The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/freescale/imx/imx6_anatop.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
    5  * Copyright (c) 2014 Steven Lawrance <stl@koffein.net>
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 /*
   34  * Analog PLL and power regulator driver for Freescale i.MX6 family of SoCs.
   35  * Also, temperature montoring and cpu frequency control.  It was Freescale who
   36  * kitchen-sinked this device, not us. :)
   37  *
   38  * We don't really do anything with analog PLLs, but the registers for
   39  * controlling them belong to the same block as the power regulator registers.
   40  * Since the newbus hierarchy makes it hard for anyone other than us to get at
   41  * them, we just export a couple public functions to allow the imx6 CCM clock
   42  * driver to read and write those registers.
   43  *
   44  * We also don't do anything about power regulation yet, but when the need
   45  * arises, this would be the place for that code to live.
   46  *
   47  * I have no idea where the "anatop" name comes from.  It's in the standard DTS
   48  * source describing i.MX6 SoCs, and in the linux and u-boot code which comes
   49  * from Freescale, but it's not in the SoC manual.
   50  *
   51  * Note that temperature values throughout this code are handled in two types of
   52  * units.  Items with '_cnt' in the name use the hardware temperature count
   53  * units (higher counts are lower temperatures).  Items with '_val' in the name
   54  * are deci-Celsius, which are converted to/from deci-Kelvins in the sysctl
   55  * handlers (dK is the standard unit for temperature in sysctl).
   56  */
   57 
   58 #include <sys/param.h>
   59 #include <sys/systm.h>
   60 #include <sys/callout.h>
   61 #include <sys/kernel.h>
   62 #include <sys/limits.h>
   63 #include <sys/sysctl.h>
   64 #include <sys/module.h>
   65 #include <sys/bus.h>
   66 #include <sys/rman.h>
   67 
   68 #include <dev/ofw/ofw_bus.h>
   69 #include <dev/ofw/ofw_bus_subr.h>
   70 
   71 #include <machine/bus.h>
   72 
   73 #include <arm/arm/mpcore_timervar.h>
   74 #include <arm/freescale/fsl_ocotpreg.h>
   75 #include <arm/freescale/fsl_ocotpvar.h>
   76 #include <arm/freescale/imx/imx_ccmvar.h>
   77 #include <arm/freescale/imx/imx_machdep.h>
   78 #include <arm/freescale/imx/imx6_anatopreg.h>
   79 #include <arm/freescale/imx/imx6_anatopvar.h>
   80 
   81 static struct resource_spec imx6_anatop_spec[] = {
   82         { SYS_RES_MEMORY,       0,      RF_ACTIVE },
   83         { -1, 0 }
   84 };
   85 #define MEMRES  0
   86 #define IRQRES  1
   87 
   88 struct imx6_anatop_softc {
   89         device_t        dev;
   90         struct resource *res[2];
   91         struct intr_config_hook
   92                         intr_setup_hook;
   93         uint32_t        cpu_curmhz;
   94         uint32_t        cpu_curmv;
   95         uint32_t        cpu_minmhz;
   96         uint32_t        cpu_minmv;
   97         uint32_t        cpu_maxmhz;
   98         uint32_t        cpu_maxmv;
   99         uint32_t        cpu_maxmhz_hw;
  100         boolean_t       cpu_overclock_enable;
  101         boolean_t       cpu_init_done;
  102         uint32_t        refosc_mhz;
  103         void            *temp_intrhand;
  104         uint32_t        temp_high_val;
  105         uint32_t        temp_high_cnt;
  106         uint32_t        temp_last_cnt;
  107         uint32_t        temp_room_cnt;
  108         struct callout  temp_throttle_callout;
  109         sbintime_t      temp_throttle_delay;
  110         uint32_t        temp_throttle_reset_cnt;
  111         uint32_t        temp_throttle_trigger_cnt;
  112         uint32_t        temp_throttle_val;
  113 };
  114 
  115 static struct imx6_anatop_softc *imx6_anatop_sc;
  116 
  117 /*
  118  * Table of "operating points".
  119  * These are combinations of frequency and voltage blessed by Freescale.
  120  * While the datasheet says the ARM voltage can be as low as 925mV at
  121  * 396MHz, it also says that the ARM and SOC voltages can't differ by
  122  * more than 200mV, and the minimum SOC voltage is 1150mV, so that
  123  * dictates the 950mV entry in this table.
  124  */
  125 static struct oppt {
  126         uint32_t        mhz;
  127         uint32_t        mv;
  128 } imx6_oppt_table[] = {
  129         { 396,   950},
  130         { 792,  1150},
  131         { 852,  1225},
  132         { 996,  1225},
  133         {1200,  1275},
  134 };
  135 
  136 /*
  137  * Table of CPU max frequencies.  This is used to translate the max frequency
  138  * value (0-3) from the ocotp CFG3 register into a mhz value that can be looked
  139  * up in the operating points table.
  140  */
  141 static uint32_t imx6_ocotp_mhz_tab[] = {792, 852, 996, 1200};
  142 
  143 #define TZ_ZEROC        2731    /* deci-Kelvin <-> deci-Celsius offset. */
  144 
  145 uint32_t
  146 imx6_anatop_read_4(bus_size_t offset)
  147 {
  148 
  149         KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_read_4 sc NULL"));
  150 
  151         return (bus_read_4(imx6_anatop_sc->res[MEMRES], offset));
  152 }
  153 
  154 void
  155 imx6_anatop_write_4(bus_size_t offset, uint32_t value)
  156 {
  157 
  158         KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_write_4 sc NULL"));
  159 
  160         bus_write_4(imx6_anatop_sc->res[MEMRES], offset, value);
  161 }
  162 
  163 static void
  164 vdd_set(struct imx6_anatop_softc *sc, int mv)
  165 {
  166         int newtarg, newtargSoc, oldtarg;
  167         uint32_t delay, pmureg;
  168         static boolean_t init_done = false;
  169 
  170         /*
  171          * The datasheet says VDD_PU and VDD_SOC must be equal, and VDD_ARM
  172          * can't be more than 50mV above or 200mV below them.  We keep them the
  173          * same except in the case of the lowest operating point, which is
  174          * handled as a special case below.
  175          */
  176 
  177         pmureg = imx6_anatop_read_4(IMX6_ANALOG_PMU_REG_CORE);
  178         oldtarg = pmureg & IMX6_ANALOG_PMU_REG0_TARG_MASK;
  179 
  180         /* Convert mV to target value.  Clamp target to valid range. */
  181         if (mv < 725)
  182                 newtarg = 0x00;
  183         else if (mv > 1450)
  184                 newtarg = 0x1F;
  185         else
  186                 newtarg = (mv - 700) / 25;
  187 
  188         /*
  189          * The SOC voltage can't go below 1150mV, and thus because of the 200mV
  190          * rule, the ARM voltage can't go below 950mV.  The 950 is encoded in
  191          * our oppt table, here we handle the SOC 1150 rule as a special case.
  192          * (1150-700/25=18).
  193          */
  194         newtargSoc = (newtarg < 18) ? 18 : newtarg;
  195 
  196         /*
  197          * The first time through the 3 voltages might not be equal so use a
  198          * long conservative delay.  After that we need to delay 3uS for every
  199          * 25mV step upward; we actually delay 6uS because empirically, it works
  200          * and the 3uS per step recommended by the docs doesn't (3uS fails when
  201          * going from 400->1200, but works for smaller changes).
  202          */
  203         if (init_done) {
  204                 if (newtarg == oldtarg)
  205                         return;
  206                 else if (newtarg > oldtarg)
  207                         delay = (newtarg - oldtarg) * 6;
  208                 else
  209                         delay = 0;
  210         } else {
  211                 delay = (700 / 25) * 6;
  212                 init_done = true;
  213         }
  214 
  215         /*
  216          * Make the change and wait for it to take effect.
  217          */
  218         pmureg &= ~(IMX6_ANALOG_PMU_REG0_TARG_MASK |
  219             IMX6_ANALOG_PMU_REG1_TARG_MASK |
  220             IMX6_ANALOG_PMU_REG2_TARG_MASK);
  221 
  222         pmureg |= newtarg << IMX6_ANALOG_PMU_REG0_TARG_SHIFT;
  223         pmureg |= newtarg << IMX6_ANALOG_PMU_REG1_TARG_SHIFT;
  224         pmureg |= newtargSoc << IMX6_ANALOG_PMU_REG2_TARG_SHIFT;
  225 
  226         imx6_anatop_write_4(IMX6_ANALOG_PMU_REG_CORE, pmureg);
  227         DELAY(delay);
  228         sc->cpu_curmv = newtarg * 25 + 700;
  229 }
  230 
  231 static inline uint32_t
  232 cpufreq_mhz_from_div(struct imx6_anatop_softc *sc, uint32_t corediv, 
  233     uint32_t plldiv)
  234 {
  235 
  236         return ((sc->refosc_mhz * (plldiv / 2)) / (corediv + 1));
  237 }
  238 
  239 static inline void
  240 cpufreq_mhz_to_div(struct imx6_anatop_softc *sc, uint32_t cpu_mhz,
  241     uint32_t *corediv, uint32_t *plldiv)
  242 {
  243 
  244         *corediv = (cpu_mhz < 650) ? 1 : 0;
  245         *plldiv = ((*corediv + 1) * cpu_mhz) / (sc->refosc_mhz / 2);
  246 }
  247 
  248 static inline uint32_t
  249 cpufreq_actual_mhz(struct imx6_anatop_softc *sc, uint32_t cpu_mhz)
  250 {
  251         uint32_t corediv, plldiv;
  252 
  253         cpufreq_mhz_to_div(sc, cpu_mhz, &corediv, &plldiv);
  254         return (cpufreq_mhz_from_div(sc, corediv, plldiv));
  255 }
  256 
  257 static struct oppt *
  258 cpufreq_nearest_oppt(struct imx6_anatop_softc *sc, uint32_t cpu_newmhz)
  259 {
  260         int d, diff, i, nearest;
  261 
  262         if (cpu_newmhz > sc->cpu_maxmhz_hw && !sc->cpu_overclock_enable)
  263                 cpu_newmhz = sc->cpu_maxmhz_hw;
  264 
  265         diff = INT_MAX;
  266         nearest = 0;
  267         for (i = 0; i < nitems(imx6_oppt_table); ++i) {
  268                 d = abs((int)cpu_newmhz - (int)imx6_oppt_table[i].mhz);
  269                 if (diff > d) {
  270                         diff = d;
  271                         nearest = i;
  272                 }
  273         }
  274         return (&imx6_oppt_table[nearest]);
  275 }
  276 
  277 static void 
  278 cpufreq_set_clock(struct imx6_anatop_softc * sc, struct oppt *op)
  279 {
  280         uint32_t corediv, plldiv, timeout, wrk32;
  281 
  282         /* If increasing the frequency, we must first increase the voltage. */
  283         if (op->mhz > sc->cpu_curmhz) {
  284                 vdd_set(sc, op->mv);
  285         }
  286 
  287         /*
  288          * I can't find a documented procedure for changing the ARM PLL divisor,
  289          * but some trial and error came up with this:
  290          *  - Set the bypass clock source to REF_CLK_24M (source #0).
  291          *  - Set the PLL into bypass mode; cpu should now be running at 24mhz.
  292          *  - Change the divisor.
  293          *  - Wait for the LOCK bit to come on; it takes ~50 loop iterations.
  294          *  - Turn off bypass mode; cpu should now be running at the new speed.
  295          */
  296         cpufreq_mhz_to_div(sc, op->mhz, &corediv, &plldiv);
  297         imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR, 
  298             IMX6_ANALOG_CCM_PLL_ARM_CLK_SRC_MASK);
  299         imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_SET, 
  300             IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
  301 
  302         wrk32 = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM);
  303         wrk32 &= ~IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
  304         wrk32 |= plldiv;
  305         imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM, wrk32);
  306 
  307         timeout = 10000;
  308         while ((imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
  309             IMX6_ANALOG_CCM_PLL_ARM_LOCK) == 0)
  310                 if (--timeout == 0)
  311                         panic("imx6_set_cpu_clock(): PLL never locked");
  312 
  313         imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR, 
  314             IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
  315         imx_ccm_set_cacrr(corediv);
  316 
  317         /* If lowering the frequency, it is now safe to lower the voltage. */
  318         if (op->mhz < sc->cpu_curmhz)
  319                 vdd_set(sc, op->mv);
  320         sc->cpu_curmhz = op->mhz;
  321 
  322         /* Tell the mpcore timer that its frequency has changed. */
  323         arm_tmr_change_frequency(
  324             cpufreq_actual_mhz(sc, sc->cpu_curmhz) * 1000000 / 2);
  325 }
  326 
  327 static int
  328 cpufreq_sysctl_minmhz(SYSCTL_HANDLER_ARGS)
  329 {
  330         struct imx6_anatop_softc *sc;
  331         struct oppt * op;
  332         uint32_t temp;
  333         int err;
  334 
  335         sc = arg1;
  336 
  337         temp = sc->cpu_minmhz;
  338         err = sysctl_handle_int(oidp, &temp, 0, req);
  339         if (err != 0 || req->newptr == NULL)
  340                 return (err);
  341 
  342         op = cpufreq_nearest_oppt(sc, temp);
  343         if (op->mhz > sc->cpu_maxmhz)
  344                 return (ERANGE);
  345         else if (op->mhz == sc->cpu_minmhz)
  346                 return (0);
  347 
  348         /*
  349          * Value changed, update softc.  If the new min is higher than the
  350          * current speed, raise the current speed to match.
  351          */
  352         sc->cpu_minmhz = op->mhz;
  353         if (sc->cpu_minmhz > sc->cpu_curmhz) {
  354                 cpufreq_set_clock(sc, op);
  355         }
  356         return (err);
  357 }
  358 
  359 static int
  360 cpufreq_sysctl_maxmhz(SYSCTL_HANDLER_ARGS)
  361 {
  362         struct imx6_anatop_softc *sc;
  363         struct oppt * op;
  364         uint32_t temp;
  365         int err;
  366 
  367         sc = arg1;
  368 
  369         temp = sc->cpu_maxmhz;
  370         err = sysctl_handle_int(oidp, &temp, 0, req);
  371         if (err != 0 || req->newptr == NULL)
  372                 return (err);
  373 
  374         op = cpufreq_nearest_oppt(sc, temp);
  375         if (op->mhz < sc->cpu_minmhz)
  376                 return (ERANGE);
  377         else if (op->mhz == sc->cpu_maxmhz)
  378                 return (0);
  379 
  380         /*
  381          *  Value changed, update softc and hardware.  The hardware update is
  382          *  unconditional.  We always try to run at max speed, so any change of
  383          *  the max means we need to change the current speed too, regardless of
  384          *  whether it is higher or lower than the old max.
  385          */
  386         sc->cpu_maxmhz = op->mhz;
  387         cpufreq_set_clock(sc, op);
  388 
  389         return (err);
  390 }
  391 
  392 static void
  393 cpufreq_initialize(struct imx6_anatop_softc *sc)
  394 {
  395         uint32_t cfg3speed;
  396         struct oppt * op;
  397 
  398         SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
  399             OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0, 
  400             "CPU frequency");
  401 
  402         SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx), 
  403             OID_AUTO, "cpu_minmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
  404             sc, 0, cpufreq_sysctl_minmhz, "IU", "Minimum CPU frequency");
  405 
  406         SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
  407             OID_AUTO, "cpu_maxmhz", CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
  408             sc, 0, cpufreq_sysctl_maxmhz, "IU", "Maximum CPU frequency");
  409 
  410         SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
  411             OID_AUTO, "cpu_maxmhz_hw", CTLFLAG_RD, &sc->cpu_maxmhz_hw, 0, 
  412             "Maximum CPU frequency allowed by hardware");
  413 
  414         SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx),
  415             OID_AUTO, "cpu_overclock_enable", CTLFLAG_RWTUN, 
  416             &sc->cpu_overclock_enable, 0, 
  417             "Allow setting CPU frequency higher than cpu_maxmhz_hw");
  418 
  419         /*
  420          * XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm
  421          * (even though in the real world it will always be 24mhz).  Oh wait a
  422          * sec, I never wrote imx6_ccm.
  423          */
  424         sc->refosc_mhz = 24;
  425 
  426         /*
  427          * Get the maximum speed this cpu can be set to.  The values in the
  428          * OCOTP CFG3 register are not documented in the reference manual.
  429          * The following info was in an archived email found via web search:
  430          *   - 2b'11: 1200000000Hz;
  431          *   - 2b'10: 996000000Hz;
  432          *   - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
  433          *   - 2b'00: 792000000Hz;
  434          * The default hardware max speed can be overridden by a tunable.
  435          */
  436         cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) & 
  437             FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT;
  438         sc->cpu_maxmhz_hw = imx6_ocotp_mhz_tab[cfg3speed];
  439         sc->cpu_maxmhz = sc->cpu_maxmhz_hw;
  440 
  441         TUNABLE_INT_FETCH("hw.imx6.cpu_minmhz", &sc->cpu_minmhz);
  442         op = cpufreq_nearest_oppt(sc, sc->cpu_minmhz);
  443         sc->cpu_minmhz = op->mhz;
  444         sc->cpu_minmv = op->mv;
  445 
  446         TUNABLE_INT_FETCH("hw.imx6.cpu_maxmhz", &sc->cpu_maxmhz);
  447         op = cpufreq_nearest_oppt(sc, sc->cpu_maxmhz);
  448         sc->cpu_maxmhz = op->mhz;
  449         sc->cpu_maxmv = op->mv;
  450 
  451         /*
  452          * Set the CPU to maximum speed.
  453          *
  454          * We won't have thermal throttling until interrupts are enabled, but we
  455          * want to run at full speed through all the device init stuff.  This
  456          * basically assumes that a single core can't overheat before interrupts
  457          * are enabled; empirical testing shows that to be a safe assumption.
  458          */
  459         cpufreq_set_clock(sc, op);
  460 }
  461 
  462 static inline uint32_t
  463 temp_from_count(struct imx6_anatop_softc *sc, uint32_t count)
  464 {
  465 
  466         return (((sc->temp_high_val - (count - sc->temp_high_cnt) *
  467             (sc->temp_high_val - 250) / 
  468             (sc->temp_room_cnt - sc->temp_high_cnt))));
  469 }
  470 
  471 static inline uint32_t
  472 temp_to_count(struct imx6_anatop_softc *sc, uint32_t temp)
  473 {
  474 
  475         return ((sc->temp_room_cnt - sc->temp_high_cnt) * 
  476             (sc->temp_high_val - temp) / (sc->temp_high_val - 250) + 
  477             sc->temp_high_cnt);
  478 }
  479 
  480 static void
  481 temp_update_count(struct imx6_anatop_softc *sc)
  482 {
  483         uint32_t val;
  484 
  485         val = imx6_anatop_read_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0);
  486         if (!(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_VALID))
  487                 return;
  488         sc->temp_last_cnt =
  489             (val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_MASK) >>
  490             IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_SHIFT;
  491 }
  492 
  493 static int
  494 temp_sysctl_handler(SYSCTL_HANDLER_ARGS)
  495 {
  496         struct imx6_anatop_softc *sc = arg1;
  497         uint32_t t;
  498 
  499         temp_update_count(sc);
  500 
  501         t = temp_from_count(sc, sc->temp_last_cnt) + TZ_ZEROC;
  502 
  503         return (sysctl_handle_int(oidp, &t, 0, req));
  504 }
  505 
  506 static int
  507 temp_throttle_sysctl_handler(SYSCTL_HANDLER_ARGS)
  508 {
  509         struct imx6_anatop_softc *sc = arg1;
  510         int err;
  511         uint32_t temp;
  512 
  513         temp = sc->temp_throttle_val + TZ_ZEROC;
  514         err = sysctl_handle_int(oidp, &temp, 0, req);
  515         if (temp < TZ_ZEROC)
  516                 return (ERANGE);
  517         temp -= TZ_ZEROC;
  518         if (err != 0 || req->newptr == NULL || temp == sc->temp_throttle_val)
  519                 return (err);
  520 
  521         /* Value changed, update counts in softc and hardware. */
  522         sc->temp_throttle_val = temp;
  523         sc->temp_throttle_trigger_cnt = temp_to_count(sc, sc->temp_throttle_val);
  524         sc->temp_throttle_reset_cnt = temp_to_count(sc, sc->temp_throttle_val - 100);
  525         imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_CLR,
  526             IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_MASK);
  527         imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_SET,
  528             (sc->temp_throttle_trigger_cnt <<
  529              IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT));
  530         return (err);
  531 }
  532 
  533 static void
  534 tempmon_gofast(struct imx6_anatop_softc *sc)
  535 {
  536 
  537         if (sc->cpu_curmhz < sc->cpu_maxmhz) {
  538                 cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_maxmhz));
  539         }
  540 }
  541 
  542 static void
  543 tempmon_goslow(struct imx6_anatop_softc *sc)
  544 {
  545 
  546         if (sc->cpu_curmhz > sc->cpu_minmhz) {
  547                 cpufreq_set_clock(sc, cpufreq_nearest_oppt(sc, sc->cpu_minmhz));
  548         }
  549 }
  550 
  551 static int
  552 tempmon_intr(void *arg)
  553 {
  554         struct imx6_anatop_softc *sc = arg;
  555 
  556         /*
  557          * XXX Note that this code doesn't currently run (for some mysterious
  558          * reason we just never get an interrupt), so the real monitoring is
  559          * done by tempmon_throttle_check().
  560          */
  561         tempmon_goslow(sc);
  562         /* XXX Schedule callout to speed back up eventually. */
  563         return (FILTER_HANDLED);
  564 }
  565 
  566 static void
  567 tempmon_throttle_check(void *arg)
  568 {
  569         struct imx6_anatop_softc *sc = arg;
  570 
  571         /* Lower counts are higher temperatures. */
  572         if (sc->temp_last_cnt < sc->temp_throttle_trigger_cnt)
  573                 tempmon_goslow(sc);
  574         else if (sc->temp_last_cnt > (sc->temp_throttle_reset_cnt))
  575                 tempmon_gofast(sc);
  576 
  577         callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
  578                 0, tempmon_throttle_check, sc, 0);
  579 
  580 }
  581 
  582 static void
  583 initialize_tempmon(struct imx6_anatop_softc *sc)
  584 {
  585         uint32_t cal;
  586 
  587         /*
  588          * Fetch calibration data: a sensor count at room temperature (25C),
  589          * a sensor count at a high temperature, and that temperature
  590          */
  591         cal = fsl_ocotp_read_4(FSL_OCOTP_ANA1);
  592         sc->temp_room_cnt = (cal & 0xFFF00000) >> 20;
  593         sc->temp_high_cnt = (cal & 0x000FFF00) >> 8;
  594         sc->temp_high_val = (cal & 0x000000FF) * 10;
  595 
  596         /*
  597          * Throttle to a lower cpu freq at 10C below the "hot" temperature, and
  598          * reset back to max cpu freq at 5C below the trigger.
  599          */
  600         sc->temp_throttle_val = sc->temp_high_val - 100;
  601         sc->temp_throttle_trigger_cnt =
  602             temp_to_count(sc, sc->temp_throttle_val);
  603         sc->temp_throttle_reset_cnt = 
  604             temp_to_count(sc, sc->temp_throttle_val - 50);
  605 
  606         /*
  607          * Set the sensor to sample automatically at 16Hz (32.768KHz/0x800), set
  608          * the throttle count, and begin making measurements.
  609          */
  610         imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE1, 0x0800);
  611         imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0,
  612             (sc->temp_throttle_trigger_cnt << 
  613             IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT) |
  614             IMX6_ANALOG_TEMPMON_TEMPSENSE0_MEASURE);
  615 
  616         /*
  617          * XXX Note that the alarm-interrupt feature isn't working yet, so
  618          * we'll use a callout handler to check at 10Hz.  Make sure we have an
  619          * initial temperature reading before starting up the callouts so we
  620          * don't get a bogus reading of zero.
  621          */
  622         while (sc->temp_last_cnt == 0)
  623                 temp_update_count(sc);
  624         sc->temp_throttle_delay = 100 * SBT_1MS;
  625         callout_init(&sc->temp_throttle_callout, 0);
  626         callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay, 
  627             0, tempmon_throttle_check, sc, 0);
  628 
  629         SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx), 
  630             OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0,
  631             temp_sysctl_handler, "IK", "Current die temperature");
  632         SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx), 
  633             OID_AUTO, "throttle_temperature", CTLTYPE_INT | CTLFLAG_RW, sc,
  634             0, temp_throttle_sysctl_handler, "IK", 
  635             "Throttle CPU when exceeding this temperature");
  636 }
  637 
  638 static void
  639 intr_setup(void *arg)
  640 {
  641         int rid;
  642         struct imx6_anatop_softc *sc;
  643 
  644         sc = arg;
  645         rid = 0;
  646         sc->res[IRQRES] = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &rid,
  647             RF_ACTIVE);
  648         if (sc->res[IRQRES] != NULL) {
  649                 bus_setup_intr(sc->dev, sc->res[IRQRES],
  650                     INTR_TYPE_MISC | INTR_MPSAFE, tempmon_intr, NULL, sc,
  651                     &sc->temp_intrhand);
  652         } else {
  653                 device_printf(sc->dev, "Cannot allocate IRQ resource\n");
  654         }
  655         config_intrhook_disestablish(&sc->intr_setup_hook);
  656 }
  657 
  658 static void
  659 imx6_anatop_new_pass(device_t dev)
  660 {
  661         struct imx6_anatop_softc *sc;
  662         const int cpu_init_pass = BUS_PASS_CPU + BUS_PASS_ORDER_MIDDLE;
  663 
  664         /*
  665          * We attach during BUS_PASS_BUS (because some day we will be a
  666          * simplebus that has regulator devices as children), but some of our
  667          * init work cannot be done until BUS_PASS_CPU (we rely on other devices
  668          * that attach on the CPU pass).
  669          */
  670         sc = device_get_softc(dev);
  671         if (!sc->cpu_init_done && bus_current_pass >= cpu_init_pass) {
  672                 sc->cpu_init_done = true;
  673                 cpufreq_initialize(sc);
  674                 initialize_tempmon(sc);
  675                 if (bootverbose) {
  676                         device_printf(sc->dev, "CPU %uMHz @ %umV\n", 
  677                             sc->cpu_curmhz, sc->cpu_curmv);
  678                 }
  679         }
  680         bus_generic_new_pass(dev);
  681 }
  682 
  683 static int
  684 imx6_anatop_detach(device_t dev)
  685 {
  686 
  687         /* This device can never detach. */
  688         return (EBUSY);
  689 }
  690 
  691 static int
  692 imx6_anatop_attach(device_t dev)
  693 {
  694         struct imx6_anatop_softc *sc;
  695         int err;
  696 
  697         sc = device_get_softc(dev);
  698         sc->dev = dev;
  699 
  700         /* Allocate bus_space resources. */
  701         if (bus_alloc_resources(dev, imx6_anatop_spec, sc->res)) {
  702                 device_printf(dev, "Cannot allocate resources\n");
  703                 err = ENXIO;
  704                 goto out;
  705         }
  706 
  707         sc->intr_setup_hook.ich_func = intr_setup;
  708         sc->intr_setup_hook.ich_arg = sc;
  709         config_intrhook_establish(&sc->intr_setup_hook);
  710 
  711         SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
  712             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
  713             OID_AUTO, "cpu_voltage", CTLFLAG_RD,
  714             &sc->cpu_curmv, 0, "Current CPU voltage in millivolts");
  715 
  716         imx6_anatop_sc = sc;
  717 
  718         /*
  719          * Other code seen on the net sets this SELFBIASOFF flag around the same
  720          * time the temperature sensor is set up, although it's unclear how the
  721          * two are related (if at all).
  722          */
  723         imx6_anatop_write_4(IMX6_ANALOG_PMU_MISC0_SET, 
  724             IMX6_ANALOG_PMU_MISC0_SELFBIASOFF);
  725 
  726         /*
  727          * Some day, when we're ready to deal with the actual anatop regulators
  728          * that are described in fdt data as children of this "bus", this would
  729          * be the place to invoke a simplebus helper routine to instantiate the
  730          * children from the fdt data.
  731          */
  732 
  733         err = 0;
  734 
  735 out:
  736 
  737         if (err != 0) {
  738                 bus_release_resources(dev, imx6_anatop_spec, sc->res);
  739         }
  740 
  741         return (err);
  742 }
  743 
  744 uint32_t
  745 pll4_configure_output(uint32_t mfi, uint32_t mfn, uint32_t mfd)
  746 {
  747         int reg;
  748 
  749         /*
  750          * Audio PLL (PLL4).
  751          * PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM)
  752          */
  753 
  754         reg = (IMX6_ANALOG_CCM_PLL_AUDIO_ENABLE);
  755         reg &= ~(IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_MASK << \
  756                 IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
  757         reg |= (mfi << IMX6_ANALOG_CCM_PLL_AUDIO_DIV_SELECT_SHIFT);
  758         imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO, reg);
  759         imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_NUM, mfn);
  760         imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_AUDIO_DENOM, mfd);
  761 
  762         return (0);
  763 }
  764 
  765 static int
  766 imx6_anatop_probe(device_t dev)
  767 {
  768 
  769         if (!ofw_bus_status_okay(dev))
  770                 return (ENXIO);
  771 
  772         if (ofw_bus_is_compatible(dev, "fsl,imx6q-anatop") == 0)
  773                 return (ENXIO);
  774 
  775         device_set_desc(dev, "Freescale i.MX6 Analog PLLs and Power");
  776 
  777         return (BUS_PROBE_DEFAULT);
  778 }
  779 
  780 uint32_t 
  781 imx6_get_cpu_clock(void)
  782 {
  783         uint32_t corediv, plldiv;
  784 
  785         corediv = imx_ccm_get_cacrr();
  786         plldiv = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
  787             IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
  788         return (cpufreq_mhz_from_div(imx6_anatop_sc, corediv, plldiv));
  789 }
  790 
  791 static device_method_t imx6_anatop_methods[] = {
  792         /* Device interface */
  793         DEVMETHOD(device_probe,  imx6_anatop_probe),
  794         DEVMETHOD(device_attach, imx6_anatop_attach),
  795         DEVMETHOD(device_detach, imx6_anatop_detach),
  796 
  797         /* Bus interface */
  798         DEVMETHOD(bus_new_pass,  imx6_anatop_new_pass),
  799 
  800         DEVMETHOD_END
  801 };
  802 
  803 static driver_t imx6_anatop_driver = {
  804         "imx6_anatop",
  805         imx6_anatop_methods,
  806         sizeof(struct imx6_anatop_softc)
  807 };
  808 
  809 static devclass_t imx6_anatop_devclass;
  810 
  811 EARLY_DRIVER_MODULE(imx6_anatop, simplebus, imx6_anatop_driver,
  812     imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
  813 EARLY_DRIVER_MODULE(imx6_anatop, ofwbus, imx6_anatop_driver,
  814     imx6_anatop_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
  815 

Cache object: bc0538de91c0238e6a34133aa9c91dae


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.