The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/cavium/cns11xx/econa_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2009 Yohanes Nugroho <yohanes@gmail.com>
    3  * Copyright (c) 1994-1998 Mark Brinicombe.
    4  * Copyright (c) 1994 Brini.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software written for Brini by Mark Brinicombe
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by Brini.
   20  * 4. The name of the company nor the name of the author may be used to
   21  *    endorse or promote products derived from this software without specific
   22  *    prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
   25  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   26  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   27  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   28  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   29  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   30  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #define _ARM32_BUS_DMA_PRIVATE
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/sysproto.h>
   45 #include <sys/signalvar.h>
   46 #include <sys/imgact.h>
   47 #include <sys/kernel.h>
   48 #include <sys/ktr.h>
   49 #include <sys/linker.h>
   50 #include <sys/lock.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mutex.h>
   53 #include <sys/pcpu.h>
   54 #include <sys/proc.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/cons.h>
   57 #include <sys/bio.h>
   58 #include <sys/bus.h>
   59 #include <sys/buf.h>
   60 #include <sys/exec.h>
   61 #include <sys/kdb.h>
   62 #include <sys/msgbuf.h>
   63 #include <machine/physmem.h>
   64 #include <machine/reg.h>
   65 #include <machine/cpu.h>
   66 
   67 #include <vm/vm.h>
   68 #include <vm/pmap.h>
   69 #include <vm/vm_object.h>
   70 #include <vm/vm_page.h>
   71 #include <vm/vm_map.h>
   72 #include <machine/devmap.h>
   73 #include <machine/vmparam.h>
   74 #include <machine/pcb.h>
   75 #include <machine/undefined.h>
   76 #include <machine/machdep.h>
   77 #include <machine/metadata.h>
   78 #include <machine/armreg.h>
   79 #include <machine/bus.h>
   80 #include <sys/reboot.h>
   81 #include "econa_reg.h"
   82 
   83 /* Page table for mapping proc0 zero page */
   84 #define KERNEL_PT_SYS           0
   85 #define KERNEL_PT_KERN          1
   86 #define KERNEL_PT_KERN_NUM      22
   87 /* L2 table for mapping after kernel */
   88 #define KERNEL_PT_AFKERNEL      KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
   89 #define KERNEL_PT_AFKERNEL_NUM  5
   90 
   91 /* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
   92 #define NUM_KERNEL_PTS  (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
   93 
   94 struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
   95 
   96 /* Physical and virtual addresses for some global pages */
   97 
   98 struct pv_addr systempage;
   99 struct pv_addr msgbufpv;
  100 struct pv_addr irqstack;
  101 struct pv_addr undstack;
  102 struct pv_addr abtstack;
  103 struct pv_addr kernelstack;
  104 
  105 /* Static device mappings. */
  106 static const struct arm_devmap_entry econa_devmap[] = {
  107         {
  108                 /*
  109                  * This maps DDR SDRAM
  110                  */
  111                 ECONA_SDRAM_BASE, /*virtual*/
  112                 ECONA_SDRAM_BASE, /*physical*/
  113                 ECONA_SDRAM_SIZE, /*size*/
  114                 VM_PROT_READ|VM_PROT_WRITE,
  115                 PTE_DEVICE,
  116         },
  117         /*
  118          * Map the on-board devices VA == PA so that we can access them
  119          * with the MMU on or off.
  120          */
  121         {
  122                 /*
  123                  * This maps the interrupt controller, the UART
  124                  * and the timer.
  125                  */
  126                 ECONA_IO_BASE, /*virtual*/
  127                 ECONA_IO_BASE, /*physical*/
  128                 ECONA_IO_SIZE, /*size*/
  129                 VM_PROT_READ|VM_PROT_WRITE,
  130                 PTE_DEVICE,
  131         },
  132         {
  133                 /*
  134                  * OHCI + EHCI
  135                  */
  136                 ECONA_OHCI_VBASE, /*virtual*/
  137                 ECONA_OHCI_PBASE, /*physical*/
  138                 ECONA_USB_SIZE, /*size*/
  139                 VM_PROT_READ|VM_PROT_WRITE,
  140                 PTE_DEVICE,
  141         },
  142         {
  143                 /*
  144                  * CFI
  145                  */
  146                 ECONA_CFI_VBASE, /*virtual*/
  147                 ECONA_CFI_PBASE, /*physical*/
  148                 ECONA_CFI_SIZE,
  149                 VM_PROT_READ|VM_PROT_WRITE,
  150                 PTE_DEVICE,
  151         },
  152         {
  153                 0,
  154                 0,
  155                 0,
  156                 0,
  157                 0,
  158         }
  159 };
  160 
  161 
  162 void *
  163 initarm(struct arm_boot_params *abp)
  164 {
  165         struct pv_addr  kernel_l1pt;
  166         volatile uint32_t * ddr = (uint32_t *)0x4000000C;
  167         int loop, i;
  168         u_int l1pagetable;
  169         vm_offset_t afterkern;
  170         vm_offset_t freemempos;
  171         vm_offset_t lastaddr;
  172         uint32_t memsize;
  173         int mem_info;
  174 
  175         boothowto = RB_VERBOSE;
  176         lastaddr = parse_boot_param(abp);
  177         arm_physmem_kernaddr = abp->abp_physaddr;
  178         set_cpufuncs();
  179         pcpu0_init();
  180 
  181         /* Do basic tuning, hz etc */
  182         init_param1();
  183                 
  184 
  185         freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
  186         /* Define a macro to simplify memory allocation */
  187 #define valloc_pages(var, np)                   \
  188         alloc_pages((var).pv_va, (np));         \
  189         (var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
  190 
  191 #define alloc_pages(var, np)                    \
  192         (var) = freemempos;             \
  193         freemempos += (np * PAGE_SIZE);         \
  194         memset((char *)(var), 0, ((np) * PAGE_SIZE));
  195 
  196         while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
  197                 freemempos += PAGE_SIZE;
  198         valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
  199         for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
  200                 if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
  201                         valloc_pages(kernel_pt_table[loop],
  202                             L2_TABLE_SIZE / PAGE_SIZE);
  203                 } else {
  204                         kernel_pt_table[loop].pv_va = freemempos -
  205                             (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
  206                             L2_TABLE_SIZE_REAL;
  207                         kernel_pt_table[loop].pv_pa =
  208                             kernel_pt_table[loop].pv_va - KERNVIRTADDR +
  209                             abp->abp_physaddr;
  210                 }
  211         }
  212         /*
  213          * Allocate a page for the system page mapped to V0x00000000
  214          * This page will just contain the system vectors and can be
  215          * shared by all processes.
  216          */
  217         valloc_pages(systempage, 1);
  218 
  219         /* Allocate stacks for all modes */
  220         valloc_pages(irqstack, IRQ_STACK_SIZE);
  221         valloc_pages(abtstack, ABT_STACK_SIZE);
  222         valloc_pages(undstack, UND_STACK_SIZE);
  223         valloc_pages(kernelstack, KSTACK_PAGES);
  224         valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
  225 
  226         /*
  227          * Now we start construction of the L1 page table
  228          * We start by mapping the L2 page tables into the L1.
  229          * This means that we can replace L1 mappings later on if necessary
  230          */
  231         l1pagetable = kernel_l1pt.pv_va;
  232 
  233         /* Map the L2 pages tables in the L1 page table */
  234         pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
  235             &kernel_pt_table[KERNEL_PT_SYS]);
  236         for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
  237                 pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
  238                     &kernel_pt_table[KERNEL_PT_KERN + i]);
  239         pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
  240            (((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
  241             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  242         afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1));
  243         for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
  244                 pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
  245                     &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
  246         }
  247 
  248         /* Map the vector page. */
  249         pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
  250             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  251 
  252 
  253         /* Map the stack pages */
  254         pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
  255             IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  256         pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
  257             ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  258         pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
  259             UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  260         pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
  261             KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  262 
  263         pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
  264             L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  265         pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
  266             msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  267 
  268         for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
  269                 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
  270                     kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
  271                     VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  272         }
  273 
  274         arm_devmap_bootstrap(l1pagetable, econa_devmap);
  275         cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
  276         setttb(kernel_l1pt.pv_pa);
  277         cpu_tlb_flushID();
  278         cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
  279         cninit();
  280         mem_info = ((*ddr) >> 4) & 0x3;
  281         memsize = (8<<mem_info)*1024*1024;
  282 
  283         /*
  284          * Pages were allocated during the secondary bootstrap for the
  285          * stacks for different CPU modes.
  286          * We must now set the r13 registers in the different CPU modes to
  287          * point to these stacks.
  288          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
  289          * of the stack memory.
  290          */
  291         cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
  292 
  293         set_stackptrs(0);
  294 
  295         /*
  296          * We must now clean the cache again....
  297          * Cleaning may be done by reading new data to displace any
  298          * dirty data in the cache. This will have happened in setttb()
  299          * but since we are boot strapping the addresses used for the read
  300          * may have just been remapped and thus the cache could be out
  301          * of sync. A re-clean after the switch will cure this.
  302          * After booting there are no gross relocations of the kernel thus
  303          * this problem will not occur after initarm().
  304          */
  305         cpu_idcache_wbinv_all();
  306         cpu_setup("");
  307 
  308         undefined_init();
  309 
  310         init_proc0(kernelstack.pv_va);
  311 
  312         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
  313 
  314         pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
  315         vm_max_kernel_address = KERNVIRTADDR + 3 * memsize;
  316         pmap_bootstrap(freemempos, &kernel_l1pt);
  317 
  318         msgbufp = (void*)msgbufpv.pv_va;
  319         msgbufinit(msgbufp, msgbufsize);
  320 
  321         mutex_init();
  322 
  323         /*
  324          * Add the physical ram we have available.
  325          *
  326          * Exclude the kernel, and all the things we allocated which immediately
  327          * follow the kernel, from the VM allocation pool but not from crash
  328          * dumps.  virtual_avail is a global variable which tracks the kva we've
  329          * "allocated" while setting up pmaps.
  330          *
  331          * Prepare the list of physical memory available to the vm subsystem.
  332          */
  333         arm_physmem_hardware_region(PHYSADDR, memsize);
  334         arm_physmem_exclude_region(abp->abp_physaddr, 
  335             virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
  336         arm_physmem_init_kernel_globals();
  337 
  338         init_param2(physmem);
  339         kdb_init();
  340 
  341         return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
  342             sizeof(struct pcb)));
  343 }

Cache object: 5d3b2954a024648e32d19c95c9352333


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.