The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/freescale/imx/imx_gpt.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2012, 2013 The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * This software was developed by Oleksandr Rybalko under sponsorship
    8  * from the FreeBSD Foundation.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1.   Redistributions of source code must retain the above copyright
   14  *      notice, this list of conditions and the following disclaimer.
   15  * 2.   Redistributions in binary form must reproduce the above copyright
   16  *      notice, this list of conditions and the following disclaimer in the
   17  *      documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/bus.h>
   38 #include <sys/kernel.h>
   39 #include <sys/module.h>
   40 #include <sys/rman.h>
   41 #include <sys/timeet.h>
   42 #include <sys/timetc.h>
   43 #include <machine/bus.h>
   44 #include <machine/intr.h>
   45 #include <machine/machdep.h> /* For arm_set_delay */
   46 
   47 #include <dev/ofw/openfirm.h>
   48 #include <dev/ofw/ofw_bus.h>
   49 #include <dev/ofw/ofw_bus_subr.h>
   50 
   51 #include <arm/freescale/imx/imx_ccmvar.h>
   52 #include <arm/freescale/imx/imx_gptreg.h>
   53 
   54 #define WRITE4(_sc, _r, _v)                                             \
   55             bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
   56 #define READ4(_sc, _r)                                                  \
   57             bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
   58 #define SET4(_sc, _r, _m)                                               \
   59             WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
   60 #define CLEAR4(_sc, _r, _m)                                             \
   61             WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
   62 
   63 static u_int    imx_gpt_get_timecount(struct timecounter *);
   64 static int      imx_gpt_timer_start(struct eventtimer *, sbintime_t,
   65     sbintime_t);
   66 static int      imx_gpt_timer_stop(struct eventtimer *);
   67 
   68 static void imx_gpt_do_delay(int, void *);
   69 
   70 static int imx_gpt_intr(void *);
   71 static int imx_gpt_probe(device_t);
   72 static int imx_gpt_attach(device_t);
   73 
   74 static struct timecounter imx_gpt_timecounter = {
   75         .tc_name           = "iMXGPT",
   76         .tc_get_timecount  = imx_gpt_get_timecount,
   77         .tc_counter_mask   = ~0u,
   78         .tc_frequency      = 0,
   79         .tc_quality        = 1000,
   80 };
   81 
   82 struct imx_gpt_softc {
   83         device_t                sc_dev;
   84         struct resource *       res[2];
   85         bus_space_tag_t         sc_iot;
   86         bus_space_handle_t      sc_ioh;
   87         void *                  sc_ih;                  /* interrupt handler */
   88         uint32_t                sc_period;
   89         uint32_t                sc_clksrc;
   90         uint32_t                clkfreq;
   91         uint32_t                ir_reg;
   92         struct eventtimer       et;
   93 };
   94 
   95 /* Try to divide down an available fast clock to this frequency. */
   96 #define TARGET_FREQUENCY        1000000000
   97 
   98 static struct resource_spec imx_gpt_spec[] = {
   99         { SYS_RES_MEMORY,       0,      RF_ACTIVE },
  100         { SYS_RES_IRQ,          0,      RF_ACTIVE },
  101         { -1, 0 }
  102 };
  103 
  104 static struct ofw_compat_data compat_data[] = {
  105         {"fsl,imx6dl-gpt", 1},
  106         {"fsl,imx6q-gpt",  1},
  107         {"fsl,imx6ul-gpt", 1},
  108         {"fsl,imx53-gpt",  1},
  109         {"fsl,imx51-gpt",  1},
  110         {"fsl,imx31-gpt",  1},
  111         {"fsl,imx27-gpt",  1},
  112         {"fsl,imx25-gpt",  1},
  113         {NULL,             0}
  114 };
  115 
  116 static int
  117 imx_gpt_probe(device_t dev)
  118 {
  119 
  120         if (!ofw_bus_status_okay(dev))
  121                 return (ENXIO);
  122 
  123         /*
  124          *  We only support a single unit, because the only thing this driver
  125          *  does with the complex timer hardware is supply the system
  126          *  timecounter and eventtimer.  There is nothing useful we can do with
  127          *  the additional device instances that exist in some chips.
  128          */
  129         if (device_get_unit(dev) > 0)
  130                 return (ENXIO);
  131 
  132         if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
  133                 device_set_desc(dev, "Freescale i.MX GPT timer");
  134                 return (BUS_PROBE_DEFAULT);
  135         }
  136 
  137         return (ENXIO);
  138 }
  139 
  140 static int
  141 imx_gpt_attach(device_t dev)
  142 {
  143         struct imx_gpt_softc *sc;
  144         int ctlreg, err;
  145         uint32_t basefreq, prescale, setup_ticks, t1, t2;
  146 
  147         sc = device_get_softc(dev);
  148 
  149         if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
  150                 device_printf(dev, "could not allocate resources\n");
  151                 return (ENXIO);
  152         }
  153 
  154         sc->sc_dev = dev;
  155         sc->sc_iot = rman_get_bustag(sc->res[0]);
  156         sc->sc_ioh = rman_get_bushandle(sc->res[0]);
  157 
  158         /*
  159          * For now, just automatically choose a good clock for the hardware
  160          * we're running on.  Eventually we could allow selection from the fdt;
  161          * the code in this driver will cope with any clock frequency.
  162          */
  163         sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
  164 
  165         ctlreg = 0;
  166 
  167         switch (sc->sc_clksrc) {
  168         case GPT_CR_CLKSRC_32K:
  169                 basefreq = 32768;
  170                 break;
  171         case GPT_CR_CLKSRC_IPG:
  172                 basefreq = imx_ccm_ipg_hz();
  173                 break;
  174         case GPT_CR_CLKSRC_IPG_HIGH:
  175                 basefreq = imx_ccm_ipg_hz() * 2;
  176                 break;
  177         case GPT_CR_CLKSRC_24M:
  178                 ctlreg |= GPT_CR_24MEN;
  179                 basefreq = 24000000;
  180                 break;
  181         case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
  182         case GPT_CR_CLKSRC_EXT: /* No way to get the freq of an ext clock. */
  183         default:
  184                 device_printf(dev, "Unsupported clock source '%d'\n", 
  185                     sc->sc_clksrc);
  186                 return (EINVAL);
  187         }
  188 
  189         /*
  190          * The following setup sequence is from the I.MX6 reference manual,
  191          * "Selecting the clock source".  First, disable the clock and
  192          * interrupts.  This also clears input and output mode bits and in
  193          * general completes several of the early steps in the procedure.
  194          */
  195         WRITE4(sc, IMX_GPT_CR, 0);
  196         WRITE4(sc, IMX_GPT_IR, 0);
  197 
  198         /* Choose the clock and the power-saving behaviors. */
  199         ctlreg |=
  200             sc->sc_clksrc |     /* Use selected clock */
  201             GPT_CR_FRR |        /* Just count (FreeRunner mode) */
  202             GPT_CR_STOPEN |     /* Run in STOP mode */
  203             GPT_CR_DOZEEN |     /* Run in DOZE mode */
  204             GPT_CR_WAITEN |     /* Run in WAIT mode */
  205             GPT_CR_DBGEN;       /* Run in DEBUG mode */
  206         WRITE4(sc, IMX_GPT_CR, ctlreg);
  207 
  208         /*
  209          * The datasheet says to do the software reset after choosing the clock
  210          * source.  It says nothing about needing to wait for the reset to
  211          * complete, but the register description does document the fact that
  212          * the reset isn't complete until the SWR bit reads 0, so let's be safe.
  213          * The reset also clears all registers except for a few of the bits in
  214          * CR, but we'll rewrite all the CR bits when we start the counter.
  215          */
  216         WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
  217         while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
  218                 continue;
  219 
  220         /* Set a prescaler value that gets us near the target frequency. */
  221         if (basefreq < TARGET_FREQUENCY) {
  222                 prescale = 0;
  223                 sc->clkfreq = basefreq;
  224         } else {
  225                 prescale = basefreq / TARGET_FREQUENCY;
  226                 sc->clkfreq = basefreq / prescale;
  227                 prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
  228         }
  229         WRITE4(sc, IMX_GPT_PR, prescale);
  230 
  231         /* Clear the status register. */
  232         WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
  233 
  234         /* Start the counter. */
  235         WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
  236 
  237         if (bootverbose)
  238                 device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
  239                     sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
  240 
  241         /* Setup the timer interrupt. */
  242         err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
  243             NULL, sc, &sc->sc_ih);
  244         if (err != 0) {
  245                 bus_release_resources(dev, imx_gpt_spec, sc->res);
  246                 device_printf(dev, "Unable to setup the clock irq handler, "
  247                     "err = %d\n", err);
  248                 return (ENXIO);
  249         }
  250 
  251         /*
  252          * Measure how many clock ticks it takes to setup a one-shot event (it's
  253          * longer than you might think, due to wait states in accessing gpt
  254          * registers).  Scale up the result by a factor of 1.5 to be safe,
  255          * and use that to set the minimum eventtimer period we can schedule. In
  256          * the real world, the value works out to about 750ns on imx5 hardware.
  257          */
  258         t1 = READ4(sc, IMX_GPT_CNT);
  259         WRITE4(sc, IMX_GPT_OCR3, 0);
  260         t2 = READ4(sc, IMX_GPT_CNT);
  261         setup_ticks = ((t2 - t1 + 1) * 3) / 2;
  262 
  263         /* Register as an eventtimer. */
  264         sc->et.et_name = "iMXGPT";
  265         sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
  266         sc->et.et_quality = 800;
  267         sc->et.et_frequency = sc->clkfreq;
  268         sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq;
  269         sc->et.et_max_period = ((uint64_t)0xfffffffe  << 32) / sc->clkfreq;
  270         sc->et.et_start = imx_gpt_timer_start;
  271         sc->et.et_stop = imx_gpt_timer_stop;
  272         sc->et.et_priv = sc;
  273         et_register(&sc->et);
  274 
  275         /* Register as a timecounter. */
  276         imx_gpt_timecounter.tc_frequency = sc->clkfreq;
  277         imx_gpt_timecounter.tc_priv = sc;
  278         tc_init(&imx_gpt_timecounter);
  279 
  280         /* If this is the first unit, store the softc for use in DELAY. */
  281         if (device_get_unit(dev) == 0) {
  282                 arm_set_delay(imx_gpt_do_delay, sc);
  283         }
  284 
  285         return (0);
  286 }
  287 
  288 static int
  289 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
  290 {
  291         struct imx_gpt_softc *sc;
  292         uint32_t ticks;
  293 
  294         sc = (struct imx_gpt_softc *)et->et_priv;
  295 
  296         if (period != 0) {
  297                 sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
  298                 /* Set expected value */
  299                 WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
  300                 /* Enable compare register 2 Interrupt */
  301                 sc->ir_reg |= GPT_IR_OF2;
  302                 WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
  303                 return (0);
  304         } else if (first != 0) {
  305                 /* Enable compare register 3 interrupt if not already on. */
  306                 if ((sc->ir_reg & GPT_IR_OF3) == 0) {
  307                         sc->ir_reg |= GPT_IR_OF3;
  308                         WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
  309                 }
  310                 ticks = ((uint32_t)et->et_frequency * first) >> 32;
  311                 /* Do not disturb, otherwise event will be lost */
  312                 spinlock_enter();
  313                 /* Set expected value */
  314                 WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
  315                 /* Now everybody can relax */
  316                 spinlock_exit();
  317                 return (0);
  318         }
  319 
  320         return (EINVAL);
  321 }
  322 
  323 static int
  324 imx_gpt_timer_stop(struct eventtimer *et)
  325 {
  326         struct imx_gpt_softc *sc;
  327 
  328         sc = (struct imx_gpt_softc *)et->et_priv;
  329 
  330         /* Disable interrupts and clear any pending status. */
  331         sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3);
  332         WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
  333         WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3);
  334         sc->sc_period = 0;
  335 
  336         return (0);
  337 }
  338 
  339 static int
  340 imx_gpt_intr(void *arg)
  341 {
  342         struct imx_gpt_softc *sc;
  343         uint32_t status;
  344 
  345         sc = (struct imx_gpt_softc *)arg;
  346 
  347         status = READ4(sc, IMX_GPT_SR);
  348 
  349         /*
  350         * Clear interrupt status before invoking event callbacks.  The callback
  351         * often sets up a new one-shot timer event and if the interval is short
  352         * enough it can fire before we get out of this function.  If we cleared
  353         * at the bottom we'd miss the interrupt and hang until the clock wraps.
  354         */
  355         WRITE4(sc, IMX_GPT_SR, status);
  356 
  357         /* Handle one-shot timer events. */
  358         if (status & GPT_IR_OF3) {
  359                 if (sc->et.et_active) {
  360                         sc->et.et_event_cb(&sc->et, sc->et.et_arg);
  361                 }
  362         }
  363 
  364         /* Handle periodic timer events. */
  365         if (status & GPT_IR_OF2) {
  366                 if (sc->et.et_active)
  367                         sc->et.et_event_cb(&sc->et, sc->et.et_arg);
  368                 if (sc->sc_period != 0)
  369                         WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
  370                             sc->sc_period);
  371         }
  372 
  373         return (FILTER_HANDLED);
  374 }
  375 
  376 static u_int
  377 imx_gpt_get_timecount(struct timecounter *tc)
  378 {
  379         struct imx_gpt_softc *sc;
  380 
  381         sc = tc->tc_priv;
  382         return (READ4(sc, IMX_GPT_CNT));
  383 }
  384 
  385 static device_method_t imx_gpt_methods[] = {
  386         DEVMETHOD(device_probe,         imx_gpt_probe),
  387         DEVMETHOD(device_attach,        imx_gpt_attach),
  388 
  389         DEVMETHOD_END
  390 };
  391 
  392 static driver_t imx_gpt_driver = {
  393         "imx_gpt",
  394         imx_gpt_methods,
  395         sizeof(struct imx_gpt_softc),
  396 };
  397 
  398 static devclass_t imx_gpt_devclass;
  399 
  400 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0,
  401     0, BUS_PASS_TIMER);
  402 
  403 static void
  404 imx_gpt_do_delay(int usec, void *arg)
  405 {
  406         struct imx_gpt_softc *sc = arg;
  407         uint64_t curcnt, endcnt, startcnt, ticks;
  408 
  409         /*
  410          * Calculate the tick count with 64-bit values so that it works for any
  411          * clock frequency.  Loop until the hardware count reaches start+ticks.
  412          * If the 32-bit hardware count rolls over while we're looping, just
  413          * manually do a carry into the high bits after each read; don't worry
  414          * that doing this on each loop iteration is inefficient -- we're trying
  415          * to waste time here.
  416          */
  417         ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000;
  418         curcnt = startcnt = READ4(sc, IMX_GPT_CNT);
  419         endcnt = startcnt + ticks;
  420         while (curcnt < endcnt) {
  421                 curcnt = READ4(sc, IMX_GPT_CNT);
  422                 if (curcnt < startcnt)
  423                         curcnt += 1ULL << 32;
  424         }
  425 }

Cache object: 640a07422c724716b125f30b9ce9e3f1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.