The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary :forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD$");
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kernel.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/proc.h>
   52 #include <sys/socketvar.h>
   53 #include <sys/sf_buf.h>
   54 #include <sys/unistd.h>
   55 #include <machine/cpu.h>
   56 #include <machine/pcb.h>
   57 #include <machine/sysarch.h>
   58 #include <sys/lock.h>
   59 #include <sys/mutex.h>
   60 
   61 #include <vm/vm.h>
   62 #include <vm/pmap.h>
   63 #include <vm/vm_extern.h>
   64 #include <vm/vm_kern.h>
   65 #include <vm/vm_page.h>
   66 #include <vm/vm_map.h>
   67 #include <vm/vm_param.h>
   68 #include <vm/vm_pageout.h>
   69 #include <vm/uma.h>
   70 #include <vm/uma_int.h>
   71 
   72 #include <machine/md_var.h>
   73 
   74 #ifndef NSFBUFS
   75 #define NSFBUFS         (512 + maxusers * 16)
   76 #endif
   77 
   78 #ifndef ARM_USE_SMALL_ALLOC
   79 static void     sf_buf_init(void *arg);
   80 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL)
   81 
   82 LIST_HEAD(sf_head, sf_buf);
   83         
   84 
   85 /*
   86  * A hash table of active sendfile(2) buffers
   87  */
   88 static struct sf_head *sf_buf_active;
   89 static u_long sf_buf_hashmask;
   90 
   91 #define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
   92 
   93 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
   94 static u_int    sf_buf_alloc_want;
   95 
   96 /*
   97  * A lock used to synchronize access to the hash table and free list
   98  */
   99 static struct mtx sf_buf_lock;
  100 #endif
  101 
  102 /*
  103  * Finish a fork operation, with process p2 nearly set up.
  104  * Copy and update the pcb, set up the stack so that the child
  105  * ready to run and return to user mode.
  106  */
  107 void
  108 cpu_fork(register struct thread *td1, register struct proc *p2,
  109     struct thread *td2, int flags)
  110 {
  111         struct pcb *pcb1, *pcb2;
  112         struct trapframe *tf;
  113         struct switchframe *sf;
  114         struct mdproc *mdp2;
  115 
  116         if ((flags & RFPROC) == 0)
  117                 return;
  118         pcb1 = td1->td_pcb;
  119         pcb2 = (struct pcb *)(td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1;
  120 #ifdef __XSCALE__
  121         pmap_use_minicache(td2->td_kstack, td2->td_kstack_pages * PAGE_SIZE);
  122         if (td2->td_altkstack)
  123                 pmap_use_minicache(td2->td_altkstack, td2->td_altkstack_pages *
  124                     PAGE_SIZE);
  125 #endif
  126         td2->td_pcb = pcb2;
  127         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  128         mdp2 = &p2->p_md;
  129         bcopy(&td1->td_proc->p_md, mdp2, sizeof(*mdp2));
  130         pcb2->un_32.pcb32_und_sp = td2->td_kstack + USPACE_UNDEF_STACK_TOP;
  131         pcb2->un_32.pcb32_sp = td2->td_kstack +
  132             USPACE_SVC_STACK_TOP - sizeof(*pcb2);
  133         pmap_activate(td2);
  134         td2->td_frame = tf =
  135             (struct trapframe *)pcb2->un_32.pcb32_sp - 1;
  136         *tf = *td1->td_frame;
  137         sf = (struct switchframe *)tf - 1;
  138         sf->sf_r4 = (u_int)fork_return;
  139         sf->sf_r5 = (u_int)td2;
  140         sf->sf_pc = (u_int)fork_trampoline;
  141         tf->tf_spsr &= ~PSR_C_bit;
  142         tf->tf_r0 = 0;
  143         tf->tf_r1 = 0;
  144         pcb2->un_32.pcb32_sp = (u_int)sf;
  145 
  146         /* Setup to release spin count in fork_exit(). */
  147         td2->td_md.md_spinlock_count = 1;
  148         td2->td_md.md_saved_cspr = 0;
  149         td2->td_md.md_tp = *(uint32_t **)ARM_TP_ADDRESS;
  150 }
  151                                 
  152 void
  153 cpu_thread_swapin(struct thread *td)
  154 {
  155 }       
  156 
  157 void    
  158 cpu_thread_swapout(struct thread *td)
  159 {       
  160 }
  161 
  162 /*
  163  * Detatch mapped page and release resources back to the system.
  164  */
  165 void
  166 sf_buf_free(struct sf_buf *sf)
  167 {
  168 #ifndef ARM_USE_SMALL_ALLOC
  169          mtx_lock(&sf_buf_lock);
  170          sf->ref_count--;
  171          if (sf->ref_count == 0) {
  172                  TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
  173                  nsfbufsused--;
  174                  if (sf_buf_alloc_want > 0)
  175                          wakeup_one(&sf_buf_freelist);
  176          }
  177          mtx_unlock(&sf_buf_lock);                               
  178 #endif
  179 }
  180 
  181 #ifndef ARM_USE_SMALL_ALLOC
  182 /*
  183  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
  184  */
  185 static void
  186 sf_buf_init(void *arg)
  187 {       
  188         struct sf_buf *sf_bufs;
  189         vm_offset_t sf_base;
  190         int i;
  191                                         
  192         nsfbufs = NSFBUFS;
  193         TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
  194                 
  195         sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
  196         TAILQ_INIT(&sf_buf_freelist);
  197         sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
  198         sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
  199             M_NOWAIT | M_ZERO);
  200         for (i = 0; i < nsfbufs; i++) {
  201                 sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
  202                 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
  203         }
  204         sf_buf_alloc_want = 0; 
  205         mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
  206 }
  207 #endif
  208 
  209 /*
  210  * Get an sf_buf from the freelist. Will block if none are available.
  211  */
  212 struct sf_buf *
  213 sf_buf_alloc(struct vm_page *m, int flags)
  214 {
  215 #ifdef ARM_USE_SMALL_ALLOC
  216         return ((struct sf_buf *)m);
  217 #else
  218         struct sf_head *hash_list;
  219         struct sf_buf *sf;
  220         int error;
  221 
  222         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  223         mtx_lock(&sf_buf_lock);
  224         LIST_FOREACH(sf, hash_list, list_entry) {
  225                 if (sf->m == m) {
  226                         sf->ref_count++;
  227                         if (sf->ref_count == 1) {
  228                                 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  229                                 nsfbufsused++;
  230                                 nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  231                         }
  232                         goto done;
  233                 }
  234         }
  235         while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
  236                 if (flags & SFB_NOWAIT)
  237                         goto done;
  238                 sf_buf_alloc_want++;
  239                 mbstat.sf_allocwait++;
  240                 error = msleep(&sf_buf_freelist, &sf_buf_lock,
  241                     (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
  242                 sf_buf_alloc_want--;
  243         
  244 
  245                 /*
  246                  * If we got a signal, don't risk going back to sleep. 
  247                  */
  248                 if (error)
  249                         goto done;
  250         }
  251         TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  252         if (sf->m != NULL)
  253                 LIST_REMOVE(sf, list_entry);
  254         LIST_INSERT_HEAD(hash_list, sf, list_entry);
  255         sf->ref_count = 1;
  256         sf->m = m;
  257         nsfbufsused++;
  258         nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  259         pmap_kenter(sf->kva, VM_PAGE_TO_PHYS(sf->m));
  260 done:
  261         mtx_unlock(&sf_buf_lock);
  262         return (sf);
  263 #endif
  264 }
  265 
  266 /*
  267  * Initialize machine state (pcb and trap frame) for a new thread about to
  268  * upcall. Put enough state in the new thread's PCB to get it to go back 
  269  * userret(), where we can intercept it again to set the return (upcall)
  270  * Address and stack, along with those from upcals that are from other sources
  271  * such as those generated in thread_userret() itself.
  272  */
  273 void
  274 cpu_set_upcall(struct thread *td, struct thread *td0)
  275 {
  276         struct trapframe *tf;
  277         struct switchframe *sf;
  278 
  279         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  280         bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb));
  281         tf = td->td_frame;
  282         sf = (struct switchframe *)tf - 1;
  283         sf->sf_r4 = (u_int)fork_return;
  284         sf->sf_r5 = (u_int)td;
  285         sf->sf_pc = (u_int)fork_trampoline;
  286         tf->tf_spsr &= ~PSR_C_bit;
  287         tf->tf_r0 = 0;
  288         td->td_pcb->un_32.pcb32_sp = (u_int)sf;
  289         td->td_pcb->un_32.pcb32_und_sp = td->td_kstack + USPACE_UNDEF_STACK_TOP;
  290 
  291         /* Setup to release spin count in fork_exit(). */
  292         td->td_md.md_spinlock_count = 1;
  293         td->td_md.md_saved_cspr = 0;
  294 }
  295 
  296 /*
  297  * Set that machine state for performing an upcall that has to
  298  * be done in thread_userret() so that those upcalls generated
  299  * in thread_userret() itself can be done as well.
  300  */
  301 void
  302 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
  303         stack_t *stack)
  304 {
  305         struct trapframe *tf = td->td_frame;
  306 
  307         tf->tf_usr_sp = ((int)stack->ss_sp + stack->ss_size
  308             - sizeof(struct trapframe)) & ~7;
  309         tf->tf_pc = (int)entry;
  310         tf->tf_r0 = (int)arg;
  311         tf->tf_spsr = PSR_USR32_MODE;
  312 }
  313 
  314 int
  315 cpu_set_user_tls(struct thread *td, void *tls_base)
  316 {
  317 
  318         if (td != curthread)
  319                 td->td_md.md_tp = tls_base;
  320         else {
  321                 critical_enter();
  322                 *(void **)ARM_TP_ADDRESS = tls_base;
  323                 critical_exit();
  324         }
  325         return (0);
  326 }
  327 
  328 void
  329 cpu_thread_exit(struct thread *td)
  330 {
  331 }
  332 
  333 void
  334 cpu_thread_setup(struct thread *td)
  335 {
  336         td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages * 
  337             PAGE_SIZE) - 1;
  338         td->td_frame = (struct trapframe *)
  339             ((u_int)td->td_kstack + USPACE_SVC_STACK_TOP - sizeof(struct pcb)) - 1;
  340 #ifdef __XSCALE__
  341         pmap_use_minicache(td->td_kstack, td->td_kstack_pages * PAGE_SIZE);
  342 #endif  
  343                 
  344 }
  345 void
  346 cpu_thread_clean(struct thread *td)
  347 {
  348 }
  349 
  350 /*
  351  * Intercept the return address from a freshly forked process that has NOT
  352  * been scheduled yet.
  353  *
  354  * This is needed to make kernel threads stay in kernel mode.
  355  */
  356 void
  357 cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg)
  358 {
  359         struct switchframe *sf;
  360         struct trapframe *tf;
  361         
  362         tf = td->td_frame;
  363         sf = (struct switchframe *)tf - 1;
  364         sf->sf_r4 = (u_int)func;
  365         sf->sf_r5 = (u_int)arg;
  366         td->td_pcb->un_32.pcb32_sp = (u_int)sf;
  367 }
  368 
  369 /*
  370  * Software interrupt handler for queued VM system processing.
  371  */   
  372 void  
  373 swi_vm(void *dummy)
  374 {
  375         
  376         if (busdma_swi_pending)
  377                 busdma_swi();
  378 }
  379 
  380 void
  381 cpu_exit(struct thread *td)
  382 {
  383 }
  384 
  385 #define BITS_PER_INT    (8 * sizeof(int))
  386 vm_offset_t arm_nocache_startaddr;
  387 static int arm_nocache_allocated[ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE * 
  388     BITS_PER_INT)];
  389 
  390 /*
  391  * Functions to map and unmap memory non-cached into KVA the kernel won't try 
  392  * to allocate. The goal is to provide uncached memory to busdma, to honor
  393  * BUS_DMA_COHERENT. 
  394  * We can allocate at most ARM_NOCACHE_KVA_SIZE bytes. 
  395  * The allocator is rather dummy, each page is represented by a bit in
  396  * a bitfield, 0 meaning the page is not allocated, 1 meaning it is.
  397  * As soon as it finds enough contiguous pages to satisfy the request,
  398  * it returns the address.
  399  */
  400 void *
  401 arm_remap_nocache(void *addr, vm_size_t size)
  402 {
  403         int i, j;
  404         
  405         size = round_page(size);
  406         for (i = 0; i < MIN(ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE * BITS_PER_INT),
  407             ARM_TP_ADDRESS); i++) {
  408                 if (!(arm_nocache_allocated[i / BITS_PER_INT] & (1 << (i % 
  409                     BITS_PER_INT)))) {
  410                         for (j = i; j < i + (size / (PAGE_SIZE)); j++)
  411                                 if (arm_nocache_allocated[j / BITS_PER_INT] &
  412                                     (1 << (j % BITS_PER_INT)))
  413                                         break;
  414                         if (j == i + (size / (PAGE_SIZE)))
  415                                 break;
  416                 }
  417         }
  418         if (i < MIN(ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE * BITS_PER_INT), 
  419             ARM_TP_ADDRESS)) {
  420                 vm_offset_t tomap = arm_nocache_startaddr + i * PAGE_SIZE;
  421                 void *ret = (void *)tomap;
  422                 vm_paddr_t physaddr = vtophys((vm_offset_t)addr);
  423                 
  424                 for (; tomap < (vm_offset_t)ret + size; tomap += PAGE_SIZE,
  425                     physaddr += PAGE_SIZE, i++) {
  426                         pmap_kenter_nocache(tomap, physaddr);
  427                         arm_nocache_allocated[i / BITS_PER_INT] |= 1 << (i % 
  428                             BITS_PER_INT);
  429                 }
  430                 return (ret);
  431         }
  432         return (NULL);
  433 }
  434 
  435 void
  436 arm_unmap_nocache(void *addr, vm_size_t size)
  437 {
  438         vm_offset_t raddr = (vm_offset_t)addr;
  439         int i;
  440 
  441         size = round_page(size);
  442         i = (raddr - arm_nocache_startaddr) / (PAGE_SIZE);
  443         for (; size > 0; size -= PAGE_SIZE, i++)
  444                 arm_nocache_allocated[i / BITS_PER_INT] &= ~(1 << (i % 
  445                     BITS_PER_INT));
  446 }
  447 
  448 #ifdef ARM_USE_SMALL_ALLOC
  449 
  450 static TAILQ_HEAD(,arm_small_page) pages_normal = 
  451         TAILQ_HEAD_INITIALIZER(pages_normal);
  452 static TAILQ_HEAD(,arm_small_page) pages_wt = 
  453         TAILQ_HEAD_INITIALIZER(pages_wt);
  454 static TAILQ_HEAD(,arm_small_page) free_pgdesc =
  455         TAILQ_HEAD_INITIALIZER(free_pgdesc);
  456 
  457 extern uma_zone_t l2zone;
  458 
  459 struct mtx smallalloc_mtx;
  460 
  461 MALLOC_DEFINE(M_VMSMALLALLOC, "vm_small_alloc", "VM Small alloc data");
  462 
  463 vm_offset_t alloc_firstaddr;
  464 
  465 #ifdef ARM_HAVE_SUPERSECTIONS
  466 #define S_FRAME L1_SUP_FRAME
  467 #define S_SIZE  L1_SUP_SIZE
  468 #else
  469 #define S_FRAME L1_S_FRAME
  470 #define S_SIZE  L1_S_SIZE
  471 #endif
  472 
  473 vm_offset_t
  474 arm_ptovirt(vm_paddr_t pa)
  475 {
  476         int i;
  477         vm_offset_t addr = alloc_firstaddr;
  478 
  479         KASSERT(alloc_firstaddr != 0, ("arm_ptovirt called to early ?"));
  480         for (i = 0; dump_avail[i + 1]; i += 2) {
  481                 if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
  482                         break;
  483                 addr += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
  484                     (dump_avail[i] & S_FRAME);
  485         }
  486         KASSERT(dump_avail[i + 1] != 0, ("Trying to access invalid physical address"));
  487         return (addr + (pa - (dump_avail[i] & S_FRAME)));
  488 }
  489 
  490 void
  491 arm_init_smallalloc(void)
  492 {
  493         vm_offset_t to_map = 0, mapaddr;
  494         int i;
  495         
  496         /* 
  497          * We need to use dump_avail and not phys_avail, since we want to
  498          * map the whole memory and not just the memory available to the VM
  499          * to be able to do a pa => va association for any address.
  500          */
  501            
  502         for (i = 0; dump_avail[i + 1]; i+= 2) {
  503                 to_map += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
  504                     (dump_avail[i] & S_FRAME);
  505         }
  506         alloc_firstaddr = mapaddr = KERNBASE - to_map;
  507         for (i = 0; dump_avail[i + 1]; i+= 2) {
  508                 vm_offset_t size = (dump_avail[i + 1] & S_FRAME) +
  509                     S_SIZE - (dump_avail[i] & S_FRAME);
  510                 vm_offset_t did = 0;
  511                 while (size > 0) {
  512 #ifdef ARM_HAVE_SUPERSECTIONS
  513                         pmap_kenter_supersection(mapaddr,
  514                             (dump_avail[i] & L1_SUP_FRAME) + did, 
  515                             SECTION_CACHE);
  516 #else
  517                         pmap_kenter_section(mapaddr, 
  518                             (dump_avail[i] & L1_S_FRAME) + did, SECTION_CACHE);
  519 #endif
  520                         mapaddr += S_SIZE;
  521                         did += S_SIZE;
  522                         size -= S_SIZE;
  523                 }
  524         }
  525 }
  526 
  527 void
  528 arm_add_smallalloc_pages(void *list, void *mem, int bytes, int pagetable)
  529 {
  530         struct arm_small_page *pg;
  531         
  532         bytes &= ~PAGE_MASK;
  533         while (bytes > 0) {
  534                 pg = (struct arm_small_page *)list;
  535                 pg->addr = mem;
  536                 if (pagetable)
  537                         TAILQ_INSERT_HEAD(&pages_wt, pg, pg_list);
  538                 else
  539                         TAILQ_INSERT_HEAD(&pages_normal, pg, pg_list);
  540                 list = (char *)list + sizeof(*pg);
  541                 mem = (char *)mem + PAGE_SIZE;
  542                 bytes -= PAGE_SIZE;
  543         }
  544 }
  545 
  546 void *
  547 uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  548 {
  549         void *ret;
  550         struct arm_small_page *sp;
  551         TAILQ_HEAD(,arm_small_page) *head;
  552         static vm_pindex_t color;
  553         vm_page_t m;
  554 
  555         *flags = UMA_SLAB_PRIV;
  556         /*
  557          * For CPUs where we setup page tables as write back, there's no
  558          * need to maintain two separate pools.
  559          */
  560         if (zone == l2zone && pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt)
  561                 head = (void *)&pages_wt;
  562         else
  563                 head = (void *)&pages_normal;
  564 
  565         mtx_lock(&smallalloc_mtx);
  566         sp = TAILQ_FIRST(head);
  567 
  568         if (!sp) {
  569                 int pflags;
  570 
  571                 mtx_unlock(&smallalloc_mtx);
  572                 if (zone == l2zone &&
  573                     pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt) {
  574                         *flags = UMA_SLAB_KMEM;
  575                         ret = ((void *)kmem_malloc(kmem_map, bytes, M_NOWAIT));
  576                         return (ret);
  577                 }
  578                 if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
  579                         pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
  580                 else
  581                         pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
  582                 if (wait & M_ZERO)
  583                         pflags |= VM_ALLOC_ZERO;
  584                 for (;;) {
  585                         m = vm_page_alloc(NULL, color++, 
  586                             pflags | VM_ALLOC_NOOBJ);
  587                         if (m == NULL) {
  588                                 if (wait & M_NOWAIT)
  589                                         return (NULL);
  590                                 VM_WAIT;
  591                         } else
  592                                 break;
  593                 }
  594                 ret = (void *)arm_ptovirt(VM_PAGE_TO_PHYS(m));
  595                 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
  596                         bzero(ret, PAGE_SIZE);
  597                 return (ret);
  598         }    
  599         TAILQ_REMOVE(head, sp, pg_list);
  600         TAILQ_INSERT_HEAD(&free_pgdesc, sp, pg_list);
  601         ret = sp->addr;
  602         mtx_unlock(&smallalloc_mtx);
  603         if ((wait & M_ZERO))
  604                 bzero(ret, bytes);
  605         return (ret);
  606 }
  607 
  608 void
  609 uma_small_free(void *mem, int size, u_int8_t flags)
  610 {
  611         pd_entry_t *pd;
  612         pt_entry_t *pt;
  613 
  614         if (flags & UMA_SLAB_KMEM)
  615                 kmem_free(kmem_map, (vm_offset_t)mem, size);
  616         else {
  617                 struct arm_small_page *sp;
  618 
  619                 if ((vm_offset_t)mem >= KERNBASE) {
  620                         mtx_lock(&smallalloc_mtx);
  621                         sp = TAILQ_FIRST(&free_pgdesc);
  622                         KASSERT(sp != NULL, ("No more free page descriptor ?"));
  623                         TAILQ_REMOVE(&free_pgdesc, sp, pg_list);
  624                         sp->addr = mem;
  625                         pmap_get_pde_pte(kernel_pmap, (vm_offset_t)mem, &pd,
  626                             &pt);
  627                         if ((*pd & pte_l1_s_cache_mask) == 
  628                             pte_l1_s_cache_mode_pt &&
  629                             pte_l1_s_cache_mode_pt != pte_l1_s_cache_mode)
  630                                 TAILQ_INSERT_HEAD(&pages_wt, sp, pg_list);
  631                         else
  632                                 TAILQ_INSERT_HEAD(&pages_normal, sp, pg_list);
  633                         mtx_unlock(&smallalloc_mtx);
  634                 } else {
  635                         vm_page_t m;
  636                         vm_paddr_t pa = vtophys((vm_offset_t)mem);
  637 
  638                         m = PHYS_TO_VM_PAGE(pa);
  639                         m->wire_count--;
  640                         vm_page_free(m);
  641                         atomic_subtract_int(&cnt.v_wire_count, 1);
  642                 }
  643         }
  644 }
  645 
  646 #endif

Cache object: 99523896ac35e65d2c216c5c350b0d87


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.