The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/at91/if_ate.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006 M. Warner Losh.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  */
   25 
   26 /* TODO
   27  *
   28  * 1) Turn on the clock in pmc?  Turn off?
   29  * 2) GPIO initializtion in board setup code.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/bus.h>
   38 #include <sys/kernel.h>
   39 #include <sys/mbuf.h>
   40 #include <sys/malloc.h>
   41 #include <sys/module.h>
   42 #include <sys/rman.h>
   43 #include <sys/socket.h>
   44 #include <sys/sockio.h>
   45 #include <sys/sysctl.h>
   46 #include <machine/bus.h>
   47 
   48 #include <net/ethernet.h>
   49 #include <net/if.h>
   50 #include <net/if_arp.h>
   51 #include <net/if_dl.h>
   52 #include <net/if_media.h>
   53 #include <net/if_mib.h>
   54 #include <net/if_types.h>
   55 
   56 #ifdef INET
   57 #include <netinet/in.h>
   58 #include <netinet/in_systm.h>
   59 #include <netinet/in_var.h>
   60 #include <netinet/ip.h>
   61 #endif
   62 
   63 #include <net/bpf.h>
   64 #include <net/bpfdesc.h>
   65 
   66 #include <dev/mii/mii.h>
   67 #include <dev/mii/miivar.h>
   68 #include <arm/at91/if_atereg.h>
   69 
   70 #include "miibus_if.h"
   71 
   72 #define ATE_MAX_TX_BUFFERS      2       /* We have ping-pong tx buffers */
   73 #define ATE_MAX_RX_BUFFERS      64
   74 
   75 /*
   76  * Driver-specific flags.
   77  */
   78 #define ATE_FLAG_DETACHING      0x01
   79 #define ATE_FLAG_MULTICAST      0x02
   80 
   81 struct ate_softc
   82 {
   83         struct ifnet    *ifp;           /* ifnet pointer */
   84         struct mtx      sc_mtx;         /* Basically a perimeter lock */
   85         device_t        dev;            /* Myself */
   86         device_t        miibus;         /* My child miibus */
   87         struct resource *irq_res;       /* IRQ resource */
   88         struct resource *mem_res;       /* Memory resource */
   89         struct callout  tick_ch;        /* Tick callout */
   90         struct ifmib_iso_8802_3 mibdata; /* Stuff for network mgmt */
   91         struct mbuf     *sent_mbuf[ATE_MAX_TX_BUFFERS]; /* Sent mbufs */
   92         bus_dma_tag_t   mtag;           /* bus dma tag for mbufs */
   93         bus_dma_tag_t   rxtag;
   94         bus_dma_tag_t   rx_desc_tag;
   95         bus_dmamap_t    rx_desc_map;
   96         bus_dmamap_t    rx_map[ATE_MAX_RX_BUFFERS];
   97         bus_dmamap_t    tx_map[ATE_MAX_TX_BUFFERS];
   98         bus_addr_t      rx_desc_phys;
   99         eth_rx_desc_t   *rx_descs;
  100         void            *rx_buf[ATE_MAX_RX_BUFFERS]; /* RX buffer space */
  101         void            *intrhand;      /* Interrupt handle */
  102         int             flags;
  103         int             if_flags;
  104         int             rx_buf_ptr;
  105         int             txcur;          /* Current TX map pointer */
  106         int             use_rmii;
  107 };
  108 
  109 static inline uint32_t
  110 RD4(struct ate_softc *sc, bus_size_t off)
  111 {
  112 
  113         return (bus_read_4(sc->mem_res, off));
  114 }
  115 
  116 static inline void
  117 WR4(struct ate_softc *sc, bus_size_t off, uint32_t val)
  118 {
  119 
  120         bus_write_4(sc->mem_res, off, val);
  121 }
  122 
  123 static inline void
  124 BARRIER(struct ate_softc *sc, bus_size_t off, bus_size_t len, int flags)
  125 {
  126 
  127         bus_barrier(sc->mem_res, off, len, flags);
  128 }
  129 
  130 #define ATE_LOCK(_sc)           mtx_lock(&(_sc)->sc_mtx)
  131 #define ATE_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_mtx)
  132 #define ATE_LOCK_INIT(_sc)                                      \
  133         mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev),   \
  134             MTX_NETWORK_LOCK, MTX_DEF)
  135 #define ATE_LOCK_DESTROY(_sc)   mtx_destroy(&_sc->sc_mtx);
  136 #define ATE_ASSERT_LOCKED(_sc)  mtx_assert(&_sc->sc_mtx, MA_OWNED);
  137 #define ATE_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
  138 
  139 static devclass_t ate_devclass;
  140 
  141 /*
  142  * ifnet entry points.
  143  */
  144 static void     ateinit_locked(void *);
  145 static void     atestart_locked(struct ifnet *);
  146 
  147 static void     ateinit(void *);
  148 static void     atestart(struct ifnet *);
  149 static void     atestop(struct ate_softc *);
  150 static int      ateioctl(struct ifnet * ifp, u_long, caddr_t);
  151 
  152 /*
  153  * Bus entry points.
  154  */
  155 static int      ate_probe(device_t dev);
  156 static int      ate_attach(device_t dev);
  157 static int      ate_detach(device_t dev);
  158 static void     ate_intr(void *);
  159 
  160 /*
  161  * Helper routines.
  162  */
  163 static int      ate_activate(device_t dev);
  164 static void     ate_deactivate(struct ate_softc *sc);
  165 static int      ate_ifmedia_upd(struct ifnet *ifp);
  166 static void     ate_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
  167 static int      ate_get_mac(struct ate_softc *sc, u_char *eaddr);
  168 static void     ate_set_mac(struct ate_softc *sc, u_char *eaddr);
  169 static void     ate_rxfilter(struct ate_softc *sc);
  170 
  171 /*
  172  * The AT91 family of products has the ethernet called EMAC.  However,
  173  * it isn't self identifying.  It is anticipated that the parent bus
  174  * code will take care to only add ate devices where they really are.  As
  175  * such, we do nothing here to identify the device and just set its name.
  176  */
  177 static int
  178 ate_probe(device_t dev)
  179 {
  180 
  181         device_set_desc(dev, "EMAC");
  182         return (0);
  183 }
  184 
  185 static int
  186 ate_attach(device_t dev)
  187 {
  188         struct ate_softc *sc;
  189         struct ifnet *ifp = NULL;
  190         struct sysctl_ctx_list *sctx;
  191         struct sysctl_oid *soid;
  192         u_char eaddr[ETHER_ADDR_LEN];
  193         uint32_t rnd;
  194         int rid, err;
  195 
  196         sc = device_get_softc(dev);
  197         sc->dev = dev;
  198         ATE_LOCK_INIT(sc);
  199         
  200         /*
  201          * Allocate resources.
  202          */
  203         rid = 0;
  204         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
  205             RF_ACTIVE);
  206         if (sc->mem_res == NULL) {
  207                 device_printf(dev, "could not allocate memory resources.\n");
  208                 err = ENOMEM;
  209                 goto out;
  210         }
  211         rid = 0;
  212         sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  213             RF_ACTIVE);
  214         if (sc->irq_res == NULL) {
  215                 device_printf(dev, "could not allocate interrupt resources.\n");
  216                 err = ENOMEM;
  217                 goto out;
  218         }
  219 
  220         err = ate_activate(dev);
  221         if (err)
  222                 goto out;
  223 
  224         sc->use_rmii = (RD4(sc, ETH_CFG) & ETH_CFG_RMII) == ETH_CFG_RMII;
  225 
  226         /* Sysctls */
  227         sctx = device_get_sysctl_ctx(dev);
  228         soid = device_get_sysctl_tree(dev);
  229         SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "rmii",
  230             CTLFLAG_RD, &sc->use_rmii, 0, "rmii in use");
  231 
  232         /* Calling atestop before ifp is set is OK. */
  233         ATE_LOCK(sc);
  234         atestop(sc);
  235         ATE_UNLOCK(sc);
  236         callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
  237 
  238         if ((err = ate_get_mac(sc, eaddr)) != 0) {
  239                 /*
  240                  * No MAC address configured. Generate the random one.
  241                  */
  242                 if  (bootverbose)
  243                         device_printf(dev,
  244                             "Generating random ethernet address.\n");
  245                 rnd = arc4random();
  246 
  247                 /*
  248                  * Set OUI to convenient locally assigned address.  'b'
  249                  * is 0x62, which has the locally assigned bit set, and
  250                  * the broadcast/multicast bit clear.
  251                  */
  252                 eaddr[0] = 'b';
  253                 eaddr[1] = 's';
  254                 eaddr[2] = 'd';
  255                 eaddr[3] = (rnd >> 16) & 0xff;
  256                 eaddr[4] = (rnd >> 8) & 0xff;
  257                 eaddr[5] = rnd & 0xff;
  258         }
  259 
  260         sc->ifp = ifp = if_alloc(IFT_ETHER);
  261         err = mii_attach(dev, &sc->miibus, ifp, ate_ifmedia_upd,
  262             ate_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
  263         if (err != 0) {
  264                 device_printf(dev, "attaching PHYs failed\n");
  265                 goto out;
  266         }
  267 
  268         ifp->if_softc = sc;
  269         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  270         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  271         ifp->if_capabilities |= IFCAP_VLAN_MTU;
  272         ifp->if_capenable |= IFCAP_VLAN_MTU;    /* The hw bits already set. */
  273         ifp->if_start = atestart;
  274         ifp->if_ioctl = ateioctl;
  275         ifp->if_init = ateinit;
  276         ifp->if_baudrate = 10000000;
  277         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
  278         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  279         IFQ_SET_READY(&ifp->if_snd);
  280         ifp->if_timer = 0;
  281         ifp->if_linkmib = &sc->mibdata;
  282         ifp->if_linkmiblen = sizeof(sc->mibdata);
  283         sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS;
  284         sc->if_flags = ifp->if_flags;
  285 
  286         ether_ifattach(ifp, eaddr);
  287 
  288         /*
  289          * Activate the interrupt.
  290          */
  291         err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
  292             NULL, ate_intr, sc, &sc->intrhand);
  293         if (err) {
  294                 device_printf(dev, "could not establish interrupt handler.\n");
  295                 ether_ifdetach(ifp);
  296                 goto out;
  297         }
  298 
  299 out:
  300         if (err)
  301                 ate_detach(dev);
  302         return (err);
  303 }
  304 
  305 static int
  306 ate_detach(device_t dev)
  307 {
  308         struct ate_softc *sc;
  309         struct ifnet *ifp;
  310 
  311         sc = device_get_softc(dev);
  312         KASSERT(sc != NULL, ("[ate: %d]: sc is NULL", __LINE__));
  313         ifp = sc->ifp;
  314         if (device_is_attached(dev)) {
  315                 ATE_LOCK(sc);
  316                         sc->flags |= ATE_FLAG_DETACHING;
  317                         atestop(sc);
  318                 ATE_UNLOCK(sc);
  319                 callout_drain(&sc->tick_ch);
  320                 ether_ifdetach(ifp);
  321         }
  322         if (sc->miibus != NULL) {
  323                 device_delete_child(dev, sc->miibus);
  324                 sc->miibus = NULL;
  325         }
  326         bus_generic_detach(sc->dev);
  327         ate_deactivate(sc);
  328         if (sc->intrhand != NULL) {
  329                 bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
  330                 sc->intrhand = NULL;
  331         }
  332         if (ifp != NULL) {
  333                 if_free(ifp);
  334                 sc->ifp = NULL;
  335         }
  336         if (sc->mem_res != NULL) {
  337                 bus_release_resource(dev, SYS_RES_IOPORT,
  338                     rman_get_rid(sc->mem_res), sc->mem_res);
  339                 sc->mem_res = NULL;
  340         }
  341         if (sc->irq_res != NULL) {
  342                 bus_release_resource(dev, SYS_RES_IRQ,
  343                     rman_get_rid(sc->irq_res), sc->irq_res);
  344                 sc->irq_res = NULL;
  345         }
  346         ATE_LOCK_DESTROY(sc);
  347         return (0);
  348 }
  349 
  350 static void
  351 ate_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  352 {
  353         struct ate_softc *sc;
  354 
  355         if (error != 0)
  356                 return;
  357         sc = (struct ate_softc *)arg;
  358         sc->rx_desc_phys = segs[0].ds_addr;
  359 }
  360 
  361 static void
  362 ate_load_rx_buf(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  363 {
  364         struct ate_softc *sc;
  365         int i;
  366 
  367         if (error != 0)
  368                 return;
  369         sc = (struct ate_softc *)arg;
  370         i = sc->rx_buf_ptr;
  371 
  372         /*
  373          * For the last buffer, set the wrap bit so the controller
  374          * restarts from the first descriptor.
  375          */
  376         bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map, BUS_DMASYNC_PREWRITE);
  377         if (i == ATE_MAX_RX_BUFFERS - 1)
  378                 sc->rx_descs[i].addr = segs[0].ds_addr | ETH_WRAP_BIT;
  379         else
  380                 sc->rx_descs[i].addr = segs[0].ds_addr;
  381         bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map, BUS_DMASYNC_POSTWRITE);
  382         sc->rx_descs[i].status = 0;
  383         /* Flush the memory in the mbuf */
  384         bus_dmamap_sync(sc->rxtag, sc->rx_map[i], BUS_DMASYNC_PREREAD);
  385 }
  386 
  387 static uint32_t
  388 ate_mac_hash(const uint8_t *buf)
  389 {
  390         uint32_t index = 0;
  391         for (int i = 0; i < 48; i++) {
  392                 index ^= ((buf[i >> 3] >> (i & 7)) & 1) << (i % 6);
  393         }
  394         return (index);
  395 }
  396 
  397 /*
  398  * Compute the multicast filter for this device using the standard
  399  * algorithm.  I wonder why this isn't in ether somewhere as a lot
  400  * of different MAC chips use this method (or the reverse the bits)
  401  * method.
  402  */
  403 static int
  404 ate_setmcast(struct ate_softc *sc)
  405 {
  406         uint32_t index;
  407         uint32_t mcaf[2];
  408         u_char *af = (u_char *) mcaf;
  409         struct ifmultiaddr *ifma;
  410         struct ifnet *ifp;
  411 
  412         ifp = sc->ifp;
  413 
  414         if ((ifp->if_flags & IFF_PROMISC) != 0)
  415                 return (0);
  416         if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
  417                 WR4(sc, ETH_HSL, 0xffffffff);
  418                 WR4(sc, ETH_HSH, 0xffffffff);
  419                 return (1);
  420         }
  421 
  422         /*
  423          * Compute the multicast hash.
  424          */
  425         mcaf[0] = 0;
  426         mcaf[1] = 0;
  427         if_maddr_rlock(ifp);
  428         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  429                 if (ifma->ifma_addr->sa_family != AF_LINK)
  430                         continue;
  431                 index = ate_mac_hash(LLADDR((struct sockaddr_dl *)
  432                     ifma->ifma_addr));
  433                 af[index >> 3] |= 1 << (index & 7);
  434         }
  435         if_maddr_runlock(ifp);
  436 
  437         /*
  438          * Write the hash to the hash register.  This card can also
  439          * accept unicast packets as well as multicast packets using this
  440          * register for easier bridging operations, but we don't take
  441          * advantage of that.  Locks here are to avoid LOR with the
  442          * if_maddr_rlock, but might not be strictly necessary.
  443          */
  444         WR4(sc, ETH_HSL, mcaf[0]);
  445         WR4(sc, ETH_HSH, mcaf[1]);
  446         return (mcaf[0] || mcaf[1]);
  447 }
  448 
  449 static int
  450 ate_activate(device_t dev)
  451 {
  452         struct ate_softc *sc;
  453         int err, i;
  454 
  455         sc = device_get_softc(dev);
  456 
  457         /*
  458          * Allocate DMA tags and maps.
  459          */
  460         err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
  461             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
  462             1, MCLBYTES, 0, busdma_lock_mutex, &sc->sc_mtx, &sc->mtag);
  463         if (err != 0)
  464                 goto errout;
  465         for (i = 0; i < ATE_MAX_TX_BUFFERS; i++) {
  466                 err = bus_dmamap_create(sc->mtag, 0, &sc->tx_map[i]);
  467                 if (err != 0)
  468                         goto errout;
  469         }
  470 
  471         /*
  472          * Allocate DMA tags and maps for RX.
  473          */
  474         err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
  475             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
  476             1, MCLBYTES, 0, busdma_lock_mutex, &sc->sc_mtx, &sc->rxtag);
  477         if (err != 0)
  478                 goto errout;
  479 
  480         /*
  481          * DMA tag and map for the RX descriptors.
  482          */
  483         err = bus_dma_tag_create(bus_get_dma_tag(dev), sizeof(eth_rx_desc_t),
  484             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
  485             ATE_MAX_RX_BUFFERS * sizeof(eth_rx_desc_t), 1,
  486             ATE_MAX_RX_BUFFERS * sizeof(eth_rx_desc_t), 0, busdma_lock_mutex,
  487             &sc->sc_mtx, &sc->rx_desc_tag);
  488         if (err != 0)
  489                 goto errout;
  490         if (bus_dmamem_alloc(sc->rx_desc_tag, (void **)&sc->rx_descs,
  491             BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->rx_desc_map) != 0)
  492                 goto errout;
  493         if (bus_dmamap_load(sc->rx_desc_tag, sc->rx_desc_map,
  494             sc->rx_descs, ATE_MAX_RX_BUFFERS * sizeof(eth_rx_desc_t),
  495             ate_getaddr, sc, 0) != 0)
  496                 goto errout;
  497 
  498         /*
  499          * Allocate our RX buffers.  This chip has a RX structure that's filled
  500          * in.
  501          */
  502         for (i = 0; i < ATE_MAX_RX_BUFFERS; i++) {
  503                 sc->rx_buf_ptr = i;
  504                 if (bus_dmamem_alloc(sc->rxtag, (void **)&sc->rx_buf[i],
  505                       BUS_DMA_NOWAIT, &sc->rx_map[i]) != 0)
  506                         goto errout;
  507                 if (bus_dmamap_load(sc->rxtag, sc->rx_map[i], sc->rx_buf[i],
  508                     MCLBYTES, ate_load_rx_buf, sc, 0) != 0)
  509                         goto errout;
  510         }
  511         sc->rx_buf_ptr = 0;
  512         /* Flush the memory for the EMAC rx descriptor. */
  513         bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map, BUS_DMASYNC_PREWRITE);
  514         /* Write the descriptor queue address. */
  515         WR4(sc, ETH_RBQP, sc->rx_desc_phys);
  516         return (0);
  517 
  518 errout:
  519         return (ENOMEM);
  520 }
  521 
  522 static void
  523 ate_deactivate(struct ate_softc *sc)
  524 {
  525         int i;
  526 
  527         KASSERT(sc != NULL, ("[ate, %d]: sc is NULL!", __LINE__));
  528         if (sc->mtag != NULL) {
  529                 for (i = 0; i < ATE_MAX_TX_BUFFERS; i++) {
  530                         if (sc->sent_mbuf[i] != NULL) {
  531                                 bus_dmamap_sync(sc->mtag, sc->tx_map[i],
  532                                     BUS_DMASYNC_POSTWRITE);
  533                                 bus_dmamap_unload(sc->mtag, sc->tx_map[i]);
  534                                 m_freem(sc->sent_mbuf[i]);
  535                         }
  536                         bus_dmamap_destroy(sc->mtag, sc->tx_map[i]);
  537                         sc->sent_mbuf[i] = NULL;
  538                         sc->tx_map[i] = NULL;
  539                 }
  540                 bus_dma_tag_destroy(sc->mtag);
  541         }
  542         if (sc->rx_desc_tag != NULL) {
  543                 if (sc->rx_descs != NULL) {
  544                         if (sc->rx_desc_phys != 0) {
  545                                 bus_dmamap_sync(sc->rx_desc_tag,
  546                                     sc->rx_desc_map, BUS_DMASYNC_POSTREAD);
  547                                 bus_dmamap_unload(sc->rx_desc_tag,
  548                                     sc->rx_desc_map);
  549                                 sc->rx_desc_phys = 0;
  550                         }
  551                 }
  552         }
  553         if (sc->rxtag != NULL) {
  554                 for (i = 0; i < ATE_MAX_RX_BUFFERS; i++) {
  555                         if (sc->rx_buf[i] != NULL) {
  556                                 if (sc->rx_descs[i].addr != 0) {
  557                                         bus_dmamap_sync(sc->rxtag,
  558                                             sc->rx_map[i],
  559                                             BUS_DMASYNC_POSTREAD);
  560                                         bus_dmamap_unload(sc->rxtag,
  561                                             sc->rx_map[i]);
  562                                         sc->rx_descs[i].addr = 0;
  563                                 }
  564                                 bus_dmamem_free(sc->rxtag, sc->rx_buf[i],
  565                                     sc->rx_map[i]);
  566                                 sc->rx_buf[i] = NULL;
  567                                 sc->rx_map[i] = NULL;
  568                         }
  569                 }
  570                 bus_dma_tag_destroy(sc->rxtag);
  571         }
  572         if (sc->rx_desc_tag != NULL) {
  573                 if (sc->rx_descs != NULL)
  574                         bus_dmamem_free(sc->rx_desc_tag, sc->rx_descs,
  575                             sc->rx_desc_map);
  576                 bus_dma_tag_destroy(sc->rx_desc_tag);
  577                 sc->rx_descs = NULL;
  578                 sc->rx_desc_tag = NULL;
  579         }
  580 }
  581 
  582 /*
  583  * Change media according to request.
  584  */
  585 static int
  586 ate_ifmedia_upd(struct ifnet *ifp)
  587 {
  588         struct ate_softc *sc = ifp->if_softc;
  589         struct mii_data *mii;
  590 
  591         mii = device_get_softc(sc->miibus);
  592         ATE_LOCK(sc);
  593         mii_mediachg(mii);
  594         ATE_UNLOCK(sc);
  595         return (0);
  596 }
  597 
  598 /*
  599  * Notify the world which media we're using.
  600  */
  601 static void
  602 ate_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
  603 {
  604         struct ate_softc *sc = ifp->if_softc;
  605         struct mii_data *mii;
  606 
  607         mii = device_get_softc(sc->miibus);
  608         ATE_LOCK(sc);
  609         mii_pollstat(mii);
  610         ifmr->ifm_active = mii->mii_media_active;
  611         ifmr->ifm_status = mii->mii_media_status;
  612         ATE_UNLOCK(sc);
  613 }
  614 
  615 static void
  616 ate_stat_update(struct ate_softc *sc, int active)
  617 {
  618         uint32_t reg;
  619 
  620         /*
  621          * The speed and full/half-duplex state needs to be reflected
  622          * in the ETH_CFG register.
  623          */
  624         reg = RD4(sc, ETH_CFG);
  625         reg &= ~(ETH_CFG_SPD | ETH_CFG_FD);
  626         if (IFM_SUBTYPE(active) != IFM_10_T)
  627                 reg |= ETH_CFG_SPD;
  628         if (active & IFM_FDX)
  629                 reg |= ETH_CFG_FD;
  630         WR4(sc, ETH_CFG, reg);
  631 }
  632 
  633 static void
  634 ate_tick(void *xsc)
  635 {
  636         struct ate_softc *sc = xsc;
  637         struct ifnet *ifp = sc->ifp;
  638         struct mii_data *mii;
  639         int active;
  640         uint32_t c;
  641 
  642         /*
  643          * The KB920x boot loader tests ETH_SR & ETH_SR_LINK and will ask
  644          * the MII if there's a link if this bit is clear.  Not sure if we
  645          * should do the same thing here or not.
  646          */
  647         ATE_ASSERT_LOCKED(sc);
  648         if (sc->miibus != NULL) {
  649                 mii = device_get_softc(sc->miibus);
  650                 active = mii->mii_media_active;
  651                 mii_tick(mii);
  652                 if (mii->mii_media_status & IFM_ACTIVE &&
  653                      active != mii->mii_media_active)
  654                         ate_stat_update(sc, mii->mii_media_active);
  655         }
  656 
  657         /*
  658          * Update the stats as best we can.  When we're done, clear
  659          * the status counters and start over.  We're supposed to read these
  660          * registers often enough that they won't overflow.  Hopefully
  661          * once a second is often enough.  Some don't map well to
  662          * the dot3Stats mib, so for those we just count them as general
  663          * errors.  Stats for iframes, ibutes, oframes and obytes are
  664          * collected elsewhere.  These registers zero on a read to prevent
  665          * races.  For all the collision stats, also update the collision
  666          * stats for the interface.
  667          */
  668         sc->mibdata.dot3StatsAlignmentErrors += RD4(sc, ETH_ALE);
  669         sc->mibdata.dot3StatsFCSErrors += RD4(sc, ETH_SEQE);
  670         c = RD4(sc, ETH_SCOL);
  671         ifp->if_collisions += c;
  672         sc->mibdata.dot3StatsSingleCollisionFrames += c;
  673         c = RD4(sc, ETH_MCOL);
  674         sc->mibdata.dot3StatsMultipleCollisionFrames += c;
  675         ifp->if_collisions += c;
  676         sc->mibdata.dot3StatsSQETestErrors += RD4(sc, ETH_SQEE);
  677         sc->mibdata.dot3StatsDeferredTransmissions += RD4(sc, ETH_DTE);
  678         c = RD4(sc, ETH_LCOL);
  679         sc->mibdata.dot3StatsLateCollisions += c;
  680         ifp->if_collisions += c;
  681         c = RD4(sc, ETH_ECOL);
  682         sc->mibdata.dot3StatsExcessiveCollisions += c;
  683         ifp->if_collisions += c;
  684         sc->mibdata.dot3StatsCarrierSenseErrors += RD4(sc, ETH_CSE);
  685         sc->mibdata.dot3StatsFrameTooLongs += RD4(sc, ETH_ELR);
  686         sc->mibdata.dot3StatsInternalMacReceiveErrors += RD4(sc, ETH_DRFC);
  687 
  688         /*
  689          * Not sure where to lump these, so count them against the errors
  690          * for the interface.
  691          */
  692         sc->ifp->if_oerrors += RD4(sc, ETH_TUE);
  693         sc->ifp->if_ierrors += RD4(sc, ETH_CDE) + RD4(sc, ETH_RJB) +
  694             RD4(sc, ETH_USF);
  695 
  696         /*
  697          * Schedule another timeout one second from now.
  698          */
  699         callout_reset(&sc->tick_ch, hz, ate_tick, sc);
  700 }
  701 
  702 static void
  703 ate_set_mac(struct ate_softc *sc, u_char *eaddr)
  704 {
  705 
  706         WR4(sc, ETH_SA1L, (eaddr[3] << 24) | (eaddr[2] << 16) |
  707             (eaddr[1] << 8) | eaddr[0]);
  708         WR4(sc, ETH_SA1H, (eaddr[5] << 8) | (eaddr[4]));
  709 }
  710 
  711 static int
  712 ate_get_mac(struct ate_softc *sc, u_char *eaddr)
  713 {
  714         bus_size_t sa_low_reg[] = { ETH_SA1L, ETH_SA2L, ETH_SA3L, ETH_SA4L };
  715         bus_size_t sa_high_reg[] = { ETH_SA1H, ETH_SA2H, ETH_SA3H, ETH_SA4H };
  716         uint32_t low, high;
  717         int i;
  718 
  719         /*
  720          * The boot loader setup the MAC with an address, if one is set in
  721          * the loader. Grab one MAC address from the SA[1-4][HL] registers.
  722          */
  723         for (i = 0; i < 4; i++) {
  724                 low = RD4(sc, sa_low_reg[i]);
  725                 high = RD4(sc, sa_high_reg[i]);
  726                 if ((low | (high & 0xffff)) != 0) {
  727                         eaddr[0] = low & 0xff;
  728                         eaddr[1] = (low >> 8) & 0xff;
  729                         eaddr[2] = (low >> 16) & 0xff;
  730                         eaddr[3] = (low >> 24) & 0xff;
  731                         eaddr[4] = high & 0xff;
  732                         eaddr[5] = (high >> 8) & 0xff;
  733                         return (0);
  734                 }
  735         }
  736         return (ENXIO);
  737 }
  738 
  739 static void
  740 ate_intr(void *xsc)
  741 {
  742         struct ate_softc *sc = xsc;
  743         struct ifnet *ifp = sc->ifp;
  744         struct mbuf *mb;
  745         void *bp;
  746         uint32_t status, reg, rx_stat;
  747         int i;
  748 
  749         status = RD4(sc, ETH_ISR);
  750         if (status == 0)
  751                 return;
  752         if (status & ETH_ISR_RCOM) {
  753                 bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map,
  754                     BUS_DMASYNC_POSTREAD);
  755                 while (sc->rx_descs[sc->rx_buf_ptr].addr & ETH_CPU_OWNER) {
  756                         i = sc->rx_buf_ptr;
  757                         sc->rx_buf_ptr = (i + 1) % ATE_MAX_RX_BUFFERS;
  758                         bp = sc->rx_buf[i];
  759                         rx_stat = sc->rx_descs[i].status;
  760                         if ((rx_stat & ETH_LEN_MASK) == 0) {
  761                                 if (bootverbose)
  762                                         device_printf(sc->dev, "ignoring bogus zero-length packet\n");
  763                                 bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map,
  764                                     BUS_DMASYNC_PREWRITE);
  765                                 sc->rx_descs[i].addr &= ~ETH_CPU_OWNER;
  766                                 bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map,
  767                                     BUS_DMASYNC_POSTWRITE);
  768                                 continue;
  769                         }
  770                         /* Flush memory for mbuf so we don't get stale bytes */
  771                         bus_dmamap_sync(sc->rxtag, sc->rx_map[i],
  772                             BUS_DMASYNC_POSTREAD);
  773                         WR4(sc, ETH_RSR, RD4(sc, ETH_RSR));
  774 
  775                         /*
  776                          * The length returned by the device includes the
  777                          * ethernet CRC calculation for the packet, but
  778                          * ifnet drivers are supposed to discard it.
  779                          */
  780                         mb = m_devget(sc->rx_buf[i],
  781                             (rx_stat & ETH_LEN_MASK) - ETHER_CRC_LEN,
  782                             ETHER_ALIGN, ifp, NULL);
  783                         bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map,
  784                             BUS_DMASYNC_PREWRITE);
  785                         sc->rx_descs[i].addr &= ~ETH_CPU_OWNER;
  786                         bus_dmamap_sync(sc->rx_desc_tag, sc->rx_desc_map,
  787                             BUS_DMASYNC_POSTWRITE);
  788                         bus_dmamap_sync(sc->rxtag, sc->rx_map[i],
  789                             BUS_DMASYNC_PREREAD);
  790                         if (mb != NULL) {
  791                                 ifp->if_ipackets++;
  792                                 (*ifp->if_input)(ifp, mb);
  793                         }
  794                         
  795                 }
  796         }
  797         if (status & ETH_ISR_TCOM) {
  798                 ATE_LOCK(sc);
  799                 /* XXX TSR register should be cleared */
  800                 if (sc->sent_mbuf[0]) {
  801                         bus_dmamap_sync(sc->mtag, sc->tx_map[0],
  802                             BUS_DMASYNC_POSTWRITE);
  803                         bus_dmamap_unload(sc->mtag, sc->tx_map[0]);
  804                         m_freem(sc->sent_mbuf[0]);
  805                         ifp->if_opackets++;
  806                         sc->sent_mbuf[0] = NULL;
  807                 }
  808                 if (sc->sent_mbuf[1]) {
  809                         if (RD4(sc, ETH_TSR) & ETH_TSR_IDLE) {
  810                                 bus_dmamap_sync(sc->mtag, sc->tx_map[1],
  811                                     BUS_DMASYNC_POSTWRITE);
  812                                 bus_dmamap_unload(sc->mtag, sc->tx_map[1]);
  813                                 m_freem(sc->sent_mbuf[1]);
  814                                 ifp->if_opackets++;
  815                                 sc->txcur = 0;
  816                                 sc->sent_mbuf[0] = sc->sent_mbuf[1] = NULL;
  817                         } else {
  818                                 sc->sent_mbuf[0] = sc->sent_mbuf[1];
  819                                 sc->sent_mbuf[1] = NULL;
  820                                 sc->txcur = 1;
  821                         }
  822                 } else {
  823                         sc->sent_mbuf[0] = NULL;
  824                         sc->txcur = 0;
  825                 }
  826                 /*
  827                  * We're no longer busy, so clear the busy flag and call the
  828                  * start routine to xmit more packets.
  829                  */
  830                 sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  831                 atestart_locked(sc->ifp);
  832                 ATE_UNLOCK(sc);
  833         }
  834         if (status & ETH_ISR_RBNA) {
  835                 /* Workaround Errata #11 */
  836                 if (bootverbose)
  837                         device_printf(sc->dev, "RBNA workaround\n");
  838                 reg = RD4(sc, ETH_CTL);
  839                 WR4(sc, ETH_CTL, reg & ~ETH_CTL_RE);
  840                 BARRIER(sc, ETH_CTL, 4, BUS_SPACE_BARRIER_WRITE);
  841                 WR4(sc, ETH_CTL, reg | ETH_CTL_RE);
  842         }
  843 }
  844 
  845 /*
  846  * Reset and initialize the chip.
  847  */
  848 static void
  849 ateinit_locked(void *xsc)
  850 {
  851         struct ate_softc *sc = xsc;
  852         struct ifnet *ifp = sc->ifp;
  853         struct mii_data *mii;
  854         uint8_t eaddr[ETHER_ADDR_LEN];
  855         uint32_t reg;
  856 
  857         ATE_ASSERT_LOCKED(sc);
  858 
  859         /*
  860          * XXX TODO(3)
  861          * we need to turn on the EMAC clock in the pmc.  With the
  862          * default boot loader, this is already turned on.  However, we
  863          * need to think about how best to turn it on/off as the interface
  864          * is brought up/down, as well as dealing with the mii bus...
  865          *
  866          * We also need to multiplex the pins correctly.
  867          */
  868 
  869         /*
  870          * There are two different ways that the mii bus is connected
  871          * to this chip.  Select the right one based on a compile-time
  872          * option.
  873          */
  874         reg = RD4(sc, ETH_CFG);
  875         if (sc->use_rmii)
  876                 reg |= ETH_CFG_RMII;
  877         else
  878                 reg &= ~ETH_CFG_RMII;
  879         WR4(sc, ETH_CFG, reg);
  880 
  881         ate_rxfilter(sc);
  882 
  883         /*
  884          * Set the chip MAC address.
  885          */
  886         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
  887         ate_set_mac(sc, eaddr);
  888 
  889         /*
  890          * Turn on MACs and interrupt processing.
  891          */
  892         WR4(sc, ETH_CTL, RD4(sc, ETH_CTL) | ETH_CTL_TE | ETH_CTL_RE);
  893         WR4(sc, ETH_IER, ETH_ISR_RCOM | ETH_ISR_TCOM | ETH_ISR_RBNA);
  894 
  895         /* Enable big packets. */
  896         WR4(sc, ETH_CFG, RD4(sc, ETH_CFG) | ETH_CFG_BIG);
  897 
  898         /*
  899          * Set 'running' flag, and clear output active flag
  900          * and attempt to start the output.
  901          */
  902         ifp->if_drv_flags |= IFF_DRV_RUNNING;
  903         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  904 
  905         mii = device_get_softc(sc->miibus);
  906         mii_pollstat(mii);
  907         ate_stat_update(sc, mii->mii_media_active);
  908         atestart_locked(ifp);
  909 
  910         callout_reset(&sc->tick_ch, hz, ate_tick, sc);
  911 }
  912 
  913 /*
  914  * Dequeue packets and transmit.
  915  */
  916 static void
  917 atestart_locked(struct ifnet *ifp)
  918 {
  919         struct ate_softc *sc = ifp->if_softc;
  920         struct mbuf *m, *mdefrag;
  921         bus_dma_segment_t segs[1];
  922         int nseg, e;
  923 
  924         ATE_ASSERT_LOCKED(sc);
  925         if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
  926                 return;
  927 
  928         while (sc->txcur < ATE_MAX_TX_BUFFERS) {
  929                 /*
  930                  * Check to see if there's room to put another packet into the
  931                  * xmit queue.  The EMAC chip has a ping-pong buffer for xmit
  932                  * packets.  We use OACTIVE to indicate "we can stuff more into
  933                  * our buffers (clear) or not (set)."
  934                  */
  935                 if (!(RD4(sc, ETH_TSR) & ETH_TSR_BNQ)) {
  936                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
  937                         return;
  938                 }
  939                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
  940                 if (m == 0) {
  941                         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  942                         return;
  943                 }
  944                 e = bus_dmamap_load_mbuf_sg(sc->mtag, sc->tx_map[sc->txcur], m,
  945                     segs, &nseg, 0);
  946                 if (e == EFBIG) {
  947                         mdefrag = m_defrag(m, M_DONTWAIT);
  948                         if (mdefrag == NULL) {
  949                                 IFQ_DRV_PREPEND(&ifp->if_snd, m);
  950                                 return;
  951                         }
  952                         m = mdefrag;
  953                         e = bus_dmamap_load_mbuf_sg(sc->mtag,
  954                             sc->tx_map[sc->txcur], m, segs, &nseg, 0);
  955                 }
  956                 if (e != 0) {
  957                         m_freem(m);
  958                         continue;
  959                 }
  960                 bus_dmamap_sync(sc->mtag, sc->tx_map[sc->txcur],
  961                     BUS_DMASYNC_PREWRITE);
  962 
  963                 /*
  964                  * Tell the hardware to xmit the packet.
  965                  */
  966                 WR4(sc, ETH_TAR, segs[0].ds_addr);
  967                 BARRIER(sc, ETH_TAR, 8, BUS_SPACE_BARRIER_WRITE);
  968                 WR4(sc, ETH_TCR, segs[0].ds_len);
  969         
  970                 /*
  971                  * Tap off here if there is a bpf listener.
  972                  */
  973                 BPF_MTAP(ifp, m);
  974 
  975                 sc->sent_mbuf[sc->txcur] = m;
  976                 sc->txcur++;
  977         }
  978 }
  979 
  980 static void
  981 ateinit(void *xsc)
  982 {
  983         struct ate_softc *sc = xsc;
  984 
  985         ATE_LOCK(sc);
  986         ateinit_locked(sc);
  987         ATE_UNLOCK(sc);
  988 }
  989 
  990 static void
  991 atestart(struct ifnet *ifp)
  992 {
  993         struct ate_softc *sc = ifp->if_softc;
  994 
  995         ATE_LOCK(sc);
  996         atestart_locked(ifp);
  997         ATE_UNLOCK(sc);
  998 }
  999 
 1000 /*
 1001  * Turn off interrupts, and stop the NIC.  Can be called with sc->ifp NULL,
 1002  * so be careful.
 1003  */
 1004 static void
 1005 atestop(struct ate_softc *sc)
 1006 {
 1007         struct ifnet *ifp;
 1008         int i;
 1009 
 1010         ATE_ASSERT_LOCKED(sc);
 1011         ifp = sc->ifp;
 1012         if (ifp) {
 1013                 ifp->if_timer = 0;
 1014                 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1015         }
 1016 
 1017         callout_stop(&sc->tick_ch);
 1018 
 1019         /*
 1020          * Enable some parts of the MAC that are needed always (like the
 1021          * MII bus.  This turns off the RE and TE bits, which will remain
 1022          * off until ateinit() is called to turn them on.  With RE and TE
 1023          * turned off, there's no DMA to worry about after this write.
 1024          */
 1025         WR4(sc, ETH_CTL, ETH_CTL_MPE);
 1026 
 1027         /*
 1028          * Turn off all the configured options and revert to defaults.
 1029          */
 1030         WR4(sc, ETH_CFG, ETH_CFG_CLK_32);
 1031 
 1032         /*
 1033          * Turn off all the interrupts, and ack any pending ones by reading
 1034          * the ISR.
 1035          */
 1036         WR4(sc, ETH_IDR, 0xffffffff);
 1037         RD4(sc, ETH_ISR);
 1038 
 1039         /*
 1040          * Clear out the Transmit and Receiver Status registers of any
 1041          * errors they may be reporting
 1042          */
 1043         WR4(sc, ETH_TSR, 0xffffffff);
 1044         WR4(sc, ETH_RSR, 0xffffffff);
 1045 
 1046         /*
 1047          * Release TX resources.
 1048          */
 1049         for (i = 0; i < ATE_MAX_TX_BUFFERS; i++) {
 1050                 if (sc->sent_mbuf[i] != NULL) {
 1051                         bus_dmamap_sync(sc->mtag, sc->tx_map[i],
 1052                             BUS_DMASYNC_POSTWRITE);
 1053                         bus_dmamap_unload(sc->mtag, sc->tx_map[i]);
 1054                         m_freem(sc->sent_mbuf[i]);
 1055                         sc->sent_mbuf[i] = NULL;
 1056                 }
 1057         }
 1058 
 1059         /*
 1060          * XXX we should power down the EMAC if it isn't in use, after
 1061          * putting it into loopback mode.  This saves about 400uA according
 1062          * to the datasheet.
 1063          */
 1064 }
 1065 
 1066 static void
 1067 ate_rxfilter(struct ate_softc *sc)
 1068 {
 1069         struct ifnet *ifp;
 1070         uint32_t reg;
 1071         int enabled;
 1072 
 1073         KASSERT(sc != NULL, ("[ate, %d]: sc is NULL!", __LINE__));
 1074         ATE_ASSERT_LOCKED(sc);
 1075         ifp = sc->ifp;
 1076 
 1077         /*
 1078          * Wipe out old filter settings.
 1079          */
 1080         reg = RD4(sc, ETH_CFG);
 1081         reg &= ~(ETH_CFG_CAF | ETH_CFG_MTI | ETH_CFG_UNI);
 1082         reg |= ETH_CFG_NBC;
 1083         sc->flags &= ~ATE_FLAG_MULTICAST;
 1084 
 1085         /*
 1086          * Set new parameters.
 1087          */
 1088         if ((ifp->if_flags & IFF_BROADCAST) != 0)
 1089                 reg &= ~ETH_CFG_NBC;
 1090         if ((ifp->if_flags & IFF_PROMISC) != 0) {
 1091                 reg |= ETH_CFG_CAF;
 1092         } else {
 1093                 enabled = ate_setmcast(sc);
 1094                 if (enabled != 0) {
 1095                         reg |= ETH_CFG_MTI;
 1096                         sc->flags |= ATE_FLAG_MULTICAST;
 1097                 }
 1098         }
 1099         WR4(sc, ETH_CFG, reg);
 1100 }
 1101 
 1102 static int
 1103 ateioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1104 {
 1105         struct ate_softc *sc = ifp->if_softc;
 1106         struct mii_data *mii;
 1107         struct ifreq *ifr = (struct ifreq *)data;       
 1108         int drv_flags, flags;
 1109         int mask, error, enabled;
 1110 
 1111         error = 0;
 1112         flags = ifp->if_flags;
 1113         drv_flags = ifp->if_drv_flags;
 1114         switch (cmd) {
 1115         case SIOCSIFFLAGS:
 1116                 ATE_LOCK(sc);
 1117                 if ((flags & IFF_UP) != 0) {
 1118                         if ((drv_flags & IFF_DRV_RUNNING) != 0) {
 1119                                 if (((flags ^ sc->if_flags)
 1120                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1121                                         ate_rxfilter(sc);
 1122                         } else {
 1123                                 if ((sc->flags & ATE_FLAG_DETACHING) == 0)
 1124                                         ateinit_locked(sc);
 1125                         }
 1126                 } else if ((drv_flags & IFF_DRV_RUNNING) != 0) {
 1127                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1128                         atestop(sc);
 1129                 }
 1130                 sc->if_flags = flags;
 1131                 ATE_UNLOCK(sc);
 1132                 break;
 1133 
 1134         case SIOCADDMULTI:
 1135         case SIOCDELMULTI:
 1136                 if ((drv_flags & IFF_DRV_RUNNING) != 0) {
 1137                         ATE_LOCK(sc);
 1138                         enabled = ate_setmcast(sc);
 1139                         if (enabled != (sc->flags & ATE_FLAG_MULTICAST))
 1140                                 ate_rxfilter(sc);
 1141                         ATE_UNLOCK(sc);
 1142                 }
 1143                 break;
 1144 
 1145         case SIOCSIFMEDIA:
 1146         case SIOCGIFMEDIA:
 1147                 mii = device_get_softc(sc->miibus);
 1148                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 1149                 break;
 1150         case SIOCSIFCAP:
 1151                 mask = ifp->if_capenable ^ ifr->ifr_reqcap;
 1152                 if (mask & IFCAP_VLAN_MTU) {
 1153                         ATE_LOCK(sc);
 1154                         if (ifr->ifr_reqcap & IFCAP_VLAN_MTU) {
 1155                                 WR4(sc, ETH_CFG, RD4(sc, ETH_CFG) | ETH_CFG_BIG);
 1156                                 ifp->if_capenable |= IFCAP_VLAN_MTU;
 1157                         } else {
 1158                                 WR4(sc, ETH_CFG, RD4(sc, ETH_CFG) & ~ETH_CFG_BIG);
 1159                                 ifp->if_capenable &= ~IFCAP_VLAN_MTU;
 1160                         }
 1161                         ATE_UNLOCK(sc);
 1162                 }
 1163         default:
 1164                 error = ether_ioctl(ifp, cmd, data);
 1165                 break;
 1166         }
 1167         return (error);
 1168 }
 1169 
 1170 static void
 1171 ate_child_detached(device_t dev, device_t child)
 1172 {
 1173         struct ate_softc *sc;
 1174 
 1175         sc = device_get_softc(dev);
 1176         if (child == sc->miibus)
 1177                 sc->miibus = NULL;
 1178 }
 1179 
 1180 /*
 1181  * MII bus support routines.
 1182  */
 1183 static int
 1184 ate_miibus_readreg(device_t dev, int phy, int reg)
 1185 {
 1186         struct ate_softc *sc;
 1187         int val;
 1188 
 1189         /*
 1190          * XXX if we implement agressive power savings, then we need
 1191          * XXX to make sure that the clock to the emac is on here
 1192          */
 1193 
 1194         sc = device_get_softc(dev);
 1195         DELAY(1);       /* Hangs w/o this delay really 30.5us atm */
 1196         WR4(sc, ETH_MAN, ETH_MAN_REG_RD(phy, reg));
 1197         while ((RD4(sc, ETH_SR) & ETH_SR_IDLE) == 0)
 1198                 continue;
 1199         val = RD4(sc, ETH_MAN) & ETH_MAN_VALUE_MASK;
 1200 
 1201         return (val);
 1202 }
 1203 
 1204 static int
 1205 ate_miibus_writereg(device_t dev, int phy, int reg, int data)
 1206 {
 1207         struct ate_softc *sc;
 1208         
 1209         /*
 1210          * XXX if we implement agressive power savings, then we need
 1211          * XXX to make sure that the clock to the emac is on here
 1212          */
 1213 
 1214         sc = device_get_softc(dev);
 1215         WR4(sc, ETH_MAN, ETH_MAN_REG_WR(phy, reg, data));
 1216         while ((RD4(sc, ETH_SR) & ETH_SR_IDLE) == 0)
 1217                 continue;
 1218         return (0);
 1219 }
 1220 
 1221 static device_method_t ate_methods[] = {
 1222         /* Device interface */
 1223         DEVMETHOD(device_probe,         ate_probe),
 1224         DEVMETHOD(device_attach,        ate_attach),
 1225         DEVMETHOD(device_detach,        ate_detach),
 1226 
 1227         /* Bus interface */
 1228         DEVMETHOD(bus_child_detached,   ate_child_detached),
 1229 
 1230         /* MII interface */
 1231         DEVMETHOD(miibus_readreg,       ate_miibus_readreg),
 1232         DEVMETHOD(miibus_writereg,      ate_miibus_writereg),
 1233 
 1234         { 0, 0 }
 1235 };
 1236 
 1237 static driver_t ate_driver = {
 1238         "ate",
 1239         ate_methods,
 1240         sizeof(struct ate_softc),
 1241 };
 1242 
 1243 DRIVER_MODULE(ate, atmelarm, ate_driver, ate_devclass, 0, 0);
 1244 DRIVER_MODULE(miibus, ate, miibus_driver, miibus_devclass, 0, 0);
 1245 MODULE_DEPEND(ate, miibus, 1, 1, 1);
 1246 MODULE_DEPEND(ate, ether, 1, 1, 1);

Cache object: ccb54bfb3e51e929fd9d9887daf65fc9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.