The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary :forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD$");
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kernel.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/proc.h>
   52 #include <sys/socketvar.h>
   53 #include <sys/sf_buf.h>
   54 #include <sys/unistd.h>
   55 #include <machine/cpu.h>
   56 #include <machine/pcb.h>
   57 #include <machine/sysarch.h>
   58 #include <sys/lock.h>
   59 #include <sys/mutex.h>
   60 
   61 #include <vm/vm.h>
   62 #include <vm/pmap.h>
   63 #include <vm/vm_extern.h>
   64 #include <vm/vm_kern.h>
   65 #include <vm/vm_page.h>
   66 #include <vm/vm_map.h>
   67 #include <vm/vm_param.h>
   68 #include <vm/vm_pageout.h>
   69 #include <vm/uma.h>
   70 #include <vm/uma_int.h>
   71 
   72 #include <machine/md_var.h>
   73 
   74 #ifndef NSFBUFS
   75 #define NSFBUFS         (512 + maxusers * 16)
   76 #endif
   77 
   78 #ifndef ARM_USE_SMALL_ALLOC
   79 static void     sf_buf_init(void *arg);
   80 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
   81 
   82 LIST_HEAD(sf_head, sf_buf);
   83         
   84 
   85 /*
   86  * A hash table of active sendfile(2) buffers
   87  */
   88 static struct sf_head *sf_buf_active;
   89 static u_long sf_buf_hashmask;
   90 
   91 #define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
   92 
   93 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
   94 static u_int    sf_buf_alloc_want;
   95 
   96 /*
   97  * A lock used to synchronize access to the hash table and free list
   98  */
   99 static struct mtx sf_buf_lock;
  100 #endif
  101 
  102 /*
  103  * Finish a fork operation, with process p2 nearly set up.
  104  * Copy and update the pcb, set up the stack so that the child
  105  * ready to run and return to user mode.
  106  */
  107 void
  108 cpu_fork(register struct thread *td1, register struct proc *p2,
  109     struct thread *td2, int flags)
  110 {
  111         struct pcb *pcb1, *pcb2;
  112         struct trapframe *tf;
  113         struct switchframe *sf;
  114         struct mdproc *mdp2;
  115 
  116         if ((flags & RFPROC) == 0)
  117                 return;
  118         pcb1 = td1->td_pcb;
  119         pcb2 = (struct pcb *)(td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1;
  120 #ifdef __XSCALE__
  121 #ifndef CPU_XSCALE_CORE3
  122         pmap_use_minicache(td2->td_kstack, td2->td_kstack_pages * PAGE_SIZE);
  123         if (td2->td_altkstack)
  124                 pmap_use_minicache(td2->td_altkstack, td2->td_altkstack_pages *
  125                     PAGE_SIZE);
  126 #endif
  127 #endif
  128         td2->td_pcb = pcb2;
  129         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  130         mdp2 = &p2->p_md;
  131         bcopy(&td1->td_proc->p_md, mdp2, sizeof(*mdp2));
  132         pcb2->un_32.pcb32_und_sp = td2->td_kstack + USPACE_UNDEF_STACK_TOP;
  133         pcb2->un_32.pcb32_sp = td2->td_kstack +
  134             USPACE_SVC_STACK_TOP - sizeof(*pcb2);
  135         pmap_activate(td2);
  136         td2->td_frame = tf =
  137             (struct trapframe *)pcb2->un_32.pcb32_sp - 1;
  138         *tf = *td1->td_frame;
  139         sf = (struct switchframe *)tf - 1;
  140         sf->sf_r4 = (u_int)fork_return;
  141         sf->sf_r5 = (u_int)td2;
  142         sf->sf_pc = (u_int)fork_trampoline;
  143         tf->tf_spsr &= ~PSR_C_bit;
  144         tf->tf_r0 = 0;
  145         tf->tf_r1 = 0;
  146         pcb2->un_32.pcb32_sp = (u_int)sf;
  147 
  148         /* Setup to release spin count in fork_exit(). */
  149         td2->td_md.md_spinlock_count = 1;
  150         td2->td_md.md_saved_cspr = 0;
  151         td2->td_md.md_tp = *(uint32_t **)ARM_TP_ADDRESS;
  152 }
  153                                 
  154 void
  155 cpu_thread_swapin(struct thread *td)
  156 {
  157 }       
  158 
  159 void    
  160 cpu_thread_swapout(struct thread *td)
  161 {       
  162 }
  163 
  164 /*
  165  * Detatch mapped page and release resources back to the system.
  166  */
  167 void
  168 sf_buf_free(struct sf_buf *sf)
  169 {
  170 #ifndef ARM_USE_SMALL_ALLOC
  171          mtx_lock(&sf_buf_lock);
  172          sf->ref_count--;
  173          if (sf->ref_count == 0) {
  174                  TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
  175                  nsfbufsused--;
  176                  if (sf_buf_alloc_want > 0)
  177                          wakeup_one(&sf_buf_freelist);
  178          }
  179          mtx_unlock(&sf_buf_lock);                               
  180 #endif
  181 }
  182 
  183 #ifndef ARM_USE_SMALL_ALLOC
  184 /*
  185  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
  186  */
  187 static void
  188 sf_buf_init(void *arg)
  189 {       
  190         struct sf_buf *sf_bufs;
  191         vm_offset_t sf_base;
  192         int i;
  193                                         
  194         nsfbufs = NSFBUFS;
  195         TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
  196                 
  197         sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
  198         TAILQ_INIT(&sf_buf_freelist);
  199         sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
  200         sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
  201             M_NOWAIT | M_ZERO);
  202         for (i = 0; i < nsfbufs; i++) {
  203                 sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
  204                 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
  205         }
  206         sf_buf_alloc_want = 0; 
  207         mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
  208 }
  209 #endif
  210 
  211 /*
  212  * Get an sf_buf from the freelist. Will block if none are available.
  213  */
  214 struct sf_buf *
  215 sf_buf_alloc(struct vm_page *m, int flags)
  216 {
  217 #ifdef ARM_USE_SMALL_ALLOC
  218         return ((struct sf_buf *)m);
  219 #else
  220         struct sf_head *hash_list;
  221         struct sf_buf *sf;
  222         int error;
  223 
  224         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  225         mtx_lock(&sf_buf_lock);
  226         LIST_FOREACH(sf, hash_list, list_entry) {
  227                 if (sf->m == m) {
  228                         sf->ref_count++;
  229                         if (sf->ref_count == 1) {
  230                                 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  231                                 nsfbufsused++;
  232                                 nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  233                         }
  234                         goto done;
  235                 }
  236         }
  237         while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
  238                 if (flags & SFB_NOWAIT)
  239                         goto done;
  240                 sf_buf_alloc_want++;
  241                 mbstat.sf_allocwait++;
  242                 error = msleep(&sf_buf_freelist, &sf_buf_lock,
  243                     (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
  244                 sf_buf_alloc_want--;
  245         
  246 
  247                 /*
  248                  * If we got a signal, don't risk going back to sleep. 
  249                  */
  250                 if (error)
  251                         goto done;
  252         }
  253         TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  254         if (sf->m != NULL)
  255                 LIST_REMOVE(sf, list_entry);
  256         LIST_INSERT_HEAD(hash_list, sf, list_entry);
  257         sf->ref_count = 1;
  258         sf->m = m;
  259         nsfbufsused++;
  260         nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  261         pmap_kenter(sf->kva, VM_PAGE_TO_PHYS(sf->m));
  262 done:
  263         mtx_unlock(&sf_buf_lock);
  264         return (sf);
  265 #endif
  266 }
  267 
  268 /*
  269  * Initialize machine state (pcb and trap frame) for a new thread about to
  270  * upcall. Put enough state in the new thread's PCB to get it to go back 
  271  * userret(), where we can intercept it again to set the return (upcall)
  272  * Address and stack, along with those from upcals that are from other sources
  273  * such as those generated in thread_userret() itself.
  274  */
  275 void
  276 cpu_set_upcall(struct thread *td, struct thread *td0)
  277 {
  278         struct trapframe *tf;
  279         struct switchframe *sf;
  280 
  281         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  282         bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb));
  283         tf = td->td_frame;
  284         sf = (struct switchframe *)tf - 1;
  285         sf->sf_r4 = (u_int)fork_return;
  286         sf->sf_r5 = (u_int)td;
  287         sf->sf_pc = (u_int)fork_trampoline;
  288         tf->tf_spsr &= ~PSR_C_bit;
  289         tf->tf_r0 = 0;
  290         td->td_pcb->un_32.pcb32_sp = (u_int)sf;
  291         td->td_pcb->un_32.pcb32_und_sp = td->td_kstack + USPACE_UNDEF_STACK_TOP;
  292 
  293         /* Setup to release spin count in fork_exit(). */
  294         td->td_md.md_spinlock_count = 1;
  295         td->td_md.md_saved_cspr = 0;
  296 }
  297 
  298 /*
  299  * Set that machine state for performing an upcall that has to
  300  * be done in thread_userret() so that those upcalls generated
  301  * in thread_userret() itself can be done as well.
  302  */
  303 void
  304 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
  305         stack_t *stack)
  306 {
  307         struct trapframe *tf = td->td_frame;
  308 
  309         tf->tf_usr_sp = ((int)stack->ss_sp + stack->ss_size
  310             - sizeof(struct trapframe)) & ~7;
  311         tf->tf_pc = (int)entry;
  312         tf->tf_r0 = (int)arg;
  313         tf->tf_spsr = PSR_USR32_MODE;
  314 }
  315 
  316 int
  317 cpu_set_user_tls(struct thread *td, void *tls_base)
  318 {
  319 
  320         if (td != curthread)
  321                 td->td_md.md_tp = tls_base;
  322         else {
  323                 critical_enter();
  324                 *(void **)ARM_TP_ADDRESS = tls_base;
  325                 critical_exit();
  326         }
  327         return (0);
  328 }
  329 
  330 void
  331 cpu_thread_exit(struct thread *td)
  332 {
  333 }
  334 
  335 void
  336 cpu_thread_alloc(struct thread *td)
  337 {
  338         td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages * 
  339             PAGE_SIZE) - 1;
  340         td->td_frame = (struct trapframe *)
  341             ((u_int)td->td_kstack + USPACE_SVC_STACK_TOP - sizeof(struct pcb)) - 1;
  342 #ifdef __XSCALE__
  343 #ifndef CPU_XSCALE_CORE3
  344         pmap_use_minicache(td->td_kstack, td->td_kstack_pages * PAGE_SIZE);
  345 #endif
  346 #endif  
  347 }
  348 
  349 void
  350 cpu_thread_free(struct thread *td)
  351 {
  352 }
  353 
  354 void
  355 cpu_thread_clean(struct thread *td)
  356 {
  357 }
  358 
  359 /*
  360  * Intercept the return address from a freshly forked process that has NOT
  361  * been scheduled yet.
  362  *
  363  * This is needed to make kernel threads stay in kernel mode.
  364  */
  365 void
  366 cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg)
  367 {
  368         struct switchframe *sf;
  369         struct trapframe *tf;
  370         
  371         tf = td->td_frame;
  372         sf = (struct switchframe *)tf - 1;
  373         sf->sf_r4 = (u_int)func;
  374         sf->sf_r5 = (u_int)arg;
  375         td->td_pcb->un_32.pcb32_sp = (u_int)sf;
  376 }
  377 
  378 /*
  379  * Software interrupt handler for queued VM system processing.
  380  */   
  381 void  
  382 swi_vm(void *dummy)
  383 {
  384         
  385         if (busdma_swi_pending)
  386                 busdma_swi();
  387 }
  388 
  389 void
  390 cpu_exit(struct thread *td)
  391 {
  392 }
  393 
  394 #define BITS_PER_INT    (8 * sizeof(int))
  395 vm_offset_t arm_nocache_startaddr;
  396 static int arm_nocache_allocated[ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE * 
  397     BITS_PER_INT)];
  398 
  399 /*
  400  * Functions to map and unmap memory non-cached into KVA the kernel won't try 
  401  * to allocate. The goal is to provide uncached memory to busdma, to honor
  402  * BUS_DMA_COHERENT. 
  403  * We can allocate at most ARM_NOCACHE_KVA_SIZE bytes. 
  404  * The allocator is rather dummy, each page is represented by a bit in
  405  * a bitfield, 0 meaning the page is not allocated, 1 meaning it is.
  406  * As soon as it finds enough contiguous pages to satisfy the request,
  407  * it returns the address.
  408  */
  409 void *
  410 arm_remap_nocache(void *addr, vm_size_t size)
  411 {
  412         int i, j;
  413 
  414         size = round_page(size);
  415         for (i = 0; i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE; i++) {
  416                 if (!(arm_nocache_allocated[i / BITS_PER_INT] & (1 << (i % 
  417                     BITS_PER_INT)))) {
  418                         for (j = i; j < i + (size / (PAGE_SIZE)); j++)
  419                                 if (arm_nocache_allocated[j / BITS_PER_INT] &
  420                                     (1 << (j % BITS_PER_INT)))
  421                                         break;
  422                         if (j == i + (size / (PAGE_SIZE)))
  423                                 break;
  424                 }
  425         }
  426         if (i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE) {
  427                 vm_offset_t tomap = arm_nocache_startaddr + i * PAGE_SIZE;
  428                 void *ret = (void *)tomap;
  429                 vm_paddr_t physaddr = vtophys((vm_offset_t)addr);
  430                 
  431                 for (; tomap < (vm_offset_t)ret + size; tomap += PAGE_SIZE,
  432                     physaddr += PAGE_SIZE, i++) {
  433                         pmap_kenter_nocache(tomap, physaddr);
  434                         arm_nocache_allocated[i / BITS_PER_INT] |= 1 << (i % 
  435                             BITS_PER_INT);
  436                 }
  437                 return (ret);
  438         }
  439 
  440         return (NULL);
  441 }
  442 
  443 void
  444 arm_unmap_nocache(void *addr, vm_size_t size)
  445 {
  446         vm_offset_t raddr = (vm_offset_t)addr;
  447         int i;
  448 
  449         size = round_page(size);
  450         i = (raddr - arm_nocache_startaddr) / (PAGE_SIZE);
  451         for (; size > 0; size -= PAGE_SIZE, i++)
  452                 arm_nocache_allocated[i / BITS_PER_INT] &= ~(1 << (i % 
  453                     BITS_PER_INT));
  454 }
  455 
  456 #ifdef ARM_USE_SMALL_ALLOC
  457 
  458 static TAILQ_HEAD(,arm_small_page) pages_normal = 
  459         TAILQ_HEAD_INITIALIZER(pages_normal);
  460 static TAILQ_HEAD(,arm_small_page) pages_wt = 
  461         TAILQ_HEAD_INITIALIZER(pages_wt);
  462 static TAILQ_HEAD(,arm_small_page) free_pgdesc =
  463         TAILQ_HEAD_INITIALIZER(free_pgdesc);
  464 
  465 extern uma_zone_t l2zone;
  466 
  467 struct mtx smallalloc_mtx;
  468 
  469 MALLOC_DEFINE(M_VMSMALLALLOC, "vm_small_alloc", "VM Small alloc data");
  470 
  471 vm_offset_t alloc_firstaddr;
  472 
  473 #ifdef ARM_HAVE_SUPERSECTIONS
  474 #define S_FRAME L1_SUP_FRAME
  475 #define S_SIZE  L1_SUP_SIZE
  476 #else
  477 #define S_FRAME L1_S_FRAME
  478 #define S_SIZE  L1_S_SIZE
  479 #endif
  480 
  481 vm_offset_t
  482 arm_ptovirt(vm_paddr_t pa)
  483 {
  484         int i;
  485         vm_offset_t addr = alloc_firstaddr;
  486 
  487         KASSERT(alloc_firstaddr != 0, ("arm_ptovirt called to early ?"));
  488         for (i = 0; dump_avail[i + 1]; i += 2) {
  489                 if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
  490                         break;
  491                 addr += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
  492                     (dump_avail[i] & S_FRAME);
  493         }
  494         KASSERT(dump_avail[i + 1] != 0, ("Trying to access invalid physical address"));
  495         return (addr + (pa - (dump_avail[i] & S_FRAME)));
  496 }
  497 
  498 void
  499 arm_init_smallalloc(void)
  500 {
  501         vm_offset_t to_map = 0, mapaddr;
  502         int i;
  503         
  504         /* 
  505          * We need to use dump_avail and not phys_avail, since we want to
  506          * map the whole memory and not just the memory available to the VM
  507          * to be able to do a pa => va association for any address.
  508          */
  509            
  510         for (i = 0; dump_avail[i + 1]; i+= 2) {
  511                 to_map += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
  512                     (dump_avail[i] & S_FRAME);
  513         }
  514         alloc_firstaddr = mapaddr = KERNBASE - to_map;
  515         for (i = 0; dump_avail[i + 1]; i+= 2) {
  516                 vm_offset_t size = (dump_avail[i + 1] & S_FRAME) +
  517                     S_SIZE - (dump_avail[i] & S_FRAME);
  518                 vm_offset_t did = 0;
  519                 while (size > 0) {
  520 #ifdef ARM_HAVE_SUPERSECTIONS
  521                         pmap_kenter_supersection(mapaddr,
  522                             (dump_avail[i] & L1_SUP_FRAME) + did, 
  523                             SECTION_CACHE);
  524 #else
  525                         pmap_kenter_section(mapaddr, 
  526                             (dump_avail[i] & L1_S_FRAME) + did, SECTION_CACHE);
  527 #endif
  528                         mapaddr += S_SIZE;
  529                         did += S_SIZE;
  530                         size -= S_SIZE;
  531                 }
  532         }
  533 }
  534 
  535 void
  536 arm_add_smallalloc_pages(void *list, void *mem, int bytes, int pagetable)
  537 {
  538         struct arm_small_page *pg;
  539         
  540         bytes &= ~PAGE_MASK;
  541         while (bytes > 0) {
  542                 pg = (struct arm_small_page *)list;
  543                 pg->addr = mem;
  544                 if (pagetable)
  545                         TAILQ_INSERT_HEAD(&pages_wt, pg, pg_list);
  546                 else
  547                         TAILQ_INSERT_HEAD(&pages_normal, pg, pg_list);
  548                 list = (char *)list + sizeof(*pg);
  549                 mem = (char *)mem + PAGE_SIZE;
  550                 bytes -= PAGE_SIZE;
  551         }
  552 }
  553 
  554 void *
  555 uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  556 {
  557         void *ret;
  558         struct arm_small_page *sp;
  559         TAILQ_HEAD(,arm_small_page) *head;
  560         static vm_pindex_t color;
  561         vm_page_t m;
  562 
  563         *flags = UMA_SLAB_PRIV;
  564         /*
  565          * For CPUs where we setup page tables as write back, there's no
  566          * need to maintain two separate pools.
  567          */
  568         if (zone == l2zone && pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt)
  569                 head = (void *)&pages_wt;
  570         else
  571                 head = (void *)&pages_normal;
  572 
  573         mtx_lock(&smallalloc_mtx);
  574         sp = TAILQ_FIRST(head);
  575 
  576         if (!sp) {
  577                 int pflags;
  578 
  579                 mtx_unlock(&smallalloc_mtx);
  580                 if (zone == l2zone &&
  581                     pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt) {
  582                         *flags = UMA_SLAB_KMEM;
  583                         ret = ((void *)kmem_malloc(kmem_map, bytes, M_NOWAIT));
  584                         return (ret);
  585                 }
  586                 if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
  587                         pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
  588                 else
  589                         pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
  590                 if (wait & M_ZERO)
  591                         pflags |= VM_ALLOC_ZERO;
  592                 for (;;) {
  593                         m = vm_page_alloc(NULL, color++, 
  594                             pflags | VM_ALLOC_NOOBJ);
  595                         if (m == NULL) {
  596                                 if (wait & M_NOWAIT)
  597                                         return (NULL);
  598                                 VM_WAIT;
  599                         } else
  600                                 break;
  601                 }
  602                 ret = (void *)arm_ptovirt(VM_PAGE_TO_PHYS(m));
  603                 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
  604                         bzero(ret, PAGE_SIZE);
  605                 return (ret);
  606         }    
  607         TAILQ_REMOVE(head, sp, pg_list);
  608         TAILQ_INSERT_HEAD(&free_pgdesc, sp, pg_list);
  609         ret = sp->addr;
  610         mtx_unlock(&smallalloc_mtx);
  611         if ((wait & M_ZERO))
  612                 bzero(ret, bytes);
  613         return (ret);
  614 }
  615 
  616 void
  617 uma_small_free(void *mem, int size, u_int8_t flags)
  618 {
  619         pd_entry_t *pd;
  620         pt_entry_t *pt;
  621 
  622         if (flags & UMA_SLAB_KMEM)
  623                 kmem_free(kmem_map, (vm_offset_t)mem, size);
  624         else {
  625                 struct arm_small_page *sp;
  626 
  627                 if ((vm_offset_t)mem >= KERNBASE) {
  628                         mtx_lock(&smallalloc_mtx);
  629                         sp = TAILQ_FIRST(&free_pgdesc);
  630                         KASSERT(sp != NULL, ("No more free page descriptor ?"));
  631                         TAILQ_REMOVE(&free_pgdesc, sp, pg_list);
  632                         sp->addr = mem;
  633                         pmap_get_pde_pte(kernel_pmap, (vm_offset_t)mem, &pd,
  634                             &pt);
  635                         if ((*pd & pte_l1_s_cache_mask) == 
  636                             pte_l1_s_cache_mode_pt &&
  637                             pte_l1_s_cache_mode_pt != pte_l1_s_cache_mode)
  638                                 TAILQ_INSERT_HEAD(&pages_wt, sp, pg_list);
  639                         else
  640                                 TAILQ_INSERT_HEAD(&pages_normal, sp, pg_list);
  641                         mtx_unlock(&smallalloc_mtx);
  642                 } else {
  643                         vm_page_t m;
  644                         vm_paddr_t pa = vtophys((vm_offset_t)mem);
  645 
  646                         m = PHYS_TO_VM_PAGE(pa);
  647                         m->wire_count--;
  648                         vm_page_free(m);
  649                         atomic_subtract_int(&cnt.v_wire_count, 1);
  650                 }
  651         }
  652 }
  653 
  654 #endif

Cache object: 32dde9aa98e3b10e51e421858df4b103


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.