The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/mv/mv_machdep.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1994-1998 Mark Brinicombe.
    3  * Copyright (c) 1994 Brini.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software written for Brini by Mark Brinicombe
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by Brini.
   19  * 4. The name of the company nor the name of the author may be used to
   20  *    endorse or promote products derived from this software without specific
   21  *    prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
   24  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   25  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   26  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   27  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   28  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   29  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  * from: FreeBSD: //depot/projects/arm/src/sys/arm/at91/kb920x_machdep.c, rev 45
   36  */
   37 
   38 #include "opt_ddb.h"
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 #define _ARM32_BUS_DMA_PRIVATE
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/sysproto.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/imgact.h>
   49 #include <sys/kernel.h>
   50 #include <sys/ktr.h>
   51 #include <sys/linker.h>
   52 #include <sys/lock.h>
   53 #include <sys/malloc.h>
   54 #include <sys/mutex.h>
   55 #include <sys/pcpu.h>
   56 #include <sys/proc.h>
   57 #include <sys/ptrace.h>
   58 #include <sys/cons.h>
   59 #include <sys/bio.h>
   60 #include <sys/bus.h>
   61 #include <sys/buf.h>
   62 #include <sys/exec.h>
   63 #include <sys/kdb.h>
   64 #include <sys/msgbuf.h>
   65 #include <machine/reg.h>
   66 #include <machine/cpu.h>
   67 
   68 #include <vm/vm.h>
   69 #include <vm/pmap.h>
   70 #include <vm/vm_object.h>
   71 #include <vm/vm_page.h>
   72 #include <vm/vm_pager.h>
   73 #include <vm/vm_map.h>
   74 #include <vm/vnode_pager.h>
   75 #include <machine/pte.h>
   76 #include <machine/pmap.h>
   77 #include <machine/vmparam.h>
   78 #include <machine/pcb.h>
   79 #include <machine/undefined.h>
   80 #include <machine/machdep.h>
   81 #include <machine/metadata.h>
   82 #include <machine/armreg.h>
   83 #include <machine/bus.h>
   84 #include <sys/reboot.h>
   85 #include <machine/bootinfo.h>
   86 
   87 #include <arm/mv/mvvar.h>       /* XXX eventually this should be eliminated */
   88 #include <arm/mv/mvwin.h>
   89 
   90 #ifdef  DEBUG
   91 #define debugf(fmt, args...) printf(fmt, ##args)
   92 #else
   93 #define debugf(fmt, args...)
   94 #endif
   95 
   96 /*
   97  * This is the number of L2 page tables required for covering max
   98  * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
   99  * stacks etc.), uprounded to be divisible by 4.
  100  */
  101 #define KERNEL_PT_MAX   78
  102 
  103 /* Define various stack sizes in pages */
  104 #define IRQ_STACK_SIZE  1
  105 #define ABT_STACK_SIZE  1
  106 #define UND_STACK_SIZE  1
  107 
  108 /* Maximum number of memory regions */
  109 #define MEM_REGIONS     8
  110 
  111 extern unsigned char kernbase[];
  112 extern unsigned char _etext[];
  113 extern unsigned char _edata[];
  114 extern unsigned char __bss_start[];
  115 extern unsigned char _end[];
  116 
  117 extern u_int data_abort_handler_address;
  118 extern u_int prefetch_abort_handler_address;
  119 extern u_int undefined_handler_address;
  120 
  121 extern const struct pmap_devmap *pmap_devmap_bootstrap_table;
  122 extern vm_offset_t pmap_bootstrap_lastaddr;
  123 
  124 struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
  125 
  126 extern int *end;
  127 
  128 struct pcpu __pcpu;
  129 struct pcpu *pcpup = &__pcpu;
  130 
  131 /* Physical and virtual addresses for some global pages */
  132 
  133 vm_paddr_t phys_avail[10];
  134 vm_paddr_t dump_avail[4];
  135 vm_offset_t physical_pages;
  136 vm_offset_t pmap_bootstrap_lastaddr;
  137 
  138 const struct pmap_devmap *pmap_devmap_bootstrap_table;
  139 struct pv_addr systempage;
  140 struct pv_addr msgbufpv;
  141 struct pv_addr irqstack;
  142 struct pv_addr undstack;
  143 struct pv_addr abtstack;
  144 struct pv_addr kernelstack;
  145 
  146 static struct trapframe proc0_tf;
  147 
  148 struct mem_region {
  149         vm_offset_t     mr_start;
  150         vm_size_t       mr_size;
  151 };
  152 
  153 static struct mem_region availmem_regions[MEM_REGIONS];
  154 static int availmem_regions_sz;
  155 
  156 struct bootinfo *bootinfo;
  157 
  158 static void print_kenv(void);
  159 static void print_kernel_section_addr(void);
  160 static void print_bootinfo(void);
  161 
  162 static void physmap_init(int);
  163 
  164 static char *
  165 kenv_next(char *cp)
  166 {
  167 
  168         if (cp != NULL) {
  169                 while (*cp != 0)
  170                         cp++;
  171                 cp++;
  172                 if (*cp == 0)
  173                         cp = NULL;
  174         }
  175         return (cp);
  176 }
  177 
  178 static void
  179 print_kenv(void)
  180 {
  181         int len;
  182         char *cp;
  183 
  184         debugf("loader passed (static) kenv:\n");
  185         if (kern_envp == NULL) {
  186                 debugf(" no env, null ptr\n");
  187                 return;
  188         }
  189         debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
  190 
  191         len = 0;
  192         for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
  193                 debugf(" %x %s\n", (uint32_t)cp, cp);
  194 }
  195 
  196 static void
  197 print_bootinfo(void)
  198 {
  199         struct bi_mem_region *mr;
  200         struct bi_eth_addr *eth;
  201         int i, j;
  202 
  203         debugf("bootinfo:\n");
  204         if (bootinfo == NULL) {
  205                 debugf(" no bootinfo, null ptr\n");
  206                 return;
  207         }
  208 
  209         debugf(" version = 0x%08x\n", bootinfo->bi_version);
  210         debugf(" ccsrbar = 0x%08x\n", bootinfo->bi_bar_base);
  211         debugf(" cpu_clk = 0x%08x\n", bootinfo->bi_cpu_clk);
  212         debugf(" bus_clk = 0x%08x\n", bootinfo->bi_bus_clk);
  213 
  214         debugf(" mem regions:\n");
  215         mr = (struct bi_mem_region *)bootinfo->bi_data;
  216         for (i = 0; i < bootinfo->bi_mem_reg_no; i++, mr++)
  217                 debugf("    #%d, base = 0x%08x, size = 0x%08x\n", i,
  218                     mr->mem_base, mr->mem_size);
  219 
  220         debugf(" eth addresses:\n");
  221         eth = (struct bi_eth_addr *)mr;
  222         for (i = 0; i < bootinfo->bi_eth_addr_no; i++, eth++) {
  223                 debugf("    #%d, addr = ", i);
  224                 for (j = 0; j < 6; j++)
  225                         debugf("%02x ", eth->mac_addr[j]);
  226                 debugf("\n");
  227         }
  228 }
  229 
  230 static void
  231 print_kernel_section_addr(void)
  232 {
  233 
  234         debugf("kernel image addresses:\n");
  235         debugf(" kernbase       = 0x%08x\n", (uint32_t)kernbase);
  236         debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext);
  237         debugf(" _edata         = 0x%08x\n", (uint32_t)_edata);
  238         debugf(" __bss_start    = 0x%08x\n", (uint32_t)__bss_start);
  239         debugf(" _end           = 0x%08x\n", (uint32_t)_end);
  240 }
  241 
  242 struct bi_mem_region *
  243 bootinfo_mr(void)
  244 {
  245 
  246         return ((struct bi_mem_region *)bootinfo->bi_data);
  247 }
  248 
  249 static void
  250 physmap_init(int hardcoded)
  251 {
  252         int i, j, cnt;
  253         vm_offset_t phys_kernelend, kernload;
  254         uint32_t s, e, sz;
  255         struct mem_region *mp, *mp1;
  256 
  257         phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR);
  258         kernload = KERNPHYSADDR;
  259 
  260         /*
  261          * Use hardcoded physical addresses if we don't use memory regions
  262          * from metadata.
  263          */
  264         if (hardcoded) {
  265                 phys_avail[0] = 0;
  266                 phys_avail[1] = kernload;
  267 
  268                 phys_avail[2] = phys_kernelend;
  269                 phys_avail[3] = PHYSMEM_SIZE;
  270 
  271                 phys_avail[4] = 0;
  272                 phys_avail[5] = 0;
  273                 return;
  274         }
  275 
  276         /*
  277          * Remove kernel physical address range from avail
  278          * regions list. Page align all regions.
  279          * Non-page aligned memory isn't very interesting to us.
  280          * Also, sort the entries for ascending addresses.
  281          */
  282         sz = 0;
  283         cnt = availmem_regions_sz;
  284         debugf("processing avail regions:\n");
  285         for (mp = availmem_regions; mp->mr_size; mp++) {
  286                 s = mp->mr_start;
  287                 e = mp->mr_start + mp->mr_size;
  288                 debugf(" %08x-%08x -> ", s, e);
  289                 /* Check whether this region holds all of the kernel. */
  290                 if (s < kernload && e > phys_kernelend) {
  291                         availmem_regions[cnt].mr_start = phys_kernelend;
  292                         availmem_regions[cnt++].mr_size = e - phys_kernelend;
  293                         e = kernload;
  294                 }
  295                 /* Look whether this regions starts within the kernel. */
  296                 if (s >= kernload && s < phys_kernelend) {
  297                         if (e <= phys_kernelend)
  298                                 goto empty;
  299                         s = phys_kernelend;
  300                 }
  301                 /* Now look whether this region ends within the kernel. */
  302                 if (e > kernload && e <= phys_kernelend) {
  303                         if (s >= kernload) {
  304                                 goto empty;
  305                         }
  306                         e = kernload;
  307                 }
  308                 /* Now page align the start and size of the region. */
  309                 s = round_page(s);
  310                 e = trunc_page(e);
  311                 if (e < s)
  312                         e = s;
  313                 sz = e - s;
  314                 debugf("%08x-%08x = %x\n", s, e, sz);
  315 
  316                 /* Check whether some memory is left here. */
  317                 if (sz == 0) {
  318                 empty:
  319                         printf("skipping\n");
  320                         bcopy(mp + 1, mp,
  321                             (cnt - (mp - availmem_regions)) * sizeof(*mp));
  322                         cnt--;
  323                         mp--;
  324                         continue;
  325                 }
  326 
  327                 /* Do an insertion sort. */
  328                 for (mp1 = availmem_regions; mp1 < mp; mp1++)
  329                         if (s < mp1->mr_start)
  330                                 break;
  331                 if (mp1 < mp) {
  332                         bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
  333                         mp1->mr_start = s;
  334                         mp1->mr_size = sz;
  335                 } else {
  336                         mp->mr_start = s;
  337                         mp->mr_size = sz;
  338                 }
  339         }
  340         availmem_regions_sz = cnt;
  341 
  342         /* Fill in phys_avail table, based on availmem_regions */
  343         debugf("fill in phys_avail:\n");
  344         for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
  345 
  346                 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
  347                     availmem_regions[i].mr_start,
  348                     availmem_regions[i].mr_start + availmem_regions[i].mr_size,
  349                     availmem_regions[i].mr_size);
  350 
  351                 phys_avail[j] = availmem_regions[i].mr_start;
  352                 phys_avail[j + 1] = availmem_regions[i].mr_start +
  353                     availmem_regions[i].mr_size;
  354         }
  355         phys_avail[j] = 0;
  356         phys_avail[j + 1] = 0;
  357 }
  358 
  359 void *
  360 initarm(void *mdp, void *unused __unused)
  361 {
  362         struct pv_addr kernel_l1pt;
  363         struct pv_addr dpcpu;
  364         vm_offset_t freemempos, l2_start, lastaddr;
  365         uint32_t memsize, l2size;
  366         struct bi_mem_region *mr;
  367         void *kmdp;
  368         u_int l1pagetable;
  369         int i = 0, j = 0;
  370 
  371         kmdp = NULL;
  372         lastaddr = 0;
  373         memsize = 0;
  374 
  375         set_cpufuncs();
  376 
  377         /*
  378          * Mask metadata pointer: it is supposed to be on page boundary. If
  379          * the first argument (mdp) doesn't point to a valid address the
  380          * bootloader must have passed us something else than the metadata
  381          * ptr... In this case we want to fall back to some built-in settings.
  382          */
  383         mdp = (void *)((uint32_t)mdp & ~PAGE_MASK);
  384 
  385         /* Parse metadata and fetch parameters */
  386         if (mdp != NULL) {
  387                 preload_metadata = mdp;
  388                 kmdp = preload_search_by_type("elf kernel");
  389                 if (kmdp != NULL) {
  390                         bootinfo = (struct bootinfo *)preload_search_info(kmdp,
  391                             MODINFO_METADATA|MODINFOMD_BOOTINFO);
  392 
  393                         boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
  394                         kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
  395                         lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
  396                 }
  397 
  398                 /* Initialize memory regions table */
  399                 mr = bootinfo_mr();
  400                 for (i = 0; i < bootinfo->bi_mem_reg_no; i++, mr++) {
  401                         if (i == MEM_REGIONS)
  402                                 break;
  403                         availmem_regions[i].mr_start = mr->mem_base;
  404                         availmem_regions[i].mr_size = mr->mem_size;
  405                         memsize += mr->mem_size;
  406                 }
  407                 availmem_regions_sz = i;
  408         } else {
  409                 /* Fall back to hardcoded metadata. */
  410                 lastaddr = fake_preload_metadata();
  411 
  412                 /*
  413                  * Assume a single memory region of size specified in board
  414                  * configuration file.
  415                  */
  416                 memsize = PHYSMEM_SIZE;
  417         }
  418 
  419         /*
  420          * If memsize is invalid, we can neither proceed nor panic (too
  421          * early for console output).
  422          */
  423         if (memsize == 0)
  424                 while (1);
  425 
  426         /* Platform-specific initialisation */
  427         pmap_bootstrap_lastaddr = MV_BASE - ARM_NOCACHE_KVA_SIZE;
  428         pmap_devmap_bootstrap_table = &pmap_devmap[0];
  429 
  430         pcpu_init(pcpup, 0, sizeof(struct pcpu));
  431         PCPU_SET(curthread, &thread0);
  432 
  433         /* Calculate number of L2 tables needed for mapping vm_page_array */
  434         l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
  435         l2size = (l2size >> L1_S_SHIFT) + 1;
  436 
  437         /*
  438          * Add one table for end of kernel map, one for stacks, msgbuf and
  439          * L1 and L2 tables map and one for vectors map.
  440          */
  441         l2size += 3;
  442 
  443         /* Make it divisible by 4 */
  444         l2size = (l2size + 3) & ~3;
  445 
  446 #define KERNEL_TEXT_BASE (KERNBASE)
  447         freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
  448 
  449         /* Define a macro to simplify memory allocation */
  450 #define valloc_pages(var, np)                   \
  451         alloc_pages((var).pv_va, (np));         \
  452         (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
  453 
  454 #define alloc_pages(var, np)                    \
  455         (var) = freemempos;             \
  456         freemempos += (np * PAGE_SIZE);         \
  457         memset((char *)(var), 0, ((np) * PAGE_SIZE));
  458 
  459         while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
  460                 freemempos += PAGE_SIZE;
  461         valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
  462 
  463         for (i = 0; i < l2size; ++i) {
  464                 if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
  465                         valloc_pages(kernel_pt_table[i],
  466                             L2_TABLE_SIZE / PAGE_SIZE);
  467                         j = i;
  468                 } else {
  469                         kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
  470                             L2_TABLE_SIZE_REAL * (i - j);
  471                         kernel_pt_table[i].pv_pa =
  472                             kernel_pt_table[i].pv_va - KERNVIRTADDR +
  473                             KERNPHYSADDR;
  474 
  475                 }
  476         }
  477         /*
  478          * Allocate a page for the system page mapped to 0x00000000
  479          * or 0xffff0000. This page will just contain the system vectors
  480          * and can be shared by all processes.
  481          */
  482         valloc_pages(systempage, 1);
  483 
  484         /* Allocate dynamic per-cpu area. */
  485         valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
  486         dpcpu_init((void *)dpcpu.pv_va, 0);
  487 
  488         /* Allocate stacks for all modes */
  489         valloc_pages(irqstack, IRQ_STACK_SIZE);
  490         valloc_pages(abtstack, ABT_STACK_SIZE);
  491         valloc_pages(undstack, UND_STACK_SIZE);
  492         valloc_pages(kernelstack, KSTACK_PAGES);
  493 
  494         init_param1();
  495 
  496         valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
  497 
  498         /*
  499          * Now we start construction of the L1 page table
  500          * We start by mapping the L2 page tables into the L1.
  501          * This means that we can replace L1 mappings later on if necessary
  502          */
  503         l1pagetable = kernel_l1pt.pv_va;
  504 
  505         /*
  506          * Try to map as much as possible of kernel text and data using
  507          * 1MB section mapping and for the rest of initial kernel address
  508          * space use L2 coarse tables.
  509          *
  510          * Link L2 tables for mapping remainder of kernel (modulo 1MB)
  511          * and kernel structures
  512          */
  513         l2_start = lastaddr & ~(L1_S_OFFSET);
  514         for (i = 0 ; i < l2size - 1; i++)
  515                 pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
  516                     &kernel_pt_table[i]);
  517 
  518         pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
  519         
  520         /* Map kernel code and data */
  521         pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR,
  522            (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
  523             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  524 
  525 
  526         /* Map L1 directory and allocated L2 page tables */
  527         pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
  528             L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  529 
  530         pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
  531             kernel_pt_table[0].pv_pa,
  532             L2_TABLE_SIZE_REAL * l2size,
  533             VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
  534 
  535         /* Map allocated DPCPU, stacks and msgbuf */
  536         pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
  537             freemempos - dpcpu.pv_va,
  538             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  539 
  540         /* Link and map the vector page */
  541         pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
  542             &kernel_pt_table[l2size - 1]);
  543         pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
  544             VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
  545 
  546         pmap_devmap_bootstrap(l1pagetable, pmap_devmap_bootstrap_table);
  547         cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
  548             DOMAIN_CLIENT);
  549         setttb(kernel_l1pt.pv_pa);
  550         cpu_tlb_flushID();
  551         cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
  552         cninit();
  553         physmem = memsize / PAGE_SIZE;
  554 
  555         debugf("initarm: console initialized\n");
  556         debugf(" arg1 mdp = 0x%08x\n", (uint32_t)mdp);
  557         debugf(" boothowto = 0x%08x\n", boothowto);
  558         print_bootinfo();
  559         print_kernel_section_addr();
  560         print_kenv();
  561 
  562         /*
  563          * Re-initialise MPP
  564          */
  565         platform_mpp_init();
  566 
  567         /*
  568          * Re-initialise decode windows
  569          */
  570         if (soc_decode_win() != 0)
  571                 printf("WARNING: could not re-initialise decode windows! "
  572                     "Running with existing settings...\n");
  573         /*
  574          * Pages were allocated during the secondary bootstrap for the
  575          * stacks for different CPU modes.
  576          * We must now set the r13 registers in the different CPU modes to
  577          * point to these stacks.
  578          * Since the ARM stacks use STMFD etc. we must set r13 to the top end
  579          * of the stack memory.
  580          */
  581         cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
  582         set_stackptr(PSR_IRQ32_MODE,
  583             irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
  584         set_stackptr(PSR_ABT32_MODE,
  585             abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
  586         set_stackptr(PSR_UND32_MODE,
  587             undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
  588 
  589         /*
  590          * We must now clean the cache again....
  591          * Cleaning may be done by reading new data to displace any
  592          * dirty data in the cache. This will have happened in setttb()
  593          * but since we are boot strapping the addresses used for the read
  594          * may have just been remapped and thus the cache could be out
  595          * of sync. A re-clean after the switch will cure this.
  596          * After booting there are no gross relocations of the kernel thus
  597          * this problem will not occur after initarm().
  598          */
  599         cpu_idcache_wbinv_all();
  600 
  601         /* Set stack for exception handlers */
  602         data_abort_handler_address = (u_int)data_abort_handler;
  603         prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
  604         undefined_handler_address = (u_int)undefinedinstruction_bounce;
  605         undefined_init();
  606 
  607         proc_linkup0(&proc0, &thread0);
  608         thread0.td_kstack = kernelstack.pv_va;
  609         thread0.td_kstack_pages = KSTACK_PAGES;
  610         thread0.td_pcb = (struct pcb *)
  611             (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
  612         thread0.td_pcb->pcb_flags = 0;
  613         thread0.td_frame = &proc0_tf;
  614         pcpup->pc_curpcb = thread0.td_pcb;
  615 
  616         arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
  617 
  618         dump_avail[0] = 0;
  619         dump_avail[1] = memsize;
  620         dump_avail[2] = 0;
  621         dump_avail[3] = 0;
  622 
  623         pmap_bootstrap(freemempos, pmap_bootstrap_lastaddr, &kernel_l1pt);
  624         msgbufp = (void *)msgbufpv.pv_va;
  625         msgbufinit(msgbufp, msgbufsize);
  626         mutex_init();
  627 
  628         /*
  629          * Prepare map of physical memory regions available to vm subsystem.
  630          * If metadata pointer doesn't point to a valid address, use hardcoded
  631          * values.
  632          */
  633         physmap_init((mdp != NULL) ? 0 : 1);
  634 
  635         /* Do basic tuning, hz etc */
  636         init_param2(physmem);
  637         kdb_init();
  638         return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
  639             sizeof(struct pcb)));
  640 }
  641 
  642 struct arm32_dma_range *
  643 bus_dma_get_range(void)
  644 {
  645 
  646         return (NULL);
  647 }
  648 
  649 int
  650 bus_dma_get_range_nb(void)
  651 {
  652 
  653         return (0);
  654 }

Cache object: 060d0115c2cdd33c7129a39709d7a86d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.