1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012, 2013 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * This software was developed by Oleksandr Rybalko under sponsorship
8 * from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/rman.h>
41 #include <sys/timeet.h>
42 #include <sys/timetc.h>
43 #include <machine/bus.h>
44 #include <machine/intr.h>
45 #include <machine/machdep.h> /* For arm_set_delay */
46
47 #include <dev/ofw/openfirm.h>
48 #include <dev/ofw/ofw_bus.h>
49 #include <dev/ofw/ofw_bus_subr.h>
50
51 #include <arm/freescale/imx/imx_ccmvar.h>
52 #include <arm/freescale/imx/imx_gptreg.h>
53
54 #define WRITE4(_sc, _r, _v) \
55 bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
56 #define READ4(_sc, _r) \
57 bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
58 #define SET4(_sc, _r, _m) \
59 WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
60 #define CLEAR4(_sc, _r, _m) \
61 WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
62
63 static u_int imx_gpt_get_timecount(struct timecounter *);
64 static int imx_gpt_timer_start(struct eventtimer *, sbintime_t,
65 sbintime_t);
66 static int imx_gpt_timer_stop(struct eventtimer *);
67
68 static void imx_gpt_do_delay(int, void *);
69
70 static int imx_gpt_intr(void *);
71 static int imx_gpt_probe(device_t);
72 static int imx_gpt_attach(device_t);
73
74 static struct timecounter imx_gpt_timecounter = {
75 .tc_name = "iMXGPT",
76 .tc_get_timecount = imx_gpt_get_timecount,
77 .tc_counter_mask = ~0u,
78 .tc_frequency = 0,
79 .tc_quality = 1000,
80 };
81
82 struct imx_gpt_softc {
83 device_t sc_dev;
84 struct resource * res[2];
85 bus_space_tag_t sc_iot;
86 bus_space_handle_t sc_ioh;
87 void * sc_ih; /* interrupt handler */
88 uint32_t sc_period;
89 uint32_t sc_clksrc;
90 uint32_t clkfreq;
91 uint32_t ir_reg;
92 struct eventtimer et;
93 };
94
95 /* Try to divide down an available fast clock to this frequency. */
96 #define TARGET_FREQUENCY 1000000000
97
98 static struct resource_spec imx_gpt_spec[] = {
99 { SYS_RES_MEMORY, 0, RF_ACTIVE },
100 { SYS_RES_IRQ, 0, RF_ACTIVE },
101 { -1, 0 }
102 };
103
104 static struct ofw_compat_data compat_data[] = {
105 {"fsl,imx6dl-gpt", 1},
106 {"fsl,imx6q-gpt", 1},
107 {"fsl,imx6ul-gpt", 1},
108 {"fsl,imx53-gpt", 1},
109 {"fsl,imx51-gpt", 1},
110 {"fsl,imx31-gpt", 1},
111 {"fsl,imx27-gpt", 1},
112 {"fsl,imx25-gpt", 1},
113 {NULL, 0}
114 };
115
116 static int
117 imx_gpt_probe(device_t dev)
118 {
119
120 if (!ofw_bus_status_okay(dev))
121 return (ENXIO);
122
123 /*
124 * We only support a single unit, because the only thing this driver
125 * does with the complex timer hardware is supply the system
126 * timecounter and eventtimer. There is nothing useful we can do with
127 * the additional device instances that exist in some chips.
128 */
129 if (device_get_unit(dev) > 0)
130 return (ENXIO);
131
132 if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
133 device_set_desc(dev, "Freescale i.MX GPT timer");
134 return (BUS_PROBE_DEFAULT);
135 }
136
137 return (ENXIO);
138 }
139
140 static int
141 imx_gpt_attach(device_t dev)
142 {
143 struct imx_gpt_softc *sc;
144 int ctlreg, err;
145 uint32_t basefreq, prescale, setup_ticks, t1, t2;
146
147 sc = device_get_softc(dev);
148
149 if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
150 device_printf(dev, "could not allocate resources\n");
151 return (ENXIO);
152 }
153
154 sc->sc_dev = dev;
155 sc->sc_iot = rman_get_bustag(sc->res[0]);
156 sc->sc_ioh = rman_get_bushandle(sc->res[0]);
157
158 /*
159 * For now, just automatically choose a good clock for the hardware
160 * we're running on. Eventually we could allow selection from the fdt;
161 * the code in this driver will cope with any clock frequency.
162 */
163 sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
164
165 ctlreg = 0;
166
167 switch (sc->sc_clksrc) {
168 case GPT_CR_CLKSRC_32K:
169 basefreq = 32768;
170 break;
171 case GPT_CR_CLKSRC_IPG:
172 basefreq = imx_ccm_ipg_hz();
173 break;
174 case GPT_CR_CLKSRC_IPG_HIGH:
175 basefreq = imx_ccm_ipg_hz() * 2;
176 break;
177 case GPT_CR_CLKSRC_24M:
178 ctlreg |= GPT_CR_24MEN;
179 basefreq = 24000000;
180 break;
181 case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
182 case GPT_CR_CLKSRC_EXT: /* No way to get the freq of an ext clock. */
183 default:
184 device_printf(dev, "Unsupported clock source '%d'\n",
185 sc->sc_clksrc);
186 return (EINVAL);
187 }
188
189 /*
190 * The following setup sequence is from the I.MX6 reference manual,
191 * "Selecting the clock source". First, disable the clock and
192 * interrupts. This also clears input and output mode bits and in
193 * general completes several of the early steps in the procedure.
194 */
195 WRITE4(sc, IMX_GPT_CR, 0);
196 WRITE4(sc, IMX_GPT_IR, 0);
197
198 /* Choose the clock and the power-saving behaviors. */
199 ctlreg |=
200 sc->sc_clksrc | /* Use selected clock */
201 GPT_CR_FRR | /* Just count (FreeRunner mode) */
202 GPT_CR_STOPEN | /* Run in STOP mode */
203 GPT_CR_DOZEEN | /* Run in DOZE mode */
204 GPT_CR_WAITEN | /* Run in WAIT mode */
205 GPT_CR_DBGEN; /* Run in DEBUG mode */
206 WRITE4(sc, IMX_GPT_CR, ctlreg);
207
208 /*
209 * The datasheet says to do the software reset after choosing the clock
210 * source. It says nothing about needing to wait for the reset to
211 * complete, but the register description does document the fact that
212 * the reset isn't complete until the SWR bit reads 0, so let's be safe.
213 * The reset also clears all registers except for a few of the bits in
214 * CR, but we'll rewrite all the CR bits when we start the counter.
215 */
216 WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
217 while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
218 continue;
219
220 /* Set a prescaler value that gets us near the target frequency. */
221 if (basefreq < TARGET_FREQUENCY) {
222 prescale = 0;
223 sc->clkfreq = basefreq;
224 } else {
225 prescale = basefreq / TARGET_FREQUENCY;
226 sc->clkfreq = basefreq / prescale;
227 prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
228 }
229 WRITE4(sc, IMX_GPT_PR, prescale);
230
231 /* Clear the status register. */
232 WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
233
234 /* Start the counter. */
235 WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
236
237 if (bootverbose)
238 device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
239 sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
240
241 /* Setup the timer interrupt. */
242 err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
243 NULL, sc, &sc->sc_ih);
244 if (err != 0) {
245 bus_release_resources(dev, imx_gpt_spec, sc->res);
246 device_printf(dev, "Unable to setup the clock irq handler, "
247 "err = %d\n", err);
248 return (ENXIO);
249 }
250
251 /*
252 * Measure how many clock ticks it takes to setup a one-shot event (it's
253 * longer than you might think, due to wait states in accessing gpt
254 * registers). Scale up the result by a factor of 1.5 to be safe,
255 * and use that to set the minimum eventtimer period we can schedule. In
256 * the real world, the value works out to about 750ns on imx5 hardware.
257 */
258 t1 = READ4(sc, IMX_GPT_CNT);
259 WRITE4(sc, IMX_GPT_OCR3, 0);
260 t2 = READ4(sc, IMX_GPT_CNT);
261 setup_ticks = ((t2 - t1 + 1) * 3) / 2;
262
263 /* Register as an eventtimer. */
264 sc->et.et_name = "iMXGPT";
265 sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
266 sc->et.et_quality = 800;
267 sc->et.et_frequency = sc->clkfreq;
268 sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq;
269 sc->et.et_max_period = ((uint64_t)0xfffffffe << 32) / sc->clkfreq;
270 sc->et.et_start = imx_gpt_timer_start;
271 sc->et.et_stop = imx_gpt_timer_stop;
272 sc->et.et_priv = sc;
273 et_register(&sc->et);
274
275 /* Register as a timecounter. */
276 imx_gpt_timecounter.tc_frequency = sc->clkfreq;
277 imx_gpt_timecounter.tc_priv = sc;
278 tc_init(&imx_gpt_timecounter);
279
280 /* If this is the first unit, store the softc for use in DELAY. */
281 if (device_get_unit(dev) == 0) {
282 arm_set_delay(imx_gpt_do_delay, sc);
283 }
284
285 return (0);
286 }
287
288 static int
289 imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
290 {
291 struct imx_gpt_softc *sc;
292 uint32_t ticks;
293
294 sc = (struct imx_gpt_softc *)et->et_priv;
295
296 if (period != 0) {
297 sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
298 /* Set expected value */
299 WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
300 /* Enable compare register 2 Interrupt */
301 sc->ir_reg |= GPT_IR_OF2;
302 WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
303 return (0);
304 } else if (first != 0) {
305 /* Enable compare register 3 interrupt if not already on. */
306 if ((sc->ir_reg & GPT_IR_OF3) == 0) {
307 sc->ir_reg |= GPT_IR_OF3;
308 WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
309 }
310 ticks = ((uint32_t)et->et_frequency * first) >> 32;
311 /* Do not disturb, otherwise event will be lost */
312 spinlock_enter();
313 /* Set expected value */
314 WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
315 /* Now everybody can relax */
316 spinlock_exit();
317 return (0);
318 }
319
320 return (EINVAL);
321 }
322
323 static int
324 imx_gpt_timer_stop(struct eventtimer *et)
325 {
326 struct imx_gpt_softc *sc;
327
328 sc = (struct imx_gpt_softc *)et->et_priv;
329
330 /* Disable interrupts and clear any pending status. */
331 sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3);
332 WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
333 WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3);
334 sc->sc_period = 0;
335
336 return (0);
337 }
338
339 static int
340 imx_gpt_intr(void *arg)
341 {
342 struct imx_gpt_softc *sc;
343 uint32_t status;
344
345 sc = (struct imx_gpt_softc *)arg;
346
347 status = READ4(sc, IMX_GPT_SR);
348
349 /*
350 * Clear interrupt status before invoking event callbacks. The callback
351 * often sets up a new one-shot timer event and if the interval is short
352 * enough it can fire before we get out of this function. If we cleared
353 * at the bottom we'd miss the interrupt and hang until the clock wraps.
354 */
355 WRITE4(sc, IMX_GPT_SR, status);
356
357 /* Handle one-shot timer events. */
358 if (status & GPT_IR_OF3) {
359 if (sc->et.et_active) {
360 sc->et.et_event_cb(&sc->et, sc->et.et_arg);
361 }
362 }
363
364 /* Handle periodic timer events. */
365 if (status & GPT_IR_OF2) {
366 if (sc->et.et_active)
367 sc->et.et_event_cb(&sc->et, sc->et.et_arg);
368 if (sc->sc_period != 0)
369 WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
370 sc->sc_period);
371 }
372
373 return (FILTER_HANDLED);
374 }
375
376 static u_int
377 imx_gpt_get_timecount(struct timecounter *tc)
378 {
379 struct imx_gpt_softc *sc;
380
381 sc = tc->tc_priv;
382 return (READ4(sc, IMX_GPT_CNT));
383 }
384
385 static device_method_t imx_gpt_methods[] = {
386 DEVMETHOD(device_probe, imx_gpt_probe),
387 DEVMETHOD(device_attach, imx_gpt_attach),
388
389 DEVMETHOD_END
390 };
391
392 static driver_t imx_gpt_driver = {
393 "imx_gpt",
394 imx_gpt_methods,
395 sizeof(struct imx_gpt_softc),
396 };
397
398 static devclass_t imx_gpt_devclass;
399
400 EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0,
401 0, BUS_PASS_TIMER);
402
403 static void
404 imx_gpt_do_delay(int usec, void *arg)
405 {
406 struct imx_gpt_softc *sc = arg;
407 uint64_t curcnt, endcnt, startcnt, ticks;
408
409 /*
410 * Calculate the tick count with 64-bit values so that it works for any
411 * clock frequency. Loop until the hardware count reaches start+ticks.
412 * If the 32-bit hardware count rolls over while we're looping, just
413 * manually do a carry into the high bits after each read; don't worry
414 * that doing this on each loop iteration is inefficient -- we're trying
415 * to waste time here.
416 */
417 ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000;
418 curcnt = startcnt = READ4(sc, IMX_GPT_CNT);
419 endcnt = startcnt + ticks;
420 while (curcnt < endcnt) {
421 curcnt = READ4(sc, IMX_GPT_CNT);
422 if (curcnt < startcnt)
423 curcnt += 1ULL << 32;
424 }
425 }
Cache object: 640a07422c724716b125f30b9ce9e3f1
|