The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/include/pmap-v4.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * the Systems Programming Group of the University of Utah Computer
    7  * Science Department and William Jolitz of UUNET Technologies Inc.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  * Derived from hp300 version by Mike Hibler, this version by William
   38  * Jolitz uses a recursive map [a pde points to the page directory] to
   39  * map the page tables using the pagetables themselves. This is done to
   40  * reduce the impact on kernel virtual memory for lots of sparse address
   41  * space, and to reduce the cost of memory to each process.
   42  *
   43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
   44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
   45  *      from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
   46  *
   47  * $FreeBSD: releng/11.2/sys/arm/include/pmap-v4.h 314530 2017-03-02 01:18:46Z ian $
   48  */
   49 
   50 #ifndef _MACHINE_PMAP_V4_H_
   51 #define _MACHINE_PMAP_V4_H_
   52 
   53 #include <machine/pte-v4.h>
   54 
   55 /*
   56  * Define the MMU types we support based on the cpu types.  While the code has
   57  * some theoretical support for multiple MMU types in a single kernel, there are
   58  * no actual working configurations that use that feature.
   59  */
   60 #if (defined(CPU_ARM9) || defined(CPU_ARM9E) || defined(CPU_FA526))
   61 #define ARM_MMU_GENERIC         1
   62 #else
   63 #define ARM_MMU_GENERIC         0
   64 #endif
   65 
   66 #if (defined(CPU_XSCALE_PXA2X0) || defined(CPU_XSCALE_IXP425) ||        \
   67      defined(CPU_XSCALE_81342))
   68 #define ARM_MMU_XSCALE          1
   69 #else
   70 #define ARM_MMU_XSCALE          0
   71 #endif
   72 
   73 #define ARM_NMMUS               (ARM_MMU_GENERIC + ARM_MMU_XSCALE)
   74 #if ARM_NMMUS == 0 && !defined(KLD_MODULE) && defined(_KERNEL)
   75 #error ARM_NMMUS is 0
   76 #endif
   77 
   78 /*
   79  * Pte related macros
   80  */
   81 #define PTE_NOCACHE     1
   82 #define PTE_CACHE       2
   83 #define PTE_DEVICE      PTE_NOCACHE
   84 #define PTE_PAGETABLE   3
   85 
   86 enum mem_type {
   87         STRONG_ORD = 0,
   88         DEVICE_NOSHARE,
   89         DEVICE_SHARE,
   90         NRML_NOCACHE,
   91         NRML_IWT_OWT,
   92         NRML_IWB_OWB,
   93         NRML_IWBA_OWBA
   94 };
   95 
   96 #ifndef LOCORE
   97 
   98 #include <sys/queue.h>
   99 #include <sys/_cpuset.h>
  100 #include <sys/_lock.h>
  101 #include <sys/_mutex.h>
  102 
  103 #define PDESIZE         sizeof(pd_entry_t)      /* for assembly files */
  104 #define PTESIZE         sizeof(pt_entry_t)      /* for assembly files */
  105 
  106 #define pmap_page_get_memattr(m)        ((m)->md.pv_memattr)
  107 #define pmap_page_is_mapped(m)  (!TAILQ_EMPTY(&(m)->md.pv_list))
  108 
  109 /*
  110  * Pmap stuff
  111  */
  112 
  113 /*
  114  * This structure is used to hold a virtual<->physical address
  115  * association and is used mostly by bootstrap code
  116  */
  117 struct pv_addr {
  118         SLIST_ENTRY(pv_addr) pv_list;
  119         vm_offset_t     pv_va;
  120         vm_paddr_t      pv_pa;
  121 };
  122 
  123 struct  pv_entry;
  124 struct  pv_chunk;
  125 
  126 struct  md_page {
  127         int pvh_attrs;
  128         vm_memattr_t     pv_memattr;
  129         vm_offset_t pv_kva;             /* first kernel VA mapping */
  130         TAILQ_HEAD(,pv_entry)   pv_list;
  131 };
  132 
  133 struct l1_ttable;
  134 struct l2_dtable;
  135 
  136 
  137 /*
  138  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
  139  * A bucket size of 16 provides for 16MB of contiguous virtual address
  140  * space per l2_dtable. Most processes will, therefore, require only two or
  141  * three of these to map their whole working set.
  142  */
  143 #define L2_BUCKET_LOG2  4
  144 #define L2_BUCKET_SIZE  (1 << L2_BUCKET_LOG2)
  145 /*
  146  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
  147  * of l2_dtable structures required to track all possible page descriptors
  148  * mappable by an L1 translation table is given by the following constants:
  149  */
  150 #define L2_LOG2         ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
  151 #define L2_SIZE         (1 << L2_LOG2)
  152 
  153 struct  pmap {
  154         struct mtx              pm_mtx;
  155         u_int8_t                pm_domain;
  156         struct l1_ttable        *pm_l1;
  157         struct l2_dtable        *pm_l2[L2_SIZE];
  158         cpuset_t                pm_active;      /* active on cpus */
  159         struct pmap_statistics  pm_stats;       /* pmap statictics */
  160         TAILQ_HEAD(,pv_entry)   pm_pvlist;      /* list of mappings in pmap */
  161 };
  162 
  163 typedef struct pmap *pmap_t;
  164 
  165 #ifdef _KERNEL
  166 extern struct pmap      kernel_pmap_store;
  167 #define kernel_pmap     (&kernel_pmap_store)
  168 
  169 #define PMAP_ASSERT_LOCKED(pmap) \
  170                                 mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
  171 #define PMAP_LOCK(pmap)         mtx_lock(&(pmap)->pm_mtx)
  172 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx)
  173 #define PMAP_LOCK_INIT(pmap)    mtx_init(&(pmap)->pm_mtx, "pmap", \
  174                                     NULL, MTX_DEF | MTX_DUPOK)
  175 #define PMAP_OWNED(pmap)        mtx_owned(&(pmap)->pm_mtx)
  176 #define PMAP_MTX(pmap)          (&(pmap)->pm_mtx)
  177 #define PMAP_TRYLOCK(pmap)      mtx_trylock(&(pmap)->pm_mtx)
  178 #define PMAP_UNLOCK(pmap)       mtx_unlock(&(pmap)->pm_mtx)
  179 #endif
  180 
  181 /*
  182  * For each vm_page_t, there is a list of all currently valid virtual
  183  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
  184  */
  185 typedef struct pv_entry {
  186         vm_offset_t     pv_va;          /* virtual address for mapping */
  187         TAILQ_ENTRY(pv_entry)   pv_list;
  188         int             pv_flags;       /* flags (wired, etc...) */
  189         pmap_t          pv_pmap;        /* pmap where mapping lies */
  190         TAILQ_ENTRY(pv_entry)   pv_plist;
  191 } *pv_entry_t;
  192 
  193 /*
  194  * pv_entries are allocated in chunks per-process.  This avoids the
  195  * need to track per-pmap assignments.
  196  */
  197 #define _NPCM   8
  198 #define _NPCPV  252
  199 
  200 struct pv_chunk {
  201         pmap_t                  pc_pmap;
  202         TAILQ_ENTRY(pv_chunk)   pc_list;
  203         uint32_t                pc_map[_NPCM];  /* bitmap; 1 = free */
  204         uint32_t                pc_dummy[3];    /* aligns pv_chunk to 4KB */
  205         TAILQ_ENTRY(pv_chunk)   pc_lru;
  206         struct pv_entry         pc_pventry[_NPCPV];
  207 };
  208 
  209 #ifdef _KERNEL
  210 
  211 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
  212 
  213 /*
  214  * virtual address to page table entry and
  215  * to physical address. Likewise for alternate address space.
  216  * Note: these work recursively, thus vtopte of a pte will give
  217  * the corresponding pde that in turn maps it.
  218  */
  219 
  220 /*
  221  * The current top of kernel VM.
  222  */
  223 extern vm_offset_t pmap_curmaxkvaddr;
  224 
  225 /* Virtual address to page table entry */
  226 static __inline pt_entry_t *
  227 vtopte(vm_offset_t va)
  228 {
  229         pd_entry_t *pdep;
  230         pt_entry_t *ptep;
  231 
  232         if (pmap_get_pde_pte(kernel_pmap, va, &pdep, &ptep) == FALSE)
  233                 return (NULL);
  234         return (ptep);
  235 }
  236 
  237 void    pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
  238 int     pmap_change_attr(vm_offset_t, vm_size_t, int);
  239 void    pmap_kenter(vm_offset_t va, vm_paddr_t pa);
  240 void    pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
  241 void    pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
  242 vm_paddr_t pmap_dump_kextract(vm_offset_t, pt2_entry_t *);
  243 void    pmap_kremove(vm_offset_t);
  244 vm_page_t       pmap_use_pt(pmap_t, vm_offset_t);
  245 void    pmap_debug(int);
  246 void    pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
  247 void    pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
  248 vm_size_t       pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
  249 void
  250 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
  251     int cache);
  252 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
  253 
  254 /*
  255  * Definitions for MMU domains
  256  */
  257 #define PMAP_DOMAINS            15      /* 15 'user' domains (1-15) */
  258 #define PMAP_DOMAIN_KERNEL      0       /* The kernel uses domain #0 */
  259 
  260 /*
  261  * The new pmap ensures that page-tables are always mapping Write-Thru.
  262  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
  263  * on every change.
  264  *
  265  * Unfortunately, not all CPUs have a write-through cache mode.  So we
  266  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
  267  * and if there is the chance for PTE syncs to be needed, we define
  268  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
  269  * the code.
  270  */
  271 extern int pmap_needs_pte_sync;
  272 
  273 /*
  274  * These macros define the various bit masks in the PTE.
  275  *
  276  * We use these macros since we use different bits on different processor
  277  * models.
  278  */
  279 
  280 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
  281 #define L1_S_CACHE_MASK_xscale  (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
  282                                 L1_S_XSCALE_TEX(TEX_XSCALE_T))
  283 
  284 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
  285 #define L2_L_CACHE_MASK_xscale  (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
  286                                 L2_XSCALE_L_TEX(TEX_XSCALE_T))
  287 
  288 #define L2_S_PROT_U_generic     (L2_AP(AP_U))
  289 #define L2_S_PROT_W_generic     (L2_AP(AP_W))
  290 #define L2_S_PROT_MASK_generic  (L2_S_PROT_U|L2_S_PROT_W)
  291 
  292 #define L2_S_PROT_U_xscale      (L2_AP0(AP_U))
  293 #define L2_S_PROT_W_xscale      (L2_AP0(AP_W))
  294 #define L2_S_PROT_MASK_xscale   (L2_S_PROT_U|L2_S_PROT_W)
  295 
  296 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
  297 #define L2_S_CACHE_MASK_xscale  (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
  298                                  L2_XSCALE_T_TEX(TEX_XSCALE_X))
  299 
  300 #define L1_S_PROTO_generic      (L1_TYPE_S | L1_S_IMP)
  301 #define L1_S_PROTO_xscale       (L1_TYPE_S)
  302 
  303 #define L1_C_PROTO_generic      (L1_TYPE_C | L1_C_IMP2)
  304 #define L1_C_PROTO_xscale       (L1_TYPE_C)
  305 
  306 #define L2_L_PROTO              (L2_TYPE_L)
  307 
  308 #define L2_S_PROTO_generic      (L2_TYPE_S)
  309 #define L2_S_PROTO_xscale       (L2_TYPE_XSCALE_XS)
  310 
  311 /*
  312  * User-visible names for the ones that vary with MMU class.
  313  */
  314 #define L2_AP(x)        (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
  315 
  316 #if ARM_NMMUS > 1
  317 /* More than one MMU class configured; use variables. */
  318 #define L2_S_PROT_U             pte_l2_s_prot_u
  319 #define L2_S_PROT_W             pte_l2_s_prot_w
  320 #define L2_S_PROT_MASK          pte_l2_s_prot_mask
  321 
  322 #define L1_S_CACHE_MASK         pte_l1_s_cache_mask
  323 #define L2_L_CACHE_MASK         pte_l2_l_cache_mask
  324 #define L2_S_CACHE_MASK         pte_l2_s_cache_mask
  325 
  326 #define L1_S_PROTO              pte_l1_s_proto
  327 #define L1_C_PROTO              pte_l1_c_proto
  328 #define L2_S_PROTO              pte_l2_s_proto
  329 
  330 #elif ARM_MMU_GENERIC != 0
  331 #define L2_S_PROT_U             L2_S_PROT_U_generic
  332 #define L2_S_PROT_W             L2_S_PROT_W_generic
  333 #define L2_S_PROT_MASK          L2_S_PROT_MASK_generic
  334 
  335 #define L1_S_CACHE_MASK         L1_S_CACHE_MASK_generic
  336 #define L2_L_CACHE_MASK         L2_L_CACHE_MASK_generic
  337 #define L2_S_CACHE_MASK         L2_S_CACHE_MASK_generic
  338 
  339 #define L1_S_PROTO              L1_S_PROTO_generic
  340 #define L1_C_PROTO              L1_C_PROTO_generic
  341 #define L2_S_PROTO              L2_S_PROTO_generic
  342 
  343 #elif ARM_MMU_XSCALE == 1
  344 #define L2_S_PROT_U             L2_S_PROT_U_xscale
  345 #define L2_S_PROT_W             L2_S_PROT_W_xscale
  346 #define L2_S_PROT_MASK          L2_S_PROT_MASK_xscale
  347 
  348 #define L1_S_CACHE_MASK         L1_S_CACHE_MASK_xscale
  349 #define L2_L_CACHE_MASK         L2_L_CACHE_MASK_xscale
  350 #define L2_S_CACHE_MASK         L2_S_CACHE_MASK_xscale
  351 
  352 #define L1_S_PROTO              L1_S_PROTO_xscale
  353 #define L1_C_PROTO              L1_C_PROTO_xscale
  354 #define L2_S_PROTO              L2_S_PROTO_xscale
  355 
  356 #endif /* ARM_NMMUS > 1 */
  357 
  358 #if defined(CPU_XSCALE_81342)
  359 #define PMAP_NEEDS_PTE_SYNC     1
  360 #define PMAP_INCLUDE_PTE_SYNC
  361 #else
  362 #define PMAP_NEEDS_PTE_SYNC     0
  363 #endif
  364 
  365 /*
  366  * These macros return various bits based on kernel/user and protection.
  367  * Note that the compiler will usually fold these at compile time.
  368  */
  369 #define L1_S_PROT_U             (L1_S_AP(AP_U))
  370 #define L1_S_PROT_W             (L1_S_AP(AP_W))
  371 #define L1_S_PROT_MASK          (L1_S_PROT_U|L1_S_PROT_W)
  372 #define L1_S_WRITABLE(pd)       ((pd) & L1_S_PROT_W)
  373 
  374 #define L1_S_PROT(ku, pr)       ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
  375                                  (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
  376 
  377 #define L2_L_PROT_U             (L2_AP(AP_U))
  378 #define L2_L_PROT_W             (L2_AP(AP_W))
  379 #define L2_L_PROT_MASK          (L2_L_PROT_U|L2_L_PROT_W)
  380 
  381 #define L2_L_PROT(ku, pr)       ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
  382                                  (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
  383 
  384 #define L2_S_PROT(ku, pr)       ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
  385                                  (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
  386 
  387 /*
  388  * Macros to test if a mapping is mappable with an L1 Section mapping
  389  * or an L2 Large Page mapping.
  390  */
  391 #define L1_S_MAPPABLE_P(va, pa, size)                                   \
  392         ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
  393 
  394 #define L2_L_MAPPABLE_P(va, pa, size)                                   \
  395         ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
  396 
  397 /*
  398  * Provide a fallback in case we were not able to determine it at
  399  * compile-time.
  400  */
  401 #ifndef PMAP_NEEDS_PTE_SYNC
  402 #define PMAP_NEEDS_PTE_SYNC     pmap_needs_pte_sync
  403 #define PMAP_INCLUDE_PTE_SYNC
  404 #endif
  405 
  406 #ifdef ARM_L2_PIPT
  407 #define _sync_l2(pte, size)     cpu_l2cache_wb_range(vtophys(pte), size)
  408 #else
  409 #define _sync_l2(pte, size)     cpu_l2cache_wb_range(pte, size)
  410 #endif
  411 
  412 #define PTE_SYNC(pte)                                                   \
  413 do {                                                                    \
  414         if (PMAP_NEEDS_PTE_SYNC) {                                      \
  415                 cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
  416                 cpu_drain_writebuf();                                   \
  417                 _sync_l2((vm_offset_t)(pte), sizeof(pt_entry_t));\
  418         } else                                                          \
  419                 cpu_drain_writebuf();                                   \
  420 } while (/*CONSTCOND*/0)
  421 
  422 #define PTE_SYNC_RANGE(pte, cnt)                                        \
  423 do {                                                                    \
  424         if (PMAP_NEEDS_PTE_SYNC) {                                      \
  425                 cpu_dcache_wb_range((vm_offset_t)(pte),                 \
  426                     (cnt) << 2); /* * sizeof(pt_entry_t) */             \
  427                 cpu_drain_writebuf();                                   \
  428                 _sync_l2((vm_offset_t)(pte),                            \
  429                     (cnt) << 2); /* * sizeof(pt_entry_t) */             \
  430         } else                                                          \
  431                 cpu_drain_writebuf();                                   \
  432 } while (/*CONSTCOND*/0)
  433 
  434 extern pt_entry_t               pte_l1_s_cache_mode;
  435 extern pt_entry_t               pte_l1_s_cache_mask;
  436 
  437 extern pt_entry_t               pte_l2_l_cache_mode;
  438 extern pt_entry_t               pte_l2_l_cache_mask;
  439 
  440 extern pt_entry_t               pte_l2_s_cache_mode;
  441 extern pt_entry_t               pte_l2_s_cache_mask;
  442 
  443 extern pt_entry_t               pte_l1_s_cache_mode_pt;
  444 extern pt_entry_t               pte_l2_l_cache_mode_pt;
  445 extern pt_entry_t               pte_l2_s_cache_mode_pt;
  446 
  447 extern pt_entry_t               pte_l2_s_prot_u;
  448 extern pt_entry_t               pte_l2_s_prot_w;
  449 extern pt_entry_t               pte_l2_s_prot_mask;
  450 
  451 extern pt_entry_t               pte_l1_s_proto;
  452 extern pt_entry_t               pte_l1_c_proto;
  453 extern pt_entry_t               pte_l2_s_proto;
  454 
  455 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
  456 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
  457     vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
  458 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
  459 
  460 #if ARM_MMU_GENERIC != 0 || defined(CPU_XSCALE_81342)
  461 void    pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
  462 void    pmap_zero_page_generic(vm_paddr_t, int, int);
  463 
  464 void    pmap_pte_init_generic(void);
  465 #endif /* ARM_MMU_GENERIC != 0 */
  466 
  467 #if ARM_MMU_XSCALE == 1
  468 void    pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
  469 void    pmap_zero_page_xscale(vm_paddr_t, int, int);
  470 
  471 void    pmap_pte_init_xscale(void);
  472 
  473 void    xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
  474 
  475 void    pmap_use_minicache(vm_offset_t, vm_size_t);
  476 #endif /* ARM_MMU_XSCALE == 1 */
  477 #if defined(CPU_XSCALE_81342)
  478 #define ARM_HAVE_SUPERSECTIONS
  479 #endif
  480 
  481 #define PTE_KERNEL      0
  482 #define PTE_USER        1
  483 #define l1pte_valid(pde)        ((pde) != 0)
  484 #define l1pte_section_p(pde)    (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
  485 #define l1pte_page_p(pde)       (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
  486 #define l1pte_fpage_p(pde)      (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
  487 
  488 #define l2pte_index(v)          (((v) & L1_S_OFFSET) >> L2_S_SHIFT)
  489 #define l2pte_valid(pte)        ((pte) != 0)
  490 #define l2pte_pa(pte)           ((pte) & L2_S_FRAME)
  491 #define l2pte_minidata(pte)     (((pte) & \
  492                                  (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
  493                                  == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
  494 
  495 /* L1 and L2 page table macros */
  496 #define pmap_pde_v(pde)         l1pte_valid(*(pde))
  497 #define pmap_pde_section(pde)   l1pte_section_p(*(pde))
  498 #define pmap_pde_page(pde)      l1pte_page_p(*(pde))
  499 #define pmap_pde_fpage(pde)     l1pte_fpage_p(*(pde))
  500 
  501 #define pmap_pte_v(pte)         l2pte_valid(*(pte))
  502 #define pmap_pte_pa(pte)        l2pte_pa(*(pte))
  503 
  504 /*
  505  * Flags that indicate attributes of pages or mappings of pages.
  506  *
  507  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
  508  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
  509  * pv_entry's for each page.  They live in the same "namespace" so
  510  * that we can clear multiple attributes at a time.
  511  *
  512  * Note the "non-cacheable" flag generally means the page has
  513  * multiple mappings in a given address space.
  514  */
  515 #define PVF_MOD         0x01            /* page is modified */
  516 #define PVF_REF         0x02            /* page is referenced */
  517 #define PVF_WIRED       0x04            /* mapping is wired */
  518 #define PVF_WRITE       0x08            /* mapping is writable */
  519 #define PVF_EXEC        0x10            /* mapping is executable */
  520 #define PVF_NC          0x20            /* mapping is non-cacheable */
  521 #define PVF_MWC         0x40            /* mapping is used multiple times in userland */
  522 #define PVF_UNMAN       0x80            /* mapping is unmanaged */
  523 
  524 void vector_page_setprot(int);
  525 
  526 #define SECTION_CACHE   0x1
  527 #define SECTION_PT      0x2
  528 void    pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
  529 #ifdef ARM_HAVE_SUPERSECTIONS
  530 void    pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
  531 #endif
  532 
  533 void    pmap_postinit(void);
  534 
  535 #endif  /* _KERNEL */
  536 
  537 #endif  /* !LOCORE */
  538 
  539 #endif  /* !_MACHINE_PMAP_V4_H_ */

Cache object: 3b0664d2992bad96cd476bce18b7a506


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.