1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33 * Clocks and power control driver for Freescale i.MX6 family of SoCs.
34 */
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/rman.h>
42
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45
46 #include <machine/bus.h>
47
48 #include <arm/freescale/imx/imx6_anatopreg.h>
49 #include <arm/freescale/imx/imx6_anatopvar.h>
50 #include <arm/freescale/imx/imx6_ccmreg.h>
51 #include <arm/freescale/imx/imx_machdep.h>
52 #include <arm/freescale/imx/imx_ccmvar.h>
53
54 #ifndef CCGR_CLK_MODE_ALWAYS
55 #define CCGR_CLK_MODE_OFF 0
56 #define CCGR_CLK_MODE_RUNMODE 1
57 #define CCGR_CLK_MODE_ALWAYS 3
58 #endif
59
60 struct ccm_softc {
61 device_t dev;
62 struct resource *mem_res;
63 };
64
65 static struct ccm_softc *ccm_sc;
66
67 static inline uint32_t
68 RD4(struct ccm_softc *sc, bus_size_t off)
69 {
70
71 return (bus_read_4(sc->mem_res, off));
72 }
73
74 static inline void
75 WR4(struct ccm_softc *sc, bus_size_t off, uint32_t val)
76 {
77
78 bus_write_4(sc->mem_res, off, val);
79 }
80
81 /*
82 * Until we have a fully functional ccm driver which implements the fdt_clock
83 * interface, use the age-old workaround of unconditionally enabling the clocks
84 * for devices we might need to use. The SoC defaults to most clocks enabled,
85 * but the rom boot code and u-boot disable a few of them. We turn on only
86 * what's needed to run the chip plus devices we have drivers for, and turn off
87 * devices we don't yet have drivers for. (Note that USB is not turned on here
88 * because that is one we do when the driver asks for it.)
89 */
90 static void
91 ccm_init_gates(struct ccm_softc *sc)
92 {
93 uint32_t reg;
94
95 /* ahpbdma, aipstz 1 & 2 buses */
96 reg = CCGR0_AIPS_TZ1 | CCGR0_AIPS_TZ2 | CCGR0_ABPHDMA;
97 WR4(sc, CCM_CCGR0, reg);
98
99 /* enet, epit, gpt, spi */
100 reg = CCGR1_ENET | CCGR1_EPIT1 | CCGR1_GPT | CCGR1_ECSPI1 |
101 CCGR1_ECSPI2 | CCGR1_ECSPI3 | CCGR1_ECSPI4 | CCGR1_ECSPI5;
102 WR4(sc, CCM_CCGR1, reg);
103
104 /* ipmux & ipsync (bridges), iomux, i2c */
105 reg = CCGR2_I2C1 | CCGR2_I2C2 | CCGR2_I2C3 | CCGR2_IIM |
106 CCGR2_IOMUX_IPT | CCGR2_IPMUX1 | CCGR2_IPMUX2 | CCGR2_IPMUX3 |
107 CCGR2_IPSYNC_IP2APB_TZASC1 | CCGR2_IPSYNC_IP2APB_TZASC2 |
108 CCGR2_IPSYNC_VDOA;
109 WR4(sc, CCM_CCGR2, reg);
110
111 /* DDR memory controller */
112 reg = CCGR3_OCRAM | CCGR3_MMDC_CORE_IPG |
113 CCGR3_MMDC_CORE_ACLK_FAST | CCGR3_CG11 | CCGR3_CG13;
114 WR4(sc, CCM_CCGR3, reg);
115
116 /* pl301 bus crossbar */
117 reg = CCGR4_PL301_MX6QFAST1_S133 |
118 CCGR4_PL301_MX6QPER1_BCH | CCGR4_PL301_MX6QPER2_MAIN;
119 WR4(sc, CCM_CCGR4, reg);
120
121 /* uarts, ssi, sdma */
122 reg = CCGR5_SDMA | CCGR5_SSI1 | CCGR5_SSI2 | CCGR5_SSI3 |
123 CCGR5_UART | CCGR5_UART_SERIAL;
124 WR4(sc, CCM_CCGR5, reg);
125
126 /* usdhc 1-4, usboh3 */
127 reg = CCGR6_USBOH3 | CCGR6_USDHC1 | CCGR6_USDHC2 |
128 CCGR6_USDHC3 | CCGR6_USDHC4;
129 WR4(sc, CCM_CCGR6, reg);
130 }
131
132 static int
133 ccm_detach(device_t dev)
134 {
135 struct ccm_softc *sc;
136
137 sc = device_get_softc(dev);
138
139 if (sc->mem_res != NULL)
140 bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
141
142 return (0);
143 }
144
145 static int
146 ccm_attach(device_t dev)
147 {
148 struct ccm_softc *sc;
149 int err, rid;
150 uint32_t reg;
151
152 sc = device_get_softc(dev);
153 err = 0;
154
155 /* Allocate bus_space resources. */
156 rid = 0;
157 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
158 RF_ACTIVE);
159 if (sc->mem_res == NULL) {
160 device_printf(dev, "Cannot allocate memory resources\n");
161 err = ENXIO;
162 goto out;
163 }
164
165 ccm_sc = sc;
166
167 /*
168 * Configure the Low Power Mode setting to leave the ARM core power on
169 * when a WFI instruction is executed. This lets the MPCore timers and
170 * GIC continue to run, which is helpful when the only thing that can
171 * wake you up is an MPCore Private Timer interrupt delivered via GIC.
172 *
173 * XXX Based on the docs, setting CCM_CGPR_INT_MEM_CLK_LPM shouldn't be
174 * required when the LPM bits are set to LPM_RUN. But experimentally
175 * I've experienced a fairly rare lockup when not setting it. I was
176 * unable to prove conclusively that the lockup was related to power
177 * management or that this definitively fixes it. Revisit this.
178 */
179 reg = RD4(sc, CCM_CGPR);
180 reg |= CCM_CGPR_INT_MEM_CLK_LPM;
181 WR4(sc, CCM_CGPR, reg);
182 reg = RD4(sc, CCM_CLPCR);
183 reg = (reg & ~CCM_CLPCR_LPM_MASK) | CCM_CLPCR_LPM_RUN;
184 WR4(sc, CCM_CLPCR, reg);
185
186 ccm_init_gates(sc);
187
188 err = 0;
189
190 out:
191
192 if (err != 0)
193 ccm_detach(dev);
194
195 return (err);
196 }
197
198 static int
199 ccm_probe(device_t dev)
200 {
201
202 if (!ofw_bus_status_okay(dev))
203 return (ENXIO);
204
205 if (ofw_bus_is_compatible(dev, "fsl,imx6q-ccm") == 0)
206 return (ENXIO);
207
208 device_set_desc(dev, "Freescale i.MX6 Clock Control Module");
209
210 return (BUS_PROBE_DEFAULT);
211 }
212
213 void
214 imx_ccm_ssi_configure(device_t _ssidev)
215 {
216 struct ccm_softc *sc;
217 uint32_t reg;
218
219 sc = ccm_sc;
220
221 /*
222 * Select PLL4 (Audio PLL) clock multiplexer as source.
223 * PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM).
224 */
225
226 reg = RD4(sc, CCM_CSCMR1);
227 reg &= ~(SSI_CLK_SEL_M << SSI1_CLK_SEL_S);
228 reg |= (SSI_CLK_SEL_PLL4 << SSI1_CLK_SEL_S);
229 reg &= ~(SSI_CLK_SEL_M << SSI2_CLK_SEL_S);
230 reg |= (SSI_CLK_SEL_PLL4 << SSI2_CLK_SEL_S);
231 reg &= ~(SSI_CLK_SEL_M << SSI3_CLK_SEL_S);
232 reg |= (SSI_CLK_SEL_PLL4 << SSI3_CLK_SEL_S);
233 WR4(sc, CCM_CSCMR1, reg);
234
235 /*
236 * Ensure we have set hardware-default values
237 * for pre and post dividers.
238 */
239
240 /* SSI1 and SSI3 */
241 reg = RD4(sc, CCM_CS1CDR);
242 /* Divide by 2 */
243 reg &= ~(SSI_CLK_PODF_MASK << SSI1_CLK_PODF_SHIFT);
244 reg &= ~(SSI_CLK_PODF_MASK << SSI3_CLK_PODF_SHIFT);
245 reg |= (0x1 << SSI1_CLK_PODF_SHIFT);
246 reg |= (0x1 << SSI3_CLK_PODF_SHIFT);
247 /* Divide by 4 */
248 reg &= ~(SSI_CLK_PRED_MASK << SSI1_CLK_PRED_SHIFT);
249 reg &= ~(SSI_CLK_PRED_MASK << SSI3_CLK_PRED_SHIFT);
250 reg |= (0x3 << SSI1_CLK_PRED_SHIFT);
251 reg |= (0x3 << SSI3_CLK_PRED_SHIFT);
252 WR4(sc, CCM_CS1CDR, reg);
253
254 /* SSI2 */
255 reg = RD4(sc, CCM_CS2CDR);
256 /* Divide by 2 */
257 reg &= ~(SSI_CLK_PODF_MASK << SSI2_CLK_PODF_SHIFT);
258 reg |= (0x1 << SSI2_CLK_PODF_SHIFT);
259 /* Divide by 4 */
260 reg &= ~(SSI_CLK_PRED_MASK << SSI2_CLK_PRED_SHIFT);
261 reg |= (0x3 << SSI2_CLK_PRED_SHIFT);
262 WR4(sc, CCM_CS2CDR, reg);
263 }
264
265 void
266 imx_ccm_usb_enable(device_t _usbdev)
267 {
268
269 /*
270 * For imx6, the USBOH3 clock gate is bits 0-1 of CCGR6, so no need for
271 * shifting and masking here, just set the low-order two bits to ALWAYS.
272 */
273 WR4(ccm_sc, CCM_CCGR6, RD4(ccm_sc, CCM_CCGR6) | CCGR_CLK_MODE_ALWAYS);
274 }
275
276 void
277 imx_ccm_usbphy_enable(device_t _phydev)
278 {
279 /*
280 * XXX Which unit?
281 * Right now it's not clear how to figure from fdt data which phy unit
282 * we're supposed to operate on. Until this is worked out, just enable
283 * both PHYs.
284 */
285 #if 0
286 int phy_num, regoff;
287
288 phy_num = 0; /* XXX */
289
290 switch (phy_num) {
291 case 0:
292 regoff = 0;
293 break;
294 case 1:
295 regoff = 0x10;
296 break;
297 default:
298 device_printf(ccm_sc->dev, "Bad PHY number %u,\n",
299 phy_num);
300 return;
301 }
302
303 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_USB1 + regoff,
304 IMX6_ANALOG_CCM_PLL_USB_ENABLE |
305 IMX6_ANALOG_CCM_PLL_USB_POWER |
306 IMX6_ANALOG_CCM_PLL_USB_EN_USB_CLKS);
307 #else
308 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_USB1 + 0,
309 IMX6_ANALOG_CCM_PLL_USB_ENABLE |
310 IMX6_ANALOG_CCM_PLL_USB_POWER |
311 IMX6_ANALOG_CCM_PLL_USB_EN_USB_CLKS);
312
313 imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_USB1 + 0x10,
314 IMX6_ANALOG_CCM_PLL_USB_ENABLE |
315 IMX6_ANALOG_CCM_PLL_USB_POWER |
316 IMX6_ANALOG_CCM_PLL_USB_EN_USB_CLKS);
317 #endif
318 }
319
320 int
321 imx6_ccm_sata_enable(void)
322 {
323 uint32_t v;
324 int timeout;
325
326 /* Un-gate the sata controller. */
327 WR4(ccm_sc, CCM_CCGR5, RD4(ccm_sc, CCM_CCGR5) | CCGR5_SATA);
328
329 /* Power up the PLL that feeds ENET/SATA/PCI phys, wait for lock. */
330 v = RD4(ccm_sc, CCM_ANALOG_PLL_ENET);
331 v &= ~CCM_ANALOG_PLL_ENET_POWERDOWN;
332 WR4(ccm_sc, CCM_ANALOG_PLL_ENET, v);
333
334 for (timeout = 100000; timeout > 0; timeout--) {
335 if (RD4(ccm_sc, CCM_ANALOG_PLL_ENET) &
336 CCM_ANALOG_PLL_ENET_LOCK) {
337 break;
338 }
339 }
340 if (timeout <= 0) {
341 return ETIMEDOUT;
342 }
343
344 /* Enable the PLL, and enable its 100mhz output. */
345 v |= CCM_ANALOG_PLL_ENET_ENABLE;
346 v &= ~CCM_ANALOG_PLL_ENET_BYPASS;
347 WR4(ccm_sc, CCM_ANALOG_PLL_ENET, v);
348
349 v |= CCM_ANALOG_PLL_ENET_ENABLE_100M;
350 WR4(ccm_sc, CCM_ANALOG_PLL_ENET, v);
351
352 return 0;
353 }
354
355 uint32_t
356 imx_ccm_ecspi_hz(void)
357 {
358
359 return (60000000);
360 }
361
362 uint32_t
363 imx_ccm_ipg_hz(void)
364 {
365
366 return (66000000);
367 }
368
369 uint32_t
370 imx_ccm_perclk_hz(void)
371 {
372
373 return (66000000);
374 }
375
376 uint32_t
377 imx_ccm_sdhci_hz(void)
378 {
379
380 return (200000000);
381 }
382
383 uint32_t
384 imx_ccm_uart_hz(void)
385 {
386
387 return (80000000);
388 }
389
390 uint32_t
391 imx_ccm_ahb_hz(void)
392 {
393 return (132000000);
394 }
395
396 int
397 imx_ccm_pll_video_enable(void)
398 {
399 uint32_t reg;
400 int timeout;
401
402 /* Power down PLL */
403 reg = RD4(ccm_sc, CCM_ANALOG_PLL_VIDEO);
404 reg &= ~CCM_ANALOG_PLL_VIDEO_POWERDOWN;
405 WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO, reg);
406
407 /*
408 * Fvideo = Fref * (37 + 11/12) / 2
409 * Fref = 24MHz, Fvideo = 455MHz
410 */
411 reg &= ~CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK;
412 reg |= CCM_ANALOG_PLL_VIDEO_POST_DIV_2;
413 reg &= ~CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK;
414 reg |= 37 << CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT;
415 WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO, reg);
416
417 WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO_NUM, 11);
418 WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO_DENOM, 12);
419
420 /* Power up and wait for PLL lock down */
421 reg = RD4(ccm_sc, CCM_ANALOG_PLL_VIDEO);
422 reg &= ~CCM_ANALOG_PLL_VIDEO_POWERDOWN;
423 WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO, reg);
424
425 for (timeout = 100000; timeout > 0; timeout--) {
426 if (RD4(ccm_sc, CCM_ANALOG_PLL_VIDEO) &
427 CCM_ANALOG_PLL_VIDEO_LOCK) {
428 break;
429 }
430 }
431 if (timeout <= 0) {
432 return ETIMEDOUT;
433 }
434
435 /* Enable the PLL */
436 reg |= CCM_ANALOG_PLL_VIDEO_ENABLE;
437 reg &= ~CCM_ANALOG_PLL_VIDEO_BYPASS;
438 WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO, reg);
439
440 return (0);
441 }
442
443 void
444 imx_ccm_ipu_enable(int ipu)
445 {
446 struct ccm_softc *sc;
447 uint32_t reg;
448
449 sc = ccm_sc;
450 reg = RD4(sc, CCM_CCGR3);
451 if (ipu == 1)
452 reg |= CCGR3_IPU1_IPU | CCGR3_IPU1_DI0;
453 else
454 reg |= CCGR3_IPU2_IPU | CCGR3_IPU2_DI0;
455 WR4(sc, CCM_CCGR3, reg);
456
457 /* Set IPU1_DI0 clock to source from PLL5 and divide it by 3 */
458 reg = RD4(sc, CCM_CHSCCDR);
459 reg &= ~(CHSCCDR_IPU1_DI0_PRE_CLK_SEL_MASK |
460 CHSCCDR_IPU1_DI0_PODF_MASK | CHSCCDR_IPU1_DI0_CLK_SEL_MASK);
461 reg |= (CHSCCDR_PODF_DIVIDE_BY_3 << CHSCCDR_IPU1_DI0_PODF_SHIFT);
462 reg |= (CHSCCDR_IPU_PRE_CLK_PLL5 << CHSCCDR_IPU1_DI0_PRE_CLK_SEL_SHIFT);
463 WR4(sc, CCM_CHSCCDR, reg);
464
465 reg |= (CHSCCDR_CLK_SEL_PREMUXED << CHSCCDR_IPU1_DI0_CLK_SEL_SHIFT);
466 WR4(sc, CCM_CHSCCDR, reg);
467 }
468
469 uint32_t
470 imx_ccm_ipu_hz(void)
471 {
472
473 return (455000000 / 3);
474 }
475
476 void
477 imx_ccm_hdmi_enable(void)
478 {
479 struct ccm_softc *sc;
480 uint32_t reg;
481
482 sc = ccm_sc;
483 reg = RD4(sc, CCM_CCGR2);
484 reg |= CCGR2_HDMI_TX | CCGR2_HDMI_TX_ISFR;
485 WR4(sc, CCM_CCGR2, reg);
486 }
487
488 uint32_t
489 imx_ccm_get_cacrr(void)
490 {
491
492 return (RD4(ccm_sc, CCM_CACCR));
493 }
494
495 void
496 imx_ccm_set_cacrr(uint32_t divisor)
497 {
498
499 WR4(ccm_sc, CCM_CACCR, divisor);
500 }
501
502 static device_method_t ccm_methods[] = {
503 /* Device interface */
504 DEVMETHOD(device_probe, ccm_probe),
505 DEVMETHOD(device_attach, ccm_attach),
506 DEVMETHOD(device_detach, ccm_detach),
507
508 DEVMETHOD_END
509 };
510
511 static driver_t ccm_driver = {
512 "ccm",
513 ccm_methods,
514 sizeof(struct ccm_softc)
515 };
516
517 static devclass_t ccm_devclass;
518
519 EARLY_DRIVER_MODULE(ccm, simplebus, ccm_driver, ccm_devclass, 0, 0,
520 BUS_PASS_CPU + BUS_PASS_ORDER_EARLY);
521
Cache object: 231ec15447de6b3eca92a6ee7e3f70cf
|