1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
5 * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * TI Common Platform Ethernet Switch (CPSW) Driver
32 * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
33 *
34 * This controller is documented in the AM335x Technical Reference
35 * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
36 * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
37 *
38 * It is basically a single Ethernet port (port 0) wired internally to
39 * a 3-port store-and-forward switch connected to two independent
40 * "sliver" controllers (port 1 and port 2). You can operate the
41 * controller in a variety of different ways by suitably configuring
42 * the slivers and the Address Lookup Engine (ALE) that routes packets
43 * between the ports.
44 *
45 * This code was developed and tested on a BeagleBone with
46 * an AM335x SoC.
47 */
48
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51
52 #include "opt_cpsw.h"
53
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/mbuf.h>
59 #include <sys/module.h>
60 #include <sys/mutex.h>
61 #include <sys/rman.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 #include <machine/stdarg.h>
69
70 #include <net/ethernet.h>
71 #include <net/bpf.h>
72 #include <net/if.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76
77 #include <dev/extres/syscon/syscon.h>
78 #include "syscon_if.h"
79 #include <arm/ti/am335x/am335x_scm.h>
80
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83
84 #include <dev/ofw/ofw_bus.h>
85 #include <dev/ofw/ofw_bus_subr.h>
86
87 #include <dev/fdt/fdt_common.h>
88
89 #ifdef CPSW_ETHERSWITCH
90 #include <dev/etherswitch/etherswitch.h>
91 #include "etherswitch_if.h"
92 #endif
93
94 #include "if_cpswreg.h"
95 #include "if_cpswvar.h"
96
97 #include "miibus_if.h"
98
99 /* Device probe/attach/detach. */
100 static int cpsw_probe(device_t);
101 static int cpsw_attach(device_t);
102 static int cpsw_detach(device_t);
103 static int cpswp_probe(device_t);
104 static int cpswp_attach(device_t);
105 static int cpswp_detach(device_t);
106
107 static phandle_t cpsw_get_node(device_t, device_t);
108
109 /* Device Init/shutdown. */
110 static int cpsw_shutdown(device_t);
111 static void cpswp_init(void *);
112 static void cpswp_init_locked(void *);
113 static void cpswp_stop_locked(struct cpswp_softc *);
114
115 /* Device Suspend/Resume. */
116 static int cpsw_suspend(device_t);
117 static int cpsw_resume(device_t);
118
119 /* Ioctl. */
120 static int cpswp_ioctl(if_t, u_long command, caddr_t data);
121
122 static int cpswp_miibus_readreg(device_t, int phy, int reg);
123 static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
124 static void cpswp_miibus_statchg(device_t);
125
126 /* Send/Receive packets. */
127 static void cpsw_intr_rx(void *arg);
128 static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
129 static void cpsw_rx_enqueue(struct cpsw_softc *);
130 static void cpswp_start(if_t);
131 static void cpsw_intr_tx(void *);
132 static void cpswp_tx_enqueue(struct cpswp_softc *);
133 static int cpsw_tx_dequeue(struct cpsw_softc *);
134
135 /* Misc interrupts and watchdog. */
136 static void cpsw_intr_rx_thresh(void *);
137 static void cpsw_intr_misc(void *);
138 static void cpswp_tick(void *);
139 static void cpswp_ifmedia_sts(if_t, struct ifmediareq *);
140 static int cpswp_ifmedia_upd(if_t);
141 static void cpsw_tx_watchdog(void *);
142
143 /* ALE support */
144 static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
145 static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
146 static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
147 static void cpsw_ale_dump_table(struct cpsw_softc *);
148 static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
149 int);
150 static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
151
152 /* Statistics and sysctls. */
153 static void cpsw_add_sysctls(struct cpsw_softc *);
154 static void cpsw_stats_collect(struct cpsw_softc *);
155 static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
156
157 #ifdef CPSW_ETHERSWITCH
158 static etherswitch_info_t *cpsw_getinfo(device_t);
159 static int cpsw_getport(device_t, etherswitch_port_t *);
160 static int cpsw_setport(device_t, etherswitch_port_t *);
161 static int cpsw_getconf(device_t, etherswitch_conf_t *);
162 static int cpsw_getvgroup(device_t, etherswitch_vlangroup_t *);
163 static int cpsw_setvgroup(device_t, etherswitch_vlangroup_t *);
164 static int cpsw_readreg(device_t, int);
165 static int cpsw_writereg(device_t, int, int);
166 static int cpsw_readphy(device_t, int, int);
167 static int cpsw_writephy(device_t, int, int, int);
168 #endif
169
170 /*
171 * Arbitrary limit on number of segments in an mbuf to be transmitted.
172 * Packets with more segments than this will be defragmented before
173 * they are queued.
174 */
175 #define CPSW_TXFRAGS 16
176
177 /* Shared resources. */
178 static device_method_t cpsw_methods[] = {
179 /* Device interface */
180 DEVMETHOD(device_probe, cpsw_probe),
181 DEVMETHOD(device_attach, cpsw_attach),
182 DEVMETHOD(device_detach, cpsw_detach),
183 DEVMETHOD(device_shutdown, cpsw_shutdown),
184 DEVMETHOD(device_suspend, cpsw_suspend),
185 DEVMETHOD(device_resume, cpsw_resume),
186 /* Bus interface */
187 DEVMETHOD(bus_add_child, device_add_child_ordered),
188 /* OFW methods */
189 DEVMETHOD(ofw_bus_get_node, cpsw_get_node),
190 #ifdef CPSW_ETHERSWITCH
191 /* etherswitch interface */
192 DEVMETHOD(etherswitch_getinfo, cpsw_getinfo),
193 DEVMETHOD(etherswitch_readreg, cpsw_readreg),
194 DEVMETHOD(etherswitch_writereg, cpsw_writereg),
195 DEVMETHOD(etherswitch_readphyreg, cpsw_readphy),
196 DEVMETHOD(etherswitch_writephyreg, cpsw_writephy),
197 DEVMETHOD(etherswitch_getport, cpsw_getport),
198 DEVMETHOD(etherswitch_setport, cpsw_setport),
199 DEVMETHOD(etherswitch_getvgroup, cpsw_getvgroup),
200 DEVMETHOD(etherswitch_setvgroup, cpsw_setvgroup),
201 DEVMETHOD(etherswitch_getconf, cpsw_getconf),
202 #endif
203 DEVMETHOD_END
204 };
205
206 static driver_t cpsw_driver = {
207 "cpswss",
208 cpsw_methods,
209 sizeof(struct cpsw_softc),
210 };
211
212 DRIVER_MODULE(cpswss, simplebus, cpsw_driver, 0, 0);
213
214 /* Port/Slave resources. */
215 static device_method_t cpswp_methods[] = {
216 /* Device interface */
217 DEVMETHOD(device_probe, cpswp_probe),
218 DEVMETHOD(device_attach, cpswp_attach),
219 DEVMETHOD(device_detach, cpswp_detach),
220 /* MII interface */
221 DEVMETHOD(miibus_readreg, cpswp_miibus_readreg),
222 DEVMETHOD(miibus_writereg, cpswp_miibus_writereg),
223 DEVMETHOD(miibus_statchg, cpswp_miibus_statchg),
224 DEVMETHOD_END
225 };
226
227 static driver_t cpswp_driver = {
228 "cpsw",
229 cpswp_methods,
230 sizeof(struct cpswp_softc),
231 };
232
233 #ifdef CPSW_ETHERSWITCH
234 DRIVER_MODULE(etherswitch, cpswss, etherswitch_driver, 0, 0);
235 MODULE_DEPEND(cpswss, etherswitch, 1, 1, 1);
236 #endif
237
238 DRIVER_MODULE(cpsw, cpswss, cpswp_driver, 0, 0);
239 DRIVER_MODULE(miibus, cpsw, miibus_driver, 0, 0);
240 MODULE_DEPEND(cpsw, ether, 1, 1, 1);
241 MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
242
243 #ifdef CPSW_ETHERSWITCH
244 static struct cpsw_vlangroups cpsw_vgroups[CPSW_VLANS];
245 #endif
246
247 static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
248
249 static struct resource_spec irq_res_spec[] = {
250 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
251 { SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
252 { SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
253 { SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
254 { -1, 0 }
255 };
256
257 static struct {
258 void (*cb)(void *);
259 } cpsw_intr_cb[] = {
260 { cpsw_intr_rx_thresh },
261 { cpsw_intr_rx },
262 { cpsw_intr_tx },
263 { cpsw_intr_misc },
264 };
265
266 /* Number of entries here must match size of stats
267 * array in struct cpswp_softc. */
268 static struct cpsw_stat {
269 int reg;
270 char *oid;
271 } cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
272 {0x00, "GoodRxFrames"},
273 {0x04, "BroadcastRxFrames"},
274 {0x08, "MulticastRxFrames"},
275 {0x0C, "PauseRxFrames"},
276 {0x10, "RxCrcErrors"},
277 {0x14, "RxAlignErrors"},
278 {0x18, "OversizeRxFrames"},
279 {0x1c, "RxJabbers"},
280 {0x20, "ShortRxFrames"},
281 {0x24, "RxFragments"},
282 {0x30, "RxOctets"},
283 {0x34, "GoodTxFrames"},
284 {0x38, "BroadcastTxFrames"},
285 {0x3c, "MulticastTxFrames"},
286 {0x40, "PauseTxFrames"},
287 {0x44, "DeferredTxFrames"},
288 {0x48, "CollisionsTxFrames"},
289 {0x4c, "SingleCollisionTxFrames"},
290 {0x50, "MultipleCollisionTxFrames"},
291 {0x54, "ExcessiveCollisions"},
292 {0x58, "LateCollisions"},
293 {0x5c, "TxUnderrun"},
294 {0x60, "CarrierSenseErrors"},
295 {0x64, "TxOctets"},
296 {0x68, "RxTx64OctetFrames"},
297 {0x6c, "RxTx65to127OctetFrames"},
298 {0x70, "RxTx128to255OctetFrames"},
299 {0x74, "RxTx256to511OctetFrames"},
300 {0x78, "RxTx512to1024OctetFrames"},
301 {0x7c, "RxTx1024upOctetFrames"},
302 {0x80, "NetOctets"},
303 {0x84, "RxStartOfFrameOverruns"},
304 {0x88, "RxMiddleOfFrameOverruns"},
305 {0x8c, "RxDmaOverruns"}
306 };
307
308 /*
309 * Basic debug support.
310 */
311
312 static void
313 cpsw_debugf_head(const char *funcname)
314 {
315 int t = (int)(time_second % (24 * 60 * 60));
316
317 printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
318 }
319
320 static void
321 cpsw_debugf(const char *fmt, ...)
322 {
323 va_list ap;
324
325 va_start(ap, fmt);
326 vprintf(fmt, ap);
327 va_end(ap);
328 printf("\n");
329
330 }
331
332 #define CPSW_DEBUGF(_sc, a) do { \
333 if ((_sc)->debug) { \
334 cpsw_debugf_head(__func__); \
335 cpsw_debugf a; \
336 } \
337 } while (0)
338
339 /*
340 * Locking macros
341 */
342 #define CPSW_TX_LOCK(sc) do { \
343 mtx_assert(&(sc)->rx.lock, MA_NOTOWNED); \
344 mtx_lock(&(sc)->tx.lock); \
345 } while (0)
346
347 #define CPSW_TX_UNLOCK(sc) mtx_unlock(&(sc)->tx.lock)
348 #define CPSW_TX_LOCK_ASSERT(sc) mtx_assert(&(sc)->tx.lock, MA_OWNED)
349
350 #define CPSW_RX_LOCK(sc) do { \
351 mtx_assert(&(sc)->tx.lock, MA_NOTOWNED); \
352 mtx_lock(&(sc)->rx.lock); \
353 } while (0)
354
355 #define CPSW_RX_UNLOCK(sc) mtx_unlock(&(sc)->rx.lock)
356 #define CPSW_RX_LOCK_ASSERT(sc) mtx_assert(&(sc)->rx.lock, MA_OWNED)
357
358 #define CPSW_PORT_LOCK(_sc) do { \
359 mtx_assert(&(_sc)->lock, MA_NOTOWNED); \
360 mtx_lock(&(_sc)->lock); \
361 } while (0)
362
363 #define CPSW_PORT_UNLOCK(_sc) mtx_unlock(&(_sc)->lock)
364 #define CPSW_PORT_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->lock, MA_OWNED)
365
366 /*
367 * Read/Write macros
368 */
369 #define cpsw_read_4(_sc, _reg) bus_read_4((_sc)->mem_res, (_reg))
370 #define cpsw_write_4(_sc, _reg, _val) \
371 bus_write_4((_sc)->mem_res, (_reg), (_val))
372
373 #define cpsw_cpdma_bd_offset(i) (CPSW_CPPI_RAM_OFFSET + ((i)*16))
374
375 #define cpsw_cpdma_bd_paddr(sc, slot) \
376 BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
377 #define cpsw_cpdma_read_bd(sc, slot, val) \
378 bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
379 #define cpsw_cpdma_write_bd(sc, slot, val) \
380 bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
381 #define cpsw_cpdma_write_bd_next(sc, slot, next_slot) \
382 cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
383 #define cpsw_cpdma_write_bd_flags(sc, slot, val) \
384 bus_write_2(sc->mem_res, slot->bd_offset + 14, val)
385 #define cpsw_cpdma_read_bd_flags(sc, slot) \
386 bus_read_2(sc->mem_res, slot->bd_offset + 14)
387 #define cpsw_write_hdp_slot(sc, queue, slot) \
388 cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
389 #define CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
390 #define cpsw_read_cp(sc, queue) \
391 cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
392 #define cpsw_write_cp(sc, queue, val) \
393 cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
394 #define cpsw_write_cp_slot(sc, queue, slot) \
395 cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
396
397 #if 0
398 /* XXX temporary function versions for debugging. */
399 static void
400 cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
401 {
402 uint32_t reg = queue->hdp_offset;
403 uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
404 CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
405 cpsw_write_4(sc, reg, v);
406 }
407
408 static void
409 cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
410 {
411 uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
412 CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
413 cpsw_write_cp(sc, queue, v);
414 }
415 #endif
416
417 /*
418 * Expanded dump routines for verbose debugging.
419 */
420 static void
421 cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
422 {
423 static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
424 "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
425 "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
426 "Port0"};
427 struct cpsw_cpdma_bd bd;
428 const char *sep;
429 int i;
430
431 cpsw_cpdma_read_bd(sc, slot, &bd);
432 printf("BD Addr : 0x%08x Next : 0x%08x\n",
433 cpsw_cpdma_bd_paddr(sc, slot), bd.next);
434 printf(" BufPtr: 0x%08x BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
435 printf(" BufOff: 0x%08x PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
436 printf(" Flags: ");
437 sep = "";
438 for (i = 0; i < 16; ++i) {
439 if (bd.flags & (1 << (15 - i))) {
440 printf("%s%s", sep, flags[i]);
441 sep = ",";
442 }
443 }
444 printf("\n");
445 if (slot->mbuf) {
446 printf(" Ether: %14D\n",
447 (char *)(slot->mbuf->m_data), " ");
448 printf(" Packet: %16D\n",
449 (char *)(slot->mbuf->m_data) + 14, " ");
450 }
451 }
452
453 #define CPSW_DUMP_SLOT(cs, slot) do { \
454 IF_DEBUG(sc) { \
455 cpsw_dump_slot(sc, slot); \
456 } \
457 } while (0)
458
459 static void
460 cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
461 {
462 struct cpsw_slot *slot;
463 int i = 0;
464 int others = 0;
465
466 STAILQ_FOREACH(slot, q, next) {
467 if (i > CPSW_TXFRAGS)
468 ++others;
469 else
470 cpsw_dump_slot(sc, slot);
471 ++i;
472 }
473 if (others)
474 printf(" ... and %d more.\n", others);
475 printf("\n");
476 }
477
478 #define CPSW_DUMP_QUEUE(sc, q) do { \
479 IF_DEBUG(sc) { \
480 cpsw_dump_queue(sc, q); \
481 } \
482 } while (0)
483
484 static void
485 cpsw_init_slots(struct cpsw_softc *sc)
486 {
487 struct cpsw_slot *slot;
488 int i;
489
490 STAILQ_INIT(&sc->avail);
491
492 /* Put the slot descriptors onto the global avail list. */
493 for (i = 0; i < nitems(sc->_slots); i++) {
494 slot = &sc->_slots[i];
495 slot->bd_offset = cpsw_cpdma_bd_offset(i);
496 STAILQ_INSERT_TAIL(&sc->avail, slot, next);
497 }
498 }
499
500 static int
501 cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
502 {
503 const int max_slots = nitems(sc->_slots);
504 struct cpsw_slot *slot;
505 int i;
506
507 if (requested < 0)
508 requested = max_slots;
509
510 for (i = 0; i < requested; ++i) {
511 slot = STAILQ_FIRST(&sc->avail);
512 if (slot == NULL)
513 return (0);
514 if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
515 device_printf(sc->dev, "failed to create dmamap\n");
516 return (ENOMEM);
517 }
518 STAILQ_REMOVE_HEAD(&sc->avail, next);
519 STAILQ_INSERT_TAIL(&queue->avail, slot, next);
520 ++queue->avail_queue_len;
521 ++queue->queue_slots;
522 }
523 return (0);
524 }
525
526 static void
527 cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
528 {
529 int error __diagused;
530
531 if (slot->dmamap) {
532 if (slot->mbuf)
533 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
534 error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
535 KASSERT(error == 0, ("Mapping still active"));
536 slot->dmamap = NULL;
537 }
538 if (slot->mbuf) {
539 m_freem(slot->mbuf);
540 slot->mbuf = NULL;
541 }
542 }
543
544 static void
545 cpsw_reset(struct cpsw_softc *sc)
546 {
547 int i;
548
549 callout_stop(&sc->watchdog.callout);
550
551 /* Reset RMII/RGMII wrapper. */
552 cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
553 while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
554 ;
555
556 /* Disable TX and RX interrupts for all cores. */
557 for (i = 0; i < 3; ++i) {
558 cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
559 cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
560 cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
561 cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
562 }
563
564 /* Reset CPSW subsystem. */
565 cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
566 while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
567 ;
568
569 /* Reset Sliver port 1 and 2 */
570 for (i = 0; i < 2; i++) {
571 /* Reset */
572 cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
573 while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
574 ;
575 }
576
577 /* Reset DMA controller. */
578 cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
579 while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
580 ;
581
582 /* Disable TX & RX DMA */
583 cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
584 cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
585
586 /* Clear all queues. */
587 for (i = 0; i < 8; i++) {
588 cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
589 cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
590 cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
591 cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
592 }
593
594 /* Clear all interrupt Masks */
595 cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
596 cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
597 }
598
599 static void
600 cpsw_init(struct cpsw_softc *sc)
601 {
602 struct cpsw_slot *slot;
603 uint32_t reg;
604
605 /* Disable the interrupt pacing. */
606 reg = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
607 reg &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
608 cpsw_write_4(sc, CPSW_WR_INT_CONTROL, reg);
609
610 /* Clear ALE */
611 cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
612
613 /* Enable ALE */
614 reg = CPSW_ALE_CTL_ENABLE;
615 if (sc->dualemac)
616 reg |= CPSW_ALE_CTL_VLAN_AWARE;
617 cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
618
619 /* Set Host Port Mapping. */
620 cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
621 cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
622
623 /* Initialize ALE: set host port to forwarding(3). */
624 cpsw_write_4(sc, CPSW_ALE_PORTCTL(0),
625 ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
626
627 cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
628
629 /* Enable statistics for ports 0, 1 and 2 */
630 cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
631
632 /* Turn off flow control. */
633 cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
634
635 /* Make IP hdr aligned with 4 */
636 cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
637
638 /* Initialize RX Buffer Descriptors */
639 cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), 0);
640 cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
641
642 /* Enable TX & RX DMA */
643 cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
644 cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
645
646 /* Enable Interrupts for core 0 */
647 cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
648 cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
649 cpsw_write_4(sc, CPSW_WR_C_TX_EN(0), 0xFF);
650 cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
651
652 /* Enable host Error Interrupt */
653 cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
654
655 /* Enable interrupts for RX and TX on Channel 0 */
656 cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET,
657 CPSW_CPDMA_RX_INT(0) | CPSW_CPDMA_RX_INT_THRESH(0));
658 cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_SET, 1);
659
660 /* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
661 /* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
662 cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
663
664 /* Select MII in GMII_SEL, Internal Delay mode */
665 //ti_scm_reg_write_4(0x650, 0);
666
667 /* Initialize active queues. */
668 slot = STAILQ_FIRST(&sc->tx.active);
669 if (slot != NULL)
670 cpsw_write_hdp_slot(sc, &sc->tx, slot);
671 slot = STAILQ_FIRST(&sc->rx.active);
672 if (slot != NULL)
673 cpsw_write_hdp_slot(sc, &sc->rx, slot);
674 cpsw_rx_enqueue(sc);
675 cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), sc->rx.active_queue_len);
676 cpsw_write_4(sc, CPSW_CPDMA_RX_PENDTHRESH(0), CPSW_TXFRAGS);
677
678 /* Activate network interface. */
679 sc->rx.running = 1;
680 sc->tx.running = 1;
681 sc->watchdog.timer = 0;
682 callout_init(&sc->watchdog.callout, 0);
683 callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
684 }
685
686 /*
687 *
688 * Device Probe, Attach, Detach.
689 *
690 */
691
692 static int
693 cpsw_probe(device_t dev)
694 {
695
696 if (!ofw_bus_status_okay(dev))
697 return (ENXIO);
698
699 if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
700 return (ENXIO);
701
702 device_set_desc(dev, "3-port Switch Ethernet Subsystem");
703 return (BUS_PROBE_DEFAULT);
704 }
705
706 static int
707 cpsw_intr_attach(struct cpsw_softc *sc)
708 {
709 int i;
710
711 for (i = 0; i < CPSW_INTR_COUNT; i++) {
712 if (bus_setup_intr(sc->dev, sc->irq_res[i],
713 INTR_TYPE_NET | INTR_MPSAFE, NULL,
714 cpsw_intr_cb[i].cb, sc, &sc->ih_cookie[i]) != 0) {
715 return (-1);
716 }
717 }
718
719 return (0);
720 }
721
722 static void
723 cpsw_intr_detach(struct cpsw_softc *sc)
724 {
725 int i;
726
727 for (i = 0; i < CPSW_INTR_COUNT; i++) {
728 if (sc->ih_cookie[i]) {
729 bus_teardown_intr(sc->dev, sc->irq_res[i],
730 sc->ih_cookie[i]);
731 }
732 }
733 }
734
735 static int
736 cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
737 {
738 char *name;
739 int len, phy, vlan;
740 pcell_t phy_id[3], vlan_id;
741 phandle_t child;
742 unsigned long mdio_child_addr;
743
744 /* Find any slave with phy-handle/phy_id */
745 phy = -1;
746 vlan = -1;
747 for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
748 if (OF_getprop_alloc(child, "name", (void **)&name) < 0)
749 continue;
750 if (sscanf(name, "slave@%lx", &mdio_child_addr) != 1) {
751 OF_prop_free(name);
752 continue;
753 }
754 OF_prop_free(name);
755
756 if (mdio_child_addr != slave_mdio_addr[port] &&
757 mdio_child_addr != (slave_mdio_addr[port] & 0xFFF))
758 continue;
759
760 if (fdt_get_phyaddr(child, NULL, &phy, NULL) != 0){
761 /* Users with old DTB will have phy_id instead */
762 phy = -1;
763 len = OF_getproplen(child, "phy_id");
764 if (len / sizeof(pcell_t) == 2) {
765 /* Get phy address from fdt */
766 if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
767 phy = phy_id[1];
768 }
769 }
770
771 len = OF_getproplen(child, "dual_emac_res_vlan");
772 if (len / sizeof(pcell_t) == 1) {
773 /* Get phy address from fdt */
774 if (OF_getencprop(child, "dual_emac_res_vlan",
775 &vlan_id, len) > 0) {
776 vlan = vlan_id;
777 }
778 }
779
780 break;
781 }
782 if (phy == -1)
783 return (ENXIO);
784 sc->port[port].phy = phy;
785 sc->port[port].vlan = vlan;
786
787 return (0);
788 }
789
790 static int
791 cpsw_attach(device_t dev)
792 {
793 int error, i;
794 struct cpsw_softc *sc;
795 uint32_t reg;
796
797 sc = device_get_softc(dev);
798 sc->dev = dev;
799 sc->node = ofw_bus_get_node(dev);
800 getbinuptime(&sc->attach_uptime);
801
802 if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
803 sizeof(sc->active_slave)) <= 0) {
804 sc->active_slave = 0;
805 }
806 if (sc->active_slave > 1)
807 sc->active_slave = 1;
808
809 if (OF_hasprop(sc->node, "dual_emac"))
810 sc->dualemac = 1;
811
812 for (i = 0; i < CPSW_PORTS; i++) {
813 if (!sc->dualemac && i != sc->active_slave)
814 continue;
815 if (cpsw_get_fdt_data(sc, i) != 0) {
816 device_printf(dev,
817 "failed to get PHY address from FDT\n");
818 return (ENXIO);
819 }
820 }
821
822 /* Initialize mutexes */
823 mtx_init(&sc->tx.lock, device_get_nameunit(dev),
824 "cpsw TX lock", MTX_DEF);
825 mtx_init(&sc->rx.lock, device_get_nameunit(dev),
826 "cpsw RX lock", MTX_DEF);
827
828 /* Allocate IRQ resources */
829 error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
830 if (error) {
831 device_printf(dev, "could not allocate IRQ resources\n");
832 cpsw_detach(dev);
833 return (ENXIO);
834 }
835
836 sc->mem_rid = 0;
837 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
838 &sc->mem_rid, RF_ACTIVE);
839 if (sc->mem_res == NULL) {
840 device_printf(sc->dev, "failed to allocate memory resource\n");
841 cpsw_detach(dev);
842 return (ENXIO);
843 }
844
845 reg = cpsw_read_4(sc, CPSW_SS_IDVER);
846 device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
847 reg & 0xFF, (reg >> 11) & 0x1F);
848
849 cpsw_add_sysctls(sc);
850
851 /* Allocate a busdma tag and DMA safe memory for mbufs. */
852 error = bus_dma_tag_create(
853 bus_get_dma_tag(sc->dev), /* parent */
854 1, 0, /* alignment, boundary */
855 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
856 BUS_SPACE_MAXADDR, /* highaddr */
857 NULL, NULL, /* filtfunc, filtfuncarg */
858 MCLBYTES, CPSW_TXFRAGS, /* maxsize, nsegments */
859 MCLBYTES, 0, /* maxsegsz, flags */
860 NULL, NULL, /* lockfunc, lockfuncarg */
861 &sc->mbuf_dtag); /* dmatag */
862 if (error) {
863 device_printf(dev, "bus_dma_tag_create failed\n");
864 cpsw_detach(dev);
865 return (error);
866 }
867
868 /* Allocate a NULL buffer for padding. */
869 sc->nullpad = malloc(ETHER_MIN_LEN, M_DEVBUF, M_WAITOK | M_ZERO);
870
871 cpsw_init_slots(sc);
872
873 /* Allocate slots to TX and RX queues. */
874 STAILQ_INIT(&sc->rx.avail);
875 STAILQ_INIT(&sc->rx.active);
876 STAILQ_INIT(&sc->tx.avail);
877 STAILQ_INIT(&sc->tx.active);
878 // For now: 128 slots to TX, rest to RX.
879 // XXX TODO: start with 32/64 and grow dynamically based on demand.
880 if (cpsw_add_slots(sc, &sc->tx, 128) ||
881 cpsw_add_slots(sc, &sc->rx, -1)) {
882 device_printf(dev, "failed to allocate dmamaps\n");
883 cpsw_detach(dev);
884 return (ENOMEM);
885 }
886 device_printf(dev, "Initial queue size TX=%d RX=%d\n",
887 sc->tx.queue_slots, sc->rx.queue_slots);
888
889 sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
890 sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
891
892 if (cpsw_intr_attach(sc) == -1) {
893 device_printf(dev, "failed to setup interrupts\n");
894 cpsw_detach(dev);
895 return (ENXIO);
896 }
897
898 #ifdef CPSW_ETHERSWITCH
899 for (i = 0; i < CPSW_VLANS; i++)
900 cpsw_vgroups[i].vid = -1;
901 #endif
902
903 /* Reset the controller. */
904 cpsw_reset(sc);
905 cpsw_init(sc);
906
907 for (i = 0; i < CPSW_PORTS; i++) {
908 if (!sc->dualemac && i != sc->active_slave)
909 continue;
910 sc->port[i].dev = device_add_child(dev, "cpsw", i);
911 if (sc->port[i].dev == NULL) {
912 cpsw_detach(dev);
913 return (ENXIO);
914 }
915 }
916 bus_generic_probe(dev);
917 bus_generic_attach(dev);
918
919 return (0);
920 }
921
922 static int
923 cpsw_detach(device_t dev)
924 {
925 struct cpsw_softc *sc;
926 int error, i;
927
928 bus_generic_detach(dev);
929 sc = device_get_softc(dev);
930
931 for (i = 0; i < CPSW_PORTS; i++) {
932 if (sc->port[i].dev)
933 device_delete_child(dev, sc->port[i].dev);
934 }
935
936 if (device_is_attached(dev)) {
937 callout_stop(&sc->watchdog.callout);
938 callout_drain(&sc->watchdog.callout);
939 }
940
941 /* Stop and release all interrupts */
942 cpsw_intr_detach(sc);
943
944 /* Free dmamaps and mbufs */
945 for (i = 0; i < nitems(sc->_slots); ++i)
946 cpsw_free_slot(sc, &sc->_slots[i]);
947
948 /* Free null padding buffer. */
949 if (sc->nullpad)
950 free(sc->nullpad, M_DEVBUF);
951
952 /* Free DMA tag */
953 if (sc->mbuf_dtag) {
954 error = bus_dma_tag_destroy(sc->mbuf_dtag);
955 KASSERT(error == 0, ("Unable to destroy DMA tag"));
956 }
957
958 /* Free IO memory handler */
959 if (sc->mem_res != NULL)
960 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
961 bus_release_resources(dev, irq_res_spec, sc->irq_res);
962
963 /* Destroy mutexes */
964 mtx_destroy(&sc->rx.lock);
965 mtx_destroy(&sc->tx.lock);
966
967 /* Detach the switch device, if present. */
968 error = bus_generic_detach(dev);
969 if (error != 0)
970 return (error);
971
972 return (device_delete_children(dev));
973 }
974
975 static phandle_t
976 cpsw_get_node(device_t bus, device_t dev)
977 {
978
979 /* Share controller node with port device. */
980 return (ofw_bus_get_node(bus));
981 }
982
983 static int
984 cpswp_probe(device_t dev)
985 {
986
987 if (device_get_unit(dev) > 1) {
988 device_printf(dev, "Only two ports are supported.\n");
989 return (ENXIO);
990 }
991 device_set_desc(dev, "Ethernet Switch Port");
992
993 return (BUS_PROBE_DEFAULT);
994 }
995
996 static int
997 cpswp_attach(device_t dev)
998 {
999 int error;
1000 if_t ifp;
1001 struct cpswp_softc *sc;
1002 uint32_t reg;
1003 uint8_t mac_addr[ETHER_ADDR_LEN];
1004 phandle_t opp_table;
1005 struct syscon *syscon;
1006
1007 sc = device_get_softc(dev);
1008 sc->dev = dev;
1009 sc->pdev = device_get_parent(dev);
1010 sc->swsc = device_get_softc(sc->pdev);
1011 sc->unit = device_get_unit(dev);
1012 sc->phy = sc->swsc->port[sc->unit].phy;
1013 sc->vlan = sc->swsc->port[sc->unit].vlan;
1014 if (sc->swsc->dualemac && sc->vlan == -1)
1015 sc->vlan = sc->unit + 1;
1016
1017 if (sc->unit == 0) {
1018 sc->physel = MDIOUSERPHYSEL0;
1019 sc->phyaccess = MDIOUSERACCESS0;
1020 } else {
1021 sc->physel = MDIOUSERPHYSEL1;
1022 sc->phyaccess = MDIOUSERACCESS1;
1023 }
1024
1025 mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
1026 MTX_DEF);
1027
1028 /* Allocate network interface */
1029 ifp = sc->ifp = if_alloc(IFT_ETHER);
1030 if (ifp == NULL) {
1031 cpswp_detach(dev);
1032 return (ENXIO);
1033 }
1034
1035 if_initname(ifp, device_get_name(sc->dev), sc->unit);
1036 if_setsoftc(ifp, sc);
1037 if_setflags(ifp, IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST);
1038
1039 if_setcapenable(ifp, if_getcapabilities(ifp));
1040
1041 if_setinitfn(ifp, cpswp_init);
1042 if_setstartfn(ifp, cpswp_start);
1043 if_setioctlfn(ifp, cpswp_ioctl);
1044
1045 if_setsendqlen(ifp, sc->swsc->tx.queue_slots);
1046 if_setsendqready(ifp);
1047
1048 /* FIXME: For now; Go and kidnap syscon from opp-table */
1049 /* ti,cpsw actually have an optional syscon reference but only for am33xx?? */
1050 opp_table = OF_finddevice("/opp-table");
1051 if (opp_table == -1) {
1052 device_printf(dev, "Cant find /opp-table\n");
1053 cpswp_detach(dev);
1054 return (ENXIO);
1055 }
1056 if (!OF_hasprop(opp_table, "syscon")) {
1057 device_printf(dev, "/opp-table doesnt have required syscon property\n");
1058 cpswp_detach(dev);
1059 return (ENXIO);
1060 }
1061 if (syscon_get_by_ofw_property(dev, opp_table, "syscon", &syscon) != 0) {
1062 device_printf(dev, "Failed to get syscon\n");
1063 cpswp_detach(dev);
1064 return (ENXIO);
1065 }
1066
1067 /* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1068 reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_HI + sc->unit * 8);
1069 mac_addr[0] = reg & 0xFF;
1070 mac_addr[1] = (reg >> 8) & 0xFF;
1071 mac_addr[2] = (reg >> 16) & 0xFF;
1072 mac_addr[3] = (reg >> 24) & 0xFF;
1073
1074 /* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1075 reg = SYSCON_READ_4(syscon, SCM_MAC_ID0_LO + sc->unit * 8);
1076 mac_addr[4] = reg & 0xFF;
1077 mac_addr[5] = (reg >> 8) & 0xFF;
1078
1079 error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1080 cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1081 if (error) {
1082 device_printf(dev, "attaching PHYs failed\n");
1083 cpswp_detach(dev);
1084 return (error);
1085 }
1086 sc->mii = device_get_softc(sc->miibus);
1087
1088 /* Select PHY and enable interrupts */
1089 cpsw_write_4(sc->swsc, sc->physel,
1090 MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1091
1092 ether_ifattach(sc->ifp, mac_addr);
1093 callout_init(&sc->mii_callout, 0);
1094
1095 return (0);
1096 }
1097
1098 static int
1099 cpswp_detach(device_t dev)
1100 {
1101 struct cpswp_softc *sc;
1102
1103 sc = device_get_softc(dev);
1104 CPSW_DEBUGF(sc->swsc, (""));
1105 if (device_is_attached(dev)) {
1106 ether_ifdetach(sc->ifp);
1107 CPSW_PORT_LOCK(sc);
1108 cpswp_stop_locked(sc);
1109 CPSW_PORT_UNLOCK(sc);
1110 callout_drain(&sc->mii_callout);
1111 }
1112
1113 bus_generic_detach(dev);
1114
1115 if_free(sc->ifp);
1116 mtx_destroy(&sc->lock);
1117
1118 return (0);
1119 }
1120
1121 /*
1122 *
1123 * Init/Shutdown.
1124 *
1125 */
1126
1127 static int
1128 cpsw_ports_down(struct cpsw_softc *sc)
1129 {
1130 struct cpswp_softc *psc;
1131 if_t ifp1, ifp2;
1132
1133 if (!sc->dualemac)
1134 return (1);
1135 psc = device_get_softc(sc->port[0].dev);
1136 ifp1 = psc->ifp;
1137 psc = device_get_softc(sc->port[1].dev);
1138 ifp2 = psc->ifp;
1139 if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1140 return (1);
1141
1142 return (0);
1143 }
1144
1145 static void
1146 cpswp_init(void *arg)
1147 {
1148 struct cpswp_softc *sc = arg;
1149
1150 CPSW_DEBUGF(sc->swsc, (""));
1151 CPSW_PORT_LOCK(sc);
1152 cpswp_init_locked(arg);
1153 CPSW_PORT_UNLOCK(sc);
1154 }
1155
1156 static void
1157 cpswp_init_locked(void *arg)
1158 {
1159 #ifdef CPSW_ETHERSWITCH
1160 int i;
1161 #endif
1162 struct cpswp_softc *sc = arg;
1163 if_t ifp;
1164 uint32_t reg;
1165
1166 CPSW_DEBUGF(sc->swsc, (""));
1167 CPSW_PORT_LOCK_ASSERT(sc);
1168 ifp = sc->ifp;
1169 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1170 return;
1171
1172 getbinuptime(&sc->init_uptime);
1173
1174 if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1175 /* Reset the controller. */
1176 cpsw_reset(sc->swsc);
1177 cpsw_init(sc->swsc);
1178 }
1179
1180 /* Set Slave Mapping. */
1181 cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1182 cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1183 0x33221100);
1184 cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1185 /* Enable MAC RX/TX modules. */
1186 /* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1187 /* Huh? Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1188 reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1189 reg |= CPSW_SL_MACTL_GMII_ENABLE;
1190 cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1191
1192 /* Initialize ALE: set port to forwarding, initialize addrs */
1193 cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1),
1194 ALE_PORTCTL_INGRESS | ALE_PORTCTL_FORWARD);
1195 cpswp_ale_update_addresses(sc, 1);
1196
1197 if (sc->swsc->dualemac) {
1198 /* Set Port VID. */
1199 cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1200 sc->vlan & 0xfff);
1201 cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1202 (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1203 (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1204 (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1205 #ifdef CPSW_ETHERSWITCH
1206 for (i = 0; i < CPSW_VLANS; i++) {
1207 if (cpsw_vgroups[i].vid != -1)
1208 continue;
1209 cpsw_vgroups[i].vid = sc->vlan;
1210 break;
1211 }
1212 #endif
1213 }
1214
1215 mii_mediachg(sc->mii);
1216 callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1217 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1218 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1219 }
1220
1221 static int
1222 cpsw_shutdown(device_t dev)
1223 {
1224 struct cpsw_softc *sc;
1225 struct cpswp_softc *psc;
1226 int i;
1227
1228 sc = device_get_softc(dev);
1229 CPSW_DEBUGF(sc, (""));
1230 for (i = 0; i < CPSW_PORTS; i++) {
1231 if (!sc->dualemac && i != sc->active_slave)
1232 continue;
1233 psc = device_get_softc(sc->port[i].dev);
1234 CPSW_PORT_LOCK(psc);
1235 cpswp_stop_locked(psc);
1236 CPSW_PORT_UNLOCK(psc);
1237 }
1238
1239 return (0);
1240 }
1241
1242 static void
1243 cpsw_rx_teardown(struct cpsw_softc *sc)
1244 {
1245 int i = 0;
1246
1247 CPSW_RX_LOCK(sc);
1248 CPSW_DEBUGF(sc, ("starting RX teardown"));
1249 sc->rx.teardown = 1;
1250 cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1251 CPSW_RX_UNLOCK(sc);
1252 while (sc->rx.running) {
1253 if (++i > 10) {
1254 device_printf(sc->dev,
1255 "Unable to cleanly shutdown receiver\n");
1256 return;
1257 }
1258 DELAY(200);
1259 }
1260 if (!sc->rx.running)
1261 CPSW_DEBUGF(sc, ("finished RX teardown (%d retries)", i));
1262 }
1263
1264 static void
1265 cpsw_tx_teardown(struct cpsw_softc *sc)
1266 {
1267 int i = 0;
1268
1269 CPSW_TX_LOCK(sc);
1270 CPSW_DEBUGF(sc, ("starting TX teardown"));
1271 /* Start the TX queue teardown if queue is not empty. */
1272 if (STAILQ_FIRST(&sc->tx.active) != NULL)
1273 cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1274 else
1275 sc->tx.teardown = 1;
1276 cpsw_tx_dequeue(sc);
1277 while (sc->tx.running && ++i < 10) {
1278 DELAY(200);
1279 cpsw_tx_dequeue(sc);
1280 }
1281 if (sc->tx.running) {
1282 device_printf(sc->dev,
1283 "Unable to cleanly shutdown transmitter\n");
1284 }
1285 CPSW_DEBUGF(sc,
1286 ("finished TX teardown (%d retries, %d idle buffers)", i,
1287 sc->tx.active_queue_len));
1288 CPSW_TX_UNLOCK(sc);
1289 }
1290
1291 static void
1292 cpswp_stop_locked(struct cpswp_softc *sc)
1293 {
1294 if_t ifp;
1295 uint32_t reg;
1296
1297 ifp = sc->ifp;
1298 CPSW_DEBUGF(sc->swsc, (""));
1299 CPSW_PORT_LOCK_ASSERT(sc);
1300
1301 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1302 return;
1303
1304 /* Disable interface */
1305 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1306 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1307
1308 /* Stop ticker */
1309 callout_stop(&sc->mii_callout);
1310
1311 /* Tear down the RX/TX queues. */
1312 if (cpsw_ports_down(sc->swsc)) {
1313 cpsw_rx_teardown(sc->swsc);
1314 cpsw_tx_teardown(sc->swsc);
1315 }
1316
1317 /* Stop MAC RX/TX modules. */
1318 reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1319 reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1320 cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1321
1322 if (cpsw_ports_down(sc->swsc)) {
1323 /* Capture stats before we reset controller. */
1324 cpsw_stats_collect(sc->swsc);
1325
1326 cpsw_reset(sc->swsc);
1327 cpsw_init(sc->swsc);
1328 }
1329 }
1330
1331 /*
1332 * Suspend/Resume.
1333 */
1334
1335 static int
1336 cpsw_suspend(device_t dev)
1337 {
1338 struct cpsw_softc *sc;
1339 struct cpswp_softc *psc;
1340 int i;
1341
1342 sc = device_get_softc(dev);
1343 CPSW_DEBUGF(sc, (""));
1344 for (i = 0; i < CPSW_PORTS; i++) {
1345 if (!sc->dualemac && i != sc->active_slave)
1346 continue;
1347 psc = device_get_softc(sc->port[i].dev);
1348 CPSW_PORT_LOCK(psc);
1349 cpswp_stop_locked(psc);
1350 CPSW_PORT_UNLOCK(psc);
1351 }
1352
1353 return (0);
1354 }
1355
1356 static int
1357 cpsw_resume(device_t dev)
1358 {
1359 struct cpsw_softc *sc;
1360
1361 sc = device_get_softc(dev);
1362 CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1363
1364 return (0);
1365 }
1366
1367 /*
1368 *
1369 * IOCTL
1370 *
1371 */
1372
1373 static void
1374 cpsw_set_promisc(struct cpswp_softc *sc, int set)
1375 {
1376 uint32_t reg;
1377
1378 /*
1379 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1380 * That disables the ALE forwarding logic and causes every
1381 * packet to be sent only to the host port. In bypass mode,
1382 * the ALE processes host port transmit packets the same as in
1383 * normal mode.
1384 */
1385 reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1386 reg &= ~CPSW_ALE_CTL_BYPASS;
1387 if (set)
1388 reg |= CPSW_ALE_CTL_BYPASS;
1389 cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1390 }
1391
1392 static void
1393 cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1394 {
1395 if (set) {
1396 printf("All-multicast mode unimplemented\n");
1397 }
1398 }
1399
1400 static int
1401 cpswp_ioctl(if_t ifp, u_long command, caddr_t data)
1402 {
1403 struct cpswp_softc *sc;
1404 struct ifreq *ifr;
1405 int error;
1406 uint32_t changed;
1407
1408 error = 0;
1409 sc = if_getsoftc(ifp);
1410 ifr = (struct ifreq *)data;
1411
1412 switch (command) {
1413 case SIOCSIFCAP:
1414 changed = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
1415 if (changed & IFCAP_HWCSUM) {
1416 if ((ifr->ifr_reqcap & changed) & IFCAP_HWCSUM)
1417 if_setcapenablebit(ifp, IFCAP_HWCSUM, 0);
1418 else
1419 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
1420 }
1421 error = 0;
1422 break;
1423 case SIOCSIFFLAGS:
1424 CPSW_PORT_LOCK(sc);
1425 if (if_getflags(ifp) & IFF_UP) {
1426 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1427 changed = if_getflags(ifp) ^ sc->if_flags;
1428 CPSW_DEBUGF(sc->swsc,
1429 ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1430 changed));
1431 if (changed & IFF_PROMISC)
1432 cpsw_set_promisc(sc,
1433 if_getflags(ifp) & IFF_PROMISC);
1434 if (changed & IFF_ALLMULTI)
1435 cpsw_set_allmulti(sc,
1436 if_getflags(ifp) & IFF_ALLMULTI);
1437 } else {
1438 CPSW_DEBUGF(sc->swsc,
1439 ("SIOCSIFFLAGS: starting up"));
1440 cpswp_init_locked(sc);
1441 }
1442 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
1443 CPSW_DEBUGF(sc->swsc, ("SIOCSIFFLAGS: shutting down"));
1444 cpswp_stop_locked(sc);
1445 }
1446
1447 sc->if_flags = if_getflags(ifp);
1448 CPSW_PORT_UNLOCK(sc);
1449 break;
1450 case SIOCADDMULTI:
1451 cpswp_ale_update_addresses(sc, 0);
1452 break;
1453 case SIOCDELMULTI:
1454 /* Ugh. DELMULTI doesn't provide the specific address
1455 being removed, so the best we can do is remove
1456 everything and rebuild it all. */
1457 cpswp_ale_update_addresses(sc, 1);
1458 break;
1459 case SIOCGIFMEDIA:
1460 case SIOCSIFMEDIA:
1461 error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1462 break;
1463 default:
1464 error = ether_ioctl(ifp, command, data);
1465 }
1466 return (error);
1467 }
1468
1469 /*
1470 *
1471 * MIIBUS
1472 *
1473 */
1474 static int
1475 cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1476 {
1477 uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1478
1479 while (--retries) {
1480 r = cpsw_read_4(sc, reg);
1481 if ((r & MDIO_PHYACCESS_GO) == 0)
1482 return (1);
1483 DELAY(CPSW_MIIBUS_DELAY);
1484 }
1485
1486 return (0);
1487 }
1488
1489 static int
1490 cpswp_miibus_readreg(device_t dev, int phy, int reg)
1491 {
1492 struct cpswp_softc *sc;
1493 uint32_t cmd, r;
1494
1495 sc = device_get_softc(dev);
1496 if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1497 device_printf(dev, "MDIO not ready to read\n");
1498 return (0);
1499 }
1500
1501 /* Set GO, reg, phy */
1502 cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1503 cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1504
1505 if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1506 device_printf(dev, "MDIO timed out during read\n");
1507 return (0);
1508 }
1509
1510 r = cpsw_read_4(sc->swsc, sc->phyaccess);
1511 if ((r & MDIO_PHYACCESS_ACK) == 0) {
1512 device_printf(dev, "Failed to read from PHY.\n");
1513 r = 0;
1514 }
1515 return (r & 0xFFFF);
1516 }
1517
1518 static int
1519 cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1520 {
1521 struct cpswp_softc *sc;
1522 uint32_t cmd;
1523
1524 sc = device_get_softc(dev);
1525 if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1526 device_printf(dev, "MDIO not ready to write\n");
1527 return (0);
1528 }
1529
1530 /* Set GO, WRITE, reg, phy, and value */
1531 cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1532 (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1533 cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1534
1535 if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1536 device_printf(dev, "MDIO timed out during write\n");
1537 return (0);
1538 }
1539
1540 return (0);
1541 }
1542
1543 static void
1544 cpswp_miibus_statchg(device_t dev)
1545 {
1546 struct cpswp_softc *sc;
1547 uint32_t mac_control, reg;
1548
1549 sc = device_get_softc(dev);
1550 CPSW_DEBUGF(sc->swsc, (""));
1551
1552 reg = CPSW_SL_MACCONTROL(sc->unit);
1553 mac_control = cpsw_read_4(sc->swsc, reg);
1554 mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1555 CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1556
1557 switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1558 case IFM_1000_SX:
1559 case IFM_1000_LX:
1560 case IFM_1000_CX:
1561 case IFM_1000_T:
1562 mac_control |= CPSW_SL_MACTL_GIG;
1563 break;
1564
1565 case IFM_100_TX:
1566 mac_control |= CPSW_SL_MACTL_IFCTL_A;
1567 break;
1568 }
1569 if (sc->mii->mii_media_active & IFM_FDX)
1570 mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1571
1572 cpsw_write_4(sc->swsc, reg, mac_control);
1573 }
1574
1575 /*
1576 *
1577 * Transmit/Receive Packets.
1578 *
1579 */
1580 static void
1581 cpsw_intr_rx(void *arg)
1582 {
1583 struct cpsw_softc *sc;
1584 if_t ifp;
1585 struct mbuf *received, *next;
1586
1587 sc = (struct cpsw_softc *)arg;
1588 CPSW_RX_LOCK(sc);
1589 if (sc->rx.teardown) {
1590 sc->rx.running = 0;
1591 sc->rx.teardown = 0;
1592 cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1593 }
1594 received = cpsw_rx_dequeue(sc);
1595 cpsw_rx_enqueue(sc);
1596 cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1597 CPSW_RX_UNLOCK(sc);
1598
1599 while (received != NULL) {
1600 next = received->m_nextpkt;
1601 received->m_nextpkt = NULL;
1602 ifp = received->m_pkthdr.rcvif;
1603 if_input(ifp, received);
1604 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1605 received = next;
1606 }
1607 }
1608
1609 static struct mbuf *
1610 cpsw_rx_dequeue(struct cpsw_softc *sc)
1611 {
1612 int nsegs, port, removed;
1613 struct cpsw_cpdma_bd bd;
1614 struct cpsw_slot *last, *slot;
1615 struct cpswp_softc *psc;
1616 struct mbuf *m, *m0, *mb_head, *mb_tail;
1617 uint16_t m0_flags;
1618
1619 nsegs = 0;
1620 m0 = NULL;
1621 last = NULL;
1622 mb_head = NULL;
1623 mb_tail = NULL;
1624 removed = 0;
1625
1626 /* Pull completed packets off hardware RX queue. */
1627 while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1628 cpsw_cpdma_read_bd(sc, slot, &bd);
1629
1630 /*
1631 * Stop on packets still in use by hardware, but do not stop
1632 * on packets with the teardown complete flag, they will be
1633 * discarded later.
1634 */
1635 if ((bd.flags & (CPDMA_BD_OWNER | CPDMA_BD_TDOWNCMPLT)) ==
1636 CPDMA_BD_OWNER)
1637 break;
1638
1639 last = slot;
1640 ++removed;
1641 STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1642 STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1643
1644 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1645 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1646
1647 m = slot->mbuf;
1648 slot->mbuf = NULL;
1649
1650 if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1651 CPSW_DEBUGF(sc, ("RX teardown is complete"));
1652 m_freem(m);
1653 sc->rx.running = 0;
1654 sc->rx.teardown = 0;
1655 break;
1656 }
1657
1658 port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1659 KASSERT(port >= 0 && port <= 1,
1660 ("patcket received with invalid port: %d", port));
1661 psc = device_get_softc(sc->port[port].dev);
1662
1663 /* Set up mbuf */
1664 m->m_data += bd.bufoff;
1665 m->m_len = bd.buflen;
1666 if (bd.flags & CPDMA_BD_SOP) {
1667 m->m_pkthdr.len = bd.pktlen;
1668 m->m_pkthdr.rcvif = psc->ifp;
1669 m->m_flags |= M_PKTHDR;
1670 m0_flags = bd.flags;
1671 m0 = m;
1672 }
1673 nsegs++;
1674 m->m_next = NULL;
1675 m->m_nextpkt = NULL;
1676 if (bd.flags & CPDMA_BD_EOP && m0 != NULL) {
1677 if (m0_flags & CPDMA_BD_PASS_CRC)
1678 m_adj(m0, -ETHER_CRC_LEN);
1679 m0_flags = 0;
1680 m0 = NULL;
1681 if (nsegs > sc->rx.longest_chain)
1682 sc->rx.longest_chain = nsegs;
1683 nsegs = 0;
1684 }
1685
1686 if ((if_getcapenable(psc->ifp) & IFCAP_RXCSUM) != 0) {
1687 /* check for valid CRC by looking into pkt_err[5:4] */
1688 if ((bd.flags &
1689 (CPDMA_BD_SOP | CPDMA_BD_PKT_ERR_MASK)) ==
1690 CPDMA_BD_SOP) {
1691 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1692 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1693 m->m_pkthdr.csum_data = 0xffff;
1694 }
1695 }
1696
1697 if (STAILQ_FIRST(&sc->rx.active) != NULL &&
1698 (bd.flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1699 (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1700 cpsw_write_hdp_slot(sc, &sc->rx,
1701 STAILQ_FIRST(&sc->rx.active));
1702 sc->rx.queue_restart++;
1703 }
1704
1705 /* Add mbuf to packet list to be returned. */
1706 if (mb_tail != NULL && (bd.flags & CPDMA_BD_SOP)) {
1707 mb_tail->m_nextpkt = m;
1708 } else if (mb_tail != NULL) {
1709 mb_tail->m_next = m;
1710 } else if (mb_tail == NULL && (bd.flags & CPDMA_BD_SOP) == 0) {
1711 if (bootverbose)
1712 printf(
1713 "%s: %s: discanding fragment packet w/o header\n",
1714 __func__, if_name(psc->ifp));
1715 m_freem(m);
1716 continue;
1717 } else {
1718 mb_head = m;
1719 }
1720 mb_tail = m;
1721 }
1722
1723 if (removed != 0) {
1724 cpsw_write_cp_slot(sc, &sc->rx, last);
1725 sc->rx.queue_removes += removed;
1726 sc->rx.avail_queue_len += removed;
1727 sc->rx.active_queue_len -= removed;
1728 if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1729 sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1730 CPSW_DEBUGF(sc, ("Removed %d received packet(s) from RX queue", removed));
1731 }
1732
1733 return (mb_head);
1734 }
1735
1736 static void
1737 cpsw_rx_enqueue(struct cpsw_softc *sc)
1738 {
1739 bus_dma_segment_t seg[1];
1740 struct cpsw_cpdma_bd bd;
1741 struct cpsw_slot *first_new_slot, *last_old_slot, *next, *slot;
1742 int error, nsegs, added = 0;
1743
1744 /* Register new mbufs with hardware. */
1745 first_new_slot = NULL;
1746 last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1747 while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1748 if (first_new_slot == NULL)
1749 first_new_slot = slot;
1750 if (slot->mbuf == NULL) {
1751 slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1752 if (slot->mbuf == NULL) {
1753 device_printf(sc->dev,
1754 "Unable to fill RX queue\n");
1755 break;
1756 }
1757 slot->mbuf->m_len =
1758 slot->mbuf->m_pkthdr.len =
1759 slot->mbuf->m_ext.ext_size;
1760 }
1761
1762 error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1763 slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1764
1765 KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1766 KASSERT(error == 0, ("DMA error (error=%d)", error));
1767 if (error != 0 || nsegs != 1) {
1768 device_printf(sc->dev,
1769 "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1770 __func__, nsegs, error);
1771 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1772 m_freem(slot->mbuf);
1773 slot->mbuf = NULL;
1774 break;
1775 }
1776
1777 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1778
1779 /* Create and submit new rx descriptor. */
1780 if ((next = STAILQ_NEXT(slot, next)) != NULL)
1781 bd.next = cpsw_cpdma_bd_paddr(sc, next);
1782 else
1783 bd.next = 0;
1784 bd.bufptr = seg->ds_addr;
1785 bd.bufoff = 0;
1786 bd.buflen = MCLBYTES - 1;
1787 bd.pktlen = bd.buflen;
1788 bd.flags = CPDMA_BD_OWNER;
1789 cpsw_cpdma_write_bd(sc, slot, &bd);
1790 ++added;
1791
1792 STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1793 STAILQ_INSERT_TAIL(&sc->rx.active, slot, next);
1794 }
1795
1796 if (added == 0 || first_new_slot == NULL)
1797 return;
1798
1799 CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1800
1801 /* Link new entries to hardware RX queue. */
1802 if (last_old_slot == NULL) {
1803 /* Start a fresh queue. */
1804 cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1805 } else {
1806 /* Add buffers to end of current queue. */
1807 cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1808 }
1809 sc->rx.queue_adds += added;
1810 sc->rx.avail_queue_len -= added;
1811 sc->rx.active_queue_len += added;
1812 cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), added);
1813 if (sc->rx.active_queue_len > sc->rx.max_active_queue_len)
1814 sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1815 }
1816
1817 static void
1818 cpswp_start(if_t ifp)
1819 {
1820 struct cpswp_softc *sc;
1821
1822 sc = if_getsoftc(ifp);
1823 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
1824 sc->swsc->tx.running == 0) {
1825 return;
1826 }
1827 CPSW_TX_LOCK(sc->swsc);
1828 cpswp_tx_enqueue(sc);
1829 cpsw_tx_dequeue(sc->swsc);
1830 CPSW_TX_UNLOCK(sc->swsc);
1831 }
1832
1833 static void
1834 cpsw_intr_tx(void *arg)
1835 {
1836 struct cpsw_softc *sc;
1837
1838 sc = (struct cpsw_softc *)arg;
1839 CPSW_TX_LOCK(sc);
1840 if (cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)) == 0xfffffffc)
1841 cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1842 cpsw_tx_dequeue(sc);
1843 cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 2);
1844 CPSW_TX_UNLOCK(sc);
1845 }
1846
1847 static void
1848 cpswp_tx_enqueue(struct cpswp_softc *sc)
1849 {
1850 bus_dma_segment_t segs[CPSW_TXFRAGS];
1851 struct cpsw_cpdma_bd bd;
1852 struct cpsw_slot *first_new_slot, *last, *last_old_slot, *next, *slot;
1853 struct mbuf *m0;
1854 int error, nsegs, seg, added = 0, padlen;
1855
1856 /* Pull pending packets from IF queue and prep them for DMA. */
1857 last = NULL;
1858 first_new_slot = NULL;
1859 last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1860 while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1861 m0 = if_dequeue(sc->ifp);
1862 if (m0 == NULL)
1863 break;
1864
1865 slot->mbuf = m0;
1866 padlen = ETHER_MIN_LEN - ETHER_CRC_LEN - m0->m_pkthdr.len;
1867 if (padlen < 0)
1868 padlen = 0;
1869 else if (padlen > 0)
1870 m_append(slot->mbuf, padlen, sc->swsc->nullpad);
1871
1872 /* Create mapping in DMA memory */
1873 error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1874 slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1875 /* If the packet is too fragmented, try to simplify. */
1876 if (error == EFBIG ||
1877 (error == 0 && nsegs > sc->swsc->tx.avail_queue_len)) {
1878 bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1879 m0 = m_defrag(slot->mbuf, M_NOWAIT);
1880 if (m0 == NULL) {
1881 device_printf(sc->dev,
1882 "Can't defragment packet; dropping\n");
1883 m_freem(slot->mbuf);
1884 } else {
1885 CPSW_DEBUGF(sc->swsc,
1886 ("Requeueing defragmented packet"));
1887 if_sendq_prepend(sc->ifp, m0);
1888 }
1889 slot->mbuf = NULL;
1890 continue;
1891 }
1892 if (error != 0) {
1893 device_printf(sc->dev,
1894 "%s: Can't setup DMA (error=%d), dropping packet\n",
1895 __func__, error);
1896 bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1897 m_freem(slot->mbuf);
1898 slot->mbuf = NULL;
1899 break;
1900 }
1901
1902 bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1903 BUS_DMASYNC_PREWRITE);
1904
1905 CPSW_DEBUGF(sc->swsc,
1906 ("Queueing TX packet: %d segments + %d pad bytes",
1907 nsegs, padlen));
1908
1909 if (first_new_slot == NULL)
1910 first_new_slot = slot;
1911
1912 /* Link from the previous descriptor. */
1913 if (last != NULL)
1914 cpsw_cpdma_write_bd_next(sc->swsc, last, slot);
1915
1916 slot->ifp = sc->ifp;
1917
1918 /* If there is only one segment, the for() loop
1919 * gets skipped and the single buffer gets set up
1920 * as both SOP and EOP. */
1921 if (nsegs > 1) {
1922 next = STAILQ_NEXT(slot, next);
1923 bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1924 } else
1925 bd.next = 0;
1926 /* Start by setting up the first buffer. */
1927 bd.bufptr = segs[0].ds_addr;
1928 bd.bufoff = 0;
1929 bd.buflen = segs[0].ds_len;
1930 bd.pktlen = m_length(slot->mbuf, NULL);
1931 bd.flags = CPDMA_BD_SOP | CPDMA_BD_OWNER;
1932 if (sc->swsc->dualemac) {
1933 bd.flags |= CPDMA_BD_TO_PORT;
1934 bd.flags |= ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1935 }
1936 for (seg = 1; seg < nsegs; ++seg) {
1937 /* Save the previous buffer (which isn't EOP) */
1938 cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1939 STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1940 STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1941 slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1942
1943 /* Setup next buffer (which isn't SOP) */
1944 if (nsegs > seg + 1) {
1945 next = STAILQ_NEXT(slot, next);
1946 bd.next = cpsw_cpdma_bd_paddr(sc->swsc, next);
1947 } else
1948 bd.next = 0;
1949 bd.bufptr = segs[seg].ds_addr;
1950 bd.bufoff = 0;
1951 bd.buflen = segs[seg].ds_len;
1952 bd.pktlen = 0;
1953 bd.flags = CPDMA_BD_OWNER;
1954 }
1955
1956 /* Save the final buffer. */
1957 bd.flags |= CPDMA_BD_EOP;
1958 cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1959 STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1960 STAILQ_INSERT_TAIL(&sc->swsc->tx.active, slot, next);
1961
1962 last = slot;
1963 added += nsegs;
1964 if (nsegs > sc->swsc->tx.longest_chain)
1965 sc->swsc->tx.longest_chain = nsegs;
1966
1967 BPF_MTAP(sc->ifp, m0);
1968 }
1969
1970 if (first_new_slot == NULL)
1971 return;
1972
1973 /* Attach the list of new buffers to the hardware TX queue. */
1974 if (last_old_slot != NULL &&
1975 (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1976 CPDMA_BD_EOQ) == 0) {
1977 /* Add buffers to end of current queue. */
1978 cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1979 first_new_slot);
1980 } else {
1981 /* Start a fresh queue. */
1982 cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1983 }
1984 sc->swsc->tx.queue_adds += added;
1985 sc->swsc->tx.avail_queue_len -= added;
1986 sc->swsc->tx.active_queue_len += added;
1987 if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1988 sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1989 }
1990 CPSW_DEBUGF(sc->swsc, ("Queued %d TX packet(s)", added));
1991 }
1992
1993 static int
1994 cpsw_tx_dequeue(struct cpsw_softc *sc)
1995 {
1996 struct cpsw_slot *slot, *last_removed_slot = NULL;
1997 struct cpsw_cpdma_bd bd;
1998 uint32_t flags, removed = 0;
1999
2000 /* Pull completed buffers off the hardware TX queue. */
2001 slot = STAILQ_FIRST(&sc->tx.active);
2002 while (slot != NULL) {
2003 flags = cpsw_cpdma_read_bd_flags(sc, slot);
2004
2005 /* TearDown complete is only marked on the SOP for the packet. */
2006 if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
2007 (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) {
2008 sc->tx.teardown = 1;
2009 }
2010
2011 if ((flags & (CPDMA_BD_SOP | CPDMA_BD_OWNER)) ==
2012 (CPDMA_BD_SOP | CPDMA_BD_OWNER) && sc->tx.teardown == 0)
2013 break; /* Hardware is still using this packet. */
2014
2015 bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
2016 bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
2017 m_freem(slot->mbuf);
2018 slot->mbuf = NULL;
2019
2020 if (slot->ifp) {
2021 if (sc->tx.teardown == 0)
2022 if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
2023 else
2024 if_inc_counter(slot->ifp, IFCOUNTER_OQDROPS, 1);
2025 }
2026
2027 /* Dequeue any additional buffers used by this packet. */
2028 while (slot != NULL && slot->mbuf == NULL) {
2029 STAILQ_REMOVE_HEAD(&sc->tx.active, next);
2030 STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
2031 ++removed;
2032 last_removed_slot = slot;
2033 slot = STAILQ_FIRST(&sc->tx.active);
2034 }
2035
2036 cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
2037
2038 /* Restart the TX queue if necessary. */
2039 cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
2040 if (slot != NULL && bd.next != 0 && (bd.flags &
2041 (CPDMA_BD_EOP | CPDMA_BD_OWNER | CPDMA_BD_EOQ)) ==
2042 (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
2043 cpsw_write_hdp_slot(sc, &sc->tx, slot);
2044 sc->tx.queue_restart++;
2045 break;
2046 }
2047 }
2048
2049 if (removed != 0) {
2050 sc->tx.queue_removes += removed;
2051 sc->tx.active_queue_len -= removed;
2052 sc->tx.avail_queue_len += removed;
2053 if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
2054 sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
2055 CPSW_DEBUGF(sc, ("TX removed %d completed packet(s)", removed));
2056 }
2057
2058 if (sc->tx.teardown && STAILQ_EMPTY(&sc->tx.active)) {
2059 CPSW_DEBUGF(sc, ("TX teardown is complete"));
2060 sc->tx.teardown = 0;
2061 sc->tx.running = 0;
2062 }
2063
2064 return (removed);
2065 }
2066
2067 /*
2068 *
2069 * Miscellaneous interrupts.
2070 *
2071 */
2072
2073 static void
2074 cpsw_intr_rx_thresh(void *arg)
2075 {
2076 struct cpsw_softc *sc;
2077 if_t ifp;
2078 struct mbuf *received, *next;
2079
2080 sc = (struct cpsw_softc *)arg;
2081 CPSW_RX_LOCK(sc);
2082 received = cpsw_rx_dequeue(sc);
2083 cpsw_rx_enqueue(sc);
2084 cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
2085 CPSW_RX_UNLOCK(sc);
2086
2087 while (received != NULL) {
2088 next = received->m_nextpkt;
2089 received->m_nextpkt = NULL;
2090 ifp = received->m_pkthdr.rcvif;
2091 if_input(ifp, received);
2092 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2093 received = next;
2094 }
2095 }
2096
2097 static void
2098 cpsw_intr_misc_host_error(struct cpsw_softc *sc)
2099 {
2100 uint32_t intstat;
2101 uint32_t dmastat;
2102 int txerr, rxerr, txchan, rxchan;
2103
2104 printf("\n\n");
2105 device_printf(sc->dev,
2106 "HOST ERROR: PROGRAMMING ERROR DETECTED BY HARDWARE\n");
2107 printf("\n\n");
2108 intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
2109 device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2110 dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2111 device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2112
2113 txerr = (dmastat >> 20) & 15;
2114 txchan = (dmastat >> 16) & 7;
2115 rxerr = (dmastat >> 12) & 15;
2116 rxchan = (dmastat >> 8) & 7;
2117
2118 switch (txerr) {
2119 case 0: break;
2120 case 1: printf("SOP error on TX channel %d\n", txchan);
2121 break;
2122 case 2: printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2123 break;
2124 case 3: printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2125 break;
2126 case 4: printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2127 break;
2128 case 5: printf("Zero Buffer Length on TX channel %d\n", txchan);
2129 break;
2130 case 6: printf("Packet length error on TX channel %d\n", txchan);
2131 break;
2132 default: printf("Unknown error on TX channel %d\n", txchan);
2133 break;
2134 }
2135
2136 if (txerr != 0) {
2137 printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2138 txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2139 printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2140 txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2141 cpsw_dump_queue(sc, &sc->tx.active);
2142 }
2143
2144 switch (rxerr) {
2145 case 0: break;
2146 case 2: printf("Ownership bit not set on RX channel %d\n", rxchan);
2147 break;
2148 case 4: printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2149 break;
2150 case 5: printf("Zero Buffer Length on RX channel %d\n", rxchan);
2151 break;
2152 case 6: printf("Buffer offset too big on RX channel %d\n", rxchan);
2153 break;
2154 default: printf("Unknown RX error on RX channel %d\n", rxchan);
2155 break;
2156 }
2157
2158 if (rxerr != 0) {
2159 printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2160 rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2161 printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2162 rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2163 cpsw_dump_queue(sc, &sc->rx.active);
2164 }
2165
2166 printf("\nALE Table\n");
2167 cpsw_ale_dump_table(sc);
2168
2169 // XXX do something useful here??
2170 panic("CPSW HOST ERROR INTERRUPT");
2171
2172 // Suppress this interrupt in the future.
2173 cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2174 printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2175 // The watchdog will probably reset the controller
2176 // in a little while. It will probably fail again.
2177 }
2178
2179 static void
2180 cpsw_intr_misc(void *arg)
2181 {
2182 struct cpsw_softc *sc = arg;
2183 uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2184
2185 if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2186 CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2187 if (stat & CPSW_WR_C_MISC_STAT_PEND)
2188 cpsw_stats_collect(sc);
2189 if (stat & CPSW_WR_C_MISC_HOST_PEND)
2190 cpsw_intr_misc_host_error(sc);
2191 if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2192 cpsw_write_4(sc, MDIOLINKINTMASKED,
2193 cpsw_read_4(sc, MDIOLINKINTMASKED));
2194 }
2195 if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2196 CPSW_DEBUGF(sc,
2197 ("MDIO operation completed interrupt unimplemented"));
2198 }
2199 cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2200 }
2201
2202 /*
2203 *
2204 * Periodic Checks and Watchdog.
2205 *
2206 */
2207
2208 static void
2209 cpswp_tick(void *msc)
2210 {
2211 struct cpswp_softc *sc = msc;
2212
2213 /* Check for media type change */
2214 mii_tick(sc->mii);
2215 if (sc->media_status != sc->mii->mii_media.ifm_media) {
2216 printf("%s: media type changed (ifm_media=%x)\n", __func__,
2217 sc->mii->mii_media.ifm_media);
2218 cpswp_ifmedia_upd(sc->ifp);
2219 }
2220
2221 /* Schedule another timeout one second from now */
2222 callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2223 }
2224
2225 static void
2226 cpswp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2227 {
2228 struct cpswp_softc *sc;
2229 struct mii_data *mii;
2230
2231 sc = if_getsoftc(ifp);
2232 CPSW_DEBUGF(sc->swsc, (""));
2233 CPSW_PORT_LOCK(sc);
2234
2235 mii = sc->mii;
2236 mii_pollstat(mii);
2237
2238 ifmr->ifm_active = mii->mii_media_active;
2239 ifmr->ifm_status = mii->mii_media_status;
2240 CPSW_PORT_UNLOCK(sc);
2241 }
2242
2243 static int
2244 cpswp_ifmedia_upd(if_t ifp)
2245 {
2246 struct cpswp_softc *sc;
2247
2248 sc = if_getsoftc(ifp);
2249 CPSW_DEBUGF(sc->swsc, (""));
2250 CPSW_PORT_LOCK(sc);
2251 mii_mediachg(sc->mii);
2252 sc->media_status = sc->mii->mii_media.ifm_media;
2253 CPSW_PORT_UNLOCK(sc);
2254
2255 return (0);
2256 }
2257
2258 static void
2259 cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2260 {
2261 struct cpswp_softc *psc;
2262 int i;
2263
2264 cpsw_debugf_head("CPSW watchdog");
2265 device_printf(sc->dev, "watchdog timeout\n");
2266 printf("CPSW_CPDMA_TX%d_HDP=0x%x\n", 0,
2267 cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(0)));
2268 printf("CPSW_CPDMA_TX%d_CP=0x%x\n", 0,
2269 cpsw_read_4(sc, CPSW_CPDMA_TX_CP(0)));
2270 cpsw_dump_queue(sc, &sc->tx.active);
2271 for (i = 0; i < CPSW_PORTS; i++) {
2272 if (!sc->dualemac && i != sc->active_slave)
2273 continue;
2274 psc = device_get_softc(sc->port[i].dev);
2275 CPSW_PORT_LOCK(psc);
2276 cpswp_stop_locked(psc);
2277 CPSW_PORT_UNLOCK(psc);
2278 }
2279 }
2280
2281 static void
2282 cpsw_tx_watchdog(void *msc)
2283 {
2284 struct cpsw_softc *sc;
2285
2286 sc = msc;
2287 CPSW_TX_LOCK(sc);
2288 if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2289 sc->watchdog.timer = 0; /* Nothing to do. */
2290 } else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2291 sc->watchdog.timer = 0; /* Stuff done while we weren't looking. */
2292 } else if (cpsw_tx_dequeue(sc) > 0) {
2293 sc->watchdog.timer = 0; /* We just did something. */
2294 } else {
2295 /* There was something to do but it didn't get done. */
2296 ++sc->watchdog.timer;
2297 if (sc->watchdog.timer > 5) {
2298 sc->watchdog.timer = 0;
2299 ++sc->watchdog.resets;
2300 cpsw_tx_watchdog_full_reset(sc);
2301 }
2302 }
2303 sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2304 CPSW_TX_UNLOCK(sc);
2305
2306 /* Schedule another timeout one second from now */
2307 callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2308 }
2309
2310 /*
2311 *
2312 * ALE support routines.
2313 *
2314 */
2315
2316 static void
2317 cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2318 {
2319 cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2320 ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2321 ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2322 ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2323 }
2324
2325 static void
2326 cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2327 {
2328 cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2329 cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2330 cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2331 cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2332 }
2333
2334 static void
2335 cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2336 {
2337 int i;
2338 uint32_t ale_entry[3];
2339
2340 /* First four entries are link address and broadcast. */
2341 for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2342 cpsw_ale_read_entry(sc, i, ale_entry);
2343 if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2344 ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2345 ALE_MCAST(ale_entry) == 1) { /* MCast link addr */
2346 ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2347 cpsw_ale_write_entry(sc, i, ale_entry);
2348 }
2349 }
2350 }
2351
2352 static int
2353 cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2354 uint8_t *mac)
2355 {
2356 int free_index = -1, matching_index = -1, i;
2357 uint32_t ale_entry[3], ale_type;
2358
2359 /* Find a matching entry or a free entry. */
2360 for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2361 cpsw_ale_read_entry(sc, i, ale_entry);
2362
2363 /* Entry Type[61:60] is 0 for free entry */
2364 if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2365 free_index = i;
2366
2367 if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2368 (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2369 (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2370 (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2371 (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2372 (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2373 matching_index = i;
2374 break;
2375 }
2376 }
2377
2378 if (matching_index < 0) {
2379 if (free_index < 0)
2380 return (ENOMEM);
2381 i = free_index;
2382 }
2383
2384 if (vlan != -1)
2385 ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2386 else
2387 ale_type = ALE_TYPE_ADDR << 28;
2388
2389 /* Set MAC address */
2390 ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2391 ale_entry[1] = mac[0] << 8 | mac[1];
2392
2393 /* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2394 ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2395
2396 /* Set portmask [68:66] */
2397 ale_entry[2] = (portmap & 7) << 2;
2398
2399 cpsw_ale_write_entry(sc, i, ale_entry);
2400
2401 return 0;
2402 }
2403
2404 static void
2405 cpsw_ale_dump_table(struct cpsw_softc *sc) {
2406 int i;
2407 uint32_t ale_entry[3];
2408 for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2409 cpsw_ale_read_entry(sc, i, ale_entry);
2410 switch (ALE_TYPE(ale_entry)) {
2411 case ALE_TYPE_VLAN:
2412 printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2413 ale_entry[1], ale_entry[0]);
2414 printf("type: %u ", ALE_TYPE(ale_entry));
2415 printf("vlan: %u ", ALE_VLAN(ale_entry));
2416 printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2417 printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2418 printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2419 printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2420 printf("\n");
2421 break;
2422 case ALE_TYPE_ADDR:
2423 case ALE_TYPE_VLAN_ADDR:
2424 printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2425 ale_entry[1], ale_entry[0]);
2426 printf("type: %u ", ALE_TYPE(ale_entry));
2427 printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2428 (ale_entry[1] >> 8) & 0xFF,
2429 (ale_entry[1] >> 0) & 0xFF,
2430 (ale_entry[0] >>24) & 0xFF,
2431 (ale_entry[0] >>16) & 0xFF,
2432 (ale_entry[0] >> 8) & 0xFF,
2433 (ale_entry[0] >> 0) & 0xFF);
2434 printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2435 if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2436 printf("vlan: %u ", ALE_VLAN(ale_entry));
2437 printf("port: %u ", ALE_PORTS(ale_entry));
2438 printf("\n");
2439 break;
2440 }
2441 }
2442 printf("\n");
2443 }
2444
2445 static u_int
2446 cpswp_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2447 {
2448 struct cpswp_softc *sc = arg;
2449 uint32_t portmask;
2450
2451 if (sc->swsc->dualemac)
2452 portmask = 1 << (sc->unit + 1) | 1 << 0;
2453 else
2454 portmask = 7;
2455
2456 cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan, LLADDR(sdl));
2457
2458 return (1);
2459 }
2460
2461 static int
2462 cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2463 {
2464 uint8_t *mac;
2465 uint32_t ale_entry[3], ale_type, portmask;
2466
2467 if (sc->swsc->dualemac) {
2468 ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2469 portmask = 1 << (sc->unit + 1) | 1 << 0;
2470 } else {
2471 ale_type = ALE_TYPE_ADDR << 28;
2472 portmask = 7;
2473 }
2474
2475 /*
2476 * Route incoming packets for our MAC address to Port 0 (host).
2477 * For simplicity, keep this entry at table index 0 for port 1 and
2478 * at index 2 for port 2 in the ALE.
2479 */
2480 mac = LLADDR((struct sockaddr_dl *)if_getifaddr(sc->ifp)->ifa_addr);
2481 ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2482 ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2483 ale_entry[2] = 0; /* port = 0 */
2484 cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2485
2486 /* Set outgoing MAC Address for slave port. */
2487 cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2488 mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2489 cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2490 mac[5] << 8 | mac[4]);
2491
2492 /* Keep the broadcast address at table entry 1 (or 3). */
2493 ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2494 /* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2495 ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2496 ale_entry[2] = portmask << 2;
2497 cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2498
2499 /* SIOCDELMULTI doesn't specify the particular address
2500 being removed, so we have to remove all and rebuild. */
2501 if (purge)
2502 cpsw_ale_remove_all_mc_entries(sc->swsc);
2503
2504 /* Set other multicast addrs desired. */
2505 if_foreach_llmaddr(sc->ifp, cpswp_set_maddr, sc);
2506
2507 return (0);
2508 }
2509
2510 static int
2511 cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2512 int untag, int mcregflood, int mcunregflood)
2513 {
2514 int free_index, i, matching_index;
2515 uint32_t ale_entry[3];
2516
2517 free_index = matching_index = -1;
2518 /* Find a matching entry or a free entry. */
2519 for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2520 cpsw_ale_read_entry(sc, i, ale_entry);
2521
2522 /* Entry Type[61:60] is 0 for free entry */
2523 if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2524 free_index = i;
2525
2526 if (ALE_VLAN(ale_entry) == vlan) {
2527 matching_index = i;
2528 break;
2529 }
2530 }
2531
2532 if (matching_index < 0) {
2533 if (free_index < 0)
2534 return (-1);
2535 i = free_index;
2536 }
2537
2538 ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2539 (mcunregflood & 7) << 8 | (ports & 7);
2540 ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2541 ale_entry[2] = 0;
2542 cpsw_ale_write_entry(sc, i, ale_entry);
2543
2544 return (0);
2545 }
2546
2547 /*
2548 *
2549 * Statistics and Sysctls.
2550 *
2551 */
2552
2553 #if 0
2554 static void
2555 cpsw_stats_dump(struct cpsw_softc *sc)
2556 {
2557 int i;
2558 uint32_t r;
2559
2560 for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2561 r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2562 cpsw_stat_sysctls[i].reg);
2563 CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2564 (intmax_t)sc->shadow_stats[i], r,
2565 (intmax_t)sc->shadow_stats[i] + r));
2566 }
2567 }
2568 #endif
2569
2570 static void
2571 cpsw_stats_collect(struct cpsw_softc *sc)
2572 {
2573 int i;
2574 uint32_t r;
2575
2576 CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2577
2578 for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2579 r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2580 cpsw_stat_sysctls[i].reg);
2581 sc->shadow_stats[i] += r;
2582 cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2583 r);
2584 }
2585 }
2586
2587 static int
2588 cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2589 {
2590 struct cpsw_softc *sc;
2591 struct cpsw_stat *stat;
2592 uint64_t result;
2593
2594 sc = (struct cpsw_softc *)arg1;
2595 stat = &cpsw_stat_sysctls[oidp->oid_number];
2596 result = sc->shadow_stats[oidp->oid_number];
2597 result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2598 return (sysctl_handle_64(oidp, &result, 0, req));
2599 }
2600
2601 static int
2602 cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2603 {
2604 struct cpsw_softc *sc;
2605 struct bintime t;
2606 unsigned result;
2607
2608 sc = (struct cpsw_softc *)arg1;
2609 getbinuptime(&t);
2610 bintime_sub(&t, &sc->attach_uptime);
2611 result = t.sec;
2612 return (sysctl_handle_int(oidp, &result, 0, req));
2613 }
2614
2615 static int
2616 cpsw_intr_coalesce(SYSCTL_HANDLER_ARGS)
2617 {
2618 int error;
2619 struct cpsw_softc *sc;
2620 uint32_t ctrl, intr_per_ms;
2621
2622 sc = (struct cpsw_softc *)arg1;
2623 error = sysctl_handle_int(oidp, &sc->coal_us, 0, req);
2624 if (error != 0 || req->newptr == NULL)
2625 return (error);
2626
2627 ctrl = cpsw_read_4(sc, CPSW_WR_INT_CONTROL);
2628 ctrl &= ~(CPSW_WR_INT_PACE_EN | CPSW_WR_INT_PRESCALE_MASK);
2629 if (sc->coal_us == 0) {
2630 /* Disable the interrupt pace hardware. */
2631 cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2632 cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), 0);
2633 cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), 0);
2634 return (0);
2635 }
2636
2637 if (sc->coal_us > CPSW_WR_C_IMAX_US_MAX)
2638 sc->coal_us = CPSW_WR_C_IMAX_US_MAX;
2639 if (sc->coal_us < CPSW_WR_C_IMAX_US_MIN)
2640 sc->coal_us = CPSW_WR_C_IMAX_US_MIN;
2641 intr_per_ms = 1000 / sc->coal_us;
2642 /* Just to make sure... */
2643 if (intr_per_ms > CPSW_WR_C_IMAX_MAX)
2644 intr_per_ms = CPSW_WR_C_IMAX_MAX;
2645 if (intr_per_ms < CPSW_WR_C_IMAX_MIN)
2646 intr_per_ms = CPSW_WR_C_IMAX_MIN;
2647
2648 /* Set the prescale to produce 4us pulses from the 125 Mhz clock. */
2649 ctrl |= (125 * 4) & CPSW_WR_INT_PRESCALE_MASK;
2650
2651 /* Enable the interrupt pace hardware. */
2652 cpsw_write_4(sc, CPSW_WR_C_RX_IMAX(0), intr_per_ms);
2653 cpsw_write_4(sc, CPSW_WR_C_TX_IMAX(0), intr_per_ms);
2654 ctrl |= CPSW_WR_INT_C0_RX_PULSE | CPSW_WR_INT_C0_TX_PULSE;
2655 cpsw_write_4(sc, CPSW_WR_INT_CONTROL, ctrl);
2656
2657 return (0);
2658 }
2659
2660 static int
2661 cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2662 {
2663 struct cpsw_softc *swsc;
2664 struct cpswp_softc *sc;
2665 struct bintime t;
2666 unsigned result;
2667
2668 swsc = arg1;
2669 sc = device_get_softc(swsc->port[arg2].dev);
2670 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
2671 getbinuptime(&t);
2672 bintime_sub(&t, &sc->init_uptime);
2673 result = t.sec;
2674 } else
2675 result = 0;
2676 return (sysctl_handle_int(oidp, &result, 0, req));
2677 }
2678
2679 static void
2680 cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2681 struct cpsw_queue *queue)
2682 {
2683 struct sysctl_oid_list *parent;
2684
2685 parent = SYSCTL_CHILDREN(node);
2686 SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2687 CTLFLAG_RD, &queue->queue_slots, 0,
2688 "Total buffers currently assigned to this queue");
2689 SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2690 CTLFLAG_RD, &queue->active_queue_len, 0,
2691 "Buffers currently registered with hardware controller");
2692 SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2693 CTLFLAG_RD, &queue->max_active_queue_len, 0,
2694 "Max value of activeBuffers since last driver reset");
2695 SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2696 CTLFLAG_RD, &queue->avail_queue_len, 0,
2697 "Buffers allocated to this queue but not currently "
2698 "registered with hardware controller");
2699 SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2700 CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2701 "Max value of availBuffers since last driver reset");
2702 SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2703 CTLFLAG_RD, &queue->queue_adds, 0,
2704 "Total buffers added to queue");
2705 SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2706 CTLFLAG_RD, &queue->queue_removes, 0,
2707 "Total buffers removed from queue");
2708 SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "queueRestart",
2709 CTLFLAG_RD, &queue->queue_restart, 0,
2710 "Total times the queue has been restarted");
2711 SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2712 CTLFLAG_RD, &queue->longest_chain, 0,
2713 "Max buffers used for a single packet");
2714 }
2715
2716 static void
2717 cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2718 struct cpsw_softc *sc)
2719 {
2720 struct sysctl_oid_list *parent;
2721
2722 parent = SYSCTL_CHILDREN(node);
2723 SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2724 CTLFLAG_RD, &sc->watchdog.resets, 0,
2725 "Total number of watchdog resets");
2726 }
2727
2728 static void
2729 cpsw_add_sysctls(struct cpsw_softc *sc)
2730 {
2731 struct sysctl_ctx_list *ctx;
2732 struct sysctl_oid *stats_node, *queue_node, *node;
2733 struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2734 struct sysctl_oid_list *ports_parent, *port_parent;
2735 char port[16];
2736 int i;
2737
2738 ctx = device_get_sysctl_ctx(sc->dev);
2739 parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2740
2741 SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2742 CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2743
2744 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2745 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2746 sc, 0, cpsw_stat_attached, "IU",
2747 "Time since driver attach");
2748
2749 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "intr_coalesce_us",
2750 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
2751 sc, 0, cpsw_intr_coalesce, "IU",
2752 "minimum time between interrupts");
2753
2754 node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2755 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Ports Statistics");
2756 ports_parent = SYSCTL_CHILDREN(node);
2757 for (i = 0; i < CPSW_PORTS; i++) {
2758 if (!sc->dualemac && i != sc->active_slave)
2759 continue;
2760 port[0] = '' + i;
2761 port[1] = '\0';
2762 node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2763 port, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2764 "CPSW Port Statistics");
2765 port_parent = SYSCTL_CHILDREN(node);
2766 SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2767 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, i,
2768 cpsw_stat_uptime, "IU", "Seconds since driver init");
2769 }
2770
2771 stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2772 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Statistics");
2773 stats_parent = SYSCTL_CHILDREN(stats_node);
2774 for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2775 SYSCTL_ADD_PROC(ctx, stats_parent, i,
2776 cpsw_stat_sysctls[i].oid,
2777 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2778 sc, 0, cpsw_stats_sysctl, "IU",
2779 cpsw_stat_sysctls[i].oid);
2780 }
2781
2782 queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2783 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CPSW Queue Statistics");
2784 queue_parent = SYSCTL_CHILDREN(queue_node);
2785
2786 node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2787 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Statistics");
2788 cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2789
2790 node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2791 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Statistics");
2792 cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2793
2794 node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2795 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Watchdog Statistics");
2796 cpsw_add_watchdog_sysctls(ctx, node, sc);
2797 }
2798
2799 #ifdef CPSW_ETHERSWITCH
2800 static etherswitch_info_t etherswitch_info = {
2801 .es_nports = CPSW_PORTS + 1,
2802 .es_nvlangroups = CPSW_VLANS,
2803 .es_name = "TI Common Platform Ethernet Switch (CPSW)",
2804 .es_vlan_caps = ETHERSWITCH_VLAN_DOT1Q,
2805 };
2806
2807 static etherswitch_info_t *
2808 cpsw_getinfo(device_t dev)
2809 {
2810 return (ðerswitch_info);
2811 }
2812
2813 static int
2814 cpsw_getport(device_t dev, etherswitch_port_t *p)
2815 {
2816 int err;
2817 struct cpsw_softc *sc;
2818 struct cpswp_softc *psc;
2819 struct ifmediareq *ifmr;
2820 uint32_t reg;
2821
2822 if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2823 return (ENXIO);
2824
2825 err = 0;
2826 sc = device_get_softc(dev);
2827 if (p->es_port == CPSW_CPU_PORT) {
2828 p->es_flags |= ETHERSWITCH_PORT_CPU;
2829 ifmr = &p->es_ifmr;
2830 ifmr->ifm_current = ifmr->ifm_active =
2831 IFM_ETHER | IFM_1000_T | IFM_FDX;
2832 ifmr->ifm_mask = 0;
2833 ifmr->ifm_status = IFM_ACTIVE | IFM_AVALID;
2834 ifmr->ifm_count = 0;
2835 } else {
2836 psc = device_get_softc(sc->port[p->es_port - 1].dev);
2837 err = ifmedia_ioctl(psc->ifp, &p->es_ifr,
2838 &psc->mii->mii_media, SIOCGIFMEDIA);
2839 }
2840 reg = cpsw_read_4(sc, CPSW_PORT_P_VLAN(p->es_port));
2841 p->es_pvid = reg & ETHERSWITCH_VID_MASK;
2842
2843 reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2844 if (reg & ALE_PORTCTL_DROP_UNTAGGED)
2845 p->es_flags |= ETHERSWITCH_PORT_DROPUNTAGGED;
2846 if (reg & ALE_PORTCTL_INGRESS)
2847 p->es_flags |= ETHERSWITCH_PORT_INGRESS;
2848
2849 return (err);
2850 }
2851
2852 static int
2853 cpsw_setport(device_t dev, etherswitch_port_t *p)
2854 {
2855 struct cpsw_softc *sc;
2856 struct cpswp_softc *psc;
2857 struct ifmedia *ifm;
2858 uint32_t reg;
2859
2860 if (p->es_port < 0 || p->es_port > CPSW_PORTS)
2861 return (ENXIO);
2862
2863 sc = device_get_softc(dev);
2864 if (p->es_pvid != 0) {
2865 cpsw_write_4(sc, CPSW_PORT_P_VLAN(p->es_port),
2866 p->es_pvid & ETHERSWITCH_VID_MASK);
2867 }
2868
2869 reg = cpsw_read_4(sc, CPSW_ALE_PORTCTL(p->es_port));
2870 if (p->es_flags & ETHERSWITCH_PORT_DROPUNTAGGED)
2871 reg |= ALE_PORTCTL_DROP_UNTAGGED;
2872 else
2873 reg &= ~ALE_PORTCTL_DROP_UNTAGGED;
2874 if (p->es_flags & ETHERSWITCH_PORT_INGRESS)
2875 reg |= ALE_PORTCTL_INGRESS;
2876 else
2877 reg &= ~ALE_PORTCTL_INGRESS;
2878 cpsw_write_4(sc, CPSW_ALE_PORTCTL(p->es_port), reg);
2879
2880 /* CPU port does not allow media settings. */
2881 if (p->es_port == CPSW_CPU_PORT)
2882 return (0);
2883
2884 psc = device_get_softc(sc->port[p->es_port - 1].dev);
2885 ifm = &psc->mii->mii_media;
2886
2887 return (ifmedia_ioctl(psc->ifp, &p->es_ifr, ifm, SIOCSIFMEDIA));
2888 }
2889
2890 static int
2891 cpsw_getconf(device_t dev, etherswitch_conf_t *conf)
2892 {
2893
2894 /* Return the VLAN mode. */
2895 conf->cmd = ETHERSWITCH_CONF_VLAN_MODE;
2896 conf->vlan_mode = ETHERSWITCH_VLAN_DOT1Q;
2897
2898 return (0);
2899 }
2900
2901 static int
2902 cpsw_getvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2903 {
2904 int i, vid;
2905 uint32_t ale_entry[3];
2906 struct cpsw_softc *sc;
2907
2908 sc = device_get_softc(dev);
2909
2910 if (vg->es_vlangroup >= CPSW_VLANS)
2911 return (EINVAL);
2912
2913 vg->es_vid = 0;
2914 vid = cpsw_vgroups[vg->es_vlangroup].vid;
2915 if (vid == -1)
2916 return (0);
2917
2918 for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2919 cpsw_ale_read_entry(sc, i, ale_entry);
2920 if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2921 continue;
2922 if (vid != ALE_VLAN(ale_entry))
2923 continue;
2924
2925 vg->es_fid = 0;
2926 vg->es_vid = ALE_VLAN(ale_entry) | ETHERSWITCH_VID_VALID;
2927 vg->es_member_ports = ALE_VLAN_MEMBERS(ale_entry);
2928 vg->es_untagged_ports = ALE_VLAN_UNTAG(ale_entry);
2929 }
2930
2931 return (0);
2932 }
2933
2934 static void
2935 cpsw_remove_vlan(struct cpsw_softc *sc, int vlan)
2936 {
2937 int i;
2938 uint32_t ale_entry[3];
2939
2940 for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2941 cpsw_ale_read_entry(sc, i, ale_entry);
2942 if (ALE_TYPE(ale_entry) != ALE_TYPE_VLAN)
2943 continue;
2944 if (vlan != ALE_VLAN(ale_entry))
2945 continue;
2946 ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2947 cpsw_ale_write_entry(sc, i, ale_entry);
2948 break;
2949 }
2950 }
2951
2952 static int
2953 cpsw_setvgroup(device_t dev, etherswitch_vlangroup_t *vg)
2954 {
2955 int i;
2956 struct cpsw_softc *sc;
2957
2958 sc = device_get_softc(dev);
2959
2960 for (i = 0; i < CPSW_VLANS; i++) {
2961 /* Is this Vlan ID in use by another vlangroup ? */
2962 if (vg->es_vlangroup != i && cpsw_vgroups[i].vid == vg->es_vid)
2963 return (EINVAL);
2964 }
2965
2966 if (vg->es_vid == 0) {
2967 if (cpsw_vgroups[vg->es_vlangroup].vid == -1)
2968 return (0);
2969 cpsw_remove_vlan(sc, cpsw_vgroups[vg->es_vlangroup].vid);
2970 cpsw_vgroups[vg->es_vlangroup].vid = -1;
2971 vg->es_untagged_ports = 0;
2972 vg->es_member_ports = 0;
2973 vg->es_vid = 0;
2974 return (0);
2975 }
2976
2977 vg->es_vid &= ETHERSWITCH_VID_MASK;
2978 vg->es_member_ports &= CPSW_PORTS_MASK;
2979 vg->es_untagged_ports &= CPSW_PORTS_MASK;
2980
2981 if (cpsw_vgroups[vg->es_vlangroup].vid != -1 &&
2982 cpsw_vgroups[vg->es_vlangroup].vid != vg->es_vid)
2983 return (EINVAL);
2984
2985 cpsw_vgroups[vg->es_vlangroup].vid = vg->es_vid;
2986 cpsw_ale_update_vlan_table(sc, vg->es_vid, vg->es_member_ports,
2987 vg->es_untagged_ports, vg->es_member_ports, 0);
2988
2989 return (0);
2990 }
2991
2992 static int
2993 cpsw_readreg(device_t dev, int addr)
2994 {
2995
2996 /* Not supported. */
2997 return (0);
2998 }
2999
3000 static int
3001 cpsw_writereg(device_t dev, int addr, int value)
3002 {
3003
3004 /* Not supported. */
3005 return (0);
3006 }
3007
3008 static int
3009 cpsw_readphy(device_t dev, int phy, int reg)
3010 {
3011
3012 /* Not supported. */
3013 return (0);
3014 }
3015
3016 static int
3017 cpsw_writephy(device_t dev, int phy, int reg, int data)
3018 {
3019
3020 /* Not supported. */
3021 return (0);
3022 }
3023 #endif
Cache object: f2a1c50615aa192c5c28c19bd40bb7a7
|