1 /*-
2 * Copyright (c) 2009 Yohanes Nugroho <yohanes@gmail.com>
3 * Copyright (c) 1994-1998 Mark Brinicombe.
4 * Copyright (c) 1994 Brini.
5 * All rights reserved.
6 *
7 * This code is derived from software written for Brini by Mark Brinicombe
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by Brini.
20 * 4. The name of the company nor the name of the author may be used to
21 * endorse or promote products derived from this software without specific
22 * prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 */
37
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40
41 #define _ARM32_BUS_DMA_PRIVATE
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/signalvar.h>
46 #include <sys/imgact.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/linker.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/pcpu.h>
54 #include <sys/proc.h>
55 #include <sys/ptrace.h>
56 #include <sys/cons.h>
57 #include <sys/bio.h>
58 #include <sys/bus.h>
59 #include <sys/buf.h>
60 #include <sys/exec.h>
61 #include <sys/kdb.h>
62 #include <sys/msgbuf.h>
63 #include <machine/reg.h>
64 #include <machine/cpu.h>
65
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_map.h>
72 #include <vm/vnode_pager.h>
73 #include <machine/pmap.h>
74 #include <machine/vmparam.h>
75 #include <machine/pcb.h>
76 #include <machine/undefined.h>
77 #include <machine/machdep.h>
78 #include <machine/metadata.h>
79 #include <machine/armreg.h>
80 #include <machine/bus.h>
81 #include <sys/reboot.h>
82 #include "econa_reg.h"
83
84 /* Page table for mapping proc0 zero page */
85 #define KERNEL_PT_SYS 0
86 #define KERNEL_PT_KERN 1
87 #define KERNEL_PT_KERN_NUM 22
88 /* L2 table for mapping after kernel */
89 #define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
90 #define KERNEL_PT_AFKERNEL_NUM 5
91
92 /* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
93 #define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
94
95 /* Define various stack sizes in pages */
96 #define IRQ_STACK_SIZE 1
97 #define ABT_STACK_SIZE 1
98 #define UND_STACK_SIZE 1
99
100 extern u_int data_abort_handler_address;
101 extern u_int prefetch_abort_handler_address;
102 extern u_int undefined_handler_address;
103
104 struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
105
106 extern void *_end;
107
108 extern int *end;
109
110 struct pcpu __pcpu;
111 struct pcpu *pcpup = &__pcpu;
112
113 /* Physical and virtual addresses for some global pages */
114
115 vm_paddr_t phys_avail[10];
116 vm_paddr_t dump_avail[4];
117 vm_offset_t physical_pages;
118
119 struct pv_addr systempage;
120 struct pv_addr msgbufpv;
121 struct pv_addr irqstack;
122 struct pv_addr undstack;
123 struct pv_addr abtstack;
124 struct pv_addr kernelstack;
125
126 static void *boot_arg1;
127 static void *boot_arg2;
128
129 static struct trapframe proc0_tf;
130
131 /* Static device mappings. */
132 static const struct pmap_devmap econa_devmap[] = {
133 {
134 /*
135 * This maps DDR SDRAM
136 */
137 ECONA_SDRAM_BASE, /*virtual*/
138 ECONA_SDRAM_BASE, /*physical*/
139 ECONA_SDRAM_SIZE, /*size*/
140 VM_PROT_READ|VM_PROT_WRITE,
141 PTE_NOCACHE,
142 },
143 /*
144 * Map the on-board devices VA == PA so that we can access them
145 * with the MMU on or off.
146 */
147 {
148 /*
149 * This maps the interrupt controller, the UART
150 * and the timer.
151 */
152 ECONA_IO_BASE, /*virtual*/
153 ECONA_IO_BASE, /*physical*/
154 ECONA_IO_SIZE, /*size*/
155 VM_PROT_READ|VM_PROT_WRITE,
156 PTE_NOCACHE,
157 },
158 {
159 /*
160 * OHCI + EHCI
161 */
162 ECONA_OHCI_VBASE, /*virtual*/
163 ECONA_OHCI_PBASE, /*physical*/
164 ECONA_USB_SIZE, /*size*/
165 VM_PROT_READ|VM_PROT_WRITE,
166 PTE_NOCACHE,
167 },
168 {
169 /*
170 * CFI
171 */
172 ECONA_CFI_VBASE, /*virtual*/
173 ECONA_CFI_PBASE, /*physical*/
174 ECONA_CFI_SIZE,
175 VM_PROT_READ|VM_PROT_WRITE,
176 PTE_NOCACHE,
177 },
178 {
179 0,
180 0,
181 0,
182 0,
183 0,
184 }
185 };
186
187
188 void *
189 initarm(void *arg, void *arg2)
190 {
191 struct pv_addr kernel_l1pt;
192 volatile uint32_t * ddr = (uint32_t *)0x4000000C;
193 int loop, i;
194 u_int l1pagetable;
195 vm_offset_t afterkern;
196 vm_offset_t freemempos;
197 vm_offset_t lastaddr;
198 uint32_t memsize;
199 int mem_info;
200
201
202 boot_arg1 = arg;
203 boot_arg2 = arg2;
204 boothowto = RB_VERBOSE;
205
206 set_cpufuncs();
207 lastaddr = fake_preload_metadata();
208 pcpu_init(pcpup, 0, sizeof(struct pcpu));
209 PCPU_SET(curthread, &thread0);
210
211 /* Do basic tuning, hz etc */
212 init_param1();
213
214
215 freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
216 /* Define a macro to simplify memory allocation */
217 #define valloc_pages(var, np) \
218 alloc_pages((var).pv_va, (np)); \
219 (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
220
221 #define alloc_pages(var, np) \
222 (var) = freemempos; \
223 freemempos += (np * PAGE_SIZE); \
224 memset((char *)(var), 0, ((np) * PAGE_SIZE));
225
226 while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
227 freemempos += PAGE_SIZE;
228 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
229 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
230 if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
231 valloc_pages(kernel_pt_table[loop],
232 L2_TABLE_SIZE / PAGE_SIZE);
233 } else {
234 kernel_pt_table[loop].pv_va = freemempos -
235 (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
236 L2_TABLE_SIZE_REAL;
237 kernel_pt_table[loop].pv_pa =
238 kernel_pt_table[loop].pv_va - KERNVIRTADDR +
239 KERNPHYSADDR;
240 }
241 i++;
242 }
243 /*
244 * Allocate a page for the system page mapped to V0x00000000
245 * This page will just contain the system vectors and can be
246 * shared by all processes.
247 */
248 valloc_pages(systempage, 1);
249
250 /* Allocate stacks for all modes */
251 valloc_pages(irqstack, IRQ_STACK_SIZE);
252 valloc_pages(abtstack, ABT_STACK_SIZE);
253 valloc_pages(undstack, UND_STACK_SIZE);
254 valloc_pages(kernelstack, KSTACK_PAGES);
255 valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
256
257 /*
258 * Now we start construction of the L1 page table
259 * We start by mapping the L2 page tables into the L1.
260 * This means that we can replace L1 mappings later on if necessary
261 */
262 l1pagetable = kernel_l1pt.pv_va;
263
264 /* Map the L2 pages tables in the L1 page table */
265 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
266 &kernel_pt_table[KERNEL_PT_SYS]);
267 for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
268 pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
269 &kernel_pt_table[KERNEL_PT_KERN + i]);
270 pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
271 (((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
272 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
273 afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1));
274 for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
275 pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
276 &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
277 }
278
279 /* Map the vector page. */
280 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
281 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
282
283
284 /* Map the stack pages */
285 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
286 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
287 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
288 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
289 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
290 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
291 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
292 KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
293
294 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
295 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
296 pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
297 msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
298
299 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
300 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
301 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
302 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
303 }
304
305 pmap_devmap_bootstrap(l1pagetable, econa_devmap);
306 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
307 setttb(kernel_l1pt.pv_pa);
308 cpu_tlb_flushID();
309 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
310 cninit();
311 mem_info = ((*ddr) >> 4) & 0x3;
312 memsize = (8<<mem_info)*1024*1024;
313 physmem = memsize / PAGE_SIZE;
314
315 /*
316 * Pages were allocated during the secondary bootstrap for the
317 * stacks for different CPU modes.
318 * We must now set the r13 registers in the different CPU modes to
319 * point to these stacks.
320 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
321 * of the stack memory.
322 */
323 cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
324
325 set_stackptr(PSR_IRQ32_MODE,
326 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
327 set_stackptr(PSR_ABT32_MODE,
328 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
329 set_stackptr(PSR_UND32_MODE,
330 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
331
332 /*
333 * We must now clean the cache again....
334 * Cleaning may be done by reading new data to displace any
335 * dirty data in the cache. This will have happened in setttb()
336 * but since we are boot strapping the addresses used for the read
337 * may have just been remapped and thus the cache could be out
338 * of sync. A re-clean after the switch will cure this.
339 * After booting there are no gross relocations of the kernel thus
340 * this problem will not occur after initarm().
341 */
342 cpu_idcache_wbinv_all();
343
344 /* Set stack for exception handlers */
345 data_abort_handler_address = (u_int)data_abort_handler;
346 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
347 undefined_handler_address = (u_int)undefinedinstruction_bounce;
348 undefined_init();
349
350 proc_linkup0(&proc0, &thread0);
351 thread0.td_kstack = kernelstack.pv_va;
352 thread0.td_pcb = (struct pcb *)
353 (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
354 thread0.td_pcb->pcb_flags = 0;
355 thread0.td_frame = &proc0_tf;
356 pcpup->pc_curpcb = thread0.td_pcb;
357
358 arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
359
360 pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
361
362 /*
363 * ARM_USE_SMALL_ALLOC uses dump_avail, so it must be filled before
364 * calling pmap_bootstrap.
365 */
366 dump_avail[0] = PHYSADDR;
367 dump_avail[1] = PHYSADDR + memsize;
368 dump_avail[2] = 0;
369 dump_avail[3] = 0;
370
371 pmap_bootstrap(freemempos,
372 KERNVIRTADDR + 3 * memsize,
373 &kernel_l1pt);
374
375 msgbufp = (void*)msgbufpv.pv_va;
376 msgbufinit(msgbufp, msgbufsize);
377
378 mutex_init();
379
380 i = 0;
381 #if PHYSADDR != KERNPHYSADDR
382 phys_avail[i++] = PHYSADDR;
383 phys_avail[i++] = KERNPHYSADDR;
384 #endif
385 phys_avail[i++] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR;
386
387 phys_avail[i++] = PHYSADDR + memsize;
388 phys_avail[i++] = 0;
389 phys_avail[i++] = 0;
390 init_param2(physmem);
391 kdb_init();
392
393 return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
394 sizeof(struct pcb)));
395 }
Cache object: 2f7c843a3aa7b31ae6e8369d5aef724c
|