The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/at91/at91_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1994-1998 Mark Brinicombe.
    3  * Copyright (c) 1994 Brini.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software written for Brini by Mark Brinicombe
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by Brini.
   19  * 4. The name of the company nor the name of the author may be used to
   20  *    endorse or promote products derived from this software without specific
   21  *    prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
   24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  * RiscBSD kernel project
   36  *
   37  * machdep.c
   38  *
   39  * Machine dependant functions for kernel setup
   40  *
   41  * This file needs a lot of work.
   42  *
   43  * Created      : 17/09/94
   44  */
   45 
   46 #include <sys/cdefs.h>
   47 __FBSDID("$FreeBSD$");
   48 
   49 #define _ARM32_BUS_DMA_PRIVATE
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/sysproto.h>
   53 #include <sys/signalvar.h>
   54 #include <sys/imgact.h>
   55 #include <sys/kernel.h>
   56 #include <sys/ktr.h>
   57 #include <sys/linker.h>
   58 #include <sys/lock.h>
   59 #include <sys/malloc.h>
   60 #include <sys/mutex.h>
   61 #include <sys/pcpu.h>
   62 #include <sys/proc.h>
   63 #include <sys/ptrace.h>
   64 #include <sys/cons.h>
   65 #include <sys/bio.h>
   66 #include <sys/bus.h>
   67 #include <sys/buf.h>
   68 #include <sys/exec.h>
   69 #include <sys/kdb.h>
   70 #include <sys/msgbuf.h>
   71 #include <machine/physmem.h>
   72 #include <machine/reg.h>
   73 #include <machine/cpu.h>
   74 #include <machine/board.h>
   75 
   76 #include <vm/vm.h>
   77 #include <vm/pmap.h>
   78 #include <vm/vm_object.h>
   79 #include <vm/vm_page.h>
   80 #include <vm/vm_map.h>
   81 #include <machine/devmap.h>
   82 #include <machine/vmparam.h>
   83 #include <machine/pcb.h>
   84 #include <machine/undefined.h>
   85 #include <machine/machdep.h>
   86 #include <machine/metadata.h>
   87 #include <machine/armreg.h>
   88 #include <machine/bus.h>
   89 #include <sys/reboot.h>
   90 
   91 #include <arm/at91/at91board.h>
   92 #include <arm/at91/at91var.h>
   93 #include <arm/at91/at91soc.h>
   94 #include <arm/at91/at91_usartreg.h>
   95 #include <arm/at91/at91rm92reg.h>
   96 #include <arm/at91/at91sam9g20reg.h>
   97 #include <arm/at91/at91sam9g45reg.h>
   98 
   99 #ifndef MAXCPU
  100 #define MAXCPU 1
  101 #endif
  102 
  103 /* Page table for mapping proc0 zero page */
  104 #define KERNEL_PT_SYS           0
  105 #define KERNEL_PT_KERN          1
  106 #define KERNEL_PT_KERN_NUM      22
  107 /* L2 table for mapping after kernel */
  108 #define KERNEL_PT_AFKERNEL      KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
  109 #define KERNEL_PT_AFKERNEL_NUM  5
  110 
  111 /* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
  112 #define NUM_KERNEL_PTS          (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
  113 
  114 struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
  115 
  116 /* Static device mappings. */
  117 const struct arm_devmap_entry at91_devmap[] = {
  118         /*
  119          * Map the critical on-board devices. The interrupt vector at
  120          * 0xffff0000 makes it impossible to map them PA == VA, so we map all
  121          * 0xfffxxxxx addresses to 0xdffxxxxx. This covers all critical devices
  122          * on all members of the AT91SAM9 and AT91RM9200 families.
  123          */
  124         {
  125                 0xdff00000,
  126                 0xfff00000,
  127                 0x00100000,
  128                 VM_PROT_READ|VM_PROT_WRITE,
  129                 PTE_DEVICE,
  130         },
  131         /* There's a notion that we should do the rest of these lazily. */
  132         /*
  133          * We can't just map the OHCI registers VA == PA, because
  134          * AT91xx_xxx_BASE belongs to the userland address space.
  135          * We could just choose a different virtual address, but a better
  136          * solution would probably be to just use pmap_mapdev() to allocate
  137          * KVA, as we don't need the OHCI controller before the vm
  138          * initialization is done. However, the AT91 resource allocation
  139          * system doesn't know how to use pmap_mapdev() yet.
  140          * Care must be taken to ensure PA and VM address do not overlap
  141          * between entries.
  142          */
  143         {
  144                 /*
  145                  * Add the ohci controller, and anything else that might be
  146                  * on this chip select for a VA/PA mapping.
  147                  */
  148                 /* Internal Memory 1MB  */
  149                 AT91RM92_OHCI_VA_BASE,
  150                 AT91RM92_OHCI_BASE,
  151                 0x00100000,
  152                 VM_PROT_READ|VM_PROT_WRITE,
  153                 PTE_DEVICE,
  154         },
  155         {
  156                 /* CompactFlash controller. Portion of EBI CS4 1MB */
  157                 AT91RM92_CF_VA_BASE,
  158                 AT91RM92_CF_BASE,
  159                 0x00100000,
  160                 VM_PROT_READ|VM_PROT_WRITE,
  161                 PTE_DEVICE,
  162         },
  163         /*
  164          * The next two should be good for the 9260, 9261 and 9G20 since
  165          * addresses mapping is the same.
  166          */
  167         {
  168                 /* Internal Memory 1MB  */
  169                 AT91SAM9G20_OHCI_VA_BASE,
  170                 AT91SAM9G20_OHCI_BASE,
  171                 0x00100000,
  172                 VM_PROT_READ|VM_PROT_WRITE,
  173                 PTE_DEVICE,
  174         },
  175         {
  176                 /* EBI CS3 256MB */
  177                 AT91SAM9G20_NAND_VA_BASE,
  178                 AT91SAM9G20_NAND_BASE,
  179                 AT91SAM9G20_NAND_SIZE,
  180                 VM_PROT_READ|VM_PROT_WRITE,
  181                 PTE_DEVICE,
  182         },
  183         /*
  184          * The next should be good for the 9G45.
  185          */
  186         {
  187                 /* Internal Memory 1MB  */
  188                 AT91SAM9G45_OHCI_VA_BASE,
  189                 AT91SAM9G45_OHCI_BASE,
  190                 0x00100000,
  191                 VM_PROT_READ|VM_PROT_WRITE,
  192                 PTE_DEVICE,
  193         },
  194         { 0, 0, 0, 0, 0, }
  195 };
  196 
  197 /* Physical and virtual addresses for some global pages */
  198 
  199 struct pv_addr systempage;
  200 struct pv_addr msgbufpv;
  201 struct pv_addr irqstack;
  202 struct pv_addr undstack;
  203 struct pv_addr abtstack;
  204 struct pv_addr kernelstack;
  205 
  206 #ifdef LINUX_BOOT_ABI
  207 extern int membanks;
  208 extern int memstart[];
  209 extern int memsize[];
  210 #endif
  211 
  212 long
  213 at91_ramsize(void)
  214 {
  215         uint32_t cr, mdr, mr, *SDRAMC;
  216         int banks, rows, cols, bw;
  217 #ifdef LINUX_BOOT_ABI
  218         /*
  219          * If we found any ATAGs that were for memory, return the first bank.
  220          */
  221         if (membanks > 0)
  222                 return (memsize[0]);
  223 #endif
  224 
  225         if (at91_is_rm92()) {
  226                 SDRAMC = (uint32_t *)(AT91_BASE + AT91RM92_SDRAMC_BASE);
  227                 cr = SDRAMC[AT91RM92_SDRAMC_CR / 4];
  228                 mr = SDRAMC[AT91RM92_SDRAMC_MR / 4];
  229                 banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1;
  230                 rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11;
  231                 cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8;
  232                 bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2;
  233         } else if (at91_cpu_is(AT91_T_SAM9G45)) {
  234                 SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G45_DDRSDRC0_BASE);
  235                 cr = SDRAMC[AT91SAM9G45_DDRSDRC_CR / 4];
  236                 mdr = SDRAMC[AT91SAM9G45_DDRSDRC_MDR / 4];
  237                 banks = 0;
  238                 rows = ((cr & AT91SAM9G45_DDRSDRC_CR_NR_MASK) >> 2) + 11;
  239                 cols = (cr & AT91SAM9G45_DDRSDRC_CR_NC_MASK) + 8;
  240                 bw = (mdr & AT91SAM9G45_DDRSDRC_MDR_DBW_16) ? 1 : 2;
  241 
  242                 /* Fix the calculation for DDR memory */
  243                 mdr &= AT91SAM9G45_DDRSDRC_MDR_MASK;
  244                 if (mdr & AT91SAM9G45_DDRSDRC_MDR_LPDDR1 ||
  245                     mdr & AT91SAM9G45_DDRSDRC_MDR_DDR2) {
  246                         /* The cols value is 1 higher for DDR */
  247                         cols += 1;
  248                         /* DDR has 4 internal banks. */
  249                         banks = 2;
  250                 }
  251         } else {
  252                 /*
  253                  * This should be good for the 9260, 9261, 9G20, 9G35 and 9X25
  254                  * as addresses and registers are the same.
  255                  */
  256                 SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G20_SDRAMC_BASE);
  257                 cr = SDRAMC[AT91SAM9G20_SDRAMC_CR / 4];
  258                 mr = SDRAMC[AT91SAM9G20_SDRAMC_MR / 4];
  259                 banks = (cr & AT91SAM9G20_SDRAMC_CR_NB_4) ? 2 : 1;
  260                 rows = ((cr & AT91SAM9G20_SDRAMC_CR_NR_MASK) >> 2) + 11;
  261                 cols = (cr & AT91SAM9G20_SDRAMC_CR_NC_MASK) + 8;
  262                 bw = (cr & AT91SAM9G20_SDRAMC_CR_DBW_16) ? 1 : 2;
  263         }
  264 
  265         return (1 << (cols + rows + banks + bw));
  266 }
  267 
  268 static const char *soc_type_name[] = {
  269         [AT91_T_CAP9] = "at91cap9",
  270         [AT91_T_RM9200] = "at91rm9200",
  271         [AT91_T_SAM9260] = "at91sam9260",
  272         [AT91_T_SAM9261] = "at91sam9261",
  273         [AT91_T_SAM9263] = "at91sam9263",
  274         [AT91_T_SAM9G10] = "at91sam9g10",
  275         [AT91_T_SAM9G20] = "at91sam9g20",
  276         [AT91_T_SAM9G45] = "at91sam9g45",
  277         [AT91_T_SAM9N12] = "at91sam9n12",
  278         [AT91_T_SAM9RL] = "at91sam9rl",
  279         [AT91_T_SAM9X5] = "at91sam9x5",
  280         [AT91_T_NONE] = "UNKNOWN"
  281 };
  282 
  283 static const char *soc_subtype_name[] = {
  284         [AT91_ST_NONE] = "UNKNOWN",
  285         [AT91_ST_RM9200_BGA] = "at91rm9200_bga",
  286         [AT91_ST_RM9200_PQFP] = "at91rm9200_pqfp",
  287         [AT91_ST_SAM9XE] = "at91sam9xe",
  288         [AT91_ST_SAM9G45] = "at91sam9g45",
  289         [AT91_ST_SAM9M10] = "at91sam9m10",
  290         [AT91_ST_SAM9G46] = "at91sam9g46",
  291         [AT91_ST_SAM9M11] = "at91sam9m11",
  292         [AT91_ST_SAM9G15] = "at91sam9g15",
  293         [AT91_ST_SAM9G25] = "at91sam9g25",
  294         [AT91_ST_SAM9G35] = "at91sam9g35",
  295         [AT91_ST_SAM9X25] = "at91sam9x25",
  296         [AT91_ST_SAM9X35] = "at91sam9x35",
  297 };
  298 
  299 struct at91_soc_info soc_info;
  300 
  301 /*
  302  * Read the SoC ID from the CIDR register and try to match it against the
  303  * values we know.  If we find a good one, we return true.  If not, we
  304  * return false.  When we find a good one, we also find the subtype
  305  * and CPU family.
  306  */
  307 static int
  308 at91_try_id(uint32_t dbgu_base)
  309 {
  310         uint32_t socid;
  311 
  312         soc_info.cidr = *(volatile uint32_t *)(AT91_BASE + dbgu_base +
  313             DBGU_C1R);
  314         socid = soc_info.cidr & ~AT91_CPU_VERSION_MASK;
  315 
  316         soc_info.type = AT91_T_NONE;
  317         soc_info.subtype = AT91_ST_NONE;
  318         soc_info.family = (soc_info.cidr & AT91_CPU_FAMILY_MASK) >> 20;
  319         soc_info.exid = *(volatile uint32_t *)(AT91_BASE + dbgu_base +
  320             DBGU_C2R);
  321 
  322         switch (socid) {
  323         case AT91_CPU_CAP9:
  324                 soc_info.type = AT91_T_CAP9;
  325                 break;
  326         case AT91_CPU_RM9200:
  327                 soc_info.type = AT91_T_RM9200;
  328                 break;
  329         case AT91_CPU_SAM9XE128:
  330         case AT91_CPU_SAM9XE256:
  331         case AT91_CPU_SAM9XE512:
  332         case AT91_CPU_SAM9260:
  333                 soc_info.type = AT91_T_SAM9260;
  334                 if (soc_info.family == AT91_FAMILY_SAM9XE)
  335                         soc_info.subtype = AT91_ST_SAM9XE;
  336                 break;
  337         case AT91_CPU_SAM9261:
  338                 soc_info.type = AT91_T_SAM9261;
  339                 break;
  340         case AT91_CPU_SAM9263:
  341                 soc_info.type = AT91_T_SAM9263;
  342                 break;
  343         case AT91_CPU_SAM9G10:
  344                 soc_info.type = AT91_T_SAM9G10;
  345                 break;
  346         case AT91_CPU_SAM9G20:
  347                 soc_info.type = AT91_T_SAM9G20;
  348                 break;
  349         case AT91_CPU_SAM9G45:
  350                 soc_info.type = AT91_T_SAM9G45;
  351                 break;
  352         case AT91_CPU_SAM9N12:
  353                 soc_info.type = AT91_T_SAM9N12;
  354                 break;
  355         case AT91_CPU_SAM9RL64:
  356                 soc_info.type = AT91_T_SAM9RL;
  357                 break;
  358         case AT91_CPU_SAM9X5:
  359                 soc_info.type = AT91_T_SAM9X5;
  360                 break;
  361         default:
  362                 return (0);
  363         }
  364 
  365         switch (soc_info.type) {
  366         case AT91_T_SAM9G45:
  367                 switch (soc_info.exid) {
  368                 case AT91_EXID_SAM9G45:
  369                         soc_info.subtype = AT91_ST_SAM9G45;
  370                         break;
  371                 case AT91_EXID_SAM9G46:
  372                         soc_info.subtype = AT91_ST_SAM9G46;
  373                         break;
  374                 case AT91_EXID_SAM9M10:
  375                         soc_info.subtype = AT91_ST_SAM9M10;
  376                         break;
  377                 case AT91_EXID_SAM9M11:
  378                         soc_info.subtype = AT91_ST_SAM9M11;
  379                         break;
  380                 }
  381                 break;
  382         case AT91_T_SAM9X5:
  383                 switch (soc_info.exid) {
  384                 case AT91_EXID_SAM9G15:
  385                         soc_info.subtype = AT91_ST_SAM9G15;
  386                         break;
  387                 case AT91_EXID_SAM9G25:
  388                         soc_info.subtype = AT91_ST_SAM9G25;
  389                         break;
  390                 case AT91_EXID_SAM9G35:
  391                         soc_info.subtype = AT91_ST_SAM9G35;
  392                         break;
  393                 case AT91_EXID_SAM9X25:
  394                         soc_info.subtype = AT91_ST_SAM9X25;
  395                         break;
  396                 case AT91_EXID_SAM9X35:
  397                         soc_info.subtype = AT91_ST_SAM9X35;
  398                         break;
  399                 }
  400                 break;
  401         default:
  402                 break;
  403         }
  404         /*
  405          * Disable interrupts in the DBGU unit...
  406          */
  407         *(volatile uint32_t *)(AT91_BASE + dbgu_base + USART_IDR) = 0xffffffff;
  408 
  409         /*
  410          * Save the name for later...
  411          */
  412         snprintf(soc_info.name, sizeof(soc_info.name), "%s%s%s",
  413             soc_type_name[soc_info.type],
  414             soc_info.subtype == AT91_ST_NONE ? "" : " subtype ",
  415             soc_info.subtype == AT91_ST_NONE ? "" :
  416             soc_subtype_name[soc_info.subtype]);
  417 
  418         /*
  419          * try to get the matching CPU support.
  420          */
  421         soc_info.soc_data = at91_match_soc(soc_info.type, soc_info.subtype);
  422         soc_info.dbgu_base = AT91_BASE + dbgu_base;
  423 
  424         return (1);
  425 }
  426 
  427 static void
  428 at91_soc_id(void)
  429 {
  430 
  431         if (!at91_try_id(AT91_DBGU0))
  432                 at91_try_id(AT91_DBGU1);
  433 }
  434 
  435 #ifdef ARM_MANY_BOARD
  436 /* likely belongs in arm/arm/machdep.c, but since board_init is still at91 only... */
  437 SET_DECLARE(arm_board_set, const struct arm_board);
  438 
  439 /* Not yet fully functional, but enough to build ATMEL config */
  440 static long
  441 board_init(void)
  442 {
  443         return -1;
  444 }
  445 #endif
  446 
  447 void *
  448 initarm(struct arm_boot_params *abp)
  449 {
  450         struct pv_addr  kernel_l1pt;
  451         struct pv_addr  dpcpu;
  452         int i;
  453         u_int l1pagetable;
  454         vm_offset_t freemempos;
  455         vm_offset_t afterkern;
  456         uint32_t memsize;
  457         vm_offset_t lastaddr;
  458 
  459         lastaddr = parse_boot_param(abp);
  460         arm_physmem_kernaddr = abp->abp_physaddr;
  461         set_cpufuncs();
  462         pcpu0_init();
  463 
  464         /* Do basic tuning, hz etc */
  465         init_param1();
  466 
  467         freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
  468         /* Define a macro to simplify memory allocation */
  469 #define valloc_pages(var, np)                                           \
  470         alloc_pages((var).pv_va, (np));                                 \
  471         (var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
  472 
  473 #define alloc_pages(var, np)                                            \
  474         (var) = freemempos;                                             \
  475         freemempos += (np * PAGE_SIZE);                                 \
  476         memset((char *)(var), 0, ((np) * PAGE_SIZE));
  477 
  478         while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
  479                 freemempos += PAGE_SIZE;
  480         valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
  481         for (i = 0; i < NUM_KERNEL_PTS; ++i) {
  482                 if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
  483                         valloc_pages(kernel_pt_table[i],
  484                             L2_TABLE_SIZE / PAGE_SIZE);
  485                 } else {
  486                         kernel_pt_table[i].pv_va = freemempos -
  487                             (i % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
  488                             L2_TABLE_SIZE_REAL;
  489                         kernel_pt_table[i].pv_pa =
  490                             kernel_pt_table[i].pv_va - KERNVIRTADDR +
  491                             abp->abp_physaddr;
  492                 }
  493         }
  494         /*
  495          * Allocate a page for the system page mapped to 0x00000000
  496          * or 0xffff0000. This page will just contain the system vectors
  497          * and can be shared by all processes.
  498          */
  499         valloc_pages(systempage, 1);
  500 
  501         /* Allocate dynamic per-cpu area. */
  502         valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
  503         dpcpu_init((void *)dpcpu.pv_va, 0);
  504 
  505         /* Allocate stacks for all modes */
  506         valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
  507         valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
  508         valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
  509         valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU);
  510         valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
  511 
  512         /*
  513          * Now we start construction of the L1 page table
  514          * We start by mapping the L2 page tables into the L1.
  515          * This means that we can replace L1 mappings later on if necessary
  516          */
  517         l1pagetable = kernel_l1pt.pv_va;
  518 
  519         /* Map the L2 pages tables in the L1 page table */
  520         pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
  521             &kernel_pt_table[KERNEL_PT_SYS]);
  522         for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
  523                 pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
  524                     &kernel_pt_table[KERNEL_PT_KERN + i]);
  525         pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
  526            (((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
  527             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  528         afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1));
  529         for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
  530                 pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
  531                     &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
  532         }
  533 
  534         /* Map the vector page. */
  535         pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
  536             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  537 
  538         /* Map the DPCPU pages */
  539         pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE,
  540             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  541 
  542         /* Map the stack pages */
  543         pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
  544             IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  545         pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
  546             ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  547         pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
  548             UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  549         pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
  550             KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  551 
  552         pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
  553             L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  554         pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
  555             msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  556 
  557         for (i = 0; i < NUM_KERNEL_PTS; ++i) {
  558                 pmap_map_chunk(l1pagetable, kernel_pt_table[i].pv_va,
  559                     kernel_pt_table[i].pv_pa, L2_TABLE_SIZE,
  560                     VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  561         }
  562 
  563         arm_devmap_bootstrap(l1pagetable, at91_devmap);
  564         cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
  565         setttb(kernel_l1pt.pv_pa);
  566         cpu_tlb_flushID();
  567         cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
  568 
  569         at91_soc_id();
  570 
  571         /*
  572          * Initialize all the clocks, so that the console can work.  We can only
  573          * do this if at91_soc_id() was able to fill in the support data.  Even
  574          * if we can't init the clocks, still try to do a console init so we can
  575          * try to print the error message about missing soc support.  There's a
  576          * chance the printf will work if the bootloader set up the DBGU.
  577          */
  578         if (soc_info.soc_data != NULL) {
  579                 soc_info.soc_data->soc_clock_init();
  580                 at91_pmc_init_clock();
  581         }
  582 
  583         cninit();
  584 
  585         if (soc_info.soc_data == NULL)
  586                 printf("Warning: No soc support for %s found.\n", soc_info.name);
  587 
  588         memsize = board_init();
  589         if (memsize == -1) {
  590                 printf("board_init() failed, cannot determine ram size; "
  591                     "assuming 16MB\n");
  592                 memsize = 16 * 1024 * 1024;
  593         }
  594 
  595         /*
  596          * Pages were allocated during the secondary bootstrap for the
  597          * stacks for different CPU modes.
  598          * We must now set the r13 registers in the different CPU modes to
  599          * point to these stacks.
  600          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
  601          * of the stack memory.
  602          */
  603         cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
  604         cpu_setup("");
  605 
  606         set_stackptrs(0);
  607 
  608         /*
  609          * We must now clean the cache again....
  610          * Cleaning may be done by reading new data to displace any
  611          * dirty data in the cache. This will have happened in setttb()
  612          * but since we are boot strapping the addresses used for the read
  613          * may have just been remapped and thus the cache could be out
  614          * of sync. A re-clean after the switch will cure this.
  615          * After booting there are no gross relocations of the kernel thus
  616          * this problem will not occur after initarm().
  617          */
  618         cpu_idcache_wbinv_all();
  619 
  620         undefined_init();
  621 
  622         init_proc0(kernelstack.pv_va);
  623 
  624         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
  625 
  626         pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
  627         /* Always use the 256MB of KVA we have available between the kernel and devices */
  628         vm_max_kernel_address = KERNVIRTADDR + (256 << 20);
  629         pmap_bootstrap(freemempos, &kernel_l1pt);
  630         msgbufp = (void*)msgbufpv.pv_va;
  631         msgbufinit(msgbufp, msgbufsize);
  632         mutex_init();
  633 
  634         /*
  635          * Add the physical ram we have available.
  636          *
  637          * Exclude the kernel, and all the things we allocated which immediately
  638          * follow the kernel, from the VM allocation pool but not from crash
  639          * dumps.  virtual_avail is a global variable which tracks the kva we've
  640          * "allocated" while setting up pmaps.
  641          *
  642          * Prepare the list of physical memory available to the vm subsystem.
  643          */
  644         arm_physmem_hardware_region(PHYSADDR, memsize);
  645         arm_physmem_exclude_region(abp->abp_physaddr, 
  646             virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
  647         arm_physmem_init_kernel_globals();
  648 
  649         init_param2(physmem);
  650         kdb_init();
  651         return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
  652             sizeof(struct pcb)));
  653 }
  654 
  655 /*
  656  * These functions are handled elsewhere, so make them nops here.
  657  */
  658 void
  659 cpu_startprofclock(void)
  660 {
  661 
  662 }
  663 
  664 void
  665 cpu_stopprofclock(void)
  666 {
  667 
  668 }
  669 
  670 void
  671 cpu_initclocks(void)
  672 {
  673 
  674 }
  675 
  676 void
  677 DELAY(int n)
  678 {
  679 
  680         if (soc_info.soc_data)
  681                 soc_info.soc_data->soc_delay(n);
  682 }
  683 
  684 void
  685 cpu_reset(void)
  686 {
  687 
  688         if (soc_info.soc_data)
  689                 soc_info.soc_data->soc_reset();
  690         while (1)
  691                 continue;
  692 }

Cache object: 3d59c575117b75f3d855ca751b18ae51


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.