The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/arm/vm_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986 The Regents of the University of California.
    3  * Copyright (c) 1989, 1990 William Jolitz
    4  * Copyright (c) 1994 John Dyson
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * the Systems Programming Group of the University of Utah Computer
    9  * Science Department, and William Jolitz.
   10  *
   11  * Redistribution and use in source and binary :forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the University of
   22  *      California, Berkeley and its contributors.
   23  * 4. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      from: @(#)vm_machdep.c  7.3 (Berkeley) 5/13/91
   40  *      Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __FBSDID("$FreeBSD: releng/9.1/sys/arm/arm/vm_machdep.c 218310 2011-02-05 03:30:29Z imp $");
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kernel.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/proc.h>
   52 #include <sys/socketvar.h>
   53 #include <sys/sf_buf.h>
   54 #include <sys/syscall.h>
   55 #include <sys/sysent.h>
   56 #include <sys/unistd.h>
   57 #include <machine/cpu.h>
   58 #include <machine/pcb.h>
   59 #include <machine/sysarch.h>
   60 #include <sys/lock.h>
   61 #include <sys/mutex.h>
   62 
   63 #include <vm/vm.h>
   64 #include <vm/pmap.h>
   65 #include <vm/vm_extern.h>
   66 #include <vm/vm_kern.h>
   67 #include <vm/vm_page.h>
   68 #include <vm/vm_map.h>
   69 #include <vm/vm_param.h>
   70 #include <vm/vm_pageout.h>
   71 #include <vm/uma.h>
   72 #include <vm/uma_int.h>
   73 
   74 #include <machine/md_var.h>
   75 
   76 #ifndef NSFBUFS
   77 #define NSFBUFS         (512 + maxusers * 16)
   78 #endif
   79 
   80 #ifndef ARM_USE_SMALL_ALLOC
   81 static void     sf_buf_init(void *arg);
   82 SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
   83 
   84 LIST_HEAD(sf_head, sf_buf);
   85         
   86 
   87 /*
   88  * A hash table of active sendfile(2) buffers
   89  */
   90 static struct sf_head *sf_buf_active;
   91 static u_long sf_buf_hashmask;
   92 
   93 #define SF_BUF_HASH(m)  (((m) - vm_page_array) & sf_buf_hashmask)
   94 
   95 static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
   96 static u_int    sf_buf_alloc_want;
   97 
   98 /*
   99  * A lock used to synchronize access to the hash table and free list
  100  */
  101 static struct mtx sf_buf_lock;
  102 #endif
  103 
  104 /*
  105  * Finish a fork operation, with process p2 nearly set up.
  106  * Copy and update the pcb, set up the stack so that the child
  107  * ready to run and return to user mode.
  108  */
  109 void
  110 cpu_fork(register struct thread *td1, register struct proc *p2,
  111     struct thread *td2, int flags)
  112 {
  113         struct pcb *pcb2;
  114         struct trapframe *tf;
  115         struct switchframe *sf;
  116         struct mdproc *mdp2;
  117 
  118         if ((flags & RFPROC) == 0)
  119                 return;
  120         pcb2 = (struct pcb *)(td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1;
  121 #ifdef __XSCALE__
  122 #ifndef CPU_XSCALE_CORE3
  123         pmap_use_minicache(td2->td_kstack, td2->td_kstack_pages * PAGE_SIZE);
  124 #endif
  125 #endif
  126         td2->td_pcb = pcb2;
  127         bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
  128         mdp2 = &p2->p_md;
  129         bcopy(&td1->td_proc->p_md, mdp2, sizeof(*mdp2));
  130         pcb2->un_32.pcb32_und_sp = td2->td_kstack + USPACE_UNDEF_STACK_TOP;
  131         pcb2->un_32.pcb32_sp = td2->td_kstack +
  132             USPACE_SVC_STACK_TOP - sizeof(*pcb2);
  133         pmap_activate(td2);
  134         td2->td_frame = tf =
  135             (struct trapframe *)pcb2->un_32.pcb32_sp - 1;
  136         *tf = *td1->td_frame;
  137         sf = (struct switchframe *)tf - 1;
  138         sf->sf_r4 = (u_int)fork_return;
  139         sf->sf_r5 = (u_int)td2;
  140         sf->sf_pc = (u_int)fork_trampoline;
  141         tf->tf_spsr &= ~PSR_C_bit;
  142         tf->tf_r0 = 0;
  143         tf->tf_r1 = 0;
  144         pcb2->un_32.pcb32_sp = (u_int)sf;
  145 
  146         /* Setup to release spin count in fork_exit(). */
  147         td2->td_md.md_spinlock_count = 1;
  148         td2->td_md.md_saved_cspr = 0;
  149         td2->td_md.md_tp = *(register_t *)ARM_TP_ADDRESS;
  150 }
  151                                 
  152 void
  153 cpu_thread_swapin(struct thread *td)
  154 {
  155 }       
  156 
  157 void    
  158 cpu_thread_swapout(struct thread *td)
  159 {       
  160 }
  161 
  162 /*
  163  * Detatch mapped page and release resources back to the system.
  164  */
  165 void
  166 sf_buf_free(struct sf_buf *sf)
  167 {
  168 #ifndef ARM_USE_SMALL_ALLOC
  169          mtx_lock(&sf_buf_lock);
  170          sf->ref_count--;
  171          if (sf->ref_count == 0) {
  172                  TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
  173                  nsfbufsused--;
  174                  pmap_kremove(sf->kva);
  175                  sf->m = NULL;
  176                  LIST_REMOVE(sf, list_entry);
  177                  if (sf_buf_alloc_want > 0)
  178                          wakeup(&sf_buf_freelist);
  179          }
  180          mtx_unlock(&sf_buf_lock);                               
  181 #endif
  182 }
  183 
  184 #ifndef ARM_USE_SMALL_ALLOC
  185 /*
  186  * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
  187  */
  188 static void
  189 sf_buf_init(void *arg)
  190 {       
  191         struct sf_buf *sf_bufs;
  192         vm_offset_t sf_base;
  193         int i;
  194                                         
  195         nsfbufs = NSFBUFS;
  196         TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
  197                 
  198         sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
  199         TAILQ_INIT(&sf_buf_freelist);
  200         sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
  201         sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
  202             M_NOWAIT | M_ZERO);
  203         for (i = 0; i < nsfbufs; i++) {
  204                 sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
  205                 TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
  206         }
  207         sf_buf_alloc_want = 0; 
  208         mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
  209 }
  210 #endif
  211 
  212 /*
  213  * Get an sf_buf from the freelist. Will block if none are available.
  214  */
  215 struct sf_buf *
  216 sf_buf_alloc(struct vm_page *m, int flags)
  217 {
  218 #ifdef ARM_USE_SMALL_ALLOC
  219         return ((struct sf_buf *)m);
  220 #else
  221         struct sf_head *hash_list;
  222         struct sf_buf *sf;
  223         int error;
  224 
  225         hash_list = &sf_buf_active[SF_BUF_HASH(m)];
  226         mtx_lock(&sf_buf_lock);
  227         LIST_FOREACH(sf, hash_list, list_entry) {
  228                 if (sf->m == m) {
  229                         sf->ref_count++;
  230                         if (sf->ref_count == 1) {
  231                                 TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  232                                 nsfbufsused++;
  233                                 nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  234                         }
  235                         goto done;
  236                 }
  237         }
  238         while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
  239                 if (flags & SFB_NOWAIT)
  240                         goto done;
  241                 sf_buf_alloc_want++;
  242                 mbstat.sf_allocwait++;
  243                 error = msleep(&sf_buf_freelist, &sf_buf_lock,
  244                     (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
  245                 sf_buf_alloc_want--;
  246         
  247 
  248                 /*
  249                  * If we got a signal, don't risk going back to sleep. 
  250                  */
  251                 if (error)
  252                         goto done;
  253         }
  254         TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
  255         if (sf->m != NULL)
  256                 LIST_REMOVE(sf, list_entry);
  257         LIST_INSERT_HEAD(hash_list, sf, list_entry);
  258         sf->ref_count = 1;
  259         sf->m = m;
  260         nsfbufsused++;
  261         nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
  262         pmap_kenter(sf->kva, VM_PAGE_TO_PHYS(sf->m));
  263 done:
  264         mtx_unlock(&sf_buf_lock);
  265         return (sf);
  266 #endif
  267 }
  268 
  269 void
  270 cpu_set_syscall_retval(struct thread *td, int error)
  271 {
  272         trapframe_t *frame;
  273         int fixup;
  274 #ifdef __ARMEB__
  275         uint32_t insn;
  276 #endif
  277 
  278         frame = td->td_frame;
  279         fixup = 0;
  280 
  281 #ifdef __ARMEB__
  282         insn = *(u_int32_t *)(frame->tf_pc - INSN_SIZE);
  283         if ((insn & 0x000fffff) == SYS___syscall) {
  284                 register_t *ap = &frame->tf_r0;
  285                 register_t code = ap[_QUAD_LOWWORD];
  286                 if (td->td_proc->p_sysent->sv_mask)
  287                         code &= td->td_proc->p_sysent->sv_mask;
  288                 fixup = (code != SYS_freebsd6_lseek && code != SYS_lseek)
  289                     ? 1 : 0;
  290         }
  291 #endif
  292 
  293         switch (error) {
  294         case 0:
  295                 if (fixup) {
  296                         frame->tf_r0 = 0;
  297                         frame->tf_r1 = td->td_retval[0];
  298                 } else {
  299                         frame->tf_r0 = td->td_retval[0];
  300                         frame->tf_r1 = td->td_retval[1];
  301                 }
  302                 frame->tf_spsr &= ~PSR_C_bit;   /* carry bit */
  303                 break;
  304         case ERESTART:
  305                 /*
  306                  * Reconstruct the pc to point at the swi.
  307                  */
  308                 frame->tf_pc -= INSN_SIZE;
  309                 break;
  310         case EJUSTRETURN:
  311                 /* nothing to do */
  312                 break;
  313         default:
  314                 frame->tf_r0 = error;
  315                 frame->tf_spsr |= PSR_C_bit;    /* carry bit */
  316                 break;
  317         }
  318 }
  319 
  320 /*
  321  * Initialize machine state (pcb and trap frame) for a new thread about to
  322  * upcall. Put enough state in the new thread's PCB to get it to go back 
  323  * userret(), where we can intercept it again to set the return (upcall)
  324  * Address and stack, along with those from upcals that are from other sources
  325  * such as those generated in thread_userret() itself.
  326  */
  327 void
  328 cpu_set_upcall(struct thread *td, struct thread *td0)
  329 {
  330         struct trapframe *tf;
  331         struct switchframe *sf;
  332 
  333         bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
  334         bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb));
  335         tf = td->td_frame;
  336         sf = (struct switchframe *)tf - 1;
  337         sf->sf_r4 = (u_int)fork_return;
  338         sf->sf_r5 = (u_int)td;
  339         sf->sf_pc = (u_int)fork_trampoline;
  340         tf->tf_spsr &= ~PSR_C_bit;
  341         tf->tf_r0 = 0;
  342         td->td_pcb->un_32.pcb32_sp = (u_int)sf;
  343         td->td_pcb->un_32.pcb32_und_sp = td->td_kstack + USPACE_UNDEF_STACK_TOP;
  344 
  345         /* Setup to release spin count in fork_exit(). */
  346         td->td_md.md_spinlock_count = 1;
  347         td->td_md.md_saved_cspr = 0;
  348 }
  349 
  350 /*
  351  * Set that machine state for performing an upcall that has to
  352  * be done in thread_userret() so that those upcalls generated
  353  * in thread_userret() itself can be done as well.
  354  */
  355 void
  356 cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
  357         stack_t *stack)
  358 {
  359         struct trapframe *tf = td->td_frame;
  360 
  361         tf->tf_usr_sp = ((int)stack->ss_sp + stack->ss_size
  362             - sizeof(struct trapframe)) & ~7;
  363         tf->tf_pc = (int)entry;
  364         tf->tf_r0 = (int)arg;
  365         tf->tf_spsr = PSR_USR32_MODE;
  366 }
  367 
  368 int
  369 cpu_set_user_tls(struct thread *td, void *tls_base)
  370 {
  371 
  372         if (td != curthread)
  373                 td->td_md.md_tp = (register_t)tls_base;
  374         else {
  375                 critical_enter();
  376                 *(register_t *)ARM_TP_ADDRESS = (register_t)tls_base;
  377                 critical_exit();
  378         }
  379         return (0);
  380 }
  381 
  382 void
  383 cpu_thread_exit(struct thread *td)
  384 {
  385 }
  386 
  387 void
  388 cpu_thread_alloc(struct thread *td)
  389 {
  390         td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages * 
  391             PAGE_SIZE) - 1;
  392         td->td_frame = (struct trapframe *)
  393             ((u_int)td->td_kstack + USPACE_SVC_STACK_TOP - sizeof(struct pcb)) - 1;
  394 #ifdef __XSCALE__
  395 #ifndef CPU_XSCALE_CORE3
  396         pmap_use_minicache(td->td_kstack, td->td_kstack_pages * PAGE_SIZE);
  397 #endif
  398 #endif  
  399 }
  400 
  401 void
  402 cpu_thread_free(struct thread *td)
  403 {
  404 }
  405 
  406 void
  407 cpu_thread_clean(struct thread *td)
  408 {
  409 }
  410 
  411 /*
  412  * Intercept the return address from a freshly forked process that has NOT
  413  * been scheduled yet.
  414  *
  415  * This is needed to make kernel threads stay in kernel mode.
  416  */
  417 void
  418 cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg)
  419 {
  420         struct switchframe *sf;
  421         struct trapframe *tf;
  422         
  423         tf = td->td_frame;
  424         sf = (struct switchframe *)tf - 1;
  425         sf->sf_r4 = (u_int)func;
  426         sf->sf_r5 = (u_int)arg;
  427         td->td_pcb->un_32.pcb32_sp = (u_int)sf;
  428 }
  429 
  430 /*
  431  * Software interrupt handler for queued VM system processing.
  432  */   
  433 void  
  434 swi_vm(void *dummy)
  435 {
  436         
  437         if (busdma_swi_pending)
  438                 busdma_swi();
  439 }
  440 
  441 void
  442 cpu_exit(struct thread *td)
  443 {
  444 }
  445 
  446 #define BITS_PER_INT    (8 * sizeof(int))
  447 vm_offset_t arm_nocache_startaddr;
  448 static int arm_nocache_allocated[ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE * 
  449     BITS_PER_INT)];
  450 
  451 /*
  452  * Functions to map and unmap memory non-cached into KVA the kernel won't try 
  453  * to allocate. The goal is to provide uncached memory to busdma, to honor
  454  * BUS_DMA_COHERENT. 
  455  * We can allocate at most ARM_NOCACHE_KVA_SIZE bytes. 
  456  * The allocator is rather dummy, each page is represented by a bit in
  457  * a bitfield, 0 meaning the page is not allocated, 1 meaning it is.
  458  * As soon as it finds enough contiguous pages to satisfy the request,
  459  * it returns the address.
  460  */
  461 void *
  462 arm_remap_nocache(void *addr, vm_size_t size)
  463 {
  464         int i, j;
  465 
  466         size = round_page(size);
  467         for (i = 0; i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE; i++) {
  468                 if (!(arm_nocache_allocated[i / BITS_PER_INT] & (1 << (i % 
  469                     BITS_PER_INT)))) {
  470                         for (j = i; j < i + (size / (PAGE_SIZE)); j++)
  471                                 if (arm_nocache_allocated[j / BITS_PER_INT] &
  472                                     (1 << (j % BITS_PER_INT)))
  473                                         break;
  474                         if (j == i + (size / (PAGE_SIZE)))
  475                                 break;
  476                 }
  477         }
  478         if (i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE) {
  479                 vm_offset_t tomap = arm_nocache_startaddr + i * PAGE_SIZE;
  480                 void *ret = (void *)tomap;
  481                 vm_paddr_t physaddr = vtophys((vm_offset_t)addr);
  482                 vm_offset_t vaddr = (vm_offset_t) addr;
  483                 
  484                 vaddr = vaddr & ~PAGE_MASK;
  485                 for (; tomap < (vm_offset_t)ret + size; tomap += PAGE_SIZE,
  486                     vaddr += PAGE_SIZE, physaddr += PAGE_SIZE, i++) {
  487                         cpu_idcache_wbinv_range(vaddr, PAGE_SIZE);
  488                         cpu_l2cache_wbinv_range(vaddr, PAGE_SIZE);
  489                         pmap_kenter_nocache(tomap, physaddr);
  490                         cpu_tlb_flushID_SE(vaddr);
  491                         arm_nocache_allocated[i / BITS_PER_INT] |= 1 << (i % 
  492                             BITS_PER_INT);
  493                 }
  494                 return (ret);
  495         }
  496 
  497         return (NULL);
  498 }
  499 
  500 void
  501 arm_unmap_nocache(void *addr, vm_size_t size)
  502 {
  503         vm_offset_t raddr = (vm_offset_t)addr;
  504         int i;
  505 
  506         size = round_page(size);
  507         i = (raddr - arm_nocache_startaddr) / (PAGE_SIZE);
  508         for (; size > 0; size -= PAGE_SIZE, i++) {
  509                 arm_nocache_allocated[i / BITS_PER_INT] &= ~(1 << (i % 
  510                     BITS_PER_INT));
  511                 pmap_kremove(raddr);
  512                 raddr += PAGE_SIZE;
  513         }
  514 }
  515 
  516 #ifdef ARM_USE_SMALL_ALLOC
  517 
  518 static TAILQ_HEAD(,arm_small_page) pages_normal = 
  519         TAILQ_HEAD_INITIALIZER(pages_normal);
  520 static TAILQ_HEAD(,arm_small_page) pages_wt = 
  521         TAILQ_HEAD_INITIALIZER(pages_wt);
  522 static TAILQ_HEAD(,arm_small_page) free_pgdesc =
  523         TAILQ_HEAD_INITIALIZER(free_pgdesc);
  524 
  525 extern uma_zone_t l2zone;
  526 
  527 struct mtx smallalloc_mtx;
  528 
  529 MALLOC_DEFINE(M_VMSMALLALLOC, "vm_small_alloc", "VM Small alloc data");
  530 
  531 vm_offset_t alloc_firstaddr;
  532 
  533 #ifdef ARM_HAVE_SUPERSECTIONS
  534 #define S_FRAME L1_SUP_FRAME
  535 #define S_SIZE  L1_SUP_SIZE
  536 #else
  537 #define S_FRAME L1_S_FRAME
  538 #define S_SIZE  L1_S_SIZE
  539 #endif
  540 
  541 vm_offset_t
  542 arm_ptovirt(vm_paddr_t pa)
  543 {
  544         int i;
  545         vm_offset_t addr = alloc_firstaddr;
  546 
  547         KASSERT(alloc_firstaddr != 0, ("arm_ptovirt called too early ?"));
  548         for (i = 0; dump_avail[i + 1]; i += 2) {
  549                 if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
  550                         break;
  551                 addr += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
  552                     (dump_avail[i] & S_FRAME);
  553         }
  554         KASSERT(dump_avail[i + 1] != 0, ("Trying to access invalid physical address"));
  555         return (addr + (pa - (dump_avail[i] & S_FRAME)));
  556 }
  557 
  558 void
  559 arm_init_smallalloc(void)
  560 {
  561         vm_offset_t to_map = 0, mapaddr;
  562         int i;
  563         
  564         /* 
  565          * We need to use dump_avail and not phys_avail, since we want to
  566          * map the whole memory and not just the memory available to the VM
  567          * to be able to do a pa => va association for any address.
  568          */
  569            
  570         for (i = 0; dump_avail[i + 1]; i+= 2) {
  571                 to_map += (dump_avail[i + 1] & S_FRAME) + S_SIZE -
  572                     (dump_avail[i] & S_FRAME);
  573         }
  574         alloc_firstaddr = mapaddr = KERNBASE - to_map;
  575         for (i = 0; dump_avail[i + 1]; i+= 2) {
  576                 vm_offset_t size = (dump_avail[i + 1] & S_FRAME) +
  577                     S_SIZE - (dump_avail[i] & S_FRAME);
  578                 vm_offset_t did = 0;
  579                 while (size > 0) {
  580 #ifdef ARM_HAVE_SUPERSECTIONS
  581                         pmap_kenter_supersection(mapaddr,
  582                             (dump_avail[i] & L1_SUP_FRAME) + did, 
  583                             SECTION_CACHE);
  584 #else
  585                         pmap_kenter_section(mapaddr, 
  586                             (dump_avail[i] & L1_S_FRAME) + did, SECTION_CACHE);
  587 #endif
  588                         mapaddr += S_SIZE;
  589                         did += S_SIZE;
  590                         size -= S_SIZE;
  591                 }
  592         }
  593 }
  594 
  595 void
  596 arm_add_smallalloc_pages(void *list, void *mem, int bytes, int pagetable)
  597 {
  598         struct arm_small_page *pg;
  599         
  600         bytes &= ~PAGE_MASK;
  601         while (bytes > 0) {
  602                 pg = (struct arm_small_page *)list;
  603                 pg->addr = mem;
  604                 if (pagetable)
  605                         TAILQ_INSERT_HEAD(&pages_wt, pg, pg_list);
  606                 else
  607                         TAILQ_INSERT_HEAD(&pages_normal, pg, pg_list);
  608                 list = (char *)list + sizeof(*pg);
  609                 mem = (char *)mem + PAGE_SIZE;
  610                 bytes -= PAGE_SIZE;
  611         }
  612 }
  613 
  614 void *
  615 uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  616 {
  617         void *ret;
  618         struct arm_small_page *sp;
  619         TAILQ_HEAD(,arm_small_page) *head;
  620         static vm_pindex_t color;
  621         vm_page_t m;
  622 
  623         *flags = UMA_SLAB_PRIV;
  624         /*
  625          * For CPUs where we setup page tables as write back, there's no
  626          * need to maintain two separate pools.
  627          */
  628         if (zone == l2zone && pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt)
  629                 head = (void *)&pages_wt;
  630         else
  631                 head = (void *)&pages_normal;
  632 
  633         mtx_lock(&smallalloc_mtx);
  634         sp = TAILQ_FIRST(head);
  635 
  636         if (!sp) {
  637                 int pflags;
  638 
  639                 mtx_unlock(&smallalloc_mtx);
  640                 if (zone == l2zone &&
  641                     pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt) {
  642                         *flags = UMA_SLAB_KMEM;
  643                         ret = ((void *)kmem_malloc(kmem_map, bytes, M_NOWAIT));
  644                         return (ret);
  645                 }
  646                 if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
  647                         pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
  648                 else
  649                         pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
  650                 if (wait & M_ZERO)
  651                         pflags |= VM_ALLOC_ZERO;
  652                 for (;;) {
  653                         m = vm_page_alloc(NULL, color++, 
  654                             pflags | VM_ALLOC_NOOBJ);
  655                         if (m == NULL) {
  656                                 if (wait & M_NOWAIT)
  657                                         return (NULL);
  658                                 VM_WAIT;
  659                         } else
  660                                 break;
  661                 }
  662                 ret = (void *)arm_ptovirt(VM_PAGE_TO_PHYS(m));
  663                 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
  664                         bzero(ret, PAGE_SIZE);
  665                 return (ret);
  666         }    
  667         TAILQ_REMOVE(head, sp, pg_list);
  668         TAILQ_INSERT_HEAD(&free_pgdesc, sp, pg_list);
  669         ret = sp->addr;
  670         mtx_unlock(&smallalloc_mtx);
  671         if ((wait & M_ZERO))
  672                 bzero(ret, bytes);
  673         return (ret);
  674 }
  675 
  676 void
  677 uma_small_free(void *mem, int size, u_int8_t flags)
  678 {
  679         pd_entry_t *pd;
  680         pt_entry_t *pt;
  681 
  682         if (flags & UMA_SLAB_KMEM)
  683                 kmem_free(kmem_map, (vm_offset_t)mem, size);
  684         else {
  685                 struct arm_small_page *sp;
  686 
  687                 if ((vm_offset_t)mem >= KERNBASE) {
  688                         mtx_lock(&smallalloc_mtx);
  689                         sp = TAILQ_FIRST(&free_pgdesc);
  690                         KASSERT(sp != NULL, ("No more free page descriptor ?"));
  691                         TAILQ_REMOVE(&free_pgdesc, sp, pg_list);
  692                         sp->addr = mem;
  693                         pmap_get_pde_pte(kernel_pmap, (vm_offset_t)mem, &pd,
  694                             &pt);
  695                         if ((*pd & pte_l1_s_cache_mask) == 
  696                             pte_l1_s_cache_mode_pt &&
  697                             pte_l1_s_cache_mode_pt != pte_l1_s_cache_mode)
  698                                 TAILQ_INSERT_HEAD(&pages_wt, sp, pg_list);
  699                         else
  700                                 TAILQ_INSERT_HEAD(&pages_normal, sp, pg_list);
  701                         mtx_unlock(&smallalloc_mtx);
  702                 } else {
  703                         vm_page_t m;
  704                         vm_paddr_t pa = vtophys((vm_offset_t)mem);
  705 
  706                         m = PHYS_TO_VM_PAGE(pa);
  707                         m->wire_count--;
  708                         vm_page_free(m);
  709                         atomic_subtract_int(&cnt.v_wire_count, 1);
  710                 }
  711         }
  712 }
  713 
  714 #endif

Cache object: fef6e7b369a959cfb6ab2de66ce45b3e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.