1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001 Tsubai Masanari.
5 * Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
6 * Copyright (c) 2013 Luiz Otavio O Souza <loos@freebsd.org>
7 * Copyright (c) 2017 Ian Lepore <ian@freebsd.org>
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 /*
36 * Driver for bcm2835 i2c-compatible two-wire bus, named 'BSC' on this SoC.
37 *
38 * This controller can only perform complete transfers, it does not provide
39 * low-level control over sending start/repeat-start/stop sequences on the bus.
40 * In addition, bugs in the silicon make it somewhat difficult to perform a
41 * repeat-start, and limit the repeat-start to a read following a write on
42 * the same slave device. (The i2c protocol allows a repeat start to change
43 * direction or not, and change slave address or not at any time.)
44 *
45 * The repeat-start bug and workaround are described in a problem report at
46 * https://github.com/raspberrypi/linux/issues/254 with the crucial part being
47 * in a comment block from a fragment of a GPU i2c driver, containing this:
48 *
49 * -----------------------------------------------------------------------------
50 * - See i2c.v: The I2C peripheral samples the values for rw_bit and xfer_count
51 * - in the IDLE state if start is set.
52 * -
53 * - We want to generate a ReSTART not a STOP at the end of the TX phase. In
54 * - order to do that we must ensure the state machine goes RACK1 -> RACK2 ->
55 * - SRSTRT1 (not RACK1 -> RACK2 -> SSTOP1).
56 * -
57 * - So, in the RACK2 state when (TX) xfer_count==0 we must therefore have
58 * - already set, ready to be sampled:
59 * - READ ; rw_bit <= I2CC bit 0 -- must be "read"
60 * - ST; start <= I2CC bit 7 -- must be "Go" in order to not issue STOP
61 * - DLEN; xfer_count <= I2CDLEN -- must be equal to our read amount
62 * -
63 * - The plan to do this is:
64 * - 1. Start the sub-address write, but don't let it finish
65 * - (keep xfer_count > 0)
66 * - 2. Populate READ, DLEN and ST in preparation for ReSTART read sequence
67 * - 3. Let TX finish (write the rest of the data)
68 * - 4. Read back data as it arrives
69 * -----------------------------------------------------------------------------
70 *
71 * The transfer function below scans the list of messages passed to it, looking
72 * for a read following a write to the same slave. When it finds that, it
73 * starts the write without prefilling the tx fifo, which holds xfer_count>0,
74 * then presets the direction, length, and start command for the following read,
75 * as described above. Then the tx fifo is filled and the rest of the transfer
76 * proceeds as normal, with the controller automatically supplying a
77 * repeat-start on the bus when the write operation finishes.
78 *
79 * XXX I suspect the controller may be able to do a repeat-start on any
80 * write->read or write->write transition, even when the slave addresses differ.
81 * It's unclear whether the slave address can be prestaged along with the
82 * direction and length while the write xfer_count is being held at zero. In
83 * fact, if it can't do this, then it couldn't be used to read EDID data.
84 */
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/lock.h>
90 #include <sys/module.h>
91 #include <sys/mutex.h>
92 #include <sys/bus.h>
93 #include <machine/resource.h>
94 #include <machine/bus.h>
95 #include <sys/rman.h>
96 #include <sys/sysctl.h>
97
98 #include <dev/iicbus/iicbus.h>
99 #include <dev/iicbus/iiconf.h>
100 #include <dev/ofw/ofw_bus.h>
101 #include <dev/ofw/ofw_bus_subr.h>
102
103 #include <arm/broadcom/bcm2835/bcm2835_bscreg.h>
104 #include <arm/broadcom/bcm2835/bcm2835_bscvar.h>
105
106 #include "iicbus_if.h"
107
108 static struct ofw_compat_data compat_data[] = {
109 {"broadcom,bcm2835-bsc", 1},
110 {"brcm,bcm2708-i2c", 1},
111 {"brcm,bcm2835-i2c", 1},
112 {NULL, 0}
113 };
114
115 #define DEVICE_DEBUGF(sc, lvl, fmt, args...) \
116 if ((lvl) <= (sc)->sc_debug) \
117 device_printf((sc)->sc_dev, fmt, ##args)
118
119 #define DEBUGF(sc, lvl, fmt, args...) \
120 if ((lvl) <= (sc)->sc_debug) \
121 printf(fmt, ##args)
122
123 static void bcm_bsc_intr(void *);
124 static int bcm_bsc_detach(device_t);
125
126 static void
127 bcm_bsc_modifyreg(struct bcm_bsc_softc *sc, uint32_t off, uint32_t mask,
128 uint32_t value)
129 {
130 uint32_t reg;
131
132 mtx_assert(&sc->sc_mtx, MA_OWNED);
133 reg = BCM_BSC_READ(sc, off);
134 reg &= ~mask;
135 reg |= value;
136 BCM_BSC_WRITE(sc, off, reg);
137 }
138
139 static int
140 bcm_bsc_clock_proc(SYSCTL_HANDLER_ARGS)
141 {
142 struct bcm_bsc_softc *sc;
143 uint32_t clk;
144
145 sc = (struct bcm_bsc_softc *)arg1;
146 BCM_BSC_LOCK(sc);
147 clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
148 BCM_BSC_UNLOCK(sc);
149 clk &= 0xffff;
150 if (clk == 0)
151 clk = 32768;
152 clk = BCM_BSC_CORE_CLK / clk;
153
154 return (sysctl_handle_int(oidp, &clk, 0, req));
155 }
156
157 static int
158 bcm_bsc_clkt_proc(SYSCTL_HANDLER_ARGS)
159 {
160 struct bcm_bsc_softc *sc;
161 uint32_t clkt;
162 int error;
163
164 sc = (struct bcm_bsc_softc *)arg1;
165
166 BCM_BSC_LOCK(sc);
167 clkt = BCM_BSC_READ(sc, BCM_BSC_CLKT);
168 BCM_BSC_UNLOCK(sc);
169 clkt &= 0xffff;
170 error = sysctl_handle_int(oidp, &clkt, sizeof(clkt), req);
171 if (error != 0 || req->newptr == NULL)
172 return (error);
173
174 BCM_BSC_LOCK(sc);
175 BCM_BSC_WRITE(sc, BCM_BSC_CLKT, clkt & 0xffff);
176 BCM_BSC_UNLOCK(sc);
177
178 return (0);
179 }
180
181 static int
182 bcm_bsc_fall_proc(SYSCTL_HANDLER_ARGS)
183 {
184 struct bcm_bsc_softc *sc;
185 uint32_t clk, reg;
186 int error;
187
188 sc = (struct bcm_bsc_softc *)arg1;
189
190 BCM_BSC_LOCK(sc);
191 reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
192 BCM_BSC_UNLOCK(sc);
193 reg >>= 16;
194 error = sysctl_handle_int(oidp, ®, sizeof(reg), req);
195 if (error != 0 || req->newptr == NULL)
196 return (error);
197
198 BCM_BSC_LOCK(sc);
199 clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
200 clk = BCM_BSC_CORE_CLK / clk;
201 if (reg > clk / 2)
202 reg = clk / 2 - 1;
203 bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff0000, reg << 16);
204 BCM_BSC_UNLOCK(sc);
205
206 return (0);
207 }
208
209 static int
210 bcm_bsc_rise_proc(SYSCTL_HANDLER_ARGS)
211 {
212 struct bcm_bsc_softc *sc;
213 uint32_t clk, reg;
214 int error;
215
216 sc = (struct bcm_bsc_softc *)arg1;
217
218 BCM_BSC_LOCK(sc);
219 reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
220 BCM_BSC_UNLOCK(sc);
221 reg &= 0xffff;
222 error = sysctl_handle_int(oidp, ®, sizeof(reg), req);
223 if (error != 0 || req->newptr == NULL)
224 return (error);
225
226 BCM_BSC_LOCK(sc);
227 clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
228 clk = BCM_BSC_CORE_CLK / clk;
229 if (reg > clk / 2)
230 reg = clk / 2 - 1;
231 bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff, reg);
232 BCM_BSC_UNLOCK(sc);
233
234 return (0);
235 }
236
237 static void
238 bcm_bsc_sysctl_init(struct bcm_bsc_softc *sc)
239 {
240 struct sysctl_ctx_list *ctx;
241 struct sysctl_oid *tree_node;
242 struct sysctl_oid_list *tree;
243
244 /*
245 * Add system sysctl tree/handlers.
246 */
247 ctx = device_get_sysctl_ctx(sc->sc_dev);
248 tree_node = device_get_sysctl_tree(sc->sc_dev);
249 tree = SYSCTL_CHILDREN(tree_node);
250 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "frequency",
251 CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
252 sc, sizeof(*sc),
253 bcm_bsc_clock_proc, "IU", "I2C BUS clock frequency");
254 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clock_stretch",
255 CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
256 sc, sizeof(*sc),
257 bcm_bsc_clkt_proc, "IU", "I2C BUS clock stretch timeout");
258 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "fall_edge_delay",
259 CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
260 sc, sizeof(*sc),
261 bcm_bsc_fall_proc, "IU", "I2C BUS falling edge delay");
262 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rise_edge_delay",
263 CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT,
264 sc, sizeof(*sc),
265 bcm_bsc_rise_proc, "IU", "I2C BUS rising edge delay");
266 SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "debug",
267 CTLFLAG_RWTUN, &sc->sc_debug, 0,
268 "Enable debug; 1=reads/writes, 2=add starts/stops");
269 }
270
271 static void
272 bcm_bsc_reset(struct bcm_bsc_softc *sc)
273 {
274
275 /* Enable the BSC Controller, disable interrupts. */
276 BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN);
277 /* Clear pending interrupts. */
278 BCM_BSC_WRITE(sc, BCM_BSC_STATUS, BCM_BSC_STATUS_CLKT |
279 BCM_BSC_STATUS_ERR | BCM_BSC_STATUS_DONE);
280 /* Clear the FIFO. */
281 bcm_bsc_modifyreg(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_CLEAR0,
282 BCM_BSC_CTRL_CLEAR0);
283 }
284
285 static int
286 bcm_bsc_probe(device_t dev)
287 {
288
289 if (!ofw_bus_status_okay(dev))
290 return (ENXIO);
291
292 if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
293 return (ENXIO);
294
295 device_set_desc(dev, "BCM2708/2835 BSC controller");
296
297 return (BUS_PROBE_DEFAULT);
298 }
299
300 static int
301 bcm_bsc_attach(device_t dev)
302 {
303 struct bcm_bsc_softc *sc;
304 int rid;
305
306 sc = device_get_softc(dev);
307 sc->sc_dev = dev;
308
309 rid = 0;
310 sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
311 RF_ACTIVE);
312 if (!sc->sc_mem_res) {
313 device_printf(dev, "cannot allocate memory window\n");
314 return (ENXIO);
315 }
316
317 sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
318 sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
319
320 rid = 0;
321 sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
322 RF_ACTIVE | RF_SHAREABLE);
323 if (!sc->sc_irq_res) {
324 bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
325 device_printf(dev, "cannot allocate interrupt\n");
326 return (ENXIO);
327 }
328
329 /* Hook up our interrupt handler. */
330 if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
331 NULL, bcm_bsc_intr, sc, &sc->sc_intrhand)) {
332 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
333 bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
334 device_printf(dev, "cannot setup the interrupt handler\n");
335 return (ENXIO);
336 }
337
338 mtx_init(&sc->sc_mtx, "bcm_bsc", NULL, MTX_DEF);
339
340 bcm_bsc_sysctl_init(sc);
341
342 /* Enable the BSC controller. Flush the FIFO. */
343 BCM_BSC_LOCK(sc);
344 bcm_bsc_reset(sc);
345 BCM_BSC_UNLOCK(sc);
346
347 sc->sc_iicbus = device_add_child(dev, "iicbus", -1);
348 if (sc->sc_iicbus == NULL) {
349 bcm_bsc_detach(dev);
350 return (ENXIO);
351 }
352
353 /* Probe and attach the iicbus when interrupts are available. */
354 return (bus_delayed_attach_children(dev));
355 }
356
357 static int
358 bcm_bsc_detach(device_t dev)
359 {
360 struct bcm_bsc_softc *sc;
361
362 bus_generic_detach(dev);
363
364 sc = device_get_softc(dev);
365 if (sc->sc_iicbus != NULL)
366 device_delete_child(dev, sc->sc_iicbus);
367 mtx_destroy(&sc->sc_mtx);
368 if (sc->sc_intrhand)
369 bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
370 if (sc->sc_irq_res)
371 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
372 if (sc->sc_mem_res)
373 bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
374
375 return (0);
376 }
377
378 static void
379 bcm_bsc_empty_rx_fifo(struct bcm_bsc_softc *sc)
380 {
381 uint32_t status;
382
383 /* Assumes sc_totlen > 0 and BCM_BSC_STATUS_RXD is asserted on entry. */
384 do {
385 if (sc->sc_resid == 0) {
386 sc->sc_data = sc->sc_curmsg->buf;
387 sc->sc_dlen = sc->sc_curmsg->len;
388 sc->sc_resid = sc->sc_dlen;
389 ++sc->sc_curmsg;
390 }
391 do {
392 *sc->sc_data = BCM_BSC_READ(sc, BCM_BSC_DATA);
393 DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
394 ++sc->sc_data;
395 --sc->sc_resid;
396 --sc->sc_totlen;
397 status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
398 } while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_RXD));
399 } while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_RXD));
400 }
401
402 static void
403 bcm_bsc_fill_tx_fifo(struct bcm_bsc_softc *sc)
404 {
405 uint32_t status;
406
407 /* Assumes sc_totlen > 0 and BCM_BSC_STATUS_TXD is asserted on entry. */
408 do {
409 if (sc->sc_resid == 0) {
410 sc->sc_data = sc->sc_curmsg->buf;
411 sc->sc_dlen = sc->sc_curmsg->len;
412 sc->sc_resid = sc->sc_dlen;
413 ++sc->sc_curmsg;
414 }
415 do {
416 BCM_BSC_WRITE(sc, BCM_BSC_DATA, *sc->sc_data);
417 DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
418 ++sc->sc_data;
419 --sc->sc_resid;
420 --sc->sc_totlen;
421 status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
422 } while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_TXD));
423 /*
424 * If a repeat-start was pending and we just hit the end of a tx
425 * buffer, see if it's also the end of the writes that preceeded
426 * the repeat-start. If so, log the repeat-start and the start
427 * of the following read, and return because we're not writing
428 * anymore (and TXD will be true because there's room to write
429 * in the fifo).
430 */
431 if (sc->sc_replen > 0 && sc->sc_resid == 0) {
432 sc->sc_replen -= sc->sc_dlen;
433 if (sc->sc_replen == 0) {
434 DEBUGF(sc, 1, " err=0\n");
435 DEVICE_DEBUGF(sc, 2, "rstart 0x%02x\n",
436 sc->sc_curmsg->slave | 0x01);
437 DEVICE_DEBUGF(sc, 1,
438 "read 0x%02x len %d: ",
439 sc->sc_curmsg->slave | 0x01,
440 sc->sc_totlen);
441 sc->sc_flags |= BCM_I2C_READ;
442 return;
443 }
444 }
445 } while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_TXD));
446 }
447
448 static void
449 bcm_bsc_intr(void *arg)
450 {
451 struct bcm_bsc_softc *sc;
452 uint32_t status;
453
454 sc = (struct bcm_bsc_softc *)arg;
455
456 BCM_BSC_LOCK(sc);
457
458 /* The I2C interrupt is shared among all the BSC controllers. */
459 if ((sc->sc_flags & BCM_I2C_BUSY) == 0) {
460 BCM_BSC_UNLOCK(sc);
461 return;
462 }
463
464 status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
465 DEBUGF(sc, 4, " <intrstatus=0x%08x> ", status);
466
467 /* RXD and DONE can assert together, empty fifo before checking done. */
468 if ((sc->sc_flags & BCM_I2C_READ) && (status & BCM_BSC_STATUS_RXD))
469 bcm_bsc_empty_rx_fifo(sc);
470
471 /* Check for completion. */
472 if (status & (BCM_BSC_STATUS_ERRBITS | BCM_BSC_STATUS_DONE)) {
473 sc->sc_flags |= BCM_I2C_DONE;
474 if (status & BCM_BSC_STATUS_ERRBITS)
475 sc->sc_flags |= BCM_I2C_ERROR;
476 /* Disable interrupts. */
477 bcm_bsc_reset(sc);
478 wakeup(sc);
479 } else if (!(sc->sc_flags & BCM_I2C_READ)) {
480 /*
481 * Don't check for TXD until after determining whether the
482 * transfer is complete; TXD will be asserted along with ERR or
483 * DONE if there is room in the fifo.
484 */
485 if ((status & BCM_BSC_STATUS_TXD) && sc->sc_totlen > 0)
486 bcm_bsc_fill_tx_fifo(sc);
487 }
488
489 BCM_BSC_UNLOCK(sc);
490 }
491
492 static int
493 bcm_bsc_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
494 {
495 struct bcm_bsc_softc *sc;
496 struct iic_msg *endmsgs, *nxtmsg;
497 uint32_t readctl, status;
498 int err;
499 uint16_t curlen;
500 uint8_t curisread, curslave, nxtisread, nxtslave;
501
502 sc = device_get_softc(dev);
503 BCM_BSC_LOCK(sc);
504
505 /* If the controller is busy wait until it is available. */
506 while (sc->sc_flags & BCM_I2C_BUSY)
507 mtx_sleep(dev, &sc->sc_mtx, 0, "bscbusw", 0);
508
509 /* Now we have control over the BSC controller. */
510 sc->sc_flags = BCM_I2C_BUSY;
511
512 DEVICE_DEBUGF(sc, 3, "Transfer %d msgs\n", nmsgs);
513
514 /* Clear the FIFO and the pending interrupts. */
515 bcm_bsc_reset(sc);
516
517 /*
518 * Perform all the transfers requested in the array of msgs. Note that
519 * it is bcm_bsc_empty_rx_fifo() and bcm_bsc_fill_tx_fifo() that advance
520 * sc->sc_curmsg through the array of messages, as the data from each
521 * message is fully consumed, but it is this loop that notices when we
522 * have no more messages to process.
523 */
524 err = 0;
525 sc->sc_resid = 0;
526 sc->sc_curmsg = msgs;
527 endmsgs = &msgs[nmsgs];
528 while (sc->sc_curmsg < endmsgs) {
529 readctl = 0;
530 curslave = sc->sc_curmsg->slave >> 1;
531 curisread = sc->sc_curmsg->flags & IIC_M_RD;
532 sc->sc_replen = 0;
533 sc->sc_totlen = sc->sc_curmsg->len;
534 /*
535 * Scan for scatter/gather IO (same slave and direction) or
536 * repeat-start (read following write for the same slave).
537 */
538 for (nxtmsg = sc->sc_curmsg + 1; nxtmsg < endmsgs; ++nxtmsg) {
539 nxtslave = nxtmsg->slave >> 1;
540 if (curslave == nxtslave) {
541 nxtisread = nxtmsg->flags & IIC_M_RD;
542 if (curisread == nxtisread) {
543 /*
544 * Same slave and direction, this
545 * message will be part of the same
546 * transfer as the previous one.
547 */
548 sc->sc_totlen += nxtmsg->len;
549 continue;
550 } else if (curisread == IIC_M_WR) {
551 /*
552 * Read after write to same slave means
553 * repeat-start, remember how many bytes
554 * come before the repeat-start, switch
555 * the direction to IIC_M_RD, and gather
556 * up following reads to the same slave.
557 */
558 curisread = IIC_M_RD;
559 sc->sc_replen = sc->sc_totlen;
560 sc->sc_totlen += nxtmsg->len;
561 continue;
562 }
563 }
564 break;
565 }
566
567 /*
568 * curslave and curisread temporaries from above may refer to
569 * the after-repstart msg, reset them to reflect sc_curmsg.
570 */
571 curisread = (sc->sc_curmsg->flags & IIC_M_RD) ? 1 : 0;
572 curslave = sc->sc_curmsg->slave | curisread;
573
574 /* Write the slave address. */
575 BCM_BSC_WRITE(sc, BCM_BSC_SLAVE, curslave >> 1);
576
577 DEVICE_DEBUGF(sc, 2, "start 0x%02x\n", curslave);
578
579 /*
580 * Either set up read length and direction variables for a
581 * simple transfer or get the hardware started on the first
582 * piece of a transfer that involves a repeat-start and set up
583 * the read length and direction vars for the second piece.
584 */
585 if (sc->sc_replen == 0) {
586 DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
587 (curisread) ? "read" : "write", curslave,
588 sc->sc_totlen);
589 curlen = sc->sc_totlen;
590 if (curisread) {
591 readctl = BCM_BSC_CTRL_READ;
592 sc->sc_flags |= BCM_I2C_READ;
593 } else {
594 readctl = 0;
595 sc->sc_flags &= ~BCM_I2C_READ;
596 }
597 } else {
598 DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
599 (curisread) ? "read" : "write", curslave,
600 sc->sc_replen);
601
602 /*
603 * Start the write transfer with an empty fifo and wait
604 * for the 'transfer active' status bit to light up;
605 * that indicates that the hardware has latched the
606 * direction and length for the write, and we can safely
607 * reload those registers and issue the start for the
608 * following read; interrupts are not enabled here.
609 */
610 BCM_BSC_WRITE(sc, BCM_BSC_DLEN, sc->sc_replen);
611 BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN |
612 BCM_BSC_CTRL_ST);
613 do {
614 status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
615 if (status & BCM_BSC_STATUS_ERR) {
616 /* no ACK on slave addr */
617 err = EIO;
618 goto xfer_done;
619 }
620 } while ((status & BCM_BSC_STATUS_TA) == 0);
621 /*
622 * Set curlen and readctl for the repeat-start read that
623 * we need to set up below, but set sc_flags to write,
624 * because that is the operation in progress right now.
625 */
626 curlen = sc->sc_totlen - sc->sc_replen;
627 readctl = BCM_BSC_CTRL_READ;
628 sc->sc_flags &= ~BCM_I2C_READ;
629 }
630
631 /*
632 * Start the transfer with interrupts enabled, then if doing a
633 * write, fill the tx fifo. Not prefilling the fifo until after
634 * this start command is the key workaround for making
635 * repeat-start work, and it's harmless to do it in this order
636 * for a regular write too.
637 */
638 BCM_BSC_WRITE(sc, BCM_BSC_DLEN, curlen);
639 BCM_BSC_WRITE(sc, BCM_BSC_CTRL, readctl | BCM_BSC_CTRL_I2CEN |
640 BCM_BSC_CTRL_ST | BCM_BSC_CTRL_INT_ALL);
641
642 if (!(sc->sc_curmsg->flags & IIC_M_RD)) {
643 bcm_bsc_fill_tx_fifo(sc);
644 }
645
646 /* Wait for the transaction to complete. */
647 while (err == 0 && !(sc->sc_flags & BCM_I2C_DONE)) {
648 err = mtx_sleep(sc, &sc->sc_mtx, 0, "bsciow", hz);
649 }
650 /* Check for errors. */
651 if (err == 0 && (sc->sc_flags & BCM_I2C_ERROR))
652 err = EIO;
653 xfer_done:
654 DEBUGF(sc, 1, " err=%d\n", err);
655 DEVICE_DEBUGF(sc, 2, "stop\n");
656 if (err != 0)
657 break;
658 }
659
660 /* Disable interrupts, clean fifo, etc. */
661 bcm_bsc_reset(sc);
662
663 /* Clean the controller flags. */
664 sc->sc_flags = 0;
665
666 /* Wake up the threads waiting for bus. */
667 wakeup(dev);
668
669 BCM_BSC_UNLOCK(sc);
670
671 return (err);
672 }
673
674 static int
675 bcm_bsc_iicbus_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr)
676 {
677 struct bcm_bsc_softc *sc;
678 uint32_t busfreq;
679
680 sc = device_get_softc(dev);
681 BCM_BSC_LOCK(sc);
682 bcm_bsc_reset(sc);
683 if (sc->sc_iicbus == NULL)
684 busfreq = 100000;
685 else
686 busfreq = IICBUS_GET_FREQUENCY(sc->sc_iicbus, speed);
687 BCM_BSC_WRITE(sc, BCM_BSC_CLOCK, BCM_BSC_CORE_CLK / busfreq);
688 BCM_BSC_UNLOCK(sc);
689
690 return (IIC_ENOADDR);
691 }
692
693 static phandle_t
694 bcm_bsc_get_node(device_t bus, device_t dev)
695 {
696
697 /* We only have one child, the I2C bus, which needs our own node. */
698 return (ofw_bus_get_node(bus));
699 }
700
701 static device_method_t bcm_bsc_methods[] = {
702 /* Device interface */
703 DEVMETHOD(device_probe, bcm_bsc_probe),
704 DEVMETHOD(device_attach, bcm_bsc_attach),
705 DEVMETHOD(device_detach, bcm_bsc_detach),
706
707 /* iicbus interface */
708 DEVMETHOD(iicbus_reset, bcm_bsc_iicbus_reset),
709 DEVMETHOD(iicbus_callback, iicbus_null_callback),
710 DEVMETHOD(iicbus_transfer, bcm_bsc_transfer),
711
712 /* ofw_bus interface */
713 DEVMETHOD(ofw_bus_get_node, bcm_bsc_get_node),
714
715 DEVMETHOD_END
716 };
717
718 static driver_t bcm_bsc_driver = {
719 "iichb",
720 bcm_bsc_methods,
721 sizeof(struct bcm_bsc_softc),
722 };
723
724 DRIVER_MODULE(iicbus, bcm2835_bsc, iicbus_driver, 0, 0);
725 DRIVER_MODULE(bcm2835_bsc, simplebus, bcm_bsc_driver, 0, 0);
Cache object: d2b485f5b2e435e01772f6158f90ad9a
|