The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/include/pmap.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991 Regents of the University of California.
    3  * All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * the Systems Programming Group of the University of Utah Computer
    7  * Science Department and William Jolitz of UUNET Technologies Inc.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *      This product includes software developed by the University of
   20  *      California, Berkeley and its contributors.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  * Derived from hp300 version by Mike Hibler, this version by William
   38  * Jolitz uses a recursive map [a pde points to the page directory] to
   39  * map the page tables using the pagetables themselves. This is done to
   40  * reduce the impact on kernel virtual memory for lots of sparse address
   41  * space, and to reduce the cost of memory to each process.
   42  *
   43  *      from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90
   44  *      from: @(#)pmap.h        7.4 (Berkeley) 5/12/91
   45  *      from: FreeBSD: src/sys/i386/include/pmap.h,v 1.70 2000/11/30
   46  *
   47  * $FreeBSD: releng/10.0/sys/arm/include/pmap.h 254918 2013-08-26 17:12:30Z raj $
   48  */
   49 
   50 #ifndef _MACHINE_PMAP_H_
   51 #define _MACHINE_PMAP_H_
   52 
   53 #include <machine/pte.h>
   54 #include <machine/cpuconf.h>
   55 /*
   56  * Pte related macros
   57  */
   58 #if ARM_ARCH_6 || ARM_ARCH_7A
   59 #ifdef SMP
   60 #define PTE_NOCACHE     2
   61 #else
   62 #define PTE_NOCACHE     1
   63 #endif
   64 #define PTE_CACHE       6
   65 #define PTE_DEVICE      2
   66 #define PTE_PAGETABLE   4
   67 #else
   68 #define PTE_NOCACHE     1
   69 #define PTE_CACHE       2
   70 #define PTE_PAGETABLE   3
   71 #endif
   72 
   73 enum mem_type {
   74         STRONG_ORD = 0,
   75         DEVICE_NOSHARE,
   76         DEVICE_SHARE,
   77         NRML_NOCACHE,
   78         NRML_IWT_OWT,
   79         NRML_IWB_OWB,
   80         NRML_IWBA_OWBA
   81 };
   82 
   83 #ifndef LOCORE
   84 
   85 #include <sys/queue.h>
   86 #include <sys/_cpuset.h>
   87 #include <sys/_lock.h>
   88 #include <sys/_mutex.h>
   89 
   90 #define PDESIZE         sizeof(pd_entry_t)      /* for assembly files */
   91 #define PTESIZE         sizeof(pt_entry_t)      /* for assembly files */
   92 
   93 #ifdef _KERNEL
   94 
   95 #define vtophys(va)     pmap_kextract((vm_offset_t)(va))
   96 
   97 #endif
   98 
   99 #define pmap_page_get_memattr(m)        ((m)->md.pv_memattr)
  100 #define pmap_page_is_write_mapped(m)    (((m)->aflags & PGA_WRITEABLE) != 0)
  101 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
  102 boolean_t pmap_page_is_mapped(vm_page_t);
  103 #else
  104 #define pmap_page_is_mapped(m)  (!TAILQ_EMPTY(&(m)->md.pv_list))
  105 #endif
  106 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
  107 
  108 /*
  109  * Pmap stuff
  110  */
  111 
  112 /*
  113  * This structure is used to hold a virtual<->physical address
  114  * association and is used mostly by bootstrap code
  115  */
  116 struct pv_addr {
  117         SLIST_ENTRY(pv_addr) pv_list;
  118         vm_offset_t     pv_va;
  119         vm_paddr_t      pv_pa;
  120 };
  121 
  122 struct  pv_entry;
  123 struct  pv_chunk;
  124 
  125 struct  md_page {
  126         int pvh_attrs;
  127         vm_memattr_t     pv_memattr;
  128 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
  129         vm_offset_t pv_kva;             /* first kernel VA mapping */
  130 #endif
  131         TAILQ_HEAD(,pv_entry)   pv_list;
  132 };
  133 
  134 struct l1_ttable;
  135 struct l2_dtable;
  136 
  137 
  138 /*
  139  * The number of L2 descriptor tables which can be tracked by an l2_dtable.
  140  * A bucket size of 16 provides for 16MB of contiguous virtual address
  141  * space per l2_dtable. Most processes will, therefore, require only two or
  142  * three of these to map their whole working set.
  143  */
  144 #define L2_BUCKET_LOG2  4
  145 #define L2_BUCKET_SIZE  (1 << L2_BUCKET_LOG2)
  146 /*
  147  * Given the above "L2-descriptors-per-l2_dtable" constant, the number
  148  * of l2_dtable structures required to track all possible page descriptors
  149  * mappable by an L1 translation table is given by the following constants:
  150  */
  151 #define L2_LOG2         ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
  152 #define L2_SIZE         (1 << L2_LOG2)
  153 
  154 struct  pmap {
  155         struct mtx              pm_mtx;
  156         u_int8_t                pm_domain;
  157         struct l1_ttable        *pm_l1;
  158         struct l2_dtable        *pm_l2[L2_SIZE];
  159         cpuset_t                pm_active;      /* active on cpus */
  160         struct pmap_statistics  pm_stats;       /* pmap statictics */
  161 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
  162         TAILQ_HEAD(,pv_chunk)   pm_pvchunk;     /* list of mappings in pmap */
  163 #else
  164         TAILQ_HEAD(,pv_entry)   pm_pvlist;      /* list of mappings in pmap */
  165 #endif
  166 };
  167 
  168 typedef struct pmap *pmap_t;
  169 
  170 #ifdef _KERNEL
  171 extern struct pmap      kernel_pmap_store;
  172 #define kernel_pmap     (&kernel_pmap_store)
  173 #define pmap_kernel() kernel_pmap
  174 
  175 #define PMAP_ASSERT_LOCKED(pmap) \
  176                                 mtx_assert(&(pmap)->pm_mtx, MA_OWNED)
  177 #define PMAP_LOCK(pmap)         mtx_lock(&(pmap)->pm_mtx)
  178 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx)
  179 #define PMAP_LOCK_INIT(pmap)    mtx_init(&(pmap)->pm_mtx, "pmap", \
  180                                     NULL, MTX_DEF | MTX_DUPOK)
  181 #define PMAP_OWNED(pmap)        mtx_owned(&(pmap)->pm_mtx)
  182 #define PMAP_MTX(pmap)          (&(pmap)->pm_mtx)
  183 #define PMAP_TRYLOCK(pmap)      mtx_trylock(&(pmap)->pm_mtx)
  184 #define PMAP_UNLOCK(pmap)       mtx_unlock(&(pmap)->pm_mtx)
  185 #endif
  186 
  187 
  188 /*
  189  * For each vm_page_t, there is a list of all currently valid virtual
  190  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
  191  */
  192 typedef struct pv_entry {
  193         vm_offset_t     pv_va;          /* virtual address for mapping */
  194         TAILQ_ENTRY(pv_entry)   pv_list;
  195         int             pv_flags;       /* flags (wired, etc...) */
  196 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
  197         pmap_t          pv_pmap;        /* pmap where mapping lies */
  198         TAILQ_ENTRY(pv_entry)   pv_plist;
  199 #endif
  200 } *pv_entry_t;
  201 
  202 /*
  203  * pv_entries are allocated in chunks per-process.  This avoids the
  204  * need to track per-pmap assignments.
  205  */
  206 #define _NPCM   8
  207 #define _NPCPV  252
  208 
  209 struct pv_chunk {
  210         pmap_t                  pc_pmap;
  211         TAILQ_ENTRY(pv_chunk)   pc_list;
  212         uint32_t                pc_map[_NPCM];  /* bitmap; 1 = free */
  213         uint32_t                pc_dummy[3];    /* aligns pv_chunk to 4KB */
  214         TAILQ_ENTRY(pv_chunk)   pc_lru;
  215         struct pv_entry         pc_pventry[_NPCPV];
  216 };
  217 
  218 #ifdef _KERNEL
  219 
  220 boolean_t pmap_get_pde_pte(pmap_t, vm_offset_t, pd_entry_t **, pt_entry_t **);
  221 
  222 /*
  223  * virtual address to page table entry and
  224  * to physical address. Likewise for alternate address space.
  225  * Note: these work recursively, thus vtopte of a pte will give
  226  * the corresponding pde that in turn maps it.
  227  */
  228 
  229 /*
  230  * The current top of kernel VM.
  231  */
  232 extern vm_offset_t pmap_curmaxkvaddr;
  233 
  234 struct pcb;
  235 
  236 void    pmap_set_pcb_pagedir(pmap_t, struct pcb *);
  237 /* Virtual address to page table entry */
  238 static __inline pt_entry_t *
  239 vtopte(vm_offset_t va)
  240 {
  241         pd_entry_t *pdep;
  242         pt_entry_t *ptep;
  243 
  244         if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
  245                 return (NULL);
  246         return (ptep);
  247 }
  248 
  249 extern vm_paddr_t phys_avail[];
  250 extern vm_offset_t virtual_avail;
  251 extern vm_offset_t virtual_end;
  252 
  253 void    pmap_bootstrap(vm_offset_t firstaddr, struct pv_addr *l1pt);
  254 int     pmap_change_attr(vm_offset_t, vm_size_t, int);
  255 void    pmap_kenter(vm_offset_t va, vm_paddr_t pa);
  256 void    pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa);
  257 void    *pmap_kenter_temp(vm_paddr_t pa, int i);
  258 void    pmap_kenter_user(vm_offset_t va, vm_paddr_t pa);
  259 vm_paddr_t pmap_kextract(vm_offset_t va);
  260 void    pmap_kremove(vm_offset_t);
  261 void    *pmap_mapdev(vm_offset_t, vm_size_t);
  262 void    pmap_unmapdev(vm_offset_t, vm_size_t);
  263 vm_page_t       pmap_use_pt(pmap_t, vm_offset_t);
  264 void    pmap_debug(int);
  265 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
  266 void    pmap_map_section(vm_offset_t, vm_offset_t, vm_offset_t, int, int);
  267 #endif
  268 void    pmap_link_l2pt(vm_offset_t, vm_offset_t, struct pv_addr *);
  269 vm_size_t       pmap_map_chunk(vm_offset_t, vm_offset_t, vm_offset_t, vm_size_t, int, int);
  270 void
  271 pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
  272     int cache);
  273 int pmap_fault_fixup(pmap_t, vm_offset_t, vm_prot_t, int);
  274 int pmap_dmap_iscurrent(pmap_t pmap);
  275 
  276 /*
  277  * Definitions for MMU domains
  278  */
  279 #define PMAP_DOMAINS            15      /* 15 'user' domains (1-15) */
  280 #define PMAP_DOMAIN_KERNEL      0       /* The kernel uses domain #0 */
  281 
  282 /*
  283  * The new pmap ensures that page-tables are always mapping Write-Thru.
  284  * Thus, on some platforms we can run fast and loose and avoid syncing PTEs
  285  * on every change.
  286  *
  287  * Unfortunately, not all CPUs have a write-through cache mode.  So we
  288  * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
  289  * and if there is the chance for PTE syncs to be needed, we define
  290  * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
  291  * the code.
  292  */
  293 extern int pmap_needs_pte_sync;
  294 
  295 /*
  296  * These macros define the various bit masks in the PTE.
  297  *
  298  * We use these macros since we use different bits on different processor
  299  * models.
  300  */
  301 
  302 #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
  303 #define L1_S_CACHE_MASK_xscale  (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)|\
  304                                 L1_S_XSCALE_TEX(TEX_XSCALE_T))
  305 
  306 #define L2_L_CACHE_MASK_generic (L2_B|L2_C)
  307 #define L2_L_CACHE_MASK_xscale  (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X) | \
  308                                 L2_XSCALE_L_TEX(TEX_XSCALE_T))
  309 
  310 #define L2_S_PROT_U_generic     (L2_AP(AP_U))
  311 #define L2_S_PROT_W_generic     (L2_AP(AP_W))
  312 #define L2_S_PROT_MASK_generic  (L2_S_PROT_U|L2_S_PROT_W)
  313 
  314 #define L2_S_PROT_U_xscale      (L2_AP0(AP_U))
  315 #define L2_S_PROT_W_xscale      (L2_AP0(AP_W))
  316 #define L2_S_PROT_MASK_xscale   (L2_S_PROT_U|L2_S_PROT_W)
  317 
  318 #define L2_S_CACHE_MASK_generic (L2_B|L2_C)
  319 #define L2_S_CACHE_MASK_xscale  (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)| \
  320                                  L2_XSCALE_T_TEX(TEX_XSCALE_X))
  321 
  322 #define L1_S_PROTO_generic      (L1_TYPE_S | L1_S_IMP)
  323 #define L1_S_PROTO_xscale       (L1_TYPE_S)
  324 
  325 #define L1_C_PROTO_generic      (L1_TYPE_C | L1_C_IMP2)
  326 #define L1_C_PROTO_xscale       (L1_TYPE_C)
  327 
  328 #define L2_L_PROTO              (L2_TYPE_L)
  329 
  330 #define L2_S_PROTO_generic      (L2_TYPE_S)
  331 #define L2_S_PROTO_xscale       (L2_TYPE_XSCALE_XS)
  332 
  333 /*
  334  * User-visible names for the ones that vary with MMU class.
  335  */
  336 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
  337 #define L2_AP(x)        (L2_AP0(x))
  338 #else
  339 #define L2_AP(x)        (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
  340 #endif
  341 
  342 #if ARM_NMMUS > 1
  343 /* More than one MMU class configured; use variables. */
  344 #define L2_S_PROT_U             pte_l2_s_prot_u
  345 #define L2_S_PROT_W             pte_l2_s_prot_w
  346 #define L2_S_PROT_MASK          pte_l2_s_prot_mask
  347 
  348 #define L1_S_CACHE_MASK         pte_l1_s_cache_mask
  349 #define L2_L_CACHE_MASK         pte_l2_l_cache_mask
  350 #define L2_S_CACHE_MASK         pte_l2_s_cache_mask
  351 
  352 #define L1_S_PROTO              pte_l1_s_proto
  353 #define L1_C_PROTO              pte_l1_c_proto
  354 #define L2_S_PROTO              pte_l2_s_proto
  355 
  356 #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
  357 #define L2_S_PROT_U             L2_S_PROT_U_generic
  358 #define L2_S_PROT_W             L2_S_PROT_W_generic
  359 #define L2_S_PROT_MASK          L2_S_PROT_MASK_generic
  360 
  361 #define L1_S_CACHE_MASK         L1_S_CACHE_MASK_generic
  362 #define L2_L_CACHE_MASK         L2_L_CACHE_MASK_generic
  363 #define L2_S_CACHE_MASK         L2_S_CACHE_MASK_generic
  364 
  365 #define L1_S_PROTO              L1_S_PROTO_generic
  366 #define L1_C_PROTO              L1_C_PROTO_generic
  367 #define L2_S_PROTO              L2_S_PROTO_generic
  368 
  369 #elif ARM_MMU_XSCALE == 1
  370 #define L2_S_PROT_U             L2_S_PROT_U_xscale
  371 #define L2_S_PROT_W             L2_S_PROT_W_xscale
  372 #define L2_S_PROT_MASK          L2_S_PROT_MASK_xscale
  373 
  374 #define L1_S_CACHE_MASK         L1_S_CACHE_MASK_xscale
  375 #define L2_L_CACHE_MASK         L2_L_CACHE_MASK_xscale
  376 #define L2_S_CACHE_MASK         L2_S_CACHE_MASK_xscale
  377 
  378 #define L1_S_PROTO              L1_S_PROTO_xscale
  379 #define L1_C_PROTO              L1_C_PROTO_xscale
  380 #define L2_S_PROTO              L2_S_PROTO_xscale
  381 
  382 #elif (ARM_MMU_V6 + ARM_MMU_V7) != 0
  383 /*
  384  * AP[2:1] access permissions model:
  385  *
  386  * AP[2](APX)   - Write Disable
  387  * AP[1]        - User Enable
  388  * AP[0]        - Reference Flag
  389  *
  390  * AP[2]     AP[1]     Kernel     User
  391  *  0          0        R/W        N
  392  *  0          1        R/W       R/W
  393  *  1          0         R         N
  394  *  1          1         R         R
  395  *
  396  */
  397 #define L2_S_PROT_R             (0)             /* kernel read */
  398 #define L2_S_PROT_U             (L2_AP0(2))     /* user read */
  399 #define L2_S_REF                (L2_AP0(1))     /* reference flag */
  400 
  401 #define L2_S_PROT_MASK          (L2_S_PROT_U|L2_S_PROT_R|L2_APX)
  402 #define L2_S_EXECUTABLE(pte)    (!(pte & L2_XN))
  403 #define L2_S_WRITABLE(pte)      (!(pte & L2_APX))
  404 #define L2_S_REFERENCED(pte)    (!!(pte & L2_S_REF))
  405 
  406 #ifndef SMP
  407 #define L1_S_CACHE_MASK         (L1_S_TEX_MASK|L1_S_B|L1_S_C)
  408 #define L2_L_CACHE_MASK         (L2_L_TEX_MASK|L2_B|L2_C)
  409 #define L2_S_CACHE_MASK         (L2_S_TEX_MASK|L2_B|L2_C)
  410 #else
  411 #define L1_S_CACHE_MASK         (L1_S_TEX_MASK|L1_S_B|L1_S_C|L1_SHARED)
  412 #define L2_L_CACHE_MASK         (L2_L_TEX_MASK|L2_B|L2_C|L2_SHARED)
  413 #define L2_S_CACHE_MASK         (L2_S_TEX_MASK|L2_B|L2_C|L2_SHARED)
  414 #endif  /* SMP */
  415 
  416 #define L1_S_PROTO              (L1_TYPE_S)
  417 #define L1_C_PROTO              (L1_TYPE_C)
  418 #define L2_S_PROTO              (L2_TYPE_S)
  419 
  420 /*
  421  * Promotion to a 1MB (SECTION) mapping requires that the corresponding
  422  * 4KB (SMALL) page mappings have identical settings for the following fields:
  423  */
  424 #define L2_S_PROMOTE            (L2_S_REF | L2_SHARED | L2_S_PROT_MASK | \
  425                                  L2_XN | L2_S_PROTO)
  426 
  427 /*
  428  * In order to compare 1MB (SECTION) entry settings with the 4KB (SMALL)
  429  * page mapping it is necessary to read and shift appropriate bits from
  430  * L1 entry to positions of the corresponding bits in the L2 entry.
  431  */
  432 #define L1_S_DEMOTE(l1pd)       ((((l1pd) & L1_S_PROTO) >> 0) | \
  433                                 (((l1pd) & L1_SHARED) >> 6) | \
  434                                 (((l1pd) & L1_S_REF) >> 6) | \
  435                                 (((l1pd) & L1_S_PROT_MASK) >> 6) | \
  436                                 (((l1pd) & L1_S_XN) >> 4))
  437 
  438 #ifndef SMP
  439 #define ARM_L1S_STRONG_ORD      (0)
  440 #define ARM_L1S_DEVICE_NOSHARE  (L1_S_TEX(2))
  441 #define ARM_L1S_DEVICE_SHARE    (L1_S_B)
  442 #define ARM_L1S_NRML_NOCACHE    (L1_S_TEX(1))
  443 #define ARM_L1S_NRML_IWT_OWT    (L1_S_C)
  444 #define ARM_L1S_NRML_IWB_OWB    (L1_S_C|L1_S_B)
  445 #define ARM_L1S_NRML_IWBA_OWBA  (L1_S_TEX(1)|L1_S_C|L1_S_B)
  446 
  447 #define ARM_L2L_STRONG_ORD      (0)
  448 #define ARM_L2L_DEVICE_NOSHARE  (L2_L_TEX(2))
  449 #define ARM_L2L_DEVICE_SHARE    (L2_B)
  450 #define ARM_L2L_NRML_NOCACHE    (L2_L_TEX(1))
  451 #define ARM_L2L_NRML_IWT_OWT    (L2_C)
  452 #define ARM_L2L_NRML_IWB_OWB    (L2_C|L2_B)
  453 #define ARM_L2L_NRML_IWBA_OWBA  (L2_L_TEX(1)|L2_C|L2_B)
  454 
  455 #define ARM_L2S_STRONG_ORD      (0)
  456 #define ARM_L2S_DEVICE_NOSHARE  (L2_S_TEX(2))
  457 #define ARM_L2S_DEVICE_SHARE    (L2_B)
  458 #define ARM_L2S_NRML_NOCACHE    (L2_S_TEX(1))
  459 #define ARM_L2S_NRML_IWT_OWT    (L2_C)
  460 #define ARM_L2S_NRML_IWB_OWB    (L2_C|L2_B)
  461 #define ARM_L2S_NRML_IWBA_OWBA  (L2_S_TEX(1)|L2_C|L2_B)
  462 #else
  463 #define ARM_L1S_STRONG_ORD      (0)
  464 #define ARM_L1S_DEVICE_NOSHARE  (L1_S_TEX(2))
  465 #define ARM_L1S_DEVICE_SHARE    (L1_S_B)
  466 #define ARM_L1S_NRML_NOCACHE    (L1_S_TEX(1)|L1_SHARED)
  467 #define ARM_L1S_NRML_IWT_OWT    (L1_S_C|L1_SHARED)
  468 #define ARM_L1S_NRML_IWB_OWB    (L1_S_C|L1_S_B|L1_SHARED)
  469 #define ARM_L1S_NRML_IWBA_OWBA  (L1_S_TEX(1)|L1_S_C|L1_S_B|L1_SHARED)
  470 
  471 #define ARM_L2L_STRONG_ORD      (0)
  472 #define ARM_L2L_DEVICE_NOSHARE  (L2_L_TEX(2))
  473 #define ARM_L2L_DEVICE_SHARE    (L2_B)
  474 #define ARM_L2L_NRML_NOCACHE    (L2_L_TEX(1)|L2_SHARED)
  475 #define ARM_L2L_NRML_IWT_OWT    (L2_C|L2_SHARED)
  476 #define ARM_L2L_NRML_IWB_OWB    (L2_C|L2_B|L2_SHARED)
  477 #define ARM_L2L_NRML_IWBA_OWBA  (L2_L_TEX(1)|L2_C|L2_B|L2_SHARED)
  478 
  479 #define ARM_L2S_STRONG_ORD      (0)
  480 #define ARM_L2S_DEVICE_NOSHARE  (L2_S_TEX(2))
  481 #define ARM_L2S_DEVICE_SHARE    (L2_B)
  482 #define ARM_L2S_NRML_NOCACHE    (L2_S_TEX(1)|L2_SHARED)
  483 #define ARM_L2S_NRML_IWT_OWT    (L2_C|L2_SHARED)
  484 #define ARM_L2S_NRML_IWB_OWB    (L2_C|L2_B|L2_SHARED)
  485 #define ARM_L2S_NRML_IWBA_OWBA  (L2_S_TEX(1)|L2_C|L2_B|L2_SHARED)
  486 #endif /* SMP */
  487 #endif /* ARM_NMMUS > 1 */
  488 
  489 #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1)
  490 #define PMAP_NEEDS_PTE_SYNC     1
  491 #define PMAP_INCLUDE_PTE_SYNC
  492 #elif defined(CPU_XSCALE_81342)
  493 #define PMAP_NEEDS_PTE_SYNC     1
  494 #define PMAP_INCLUDE_PTE_SYNC
  495 #elif (ARM_MMU_SA1 == 0)
  496 #define PMAP_NEEDS_PTE_SYNC     0
  497 #endif
  498 
  499 /*
  500  * These macros return various bits based on kernel/user and protection.
  501  * Note that the compiler will usually fold these at compile time.
  502  */
  503 #if (ARM_MMU_V6 + ARM_MMU_V7) == 0
  504 
  505 #define L1_S_PROT_U             (L1_S_AP(AP_U))
  506 #define L1_S_PROT_W             (L1_S_AP(AP_W))
  507 #define L1_S_PROT_MASK          (L1_S_PROT_U|L1_S_PROT_W)
  508 #define L1_S_WRITABLE(pd)       ((pd) & L1_S_PROT_W)
  509 
  510 #define L1_S_PROT(ku, pr)       ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \
  511                                  (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0))
  512 
  513 #define L2_L_PROT_U             (L2_AP(AP_U))
  514 #define L2_L_PROT_W             (L2_AP(AP_W))
  515 #define L2_L_PROT_MASK          (L2_L_PROT_U|L2_L_PROT_W)
  516 
  517 #define L2_L_PROT(ku, pr)       ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \
  518                                  (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0))
  519 
  520 #define L2_S_PROT(ku, pr)       ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \
  521                                  (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0))
  522 #else
  523 #define L1_S_PROT_U             (L1_S_AP(AP_U))
  524 #define L1_S_PROT_W             (L1_S_APX)              /* Write disable */
  525 #define L1_S_PROT_MASK          (L1_S_PROT_W|L1_S_PROT_U)
  526 #define L1_S_REF                (L1_S_AP(AP_REF))       /* Reference flag */
  527 #define L1_S_WRITABLE(pd)       (!((pd) & L1_S_PROT_W))
  528 #define L1_S_REFERENCED(pd)     ((pd) & L1_S_REF)
  529 
  530 #define L1_S_PROT(ku, pr)       (((((ku) == PTE_KERNEL) ? 0 : L1_S_PROT_U) | \
  531                                  (((pr) & VM_PROT_WRITE) ? 0 : L1_S_PROT_W) | \
  532                                  (((pr) & VM_PROT_EXECUTE) ? 0 : L1_S_XN)))
  533 
  534 #define L2_L_PROT_MASK          (L2_APX|L2_AP0(0x3))
  535 #define L2_L_PROT(ku, pr)       (L2_L_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
  536                                  (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
  537 
  538 #define L2_S_PROT(ku, pr)       (L2_S_PROT_MASK & ~((((ku) == PTE_KERNEL) ? L2_S_PROT_U : 0) | \
  539                                  (((pr) & VM_PROT_WRITE) ? L2_APX : 0)))
  540 
  541 #endif
  542 
  543 /*
  544  * Macros to test if a mapping is mappable with an L1 Section mapping
  545  * or an L2 Large Page mapping.
  546  */
  547 #define L1_S_MAPPABLE_P(va, pa, size)                                   \
  548         ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
  549 
  550 #define L2_L_MAPPABLE_P(va, pa, size)                                   \
  551         ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
  552 
  553 /*
  554  * Provide a fallback in case we were not able to determine it at
  555  * compile-time.
  556  */
  557 #ifndef PMAP_NEEDS_PTE_SYNC
  558 #define PMAP_NEEDS_PTE_SYNC     pmap_needs_pte_sync
  559 #define PMAP_INCLUDE_PTE_SYNC
  560 #endif
  561 
  562 #define PTE_SYNC(pte)                                                   \
  563 do {                                                                    \
  564         if (PMAP_NEEDS_PTE_SYNC) {                                      \
  565                 cpu_dcache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
  566                 cpu_l2cache_wb_range((vm_offset_t)(pte), sizeof(pt_entry_t));\
  567         } else                                                          \
  568                 cpu_drain_writebuf();                                   \
  569 } while (/*CONSTCOND*/0)
  570 
  571 #define PTE_SYNC_RANGE(pte, cnt)                                        \
  572 do {                                                                    \
  573         if (PMAP_NEEDS_PTE_SYNC) {                                      \
  574                 cpu_dcache_wb_range((vm_offset_t)(pte),                 \
  575                     (cnt) << 2); /* * sizeof(pt_entry_t) */             \
  576                 cpu_l2cache_wb_range((vm_offset_t)(pte),                \
  577                     (cnt) << 2); /* * sizeof(pt_entry_t) */             \
  578         } else                                                          \
  579                 cpu_drain_writebuf();                                   \
  580 } while (/*CONSTCOND*/0)
  581 
  582 extern pt_entry_t               pte_l1_s_cache_mode;
  583 extern pt_entry_t               pte_l1_s_cache_mask;
  584 
  585 extern pt_entry_t               pte_l2_l_cache_mode;
  586 extern pt_entry_t               pte_l2_l_cache_mask;
  587 
  588 extern pt_entry_t               pte_l2_s_cache_mode;
  589 extern pt_entry_t               pte_l2_s_cache_mask;
  590 
  591 extern pt_entry_t               pte_l1_s_cache_mode_pt;
  592 extern pt_entry_t               pte_l2_l_cache_mode_pt;
  593 extern pt_entry_t               pte_l2_s_cache_mode_pt;
  594 
  595 extern pt_entry_t               pte_l2_s_prot_u;
  596 extern pt_entry_t               pte_l2_s_prot_w;
  597 extern pt_entry_t               pte_l2_s_prot_mask;
  598 
  599 extern pt_entry_t               pte_l1_s_proto;
  600 extern pt_entry_t               pte_l1_c_proto;
  601 extern pt_entry_t               pte_l2_s_proto;
  602 
  603 extern void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t);
  604 extern void (*pmap_copy_page_offs_func)(vm_paddr_t a_phys,
  605     vm_offset_t a_offs, vm_paddr_t b_phys, vm_offset_t b_offs, int cnt);
  606 extern void (*pmap_zero_page_func)(vm_paddr_t, int, int);
  607 
  608 #if (ARM_MMU_GENERIC + ARM_MMU_V6 + ARM_MMU_V7 + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_81342)
  609 void    pmap_copy_page_generic(vm_paddr_t, vm_paddr_t);
  610 void    pmap_zero_page_generic(vm_paddr_t, int, int);
  611 
  612 void    pmap_pte_init_generic(void);
  613 #if defined(CPU_ARM8)
  614 void    pmap_pte_init_arm8(void);
  615 #endif
  616 #if defined(CPU_ARM9)
  617 void    pmap_pte_init_arm9(void);
  618 #endif /* CPU_ARM9 */
  619 #if defined(CPU_ARM10)
  620 void    pmap_pte_init_arm10(void);
  621 #endif /* CPU_ARM10 */
  622 #if (ARM_MMU_V6 + ARM_MMU_V7) != 0
  623 void    pmap_pte_init_mmu_v6(void);
  624 #endif /* (ARM_MMU_V6 + ARM_MMU_V7) != 0 */
  625 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */
  626 
  627 #if /* ARM_MMU_SA1 == */1
  628 void    pmap_pte_init_sa1(void);
  629 #endif /* ARM_MMU_SA1 == 1 */
  630 
  631 #if ARM_MMU_XSCALE == 1
  632 void    pmap_copy_page_xscale(vm_paddr_t, vm_paddr_t);
  633 void    pmap_zero_page_xscale(vm_paddr_t, int, int);
  634 
  635 void    pmap_pte_init_xscale(void);
  636 
  637 void    xscale_setup_minidata(vm_offset_t, vm_offset_t, vm_offset_t);
  638 
  639 void    pmap_use_minicache(vm_offset_t, vm_size_t);
  640 #endif /* ARM_MMU_XSCALE == 1 */
  641 #if defined(CPU_XSCALE_81342)
  642 #define ARM_HAVE_SUPERSECTIONS
  643 #endif
  644 
  645 #define PTE_KERNEL      0
  646 #define PTE_USER        1
  647 #define l1pte_valid(pde)        ((pde) != 0)
  648 #define l1pte_section_p(pde)    (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
  649 #define l1pte_page_p(pde)       (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
  650 #define l1pte_fpage_p(pde)      (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
  651 
  652 #define l2pte_index(v)          (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
  653 #define l2pte_valid(pte)        ((pte) != 0)
  654 #define l2pte_pa(pte)           ((pte) & L2_S_FRAME)
  655 #define l2pte_minidata(pte)     (((pte) & \
  656                                  (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
  657                                  == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
  658 
  659 /* L1 and L2 page table macros */
  660 #define pmap_pde_v(pde)         l1pte_valid(*(pde))
  661 #define pmap_pde_section(pde)   l1pte_section_p(*(pde))
  662 #define pmap_pde_page(pde)      l1pte_page_p(*(pde))
  663 #define pmap_pde_fpage(pde)     l1pte_fpage_p(*(pde))
  664 
  665 #define pmap_pte_v(pte)         l2pte_valid(*(pte))
  666 #define pmap_pte_pa(pte)        l2pte_pa(*(pte))
  667 
  668 /*
  669  * Flags that indicate attributes of pages or mappings of pages.
  670  *
  671  * The PVF_MOD and PVF_REF flags are stored in the mdpage for each
  672  * page.  PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
  673  * pv_entry's for each page.  They live in the same "namespace" so
  674  * that we can clear multiple attributes at a time.
  675  *
  676  * Note the "non-cacheable" flag generally means the page has
  677  * multiple mappings in a given address space.
  678  */
  679 #define PVF_MOD         0x01            /* page is modified */
  680 #define PVF_REF         0x02            /* page is referenced */
  681 #define PVF_WIRED       0x04            /* mapping is wired */
  682 #define PVF_WRITE       0x08            /* mapping is writable */
  683 #define PVF_EXEC        0x10            /* mapping is executable */
  684 #define PVF_NC          0x20            /* mapping is non-cacheable */
  685 #define PVF_MWC         0x40            /* mapping is used multiple times in userland */
  686 #define PVF_UNMAN       0x80            /* mapping is unmanaged */
  687 
  688 void vector_page_setprot(int);
  689 
  690 /*
  691  * This structure is used by machine-dependent code to describe
  692  * static mappings of devices, created at bootstrap time.
  693  */
  694 struct pmap_devmap {
  695         vm_offset_t     pd_va;          /* virtual address */
  696         vm_paddr_t      pd_pa;          /* physical address */
  697         vm_size_t       pd_size;        /* size of region */
  698         vm_prot_t       pd_prot;        /* protection code */
  699         int             pd_cache;       /* cache attributes */
  700 };
  701 
  702 const struct pmap_devmap *pmap_devmap_find_pa(vm_paddr_t, vm_size_t);
  703 const struct pmap_devmap *pmap_devmap_find_va(vm_offset_t, vm_size_t);
  704 
  705 void    pmap_devmap_bootstrap(vm_offset_t, const struct pmap_devmap *);
  706 void    pmap_devmap_register(const struct pmap_devmap *);
  707 
  708 #define SECTION_CACHE   0x1
  709 #define SECTION_PT      0x2
  710 void    pmap_kenter_section(vm_offset_t, vm_paddr_t, int flags);
  711 #ifdef ARM_HAVE_SUPERSECTIONS
  712 void    pmap_kenter_supersection(vm_offset_t, uint64_t, int flags);
  713 #endif
  714 
  715 extern char *_tmppt;
  716 
  717 void    pmap_postinit(void);
  718 
  719 #ifdef ARM_USE_SMALL_ALLOC
  720 void    arm_add_smallalloc_pages(void *, void *, int, int);
  721 vm_offset_t arm_ptovirt(vm_paddr_t);
  722 void arm_init_smallalloc(void);
  723 struct arm_small_page {
  724         void *addr;
  725         TAILQ_ENTRY(arm_small_page) pg_list;
  726 };
  727 
  728 #endif
  729 
  730 #define ARM_NOCACHE_KVA_SIZE 0x1000000
  731 extern vm_offset_t arm_nocache_startaddr;
  732 void *arm_remap_nocache(void *, vm_size_t);
  733 void arm_unmap_nocache(void *, vm_size_t);
  734 
  735 extern vm_paddr_t dump_avail[];
  736 #endif  /* _KERNEL */
  737 
  738 #endif  /* !LOCORE */
  739 
  740 #endif  /* !_MACHINE_PMAP_H_ */

Cache object: 2bb850e40403024fbb588b57ba4620e5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.