  126         pcb2->un_32.pcb32_und_sp = td2->td_kstack + USPACE_UNDEF_STACK_TOP;
  127         pcb2->un_32.pcb32_sp = td2->td_kstack +
  128             USPACE_SVC_STACK_TOP - sizeof(*pcb2);
  129         pmap_activate(td2);
  130         td2->td_frame = tf =
  131             (struct trapframe *)pcb2->un_32.pcb32_sp - 1;
  132         *tf = *td1->td_frame;
  133         sf = (struct switchframe *)tf - 1;
  134         sf->sf_r4 = (u_int)fork_return;
  135         sf->sf_r5 = (u_int)td2;
  136         sf->sf_pc = (u_int)fork_trampoline;
  137         tf->tf_spsr &= ~PSR_C_bit;
  138         tf->tf_r0 = 0;
  139         tf->tf_r1 = 0;
  140         pcb2->un_32.pcb32_sp = (u_int)sf;
  141 
  142         /* Setup to release sched_lock in fork_exit(). */
  143         td2->td_md.md_spinlock_count = 1;
  144         td2->td_md.md_saved_cspr = 0;
  145         td2->td_md.md_tp = *(uint32_t **)ARM_TP_ADDRESS;
  146 }
  147                                 
  148 void
  149 cpu_thread_swapin(struct thread *td)
  150 {
  151 }       
  152 
  153 void    
  154 cpu_thread_swapout(struct thread *td)
  155 {       
  156 }
  157 
  158 /*
  159  * Detatch mapped page and release resources back to the system.
  160  */
  161 void
  162 sf_buf_free(struct sf_buf *sf)
  163 {
  164          mtx_lock(&sf_buf_lock);
  165          sf->ref_count--;
  166          if (sf->ref_count == 0) {
  167                  TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
  168                  nsfbufsused--;
  169                  if (sf_buf_alloc_want > 0)
  170                          wakeup_one(&sf_buf_freelist);
  171          }
  172          mtx_unlock(&sf_buf_lock);                               
  173 }
  174 
  175 /*
  176  *  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
  177  *   */
  178 static void
  179 sf_buf_init(void *arg)
  180 {       
  181         struct sf_buf *sf_bufs;
  182         vm_offset_t sf_base;
  183         int i;
  184                                         
  185         nsfbufs = NSFBUFS;
  186         TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
  187                 
  188         sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
  189         TAILQ_INIT(&sf_buf_freelist);
  190         sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
  191         sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
  192             M_NOWAIT | M_ZERO);
  193         for (i = 0; i < nsfbufs; i++) {
  194                 sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
  195                 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
  196         }
  197         sf_buf_alloc_want = 0; 
  198         mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
  199 }
  200 
  201 /*
  202  * Get an sf_buf from the freelist. Will block if none are available.
  203  */
  204 struct sf_buf *
  205 sf_buf_alloc(struct vm_page *m, int flags)
  206 {
  207         struct sf_head *hash_list;
  208         struct sf_buf *sf;
  209         int error;
  210 
  211         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  212         mtx_lock(&sf_buf_lock);
  213         LIST_FOREACH(sf, hash_list, list_entry) {
  214                 if (sf->m == m) {
  215                         sf->ref_count++;
  216                         if (sf->ref_count == 1) {
  217                                 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  218                                 nsfbufsused++;
  219                                 nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  220                         }
  221                         goto done;
  222                 }
  223         }
  224         while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
  225                 if (flags & SFB_NOWAIT)
  226                         goto done;
  227                 sf_buf_alloc_want++;
  228                 mbstat.sf_allocwait++;
  229                 error = msleep(&sf_buf_freelist, &sf_buf_lock,
  230                     (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
  231                 sf_buf_alloc_want--;
  232         
  233 
  234                 /*
  235                  * If we got a signal, don't risk going back to sleep. 
  236                  */
  237                 if (error)
  238                         goto done;
  239         }
  240         TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  241         if (sf->m != NULL)
  242                 LIST_REMOVE(sf, list_entry);
  243         LIST_INSERT_HEAD(hash_list, sf, list_entry);
  244         sf->ref_count = 1;
  245         sf->m = m;
  246         nsfbufsused++;
  247         nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  248         pmap_kenter(sf->kva, VM_PAGE_TO_PHYS(sf->m));
  249 done:
  250         mtx_unlock(&sf_buf_lock);
  251         return (sf);
  252         
  253 }
  254 
  255 /*
  256  * Initialize machine state (pcb and trap frame) for a new thread about to
  257  * upcall. Put enough state in the new thread's PCB to get it to go back 
  258  * userret(), where we can intercept it again to set the return (upcall)
  259  * Address and stack, along with those from upcals that are from other sources
  260  * such as those generated in thread_userret() itself.
  261  */
  262 void
  263 cpu_set_upcall(struct thread *td, struct thread *td0)
  264 {
  265         struct trapframe *tf;
  266         struct switchframe *sf;
  267 
  268         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  269         bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb));
  270         tf = td->td_frame;
  271         sf = (struct switchframe *)tf - 1;
  272         sf->sf_r4 = (u_int)fork_return;
  273         sf->sf_r5 = (u_int)td;
  274         sf->sf_pc = (u_int)fork_trampoline;
  275         tf->tf_spsr &= ~PSR_C_bit;
  276         tf->tf_r0 = 0;
  277         td->td_pcb->un_32.pcb32_sp = (u_int)sf;
  278         td->td_pcb->un_32.pcb32_und_sp = td->td_kstack + USPACE_UNDEF_STACK_TOP;
  279 
  280         /* Setup to release sched_lock in fork_exit(). */
  281         td->td_md.md_spinlock_count = 1;
  282         td->td_md.md_saved_cspr = 0;
  283 }
  284 
  285 /*
  286  * Set that machine state for performing an upcall that has to
  287  * be done in thread_userret() so that those upcalls generated
  288  * in thread_userret() itself can be done as well.
  289  */
  290 void
  291 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
  292         stack_t *stack)
  293 {
  294         struct trapframe *tf = td->td_frame;
  295 
  296         tf->tf_usr_sp = ((int)stack->ss_sp + stack->ss_size
  297             - sizeof(struct trapframe)) & ~7;
  298         tf->tf_pc = (int)entry;
  299         tf->tf_r0 = (int)arg;
  300         tf->tf_spsr = PSR_USR32_MODE;
  301 }
  302 
  303 int
  304 cpu_set_user_tls(struct thread *td, void *tls_base)
  305 {
  306 
  307         if (td != curthread)
  308                 td->td_md.md_tp = tls_base;
  309         else {
  310                 critical_enter();
  311                 *(void **)ARM_TP_ADDRESS = tls_base;
  312                 critical_exit();
  313         }
  314         return (0);
  315 }
  316 
  317 void
  318 cpu_thread_exit(struct thread *td)
  319 {
  320 }
  321 
  322 void
  323 cpu_thread_setup(struct thread *td)
  324 {
  325         td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages * 
  326             PAGE_SIZE) - 1;
  327         td->td_frame = (struct trapframe *)
  328             ((u_int)td->td_kstack + USPACE_SVC_STACK_TOP - sizeof(struct pcb)) - 1;
  329 #ifdef __XSCALE__
  330         pmap_use_minicache(td->td_kstack, td->td_kstack_pages * PAGE_SIZE);
  331 #endif  
  332                 
  333 }
  334 void
  335 cpu_thread_clean(struct thread *td)
  336 {
  337 }
  338 
  339 /*
  340  * Intercept the return address from a freshly forked process that has NOT
  341  * been scheduled yet.
  342  *
  343  * This is needed to make kernel threads stay in kernel mode.
  344  */
  345 void
  346 cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg)
  347 {
  348         struct switchframe *sf;
  349         struct trapframe *tf;
  350         
  351         tf = td->td_frame;
  352         sf = (struct switchframe *)tf - 1;
  353         sf->sf_r4 = (u_int)func;
  354         sf->sf_r5 = (u_int)arg;
  355         td->td_pcb->un_32.pcb32_sp = (u_int)sf;
  356 }
  357 
  358 /*
  359  * Software interrupt handler for queued VM system processing.
  360  */   
  361 void  
  362 swi_vm(void *dummy)
  363 {
  364 }
  365 
  366 void
  367 cpu_exit(struct thread *td)
  368 {
  369 }
  370 
  371 #define BITS_PER_INT    (8 * sizeof(int))
  372 vm_offset_t arm_nocache_startaddr;
  373 static int arm_nocache_allocated[ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE * 
  374     BITS_PER_INT)];
  375 
  376 /*
  377  * Functions to map and unmap memory non-cached into KVA the kernel won't try 
  378  * to allocate. The goal is to provide uncached memory to busdma, to honor
  379  * BUS_DMA_COHERENT. 
  380  * We can allocate at most ARM_NOCACHE_KVA_SIZE bytes. 
  381  * The allocator is rather dummy, each page is represented by a bit in
  382  * a bitfield, 0 meaning the page is not allocated, 1 meaning it is.
  383  * As soon as it finds enough contiguous pages to satisfy the request,
  384  * it returns the address.
  385  */
  386 void *
  387 arm_remap_nocache(void *addr, vm_size_t size)
  388 {
  389         int i, j;
  390                         
  391         size = round_page(size);
  392         for (i = 0; i < MIN(ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE * BITS_PER_INT),
  393             ARM_TP_ADDRESS); i++) {
  394                 if (!(arm_nocache_allocated[i / BITS_PER_INT] & (1 << (i % 
  395                     BITS_PER_INT)))) {
  396                         for (j = i; j < i + (size / (PAGE_SIZE)); j++)
  397                                 if (arm_nocache_allocated[j / BITS_PER_INT] &
  398                                     (1 << (j % BITS_PER_INT)))
  399                                         break;
  400                         if (j == i + (size / (PAGE_SIZE)))
  401                                 break;
  402                 }
  403         }
  404         if (i < MIN(ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE * BITS_PER_INT), 
  405             ARM_TP_ADDRESS)) {
  406                 vm_offset_t tomap = arm_nocache_startaddr + i * PAGE_SIZE;
  407                 void *ret = (void *)tomap;
  408                 vm_paddr_t physaddr = vtophys((vm_offset_t)addr);
  409                 
  410                 for (; tomap < (vm_offset_t)ret + size; tomap += PAGE_SIZE,
  411                     physaddr += PAGE_SIZE, i++) {
  412                         pmap_kenter_nocache(tomap, physaddr);
  413                         arm_nocache_allocated[i / BITS_PER_INT] |= 1 << (i % 
  414                             BITS_PER_INT);
  415                 }
  416                 return (ret);
  417         }
  418         return (NULL);
  419 }
  420 
  421 void
  422 arm_unmap_nocache(void *addr, vm_size_t size)
  423 {
  424         vm_offset_t raddr = (vm_offset_t)addr;
  425         int i;
  426 
  427         size = round_page(size);
  428         i = (raddr - arm_nocache_startaddr) / (PAGE_SIZE);
  429         for (; size > 0; size -= PAGE_SIZE, i++)
  430                 arm_nocache_allocated[i / BITS_PER_INT] &= ~(1 << (i % 
  431                     BITS_PER_INT));
  432 }
  433 
  434 #ifdef ARM_USE_SMALL_ALLOC
  435 
  436 static TAILQ_HEAD(,arm_small_page) pages_normal = 
  437         TAILQ_HEAD_INITIALIZER(pages_normal);
  438 static TAILQ_HEAD(,arm_small_page) pages_wt = 
  439         TAILQ_HEAD_INITIALIZER(pages_wt);
  440 static TAILQ_HEAD(,arm_small_page) free_pgdesc =
  441         TAILQ_HEAD_INITIALIZER(free_pgdesc);
  442 
  443 extern uma_zone_t l2zone;
  444 
  445 struct mtx smallalloc_mtx;
  446 
  447 MALLOC_DEFINE(M_VMSMALLALLOC, "VM Small alloc", "VM Small alloc data");
  448 
  449 vm_offset_t alloc_curaddr;
  450 vm_offset_t alloc_firstaddr;
  451 
  452 extern int doverbose;
  453 
  454 void
  455 arm_add_smallalloc_pages(void *list, void *mem, int bytes, int pagetable)
  456 {
  457         struct arm_small_page *pg;
  458         
  459         bytes &= ~PAGE_MASK;
  460         while (bytes > 0) {
  461                 pg = (struct arm_small_page *)list;
  462                 pg->addr = mem;
  463                 if (pagetable)
  464                         TAILQ_INSERT_HEAD(&pages_wt, pg, pg_list);
  465                 else
  466                         TAILQ_INSERT_HEAD(&pages_normal, pg, pg_list);
  467                 list = (char *)list + sizeof(*pg);
  468                 mem = (char *)mem + PAGE_SIZE;
  469                 bytes -= PAGE_SIZE;
  470         }
  471 }
  472 
  473 static void *
  474 arm_uma_do_alloc(struct arm_small_page **pglist, int bytes, int pagetable)
  475 {
  476         void *ret;
  477         vm_page_t page_array = NULL;
  478 
  479             
  480         *pglist = (void *)kmem_malloc(kmem_map, (0x100000 / PAGE_SIZE) *
  481             sizeof(struct arm_small_page), M_WAITOK);
  482         if (alloc_curaddr < 0xf0000000) {/* XXX */
  483                 mtx_lock(&Giant);
  484                 page_array = vm_page_alloc_contig(0x100000 / PAGE_SIZE,
  485                     0, 0xffffffff, 0x100000, 0);
  486                 mtx_unlock(&Giant);
  487         }
  488         if (page_array) {
  489                 vm_paddr_t pa = VM_PAGE_TO_PHYS(page_array);
  490                 mtx_lock(&smallalloc_mtx);
  491                 ret = (void*)alloc_curaddr;
  492                 alloc_curaddr += 0x100000;
  493                 /* XXX: ARM_TP_ADDRESS should probably be move elsewhere. */
  494                 if (alloc_curaddr == ARM_TP_ADDRESS)
  495                         alloc_curaddr += 0x100000;
  496                 mtx_unlock(&smallalloc_mtx);
  497                 pmap_kenter_section((vm_offset_t)ret, pa
  498                     , pagetable);
  499 
  500                 
  501         } else {
  502                 kmem_free(kmem_map, (vm_offset_t)*pglist, 
  503                     (0x100000 / PAGE_SIZE) * sizeof(struct arm_small_page));
  504                 *pglist = NULL;
  505                 ret = (void *)kmem_malloc(kmem_map, bytes, M_WAITOK);
  506         }
  507         return (ret);
  508 }
  509 
  510 void *
  511 uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  512 {
  513         void *ret;
  514         struct arm_small_page *sp, *tmp;
  515         TAILQ_HEAD(,arm_small_page) *head;
  516         static int in_alloc;
  517         static int in_sleep;
  518         int should_wakeup = 0;
  519         
  520         *flags = UMA_SLAB_PRIV;
  521         /*
  522          * For CPUs where we setup page tables as write back, there's no
  523          * need to maintain two separate pools.
  524          */
  525         if (zone == l2zone && pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt)
  526                 head = (void *)&pages_wt;
  527         else
  528                 head = (void *)&pages_normal;
  529 
  530         mtx_lock(&smallalloc_mtx);
  531 retry:
  532         sp = TAILQ_FIRST(head);
  533 
  534         if (!sp) {
  535                 /* No more free pages, need to alloc more. */
  536                 if (!(wait & M_WAITOK)) {
  537                         mtx_unlock(&smallalloc_mtx);
  538                         *flags = UMA_SLAB_KMEM;
  539                         ret = (void *)kmem_malloc(kmem_map, bytes, wait);
  540                         return (ret);
  541                 }
  542                 if (in_alloc) {
  543                         /* Somebody else is already doing the allocation. */
  544                         in_sleep++;
  545                         msleep(&in_alloc, &smallalloc_mtx, PWAIT, 
  546                             "smallalloc", 0);
  547                         in_sleep--;
  548                         goto retry;
  549                 }               
  550                 in_alloc = 1;
  551                 mtx_unlock(&smallalloc_mtx);
  552                 /* Try to alloc 1MB of contiguous memory. */
  553                 ret = arm_uma_do_alloc(&sp, bytes, zone == l2zone ?
  554                     SECTION_PT : SECTION_CACHE);
  555                 mtx_lock(&smallalloc_mtx);
  556                 in_alloc = 0;
  557                 if (in_sleep)
  558                         should_wakeup = 1;
  559                 if (sp) {
  560                         for (int i = 0; i < (0x100000 / PAGE_SIZE) - 1;
  561                             i++) {
  562                                 tmp = &sp[i];
  563                                 tmp->addr = (char *)ret + i * PAGE_SIZE;
  564                                 TAILQ_INSERT_HEAD(head, tmp, pg_list);
  565                         }
  566                         ret = (char *)ret + 0x100000 - PAGE_SIZE;
  567                         TAILQ_INSERT_HEAD(&free_pgdesc, &sp[(0x100000 / (
  568                             PAGE_SIZE)) - 1], pg_list);
  569                 } else
  570                         *flags = UMA_SLAB_KMEM;
  571                         
  572         } else {
  573                 sp = TAILQ_FIRST(head);
  574                 TAILQ_REMOVE(head, sp, pg_list);
  575                 TAILQ_INSERT_HEAD(&free_pgdesc, sp, pg_list);
  576                 ret = sp->addr;
  577         }
  578         if (should_wakeup)
  579                 wakeup(&in_alloc);
  580         mtx_unlock(&smallalloc_mtx);
  581         if ((wait & M_ZERO))
  582                 bzero(ret, bytes);
  583         return (ret);
  584 }
  585 
  586 void
  587 uma_small_free(void *mem, int size, u_int8_t flags)
  588 {
  589         pd_entry_t *pd;
  590         pt_entry_t *pt;
  591 
  592         if (flags & UMA_SLAB_KMEM)
  593                 kmem_free(kmem_map, (vm_offset_t)mem, size);
  594         else {
  595                 struct arm_small_page *sp;
  596 
  597                 mtx_lock(&smallalloc_mtx);
  598                 sp = TAILQ_FIRST(&free_pgdesc);
  599                 KASSERT(sp != NULL, ("No more free page descriptor ?"));
  600                 TAILQ_REMOVE(&free_pgdesc, sp, pg_list);
  601                 sp->addr = mem;
  602                 pmap_get_pde_pte(kernel_pmap, (vm_offset_t)mem, &pd, &pt);
  603                 if ((*pd & pte_l1_s_cache_mask) == pte_l1_s_cache_mode_pt &&
  604                     pte_l1_s_cache_mode_pt != pte_l1_s_cache_mode)
  605                         TAILQ_INSERT_HEAD(&pages_wt, sp, pg_list);
  606                 else
  607                         TAILQ_INSERT_HEAD(&pages_normal, sp, pg_list);
  608                 mtx_unlock(&smallalloc_mtx);
  609         }
  610 }
  611 
  612 #endif

Cache object: df7ba495977b70b46634565b82bb14f2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.