The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/at91/at91_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1994-1998 Mark Brinicombe.
    3  * Copyright (c) 1994 Brini.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software written for Brini by Mark Brinicombe
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by Brini.
   19  * 4. The name of the company nor the name of the author may be used to
   20  *    endorse or promote products derived from this software without specific
   21  *    prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
   24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  * RiscBSD kernel project
   36  *
   37  * machdep.c
   38  *
   39  * Machine dependant functions for kernel setup
   40  *
   41  * This file needs a lot of work.
   42  *
   43  * Created      : 17/09/94
   44  */
   45 
   46 #include <sys/cdefs.h>
   47 __FBSDID("$FreeBSD: releng/9.0/sys/arm/at91/at91_machdep.c 223562 2011-06-26 10:07:48Z kevlo $");
   48 
   49 #define _ARM32_BUS_DMA_PRIVATE
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/sysproto.h>
   53 #include <sys/signalvar.h>
   54 #include <sys/imgact.h>
   55 #include <sys/kernel.h>
   56 #include <sys/ktr.h>
   57 #include <sys/linker.h>
   58 #include <sys/lock.h>
   59 #include <sys/malloc.h>
   60 #include <sys/mutex.h>
   61 #include <sys/pcpu.h>
   62 #include <sys/proc.h>
   63 #include <sys/ptrace.h>
   64 #include <sys/cons.h>
   65 #include <sys/bio.h>
   66 #include <sys/bus.h>
   67 #include <sys/buf.h>
   68 #include <sys/exec.h>
   69 #include <sys/kdb.h>
   70 #include <sys/msgbuf.h>
   71 #include <machine/reg.h>
   72 #include <machine/cpu.h>
   73 
   74 #include <vm/vm.h>
   75 #include <vm/pmap.h>
   76 #include <vm/vm_object.h>
   77 #include <vm/vm_page.h>
   78 #include <vm/vm_pager.h>
   79 #include <vm/vm_map.h>
   80 #include <machine/pmap.h>
   81 #include <machine/vmparam.h>
   82 #include <machine/pcb.h>
   83 #include <machine/undefined.h>
   84 #include <machine/machdep.h>
   85 #include <machine/metadata.h>
   86 #include <machine/armreg.h>
   87 #include <machine/bus.h>
   88 #include <sys/reboot.h>
   89 
   90 #include <arm/at91/at91board.h>
   91 #include <arm/at91/at91var.h>
   92 #include <arm/at91/at91rm92reg.h>
   93 #include <arm/at91/at91sam9g20reg.h>
   94 
   95 #define KERNEL_PT_SYS           0       /* Page table for mapping proc0 zero page */
   96 #define KERNEL_PT_KERN          1
   97 #define KERNEL_PT_KERN_NUM      22
   98 #define KERNEL_PT_AFKERNEL      KERNEL_PT_KERN + KERNEL_PT_KERN_NUM     /* L2 table for mapping after kernel */
   99 #define KERNEL_PT_AFKERNEL_NUM  5
  100 
  101 /* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
  102 #define NUM_KERNEL_PTS          (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
  103 
  104 /* Define various stack sizes in pages */
  105 #define IRQ_STACK_SIZE  1
  106 #define ABT_STACK_SIZE  1
  107 #define UND_STACK_SIZE  1
  108 
  109 extern u_int data_abort_handler_address;
  110 extern u_int prefetch_abort_handler_address;
  111 extern u_int undefined_handler_address;
  112 
  113 struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
  114 
  115 extern void *_end;
  116 
  117 extern int *end;
  118 
  119 struct pcpu __pcpu;
  120 struct pcpu *pcpup = &__pcpu;
  121 
  122 /* Physical and virtual addresses for some global pages */
  123 
  124 vm_paddr_t phys_avail[10];
  125 vm_paddr_t dump_avail[4];
  126 vm_offset_t physical_pages;
  127 
  128 struct pv_addr systempage;
  129 struct pv_addr msgbufpv;
  130 struct pv_addr irqstack;
  131 struct pv_addr undstack;
  132 struct pv_addr abtstack;
  133 struct pv_addr kernelstack;
  134 
  135 static void *boot_arg1;
  136 static void *boot_arg2;
  137 
  138 static struct trapframe proc0_tf;
  139 
  140 /* Static device mappings. */
  141 const struct pmap_devmap at91_devmap[] = {
  142         /*
  143          * Map the on-board devices VA == PA so that we can access them
  144          * with the MMU on or off.
  145          */
  146         {
  147                 /*
  148                  * This at least maps the interrupt controller, the UART
  149                  * and the timer. Other devices should use newbus to
  150                  * map their memory anyway.
  151                  */
  152                 0xdff00000,
  153                 0xfff00000,
  154                 0x00100000,
  155                 VM_PROT_READ|VM_PROT_WRITE,
  156                 PTE_NOCACHE,
  157         },
  158         /* We can't just map the OHCI registers VA == PA, because
  159          * AT91xx_xxx_BASE belongs to the userland address space.
  160          * We could just choose a different virtual address, but a better
  161          * solution would probably be to just use pmap_mapdev() to allocate
  162          * KVA, as we don't need the OHCI controller before the vm
  163          * initialization is done. However, the AT91 resource allocation
  164          * system doesn't know how to use pmap_mapdev() yet.
  165          * Care must be taken to ensure PA and VM address do not overlap
  166          * between entries.
  167          */
  168         {
  169                 /*
  170                  * Add the ohci controller, and anything else that might be
  171                  * on this chip select for a VA/PA mapping.
  172                  */
  173                 /* Internal Memory 1MB  */
  174                 AT91RM92_OHCI_BASE,
  175                 AT91RM92_OHCI_PA_BASE,
  176                 0x00100000,
  177                 VM_PROT_READ|VM_PROT_WRITE,
  178                 PTE_NOCACHE,
  179         },
  180         {
  181                 /* CompactFlash controller. Portion of EBI CS4 1MB */
  182                 AT91RM92_CF_BASE,
  183                 AT91RM92_CF_PA_BASE,
  184                 0x00100000,
  185                 VM_PROT_READ|VM_PROT_WRITE,
  186                 PTE_NOCACHE,
  187         },
  188         /* The next two should be good for the 9260, 9261 and 9G20 since
  189          * addresses mapping is the same. */
  190         {
  191                 /* Internal Memory 1MB  */
  192                 AT91SAM9G20_OHCI_BASE,
  193                 AT91SAM9G20_OHCI_PA_BASE,
  194                 0x00100000,
  195                 VM_PROT_READ|VM_PROT_WRITE,
  196                 PTE_NOCACHE,
  197         },
  198         {
  199                 /* EBI CS3 256MB */
  200                 AT91SAM9G20_NAND_BASE,
  201                 AT91SAM9G20_NAND_PA_BASE,
  202                 AT91SAM9G20_NAND_SIZE,
  203                 VM_PROT_READ|VM_PROT_WRITE,
  204                 PTE_NOCACHE,
  205         },
  206         { 0, 0, 0, 0, 0, }
  207 };
  208 
  209 long
  210 at91_ramsize(void)
  211 {
  212         uint32_t *SDRAMC = (uint32_t *)(AT91_BASE + AT91RM92_SDRAMC_BASE);
  213         uint32_t cr, mr;
  214         int banks, rows, cols, bw;
  215 
  216         if (at91_is_rm92()) {
  217                 SDRAMC = (uint32_t *)(AT91_BASE + AT91RM92_SDRAMC_BASE);
  218                 cr = SDRAMC[AT91RM92_SDRAMC_CR / 4];
  219                 mr = SDRAMC[AT91RM92_SDRAMC_MR / 4];
  220                 banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1;
  221                 rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11;
  222                 cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8;
  223                 bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2;
  224         } else {
  225                 /* This should be good for the 9260, 9261 and 9G20 as addresses
  226                  * and registers are the same */
  227                 SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G20_SDRAMC_BASE);
  228                 cr = SDRAMC[AT91SAM9G20_SDRAMC_CR / 4];
  229                 mr = SDRAMC[AT91SAM9G20_SDRAMC_MR / 4];
  230                 banks = (cr & AT91SAM9G20_SDRAMC_CR_NB_4) ? 2 : 1;
  231                 rows = ((cr & AT91SAM9G20_SDRAMC_CR_NR_MASK) >> 2) + 11;
  232                 cols = (cr & AT91SAM9G20_SDRAMC_CR_NC_MASK) + 8;
  233                 bw = (cr & AT91SAM9G20_SDRAMC_CR_DBW_16) ? 1 : 2;
  234         }
  235 
  236         return (1 << (cols + rows + banks + bw));
  237 }
  238 
  239 void *
  240 initarm(void *arg, void *arg2)
  241 {
  242         struct pv_addr  kernel_l1pt;
  243         struct pv_addr  dpcpu;
  244         int loop, i;
  245         u_int l1pagetable;
  246         vm_offset_t freemempos;
  247         vm_offset_t afterkern;
  248         uint32_t memsize;
  249         vm_offset_t lastaddr;
  250 
  251         boot_arg1 = arg;
  252         boot_arg2 = arg2;
  253         set_cpufuncs();
  254         lastaddr = fake_preload_metadata();
  255         pcpu_init(pcpup, 0, sizeof(struct pcpu));
  256         PCPU_SET(curthread, &thread0);
  257 
  258         /* Do basic tuning, hz etc */
  259         init_param1();
  260 
  261         freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
  262         /* Define a macro to simplify memory allocation */
  263 #define valloc_pages(var, np)                   \
  264         alloc_pages((var).pv_va, (np));         \
  265         (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
  266 
  267 #define alloc_pages(var, np)                    \
  268         (var) = freemempos;             \
  269         freemempos += (np * PAGE_SIZE);         \
  270         memset((char *)(var), 0, ((np) * PAGE_SIZE));
  271 
  272         while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
  273                 freemempos += PAGE_SIZE;
  274         valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
  275         for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
  276                 if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
  277                         valloc_pages(kernel_pt_table[loop],
  278                             L2_TABLE_SIZE / PAGE_SIZE);
  279                 } else {
  280                         kernel_pt_table[loop].pv_va = freemempos -
  281                             (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
  282                             L2_TABLE_SIZE_REAL;
  283                         kernel_pt_table[loop].pv_pa =
  284                             kernel_pt_table[loop].pv_va - KERNVIRTADDR +
  285                             KERNPHYSADDR;
  286                 }
  287                 i++;
  288         }
  289         /*
  290          * Allocate a page for the system page mapped to V0x00000000
  291          * This page will just contain the system vectors and can be
  292          * shared by all processes.
  293          */
  294         valloc_pages(systempage, 1);
  295 
  296         /* Allocate dynamic per-cpu area. */
  297         valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
  298         dpcpu_init((void *)dpcpu.pv_va, 0);
  299 
  300         /* Allocate stacks for all modes */
  301         valloc_pages(irqstack, IRQ_STACK_SIZE);
  302         valloc_pages(abtstack, ABT_STACK_SIZE);
  303         valloc_pages(undstack, UND_STACK_SIZE);
  304         valloc_pages(kernelstack, KSTACK_PAGES);
  305         valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
  306 
  307         /*
  308          * Now we start construction of the L1 page table
  309          * We start by mapping the L2 page tables into the L1.
  310          * This means that we can replace L1 mappings later on if necessary
  311          */
  312         l1pagetable = kernel_l1pt.pv_va;
  313 
  314         /* Map the L2 pages tables in the L1 page table */
  315         pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
  316             &kernel_pt_table[KERNEL_PT_SYS]);
  317         for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
  318                 pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
  319                     &kernel_pt_table[KERNEL_PT_KERN + i]);
  320         pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
  321            (((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
  322             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  323         afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1));
  324         for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
  325                 pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
  326                     &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
  327         }
  328 
  329         /* Map the vector page. */
  330         pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
  331             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  332 
  333         /* Map the DPCPU pages */
  334         pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE,
  335             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  336 
  337         /* Map the stack pages */
  338         pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
  339             IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  340         pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
  341             ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  342         pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
  343             UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  344         pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
  345             KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  346 
  347         pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
  348             L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  349         pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
  350             msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  351 
  352         for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
  353                 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
  354                     kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
  355                     VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  356         }
  357 
  358         pmap_devmap_bootstrap(l1pagetable, at91_devmap);
  359         cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
  360         setttb(kernel_l1pt.pv_pa);
  361         cpu_tlb_flushID();
  362         cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
  363 
  364         cninit();
  365 
  366         /* Get chip id so device drivers know about differences */
  367         at91_chip_id = *(volatile uint32_t *)
  368                 (AT91_BASE + AT91_DBGU_BASE + DBGU_C1R);
  369 
  370         memsize = board_init();
  371         physmem = memsize / PAGE_SIZE;
  372 
  373         /*
  374          * Pages were allocated during the secondary bootstrap for the
  375          * stacks for different CPU modes.
  376          * We must now set the r13 registers in the different CPU modes to
  377          * point to these stacks.
  378          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
  379          * of the stack memory.
  380          */
  381         cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
  382         set_stackptr(PSR_IRQ32_MODE,
  383             irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
  384         set_stackptr(PSR_ABT32_MODE,
  385             abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
  386         set_stackptr(PSR_UND32_MODE,
  387             undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
  388 
  389         /*
  390          * We must now clean the cache again....
  391          * Cleaning may be done by reading new data to displace any
  392          * dirty data in the cache. This will have happened in setttb()
  393          * but since we are boot strapping the addresses used for the read
  394          * may have just been remapped and thus the cache could be out
  395          * of sync. A re-clean after the switch will cure this.
  396          * After booting there are no gross relocations of the kernel thus
  397          * this problem will not occur after initarm().
  398          */
  399         cpu_idcache_wbinv_all();
  400 
  401         /* Set stack for exception handlers */
  402 
  403         data_abort_handler_address = (u_int)data_abort_handler;
  404         prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
  405         undefined_handler_address = (u_int)undefinedinstruction_bounce;
  406         undefined_init();
  407 
  408         proc_linkup0(&proc0, &thread0);
  409         thread0.td_kstack = kernelstack.pv_va;
  410         thread0.td_pcb = (struct pcb *)
  411                 (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  412         thread0.td_pcb->pcb_flags = 0;
  413         thread0.td_frame = &proc0_tf;
  414         pcpup->pc_curpcb = thread0.td_pcb;
  415 
  416         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
  417 
  418         pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
  419 
  420         /*
  421          * ARM_USE_SMALL_ALLOC uses dump_avail, so it must be filled before
  422          * calling pmap_bootstrap.
  423          */
  424         dump_avail[0] = PHYSADDR;
  425         dump_avail[1] = PHYSADDR + memsize;
  426         dump_avail[2] = 0;
  427         dump_avail[3] = 0;
  428 
  429         pmap_bootstrap(freemempos,
  430             KERNVIRTADDR + 3 * memsize,
  431             &kernel_l1pt);
  432         msgbufp = (void*)msgbufpv.pv_va;
  433         msgbufinit(msgbufp, msgbufsize);
  434         mutex_init();
  435 
  436         i = 0;
  437 #if PHYSADDR != KERNPHYSADDR
  438         phys_avail[i++] = PHYSADDR;
  439         phys_avail[i++] = KERNPHYSADDR;
  440 #endif
  441         phys_avail[i++] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR;
  442         phys_avail[i++] = PHYSADDR + memsize;
  443         phys_avail[i++] = 0;
  444         phys_avail[i++] = 0;
  445         init_param2(physmem);
  446         kdb_init();
  447         return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
  448             sizeof(struct pcb)));
  449 }

Cache object: 3c3644fa3a1cd6aa53b7b1ea58ddda7c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.