The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/xscale/ixp425/if_npe.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006-2008 Sam Leffler.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   23  */
   24 
   25 #include <sys/cdefs.h>
   26 __FBSDID("$FreeBSD$");
   27 
   28 /*
   29  * Intel XScale NPE Ethernet driver.
   30  *
   31  * This driver handles the two ports present on the IXP425.
   32  * Packet processing is done by the Network Processing Engines
   33  * (NPE's) that work together with a MAC and PHY. The MAC
   34  * is also mapped to the XScale cpu; the PHY is accessed via
   35  * the MAC. NPE-XScale communication happens through h/w
   36  * queues managed by the Q Manager block.
   37  *
   38  * The code here replaces the ethAcc, ethMii, and ethDB classes
   39  * in the Intel Access Library (IAL) and the OS-specific driver.
   40  *
   41  * XXX add vlan support
   42  */
   43 #ifdef HAVE_KERNEL_OPTION_HEADERS
   44 #include "opt_device_polling.h"
   45 #endif
   46 
   47 #include <sys/param.h>
   48 #include <sys/systm.h>
   49 #include <sys/bus.h>
   50 #include <sys/kernel.h>
   51 #include <sys/mbuf.h>
   52 #include <sys/malloc.h>
   53 #include <sys/module.h>
   54 #include <sys/rman.h>
   55 #include <sys/socket.h>
   56 #include <sys/sockio.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/endian.h>
   59 #include <machine/bus.h>
   60 
   61 #include <net/ethernet.h>
   62 #include <net/if.h>
   63 #include <net/if_arp.h>
   64 #include <net/if_dl.h>
   65 #include <net/if_media.h>
   66 #include <net/if_mib.h>
   67 #include <net/if_types.h>
   68 #include <net/if_var.h>
   69 
   70 #ifdef INET
   71 #include <netinet/in.h>
   72 #include <netinet/in_systm.h>
   73 #include <netinet/in_var.h>
   74 #include <netinet/ip.h>
   75 #endif
   76 
   77 #include <net/bpf.h>
   78 #include <net/bpfdesc.h>
   79 
   80 #include <arm/xscale/ixp425/ixp425reg.h>
   81 #include <arm/xscale/ixp425/ixp425var.h>
   82 #include <arm/xscale/ixp425/ixp425_qmgr.h>
   83 #include <arm/xscale/ixp425/ixp425_npevar.h>
   84 
   85 #include <dev/mii/mii.h>
   86 #include <dev/mii/miivar.h>
   87 #include <arm/xscale/ixp425/if_npereg.h>
   88 
   89 #include <machine/armreg.h>
   90 
   91 #include "miibus_if.h"
   92 
   93 /*
   94  * XXX: For the main bus dma tag. Can go away if the new method to get the
   95  * dma tag from the parent got MFC'd into RELENG_6.
   96  */
   97 extern struct ixp425_softc *ixp425_softc;
   98 
   99 struct npebuf {
  100         struct npebuf   *ix_next;       /* chain to next buffer */
  101         void            *ix_m;          /* backpointer to mbuf */
  102         bus_dmamap_t    ix_map;         /* bus dma map for associated data */
  103         struct npehwbuf *ix_hw;         /* associated h/w block */
  104         uint32_t        ix_neaddr;      /* phys address of ix_hw */
  105 };
  106 
  107 struct npedma {
  108         const char*     name;
  109         int             nbuf;           /* # npebuf's allocated */
  110         bus_dma_tag_t   mtag;           /* bus dma tag for mbuf data */
  111         struct npehwbuf *hwbuf;         /* NPE h/w buffers */
  112         bus_dma_tag_t   buf_tag;        /* tag+map for NPE buffers */
  113         bus_dmamap_t    buf_map;
  114         bus_addr_t      buf_phys;       /* phys addr of buffers */
  115         struct npebuf   *buf;           /* s/w buffers (1-1 w/ h/w) */
  116 };
  117 
  118 struct npe_softc {
  119         /* XXX mii requires this be first; do not move! */
  120         struct ifnet    *sc_ifp;        /* ifnet pointer */
  121         struct mtx      sc_mtx;         /* basically a perimeter lock */
  122         device_t        sc_dev;
  123         bus_space_tag_t sc_iot;         
  124         bus_space_handle_t sc_ioh;      /* MAC register window */
  125         device_t        sc_mii;         /* child miibus */
  126         bus_space_handle_t sc_miih;     /* MII register window */
  127         int             sc_npeid;
  128         struct ixpnpe_softc *sc_npe;    /* NPE support */
  129         int             sc_debug;       /* DPRINTF* control */
  130         int             sc_tickinterval;
  131         struct callout  tick_ch;        /* Tick callout */
  132         int             npe_watchdog_timer;
  133         struct npedma   txdma;
  134         struct npebuf   *tx_free;       /* list of free tx buffers */
  135         struct npedma   rxdma;
  136         bus_addr_t      buf_phys;       /* XXX for returning a value */
  137         int             rx_qid;         /* rx qid */
  138         int             rx_freeqid;     /* rx free buffers qid */
  139         int             tx_qid;         /* tx qid */
  140         int             tx_doneqid;     /* tx completed qid */
  141         struct ifmib_iso_8802_3 mibdata;
  142         bus_dma_tag_t   sc_stats_tag;   /* bus dma tag for stats block */
  143         struct npestats *sc_stats;
  144         bus_dmamap_t    sc_stats_map;
  145         bus_addr_t      sc_stats_phys;  /* phys addr of sc_stats */
  146         struct npestats sc_totals;      /* accumulated sc_stats */
  147 };
  148 
  149 /*
  150  * Static configuration for IXP425.  The tx and
  151  * rx free Q id's are fixed by the NPE microcode.  The
  152  * rx Q id's are programmed to be separate to simplify
  153  * multi-port processing.  It may be better to handle
  154  * all traffic through one Q (as done by the Intel drivers).
  155  *
  156  * Note that the PHY's are accessible only from MAC B on the
  157  * IXP425 and from MAC C on other devices.  This and other
  158  * platform-specific assumptions are handled with hints.
  159  */
  160 static const struct {
  161         uint32_t        macbase;
  162         uint32_t        miibase;
  163         int             phy;            /* phy id */
  164         uint8_t         rx_qid;
  165         uint8_t         rx_freeqid;
  166         uint8_t         tx_qid;
  167         uint8_t         tx_doneqid;
  168 } npeconfig[NPE_MAX] = {
  169         [NPE_A] = {
  170           .macbase      = IXP435_MAC_A_HWBASE,
  171           .miibase      = IXP425_MAC_C_HWBASE,
  172           .phy          = 2,
  173           .rx_qid       = 4,
  174           .rx_freeqid   = 26,
  175           .tx_qid       = 23,
  176           .tx_doneqid   = 31
  177         },
  178         [NPE_B] = {
  179           .macbase      = IXP425_MAC_B_HWBASE,
  180           .miibase      = IXP425_MAC_B_HWBASE,
  181           .phy          = 0,
  182           .rx_qid       = 4,
  183           .rx_freeqid   = 27,
  184           .tx_qid       = 24,
  185           .tx_doneqid   = 31
  186         },
  187         [NPE_C] = {
  188           .macbase      = IXP425_MAC_C_HWBASE,
  189           .miibase      = IXP425_MAC_B_HWBASE,
  190           .phy          = 1,
  191           .rx_qid       = 12,
  192           .rx_freeqid   = 28,
  193           .tx_qid       = 25,
  194           .tx_doneqid   = 31
  195         },
  196 };
  197 static struct npe_softc *npes[NPE_MAX]; /* NB: indexed by npeid */
  198 
  199 static __inline uint32_t
  200 RD4(struct npe_softc *sc, bus_size_t off)
  201 {
  202         return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
  203 }
  204 
  205 static __inline void
  206 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
  207 {
  208         bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
  209 }
  210 
  211 #define NPE_LOCK(_sc)           mtx_lock(&(_sc)->sc_mtx)
  212 #define NPE_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_mtx)
  213 #define NPE_LOCK_INIT(_sc) \
  214         mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->sc_dev), \
  215             MTX_NETWORK_LOCK, MTX_DEF)
  216 #define NPE_LOCK_DESTROY(_sc)   mtx_destroy(&_sc->sc_mtx);
  217 #define NPE_ASSERT_LOCKED(_sc)  mtx_assert(&_sc->sc_mtx, MA_OWNED);
  218 #define NPE_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
  219 
  220 static devclass_t npe_devclass;
  221 
  222 static int      override_npeid(device_t, const char *resname, int *val);
  223 static int      npe_activate(device_t dev);
  224 static void     npe_deactivate(device_t dev);
  225 static int      npe_ifmedia_update(struct ifnet *ifp);
  226 static void     npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
  227 static void     npe_setmac(struct npe_softc *sc, u_char *eaddr);
  228 static void     npe_getmac(struct npe_softc *sc, u_char *eaddr);
  229 static void     npe_txdone(int qid, void *arg);
  230 static int      npe_rxbuf_init(struct npe_softc *, struct npebuf *,
  231                         struct mbuf *);
  232 static int      npe_rxdone(int qid, void *arg);
  233 static void     npeinit(void *);
  234 static void     npestart_locked(struct ifnet *);
  235 static void     npestart(struct ifnet *);
  236 static void     npestop(struct npe_softc *);
  237 static void     npewatchdog(struct npe_softc *);
  238 static int      npeioctl(struct ifnet * ifp, u_long, caddr_t);
  239 
  240 static int      npe_setrxqosentry(struct npe_softc *, int classix,
  241                         int trafclass, int qid);
  242 static int      npe_setportaddress(struct npe_softc *, const uint8_t mac[]);
  243 static int      npe_setfirewallmode(struct npe_softc *, int onoff);
  244 static int      npe_updatestats(struct npe_softc *);
  245 #if 0
  246 static int      npe_getstats(struct npe_softc *);
  247 static uint32_t npe_getimageid(struct npe_softc *);
  248 static int      npe_setloopback(struct npe_softc *, int ena);
  249 #endif
  250 
  251 /* NB: all tx done processing goes through one queue */
  252 static int tx_doneqid = -1;
  253 
  254 static SYSCTL_NODE(_hw, OID_AUTO, npe, CTLFLAG_RD, 0,
  255     "IXP4XX NPE driver parameters");
  256 
  257 static int npe_debug = 0;
  258 SYSCTL_INT(_hw_npe, OID_AUTO, debug, CTLFLAG_RWTUN, &npe_debug,
  259            0, "IXP4XX NPE network interface debug msgs");
  260 #define DPRINTF(sc, fmt, ...) do {                                      \
  261         if (sc->sc_debug) device_printf(sc->sc_dev, fmt, __VA_ARGS__);  \
  262 } while (0)
  263 #define DPRINTFn(n, sc, fmt, ...) do {                                  \
  264         if (sc->sc_debug >= n) device_printf(sc->sc_dev, fmt, __VA_ARGS__);\
  265 } while (0)
  266 static int npe_tickinterval = 3;                /* npe_tick frequency (secs) */
  267 SYSCTL_INT(_hw_npe, OID_AUTO, tickinterval, CTLFLAG_RDTUN, &npe_tickinterval,
  268             0, "periodic work interval (secs)");
  269 
  270 static  int npe_rxbuf = 64;             /* # rx buffers to allocate */
  271 SYSCTL_INT(_hw_npe, OID_AUTO, rxbuf, CTLFLAG_RDTUN, &npe_rxbuf,
  272             0, "rx buffers allocated");
  273 static  int npe_txbuf = 128;            /* # tx buffers to allocate */
  274 SYSCTL_INT(_hw_npe, OID_AUTO, txbuf, CTLFLAG_RDTUN, &npe_txbuf,
  275             0, "tx buffers allocated");
  276 
  277 static int
  278 unit2npeid(int unit)
  279 {
  280         static const int npeidmap[2][3] = {
  281                 /* on 425 A is for HSS, B & C are for Ethernet */
  282                 { NPE_B, NPE_C, -1 },   /* IXP425 */
  283                 /* 435 only has A & C, order C then A */
  284                 { NPE_C, NPE_A, -1 },   /* IXP435 */
  285         };
  286         /* XXX check feature register instead */
  287         return (unit < 3 ? npeidmap[
  288             (cpu_ident() & CPU_ID_CPU_MASK) == CPU_ID_IXP435][unit] : -1);
  289 }
  290 
  291 static int
  292 npe_probe(device_t dev)
  293 {
  294         static const char *desc[NPE_MAX] = {
  295                 [NPE_A] = "IXP NPE-A",
  296                 [NPE_B] = "IXP NPE-B",
  297                 [NPE_C] = "IXP NPE-C"
  298         };
  299         int unit = device_get_unit(dev);
  300         int npeid;
  301 
  302         if (unit > 2 ||
  303             (ixp4xx_read_feature_bits() &
  304              (unit == 0 ? EXP_FCTRL_ETH0 : EXP_FCTRL_ETH1)) == 0)
  305                 return EINVAL;
  306 
  307         npeid = -1;
  308         if (!override_npeid(dev, "npeid", &npeid))
  309                 npeid = unit2npeid(unit);
  310         if (npeid == -1) {
  311                 device_printf(dev, "unit %d not supported\n", unit);
  312                 return EINVAL;
  313         }
  314         device_set_desc(dev, desc[npeid]);
  315         return 0;
  316 }
  317 
  318 static int
  319 npe_attach(device_t dev)
  320 {
  321         struct npe_softc *sc = device_get_softc(dev);
  322         struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
  323         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
  324         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
  325         struct ifnet *ifp;
  326         int error;
  327         u_char eaddr[6];
  328 
  329         sc->sc_dev = dev;
  330         sc->sc_iot = sa->sc_iot;
  331         NPE_LOCK_INIT(sc);
  332         callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
  333         sc->sc_debug = npe_debug;
  334         sc->sc_tickinterval = npe_tickinterval;
  335 
  336         ifp = if_alloc(IFT_ETHER);
  337         if (ifp == NULL) {
  338                 device_printf(dev, "cannot allocate ifnet\n");
  339                 error = EIO;            /* XXX */
  340                 goto out;
  341         }
  342         /* NB: must be setup prior to invoking mii code */
  343         sc->sc_ifp = ifp;
  344 
  345         error = npe_activate(dev);
  346         if (error) {
  347                 device_printf(dev, "cannot activate npe\n");
  348                 goto out;
  349         }
  350 
  351         npe_getmac(sc, eaddr);
  352 
  353         ifp->if_softc = sc;
  354         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  355         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  356         ifp->if_start = npestart;
  357         ifp->if_ioctl = npeioctl;
  358         ifp->if_init = npeinit;
  359         IFQ_SET_MAXLEN(&ifp->if_snd, sc->txdma.nbuf - 1);
  360         ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
  361         IFQ_SET_READY(&ifp->if_snd);
  362         ifp->if_linkmib = &sc->mibdata;
  363         ifp->if_linkmiblen = sizeof(sc->mibdata);
  364         sc->mibdata.dot3Compliance = DOT3COMPLIANCE_STATS;
  365         /* device supports oversided vlan frames */
  366         ifp->if_capabilities |= IFCAP_VLAN_MTU;
  367         ifp->if_capenable = ifp->if_capabilities;
  368 #ifdef DEVICE_POLLING
  369         ifp->if_capabilities |= IFCAP_POLLING;
  370 #endif
  371 
  372         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug",
  373             CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
  374         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tickinterval",
  375             CTLFLAG_RW, &sc->sc_tickinterval, 0, "periodic work frequency");
  376         SYSCTL_ADD_STRUCT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
  377             CTLFLAG_RD, &sc->sc_totals, npestats, "onboard stats");
  378 
  379         ether_ifattach(ifp, eaddr);
  380         return 0;
  381 out:
  382         if (ifp != NULL)
  383                 if_free(ifp);
  384         NPE_LOCK_DESTROY(sc);
  385         npe_deactivate(dev);
  386         return error;
  387 }
  388 
  389 static int
  390 npe_detach(device_t dev)
  391 {
  392         struct npe_softc *sc = device_get_softc(dev);
  393         struct ifnet *ifp = sc->sc_ifp;
  394 
  395 #ifdef DEVICE_POLLING
  396         if (ifp->if_capenable & IFCAP_POLLING)
  397                 ether_poll_deregister(ifp);
  398 #endif
  399         npestop(sc);
  400         if (ifp != NULL) {
  401                 ether_ifdetach(ifp);
  402                 if_free(ifp);
  403         }
  404         NPE_LOCK_DESTROY(sc);
  405         npe_deactivate(dev);
  406         return 0;
  407 }
  408 
  409 /*
  410  * Compute and install the multicast filter.
  411  */
  412 static void
  413 npe_setmcast(struct npe_softc *sc)
  414 {
  415         struct ifnet *ifp = sc->sc_ifp;
  416         uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
  417         int i;
  418 
  419         if (ifp->if_flags & IFF_PROMISC) {
  420                 memset(mask, 0, ETHER_ADDR_LEN);
  421                 memset(addr, 0, ETHER_ADDR_LEN);
  422         } else if (ifp->if_flags & IFF_ALLMULTI) {
  423                 static const uint8_t allmulti[ETHER_ADDR_LEN] =
  424                     { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
  425                 memcpy(mask, allmulti, ETHER_ADDR_LEN);
  426                 memcpy(addr, allmulti, ETHER_ADDR_LEN);
  427         } else {
  428                 uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
  429                 struct ifmultiaddr *ifma;
  430                 const uint8_t *mac;
  431 
  432                 memset(clr, 0, ETHER_ADDR_LEN);
  433                 memset(set, 0xff, ETHER_ADDR_LEN);
  434 
  435                 if_maddr_rlock(ifp);
  436                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
  437                         if (ifma->ifma_addr->sa_family != AF_LINK)
  438                                 continue;
  439                         mac = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
  440                         for (i = 0; i < ETHER_ADDR_LEN; i++) {
  441                                 clr[i] |= mac[i];
  442                                 set[i] &= mac[i];
  443                         }
  444                 }
  445                 if_maddr_runlock(ifp);
  446 
  447                 for (i = 0; i < ETHER_ADDR_LEN; i++) {
  448                         mask[i] = set[i] | ~clr[i];
  449                         addr[i] = set[i];
  450                 }
  451         }
  452 
  453         /*
  454          * Write the mask and address registers.
  455          */
  456         for (i = 0; i < ETHER_ADDR_LEN; i++) {
  457                 WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
  458                 WR4(sc, NPE_MAC_ADDR(i), addr[i]);
  459         }
  460 }
  461 
  462 static void
  463 npe_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  464 {
  465         struct npe_softc *sc;
  466 
  467         if (error != 0)
  468                 return;
  469         sc = (struct npe_softc *)arg;
  470         sc->buf_phys = segs[0].ds_addr;
  471 }
  472 
  473 static int
  474 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
  475         const char *name, int nbuf, int maxseg)
  476 {
  477         int error, i;
  478 
  479         memset(dma, 0, sizeof(*dma));
  480 
  481         dma->name = name;
  482         dma->nbuf = nbuf;
  483 
  484         /* DMA tag for mapped mbufs  */
  485         error = bus_dma_tag_create(ixp425_softc->sc_dmat, 1, 0,
  486             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
  487             MCLBYTES, maxseg, MCLBYTES, 0,
  488             busdma_lock_mutex, &sc->sc_mtx, &dma->mtag);
  489         if (error != 0) {
  490                 device_printf(sc->sc_dev, "unable to create %s mbuf dma tag, "
  491                      "error %u\n", dma->name, error);
  492                 return error;
  493         }
  494 
  495         /* DMA tag and map for the NPE buffers */
  496         error = bus_dma_tag_create(ixp425_softc->sc_dmat, sizeof(uint32_t), 0,
  497             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
  498             nbuf * sizeof(struct npehwbuf), 1,
  499             nbuf * sizeof(struct npehwbuf), 0,
  500             busdma_lock_mutex, &sc->sc_mtx, &dma->buf_tag);
  501         if (error != 0) {
  502                 device_printf(sc->sc_dev,
  503                     "unable to create %s npebuf dma tag, error %u\n",
  504                     dma->name, error);
  505                 return error;
  506         }
  507         if (bus_dmamem_alloc(dma->buf_tag, (void **)&dma->hwbuf,
  508             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
  509             &dma->buf_map) != 0) {
  510                 device_printf(sc->sc_dev,
  511                      "unable to allocate memory for %s h/w buffers, error %u\n",
  512                      dma->name, error);
  513                 return error;
  514         }
  515         /* XXX M_TEMP */
  516         dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
  517         if (dma->buf == NULL) {
  518                 device_printf(sc->sc_dev,
  519                      "unable to allocate memory for %s s/w buffers\n",
  520                      dma->name);
  521                 return error;
  522         }
  523         if (bus_dmamap_load(dma->buf_tag, dma->buf_map,
  524             dma->hwbuf, nbuf*sizeof(struct npehwbuf), npe_getaddr, sc, 0) != 0) {
  525                 device_printf(sc->sc_dev,
  526                      "unable to map memory for %s h/w buffers, error %u\n",
  527                      dma->name, error);
  528                 return error;
  529         }
  530         dma->buf_phys = sc->buf_phys;
  531         for (i = 0; i < dma->nbuf; i++) {
  532                 struct npebuf *npe = &dma->buf[i];
  533                 struct npehwbuf *hw = &dma->hwbuf[i];
  534 
  535                 /* calculate offset to shared area */
  536                 npe->ix_neaddr = dma->buf_phys +
  537                         ((uintptr_t)hw - (uintptr_t)dma->hwbuf);
  538                 KASSERT((npe->ix_neaddr & 0x1f) == 0,
  539                     ("ixpbuf misaligned, PA 0x%x", npe->ix_neaddr));
  540                 error = bus_dmamap_create(dma->mtag, BUS_DMA_NOWAIT,
  541                                 &npe->ix_map);
  542                 if (error != 0) {
  543                         device_printf(sc->sc_dev,
  544                              "unable to create dmamap for %s buffer %u, "
  545                              "error %u\n", dma->name, i, error);
  546                         return error;
  547                 }
  548                 npe->ix_hw = hw;
  549         }
  550         bus_dmamap_sync(dma->buf_tag, dma->buf_map, BUS_DMASYNC_PREWRITE);
  551         return 0;
  552 }
  553 
  554 static void
  555 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
  556 {
  557         int i;
  558 
  559         if (dma->hwbuf != NULL) {
  560                 for (i = 0; i < dma->nbuf; i++) {
  561                         struct npebuf *npe = &dma->buf[i];
  562                         bus_dmamap_destroy(dma->mtag, npe->ix_map);
  563                 }
  564                 bus_dmamap_unload(dma->buf_tag, dma->buf_map);
  565                 bus_dmamem_free(dma->buf_tag, dma->hwbuf, dma->buf_map);
  566         }
  567         if (dma->buf != NULL)
  568                 free(dma->buf, M_TEMP);
  569         if (dma->buf_tag)
  570                 bus_dma_tag_destroy(dma->buf_tag);
  571         if (dma->mtag)
  572                 bus_dma_tag_destroy(dma->mtag);
  573         memset(dma, 0, sizeof(*dma));
  574 }
  575 
  576 static int
  577 override_addr(device_t dev, const char *resname, int *base)
  578 {
  579         int unit = device_get_unit(dev);
  580         const char *resval;
  581 
  582         /* XXX warn for wrong hint type */
  583         if (resource_string_value("npe", unit, resname, &resval) != 0)
  584                 return 0;
  585         switch (resval[0]) {
  586         case 'A':
  587                 *base = IXP435_MAC_A_HWBASE;
  588                 break;
  589         case 'B':
  590                 *base = IXP425_MAC_B_HWBASE;
  591                 break;
  592         case 'C':
  593                 *base = IXP425_MAC_C_HWBASE;
  594                 break;
  595         default:
  596                 device_printf(dev, "Warning, bad value %s for "
  597                     "npe.%d.%s ignored\n", resval, unit, resname);
  598                 return 0;
  599         }
  600         if (bootverbose)
  601                 device_printf(dev, "using npe.%d.%s=%s override\n",
  602                     unit, resname, resval);
  603         return 1;
  604 }
  605 
  606 static int
  607 override_npeid(device_t dev, const char *resname, int *npeid)
  608 {
  609         int unit = device_get_unit(dev);
  610         const char *resval;
  611 
  612         /* XXX warn for wrong hint type */
  613         if (resource_string_value("npe", unit, resname, &resval) != 0)
  614                 return 0;
  615         switch (resval[0]) {
  616         case 'A': *npeid = NPE_A; break;
  617         case 'B': *npeid = NPE_B; break;
  618         case 'C': *npeid = NPE_C; break;
  619         default:
  620                 device_printf(dev, "Warning, bad value %s for "
  621                     "npe.%d.%s ignored\n", resval, unit, resname);
  622                 return 0;
  623         }
  624         if (bootverbose)
  625                 device_printf(dev, "using npe.%d.%s=%s override\n",
  626                     unit, resname, resval);
  627         return 1;
  628 }
  629 
  630 static int
  631 override_unit(device_t dev, const char *resname, int *val, int min, int max)
  632 {
  633         int unit = device_get_unit(dev);
  634         int resval;
  635 
  636         if (resource_int_value("npe", unit, resname, &resval) != 0)
  637                 return 0;
  638         if (!(min <= resval && resval <= max)) {
  639                 device_printf(dev, "Warning, bad value %d for npe.%d.%s "
  640                     "ignored (value must be [%d-%d])\n", resval, unit,
  641                     resname, min, max);
  642                 return 0;
  643         }
  644         if (bootverbose)
  645                 device_printf(dev, "using npe.%d.%s=%d override\n",
  646                     unit, resname, resval);
  647         *val = resval;
  648         return 1;
  649 }
  650 
  651 static void
  652 npe_mac_reset(struct npe_softc *sc)
  653 {
  654         /*
  655          * Reset MAC core.
  656          */
  657         WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
  658         DELAY(NPE_MAC_RESET_DELAY);
  659         /* configure MAC to generate MDC clock */
  660         WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
  661 }
  662 
  663 static int
  664 npe_activate(device_t dev)
  665 {
  666         struct npe_softc *sc = device_get_softc(dev);
  667         int error, i, macbase, miibase, phy;
  668 
  669         /*
  670          * Setup NEP ID, MAC, and MII bindings.  We allow override
  671          * via hints to handle unexpected board configs.
  672          */
  673         if (!override_npeid(dev, "npeid", &sc->sc_npeid))
  674                 sc->sc_npeid = unit2npeid(device_get_unit(dev));
  675         sc->sc_npe = ixpnpe_attach(dev, sc->sc_npeid);
  676         if (sc->sc_npe == NULL) {
  677                 device_printf(dev, "cannot attach ixpnpe\n");
  678                 return EIO;             /* XXX */
  679         }
  680 
  681         /* MAC */
  682         if (!override_addr(dev, "mac", &macbase))
  683                 macbase = npeconfig[sc->sc_npeid].macbase;
  684         if (bootverbose)
  685                 device_printf(sc->sc_dev, "MAC at 0x%x\n", macbase);
  686         if (bus_space_map(sc->sc_iot, macbase, IXP425_REG_SIZE, 0, &sc->sc_ioh)) {
  687                 device_printf(dev, "cannot map mac registers 0x%x:0x%x\n",
  688                     macbase, IXP425_REG_SIZE);
  689                 return ENOMEM;
  690         }
  691 
  692         /* PHY */
  693         if (!override_unit(dev, "phy", &phy, 0, MII_NPHY - 1))
  694                 phy = npeconfig[sc->sc_npeid].phy;
  695         if (!override_addr(dev, "mii", &miibase))
  696                 miibase = npeconfig[sc->sc_npeid].miibase;
  697         if (bootverbose)
  698                 device_printf(sc->sc_dev, "MII at 0x%x\n", miibase);
  699         if (miibase != macbase) {
  700                 /*
  701                  * PHY is mapped through a different MAC, setup an
  702                  * additional mapping for frobbing the PHY registers.
  703                  */
  704                 if (bus_space_map(sc->sc_iot, miibase, IXP425_REG_SIZE, 0, &sc->sc_miih)) {
  705                         device_printf(dev,
  706                             "cannot map MII registers 0x%x:0x%x\n",
  707                             miibase, IXP425_REG_SIZE);
  708                         return ENOMEM;
  709                 }
  710         } else
  711                 sc->sc_miih = sc->sc_ioh;
  712 
  713         /*
  714          * Load NPE firmware and start it running.
  715          */
  716         error = ixpnpe_init(sc->sc_npe);
  717         if (error != 0) {
  718                 device_printf(dev, "cannot init NPE (error %d)\n", error);
  719                 return error;
  720         }
  721 
  722         /* attach PHY */
  723         error = mii_attach(dev, &sc->sc_mii, sc->sc_ifp, npe_ifmedia_update,
  724             npe_ifmedia_status, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
  725         if (error != 0) {
  726                 device_printf(dev, "attaching PHYs failed\n");
  727                 return error;
  728         }
  729 
  730         error = npe_dma_setup(sc, &sc->txdma, "tx", npe_txbuf, NPE_MAXSEG);
  731         if (error != 0)
  732                 return error;
  733         error = npe_dma_setup(sc, &sc->rxdma, "rx", npe_rxbuf, 1);
  734         if (error != 0)
  735                 return error;
  736 
  737         /* setup statistics block */
  738         error = bus_dma_tag_create(ixp425_softc->sc_dmat, sizeof(uint32_t), 0,
  739             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
  740             sizeof(struct npestats), 1, sizeof(struct npestats), 0,
  741             busdma_lock_mutex, &sc->sc_mtx, &sc->sc_stats_tag);
  742         if (error != 0) {
  743                 device_printf(sc->sc_dev, "unable to create stats tag, "
  744                      "error %u\n", error);
  745                 return error;
  746         }
  747         if (bus_dmamem_alloc(sc->sc_stats_tag, (void **)&sc->sc_stats,
  748             BUS_DMA_NOWAIT, &sc->sc_stats_map) != 0) {
  749                 device_printf(sc->sc_dev,
  750                      "unable to allocate memory for stats block, error %u\n",
  751                      error);
  752                 return error;
  753         }
  754         if (bus_dmamap_load(sc->sc_stats_tag, sc->sc_stats_map,
  755             sc->sc_stats, sizeof(struct npestats), npe_getaddr, sc, 0) != 0) {
  756                 device_printf(sc->sc_dev,
  757                      "unable to load memory for stats block, error %u\n",
  758                      error);
  759                 return error;
  760         }
  761         sc->sc_stats_phys = sc->buf_phys;
  762 
  763         /*
  764          * Setup h/w rx/tx queues.  There are four q's:
  765          *   rx         inbound q of rx'd frames
  766          *   rx_free    pool of ixpbuf's for receiving frames
  767          *   tx         outbound q of frames to send
  768          *   tx_done    q of tx frames that have been processed
  769          *
  770          * The NPE handles the actual tx/rx process and the q manager
  771          * handles the queues.  The driver just writes entries to the
  772          * q manager mailbox's and gets callbacks when there are rx'd
  773          * frames to process or tx'd frames to reap.  These callbacks
  774          * are controlled by the q configurations; e.g. we get a
  775          * callback when tx_done has 2 or more frames to process and
  776          * when the rx q has at least one frame.  These setings can
  777          * changed at the time the q is configured.
  778          */
  779         sc->rx_qid = npeconfig[sc->sc_npeid].rx_qid;
  780         ixpqmgr_qconfig(sc->rx_qid, npe_rxbuf, 0,  1,
  781                 IX_QMGR_Q_SOURCE_ID_NOT_E, (qconfig_hand_t *)npe_rxdone, sc);
  782         sc->rx_freeqid = npeconfig[sc->sc_npeid].rx_freeqid;
  783         ixpqmgr_qconfig(sc->rx_freeqid, npe_rxbuf, 0, npe_rxbuf/2, 0, NULL, sc);
  784         /*
  785          * Setup the NPE to direct all traffic to rx_qid.
  786          * When QoS is enabled in the firmware there are
  787          * 8 traffic classes; otherwise just 4.
  788          */
  789         for (i = 0; i < 8; i++)
  790                 npe_setrxqosentry(sc, i, 0, sc->rx_qid);
  791 
  792         /* disable firewall mode just in case (should be off) */
  793         npe_setfirewallmode(sc, 0);
  794 
  795         sc->tx_qid = npeconfig[sc->sc_npeid].tx_qid;
  796         sc->tx_doneqid = npeconfig[sc->sc_npeid].tx_doneqid;
  797         ixpqmgr_qconfig(sc->tx_qid, npe_txbuf, 0, npe_txbuf, 0, NULL, sc);
  798         if (tx_doneqid == -1) {
  799                 ixpqmgr_qconfig(sc->tx_doneqid, npe_txbuf, 0,  2,
  800                         IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
  801                 tx_doneqid = sc->tx_doneqid;
  802         }
  803 
  804         KASSERT(npes[sc->sc_npeid] == NULL,
  805             ("npe %u already setup", sc->sc_npeid));
  806         npes[sc->sc_npeid] = sc;
  807 
  808         return 0;
  809 }
  810 
  811 static void
  812 npe_deactivate(device_t dev)
  813 {
  814         struct npe_softc *sc = device_get_softc(dev);
  815 
  816         npes[sc->sc_npeid] = NULL;
  817 
  818         /* XXX disable q's */
  819         if (sc->sc_npe != NULL) {
  820                 ixpnpe_stop(sc->sc_npe);
  821                 ixpnpe_detach(sc->sc_npe);
  822         }
  823         if (sc->sc_stats != NULL) {
  824                 bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
  825                 bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
  826                         sc->sc_stats_map);
  827         }
  828         if (sc->sc_stats_tag != NULL)
  829                 bus_dma_tag_destroy(sc->sc_stats_tag);
  830         npe_dma_destroy(sc, &sc->txdma);
  831         npe_dma_destroy(sc, &sc->rxdma);
  832         bus_generic_detach(sc->sc_dev);
  833         if (sc->sc_mii != NULL)
  834                 device_delete_child(sc->sc_dev, sc->sc_mii);
  835 }
  836 
  837 /*
  838  * Change media according to request.
  839  */
  840 static int
  841 npe_ifmedia_update(struct ifnet *ifp)
  842 {
  843         struct npe_softc *sc = ifp->if_softc;
  844         struct mii_data *mii;
  845 
  846         mii = device_get_softc(sc->sc_mii);
  847         NPE_LOCK(sc);
  848         mii_mediachg(mii);
  849         /* XXX push state ourself? */
  850         NPE_UNLOCK(sc);
  851         return (0);
  852 }
  853 
  854 /*
  855  * Notify the world which media we're using.
  856  */
  857 static void
  858 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
  859 {
  860         struct npe_softc *sc = ifp->if_softc;
  861         struct mii_data *mii;
  862 
  863         mii = device_get_softc(sc->sc_mii);
  864         NPE_LOCK(sc);
  865         mii_pollstat(mii);
  866         ifmr->ifm_active = mii->mii_media_active;
  867         ifmr->ifm_status = mii->mii_media_status;
  868         NPE_UNLOCK(sc);
  869 }
  870 
  871 static void
  872 npe_addstats(struct npe_softc *sc)
  873 {
  874 #define NPEADD(x)       sc->sc_totals.x += be32toh(ns->x)
  875 #define MIBADD(x) do { sc->mibdata.x += be32toh(ns->x); NPEADD(x); } while (0)
  876         struct ifnet *ifp = sc->sc_ifp;
  877         struct npestats *ns = sc->sc_stats;
  878 
  879         MIBADD(dot3StatsAlignmentErrors);
  880         MIBADD(dot3StatsFCSErrors);
  881         MIBADD(dot3StatsInternalMacReceiveErrors);
  882         NPEADD(RxOverrunDiscards);
  883         NPEADD(RxLearnedEntryDiscards);
  884         NPEADD(RxLargeFramesDiscards);
  885         NPEADD(RxSTPBlockedDiscards);
  886         NPEADD(RxVLANTypeFilterDiscards);
  887         NPEADD(RxVLANIdFilterDiscards);
  888         NPEADD(RxInvalidSourceDiscards);
  889         NPEADD(RxBlackListDiscards);
  890         NPEADD(RxWhiteListDiscards);
  891         NPEADD(RxUnderflowEntryDiscards);
  892         MIBADD(dot3StatsSingleCollisionFrames);
  893         MIBADD(dot3StatsMultipleCollisionFrames);
  894         MIBADD(dot3StatsDeferredTransmissions);
  895         MIBADD(dot3StatsLateCollisions);
  896         MIBADD(dot3StatsExcessiveCollisions);
  897         MIBADD(dot3StatsInternalMacTransmitErrors);
  898         MIBADD(dot3StatsCarrierSenseErrors);
  899         NPEADD(TxLargeFrameDiscards);
  900         NPEADD(TxVLANIdFilterDiscards);
  901 
  902         sc->mibdata.dot3StatsFrameTooLongs +=
  903               be32toh(ns->RxLargeFramesDiscards)
  904             + be32toh(ns->TxLargeFrameDiscards);
  905         sc->mibdata.dot3StatsMissedFrames +=
  906               be32toh(ns->RxOverrunDiscards)
  907             + be32toh(ns->RxUnderflowEntryDiscards);
  908 
  909         if_inc_counter(ifp, IFCOUNTER_OERRORS,
  910             be32toh(ns->dot3StatsInternalMacTransmitErrors) +
  911             be32toh(ns->dot3StatsCarrierSenseErrors) +
  912             be32toh(ns->TxVLANIdFilterDiscards));
  913         if_inc_counter(ifp, IFCOUNTER_IERRORS,
  914             be32toh(ns->dot3StatsFCSErrors) +
  915             be32toh(ns->dot3StatsInternalMacReceiveErrors) +
  916             be32toh(ns->RxOverrunDiscards) +
  917             be32toh(ns->RxUnderflowEntryDiscards));
  918         if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
  919             be32toh(ns->dot3StatsSingleCollisionFrames) +
  920             be32toh(ns->dot3StatsMultipleCollisionFrames));
  921 #undef NPEADD
  922 #undef MIBADD
  923 }
  924 
  925 static void
  926 npe_tick(void *xsc)
  927 {
  928 #define ACK     (NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
  929         struct npe_softc *sc = xsc;
  930         struct mii_data *mii = device_get_softc(sc->sc_mii);
  931         uint32_t msg[2];
  932 
  933         NPE_ASSERT_LOCKED(sc);
  934 
  935         /*
  936          * NB: to avoid sleeping with the softc lock held we
  937          * split the NPE msg processing into two parts.  The
  938          * request for statistics is sent w/o waiting for a
  939          * reply and then on the next tick we retrieve the
  940          * results.  This works because npe_tick is the only
  941          * code that talks via the mailbox's (except at setup).
  942          * This likely can be handled better.
  943          */
  944         if (ixpnpe_recvmsg_async(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
  945                 bus_dmamap_sync(sc->sc_stats_tag, sc->sc_stats_map,
  946                     BUS_DMASYNC_POSTREAD);
  947                 npe_addstats(sc);
  948         }
  949         npe_updatestats(sc);
  950         mii_tick(mii);
  951 
  952         npewatchdog(sc);
  953 
  954         /* schedule next poll */
  955         callout_reset(&sc->tick_ch, sc->sc_tickinterval * hz, npe_tick, sc);
  956 #undef ACK
  957 }
  958 
  959 static void
  960 npe_setmac(struct npe_softc *sc, u_char *eaddr)
  961 {
  962         WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
  963         WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
  964         WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
  965         WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
  966         WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
  967         WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
  968 }
  969 
  970 static void
  971 npe_getmac(struct npe_softc *sc, u_char *eaddr)
  972 {
  973         /* NB: the unicast address appears to be loaded from EEPROM on reset */
  974         eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
  975         eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
  976         eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
  977         eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
  978         eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
  979         eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
  980 }
  981 
  982 struct txdone {
  983         struct npebuf *head;
  984         struct npebuf **tail;
  985         int count;
  986 };
  987 
  988 static __inline void
  989 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
  990 {
  991         struct ifnet *ifp = sc->sc_ifp;
  992 
  993         NPE_LOCK(sc);
  994         *td->tail = sc->tx_free;
  995         sc->tx_free = td->head;
  996         /*
  997          * We're no longer busy, so clear the busy flag and call the
  998          * start routine to xmit more packets.
  999          */
 1000         if_inc_counter(ifp, IFCOUNTER_OPACKETS, td->count);
 1001         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1002         sc->npe_watchdog_timer = 0;
 1003         npestart_locked(ifp);
 1004         NPE_UNLOCK(sc);
 1005 }
 1006 
 1007 /*
 1008  * Q manager callback on tx done queue.  Reap mbufs
 1009  * and return tx buffers to the free list.  Finally
 1010  * restart output.  Note the microcode has only one
 1011  * txdone q wired into it so we must use the NPE ID
 1012  * returned with each npehwbuf to decide where to
 1013  * send buffers.
 1014  */
 1015 static void
 1016 npe_txdone(int qid, void *arg)
 1017 {
 1018 #define P2V(a, dma) \
 1019         &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
 1020         struct npe_softc *sc0 = arg;
 1021         struct npe_softc *sc;
 1022         struct npebuf *npe;
 1023         struct txdone *td, q[NPE_MAX];
 1024         uint32_t entry;
 1025 
 1026         q[NPE_A].tail = &q[NPE_A].head; q[NPE_A].count = 0;
 1027         q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
 1028         q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
 1029         /* XXX max # at a time? */
 1030         while (ixpqmgr_qread(qid, &entry) == 0) {
 1031                 DPRINTF(sc0, "%s: entry 0x%x NPE %u port %u\n",
 1032                     __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
 1033 
 1034                 sc = npes[NPE_QM_Q_NPE(entry)];
 1035                 npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
 1036                 m_freem(npe->ix_m);
 1037                 npe->ix_m = NULL;
 1038 
 1039                 td = &q[NPE_QM_Q_NPE(entry)];
 1040                 *td->tail = npe;
 1041                 td->tail = &npe->ix_next;
 1042                 td->count++;
 1043         }
 1044 
 1045         if (q[NPE_A].count)
 1046                 npe_txdone_finish(npes[NPE_A], &q[NPE_A]);
 1047         if (q[NPE_B].count)
 1048                 npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
 1049         if (q[NPE_C].count)
 1050                 npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
 1051 #undef P2V
 1052 }
 1053 
 1054 static int
 1055 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
 1056 {
 1057         bus_dma_segment_t segs[1];
 1058         struct npedma *dma = &sc->rxdma;
 1059         struct npehwbuf *hw;
 1060         int error, nseg;
 1061 
 1062         if (m == NULL) {
 1063                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1064                 if (m == NULL)
 1065                         return ENOBUFS;
 1066         }
 1067         KASSERT(m->m_ext.ext_size >= 1536 + ETHER_ALIGN,
 1068                 ("ext_size %d", m->m_ext.ext_size));
 1069         m->m_pkthdr.len = m->m_len = 1536;
 1070         /* backload payload and align ip hdr */
 1071         m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size - (1536+ETHER_ALIGN));
 1072         bus_dmamap_unload(dma->mtag, npe->ix_map);
 1073         error = bus_dmamap_load_mbuf_sg(dma->mtag, npe->ix_map, m,
 1074                         segs, &nseg, 0);
 1075         if (error != 0) {
 1076                 m_freem(m);
 1077                 return error;
 1078         }
 1079         hw = npe->ix_hw;
 1080         hw->ix_ne[0].data = htobe32(segs[0].ds_addr);
 1081         /* NB: NPE requires length be a multiple of 64 */
 1082         /* NB: buffer length is shifted in word */
 1083         hw->ix_ne[0].len = htobe32(segs[0].ds_len << 16);
 1084         hw->ix_ne[0].next = 0;
 1085         bus_dmamap_sync(dma->buf_tag, dma->buf_map, 
 1086             BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 1087         npe->ix_m = m;
 1088         /* Flush the memory in the mbuf */
 1089         bus_dmamap_sync(dma->mtag, npe->ix_map, BUS_DMASYNC_PREREAD);
 1090         return 0;
 1091 }
 1092 
 1093 /*
 1094  * RX q processing for a specific NPE.  Claim entries
 1095  * from the hardware queue and pass the frames up the
 1096  * stack. Pass the rx buffers to the free list.
 1097  */
 1098 static int
 1099 npe_rxdone(int qid, void *arg)
 1100 {
 1101 #define P2V(a, dma) \
 1102         &(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
 1103         struct npe_softc *sc = arg;
 1104         struct npedma *dma = &sc->rxdma;
 1105         uint32_t entry;
 1106         int rx_npkts = 0;
 1107 
 1108         while (ixpqmgr_qread(qid, &entry) == 0) {
 1109                 struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
 1110                 struct mbuf *m;
 1111 
 1112                 bus_dmamap_sync(dma->buf_tag, dma->buf_map,
 1113                     BUS_DMASYNC_POSTREAD);
 1114                 DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
 1115                     __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
 1116                 /*
 1117                  * Allocate a new mbuf to replenish the rx buffer.
 1118                  * If doing so fails we drop the rx'd frame so we
 1119                  * can reuse the previous mbuf.  When we're able to
 1120                  * allocate a new mbuf dispatch the mbuf w/ rx'd
 1121                  * data up the stack and replace it with the newly
 1122                  * allocated one.
 1123                  */
 1124                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1125                 if (m != NULL) {
 1126                         struct mbuf *mrx = npe->ix_m;
 1127                         struct npehwbuf *hw = npe->ix_hw;
 1128                         struct ifnet *ifp = sc->sc_ifp;
 1129 
 1130                         /* Flush mbuf memory for rx'd data */
 1131                         bus_dmamap_sync(dma->mtag, npe->ix_map,
 1132                             BUS_DMASYNC_POSTREAD);
 1133 
 1134                         /* set m_len etc. per rx frame size */
 1135                         mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
 1136                         mrx->m_pkthdr.len = mrx->m_len;
 1137                         mrx->m_pkthdr.rcvif = ifp;
 1138 
 1139                         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 1140                         ifp->if_input(ifp, mrx);
 1141                         rx_npkts++;
 1142                 } else {
 1143                         /* discard frame and re-use mbuf */
 1144                         m = npe->ix_m;
 1145                 }
 1146                 if (npe_rxbuf_init(sc, npe, m) == 0) {
 1147                         /* return npe buf to rx free list */
 1148                         ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
 1149                 } else {
 1150                         /* XXX should not happen */
 1151                 }
 1152         }
 1153         return rx_npkts;
 1154 #undef P2V
 1155 }
 1156 
 1157 #ifdef DEVICE_POLLING
 1158 static int
 1159 npe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1160 {
 1161         struct npe_softc *sc = ifp->if_softc;
 1162         int rx_npkts = 0;
 1163 
 1164         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1165                 rx_npkts = npe_rxdone(sc->rx_qid, sc);
 1166                 npe_txdone(sc->tx_doneqid, sc); /* XXX polls both NPE's */
 1167         }
 1168         return rx_npkts;
 1169 }
 1170 #endif /* DEVICE_POLLING */
 1171 
 1172 static void
 1173 npe_startxmit(struct npe_softc *sc)
 1174 {
 1175         struct npedma *dma = &sc->txdma;
 1176         int i;
 1177 
 1178         NPE_ASSERT_LOCKED(sc);
 1179         sc->tx_free = NULL;
 1180         for (i = 0; i < dma->nbuf; i++) {
 1181                 struct npebuf *npe = &dma->buf[i];
 1182                 if (npe->ix_m != NULL) {
 1183                         /* NB: should not happen */
 1184                         device_printf(sc->sc_dev,
 1185                             "%s: free mbuf at entry %u\n", __func__, i);
 1186                         m_freem(npe->ix_m);
 1187                 }
 1188                 npe->ix_m = NULL;
 1189                 npe->ix_next = sc->tx_free;
 1190                 sc->tx_free = npe;
 1191         }
 1192 }
 1193 
 1194 static void
 1195 npe_startrecv(struct npe_softc *sc)
 1196 {
 1197         struct npedma *dma = &sc->rxdma;
 1198         struct npebuf *npe;
 1199         int i;
 1200 
 1201         NPE_ASSERT_LOCKED(sc);
 1202         for (i = 0; i < dma->nbuf; i++) {
 1203                 npe = &dma->buf[i];
 1204                 npe_rxbuf_init(sc, npe, npe->ix_m);
 1205                 /* set npe buf on rx free list */
 1206                 ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
 1207         }
 1208 }
 1209 
 1210 /*
 1211  * Reset and initialize the chip
 1212  */
 1213 static void
 1214 npeinit_locked(void *xsc)
 1215 {
 1216         struct npe_softc *sc = xsc;
 1217         struct ifnet *ifp = sc->sc_ifp;
 1218 
 1219         NPE_ASSERT_LOCKED(sc);
 1220 if (ifp->if_drv_flags & IFF_DRV_RUNNING) return;/*XXX*/
 1221 
 1222         /*
 1223          * Reset MAC core.
 1224          */
 1225         npe_mac_reset(sc);
 1226 
 1227         /* disable transmitter and reciver in the MAC */
 1228         WR4(sc, NPE_MAC_RX_CNTRL1,
 1229             RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
 1230         WR4(sc, NPE_MAC_TX_CNTRL1,
 1231             RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
 1232 
 1233         /*
 1234          * Set the MAC core registers.
 1235          */
 1236         WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);   /* clock ratio: for ipx4xx */
 1237         WR4(sc, NPE_MAC_TX_CNTRL2,      0xf);   /* max retries */
 1238         WR4(sc, NPE_MAC_RANDOM_SEED,    0x8);   /* LFSR back-off seed */
 1239         /* thresholds determined by NPE firmware FS */
 1240         WR4(sc, NPE_MAC_THRESH_P_EMPTY, 0x12);
 1241         WR4(sc, NPE_MAC_THRESH_P_FULL,  0x30);
 1242         WR4(sc, NPE_MAC_BUF_SIZE_TX,    0x8);   /* tx fifo threshold (bytes) */
 1243         WR4(sc, NPE_MAC_TX_DEFER,       0x15);  /* for single deferral */
 1244         WR4(sc, NPE_MAC_RX_DEFER,       0x16);  /* deferral on inter-frame gap*/
 1245         WR4(sc, NPE_MAC_TX_TWO_DEFER_1, 0x8);   /* for 2-part deferral */
 1246         WR4(sc, NPE_MAC_TX_TWO_DEFER_2, 0x7);   /* for 2-part deferral */
 1247         WR4(sc, NPE_MAC_SLOT_TIME,      0x80);  /* assumes MII mode */
 1248 
 1249         WR4(sc, NPE_MAC_TX_CNTRL1,
 1250                   NPE_TX_CNTRL1_RETRY           /* retry failed xmits */
 1251                 | NPE_TX_CNTRL1_FCS_EN          /* append FCS */
 1252                 | NPE_TX_CNTRL1_2DEFER          /* 2-part deferal */
 1253                 | NPE_TX_CNTRL1_PAD_EN);        /* pad runt frames */
 1254         /* XXX pad strip? */
 1255         /* ena pause frame handling */
 1256         WR4(sc, NPE_MAC_RX_CNTRL1, NPE_RX_CNTRL1_PAUSE_EN);
 1257         WR4(sc, NPE_MAC_RX_CNTRL2, 0);
 1258 
 1259         npe_setmac(sc, IF_LLADDR(ifp));
 1260         npe_setportaddress(sc, IF_LLADDR(ifp));
 1261         npe_setmcast(sc);
 1262 
 1263         npe_startxmit(sc);
 1264         npe_startrecv(sc);
 1265 
 1266         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 1267         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1268         sc->npe_watchdog_timer = 0;             /* just in case */
 1269 
 1270         /* enable transmitter and reciver in the MAC */
 1271         WR4(sc, NPE_MAC_RX_CNTRL1,
 1272             RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
 1273         WR4(sc, NPE_MAC_TX_CNTRL1,
 1274             RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
 1275 
 1276         callout_reset(&sc->tick_ch, sc->sc_tickinterval * hz, npe_tick, sc);
 1277 }
 1278 
 1279 static void
 1280 npeinit(void *xsc)
 1281 {
 1282         struct npe_softc *sc = xsc;
 1283         NPE_LOCK(sc);
 1284         npeinit_locked(sc);
 1285         NPE_UNLOCK(sc);
 1286 }
 1287 
 1288 /*
 1289  * Dequeue packets and place on the h/w transmit queue.
 1290  */
 1291 static void
 1292 npestart_locked(struct ifnet *ifp)
 1293 {
 1294         struct npe_softc *sc = ifp->if_softc;
 1295         struct npebuf *npe;
 1296         struct npehwbuf *hw;
 1297         struct mbuf *m, *n;
 1298         struct npedma *dma = &sc->txdma;
 1299         bus_dma_segment_t segs[NPE_MAXSEG];
 1300         int nseg, len, error, i;
 1301         uint32_t next;
 1302 
 1303         NPE_ASSERT_LOCKED(sc);
 1304         /* XXX can this happen? */
 1305         if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
 1306                 return;
 1307 
 1308         while (sc->tx_free != NULL) {
 1309                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
 1310                 if (m == NULL) {
 1311                         /* XXX? */
 1312                         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1313                         return;
 1314                 }
 1315                 npe = sc->tx_free;
 1316                 bus_dmamap_unload(dma->mtag, npe->ix_map);
 1317                 error = bus_dmamap_load_mbuf_sg(dma->mtag, npe->ix_map,
 1318                     m, segs, &nseg, 0);
 1319                 if (error == EFBIG) {
 1320                         n = m_collapse(m, M_NOWAIT, NPE_MAXSEG);
 1321                         if (n == NULL) {
 1322                                 if_printf(ifp, "%s: too many fragments %u\n",
 1323                                     __func__, nseg);
 1324                                 m_freem(m);
 1325                                 return; /* XXX? */
 1326                         }
 1327                         m = n;
 1328                         error = bus_dmamap_load_mbuf_sg(dma->mtag, npe->ix_map,
 1329                             m, segs, &nseg, 0);
 1330                 }
 1331                 if (error != 0 || nseg == 0) {
 1332                         if_printf(ifp, "%s: error %u nseg %u\n",
 1333                             __func__, error, nseg);
 1334                         m_freem(m);
 1335                         return; /* XXX? */
 1336                 }
 1337                 sc->tx_free = npe->ix_next;
 1338 
 1339                 bus_dmamap_sync(dma->mtag, npe->ix_map, BUS_DMASYNC_PREWRITE);
 1340         
 1341                 /*
 1342                  * Tap off here if there is a bpf listener.
 1343                  */
 1344                 BPF_MTAP(ifp, m);
 1345 
 1346                 npe->ix_m = m;
 1347                 hw = npe->ix_hw;
 1348                 len = m->m_pkthdr.len;
 1349                 next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
 1350                 for (i = 0; i < nseg; i++) {
 1351                         hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
 1352                         hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
 1353                         hw->ix_ne[i].next = htobe32(next);
 1354 
 1355                         len = 0;                /* zero for segments > 1 */
 1356                         next += sizeof(hw->ix_ne[0]);
 1357                 }
 1358                 hw->ix_ne[i-1].next = 0;        /* zero last in chain */
 1359                 bus_dmamap_sync(dma->buf_tag, dma->buf_map,
 1360                     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 1361 
 1362                 DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
 1363                     __func__, sc->tx_qid, npe->ix_neaddr,
 1364                     hw->ix_ne[0].data, hw->ix_ne[0].len);
 1365                 /* stick it on the tx q */
 1366                 /* XXX add vlan priority */
 1367                 ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
 1368 
 1369                 sc->npe_watchdog_timer = 5;
 1370         }
 1371         if (sc->tx_free == NULL)
 1372                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1373 }
 1374 
 1375 void
 1376 npestart(struct ifnet *ifp)
 1377 {
 1378         struct npe_softc *sc = ifp->if_softc;
 1379         NPE_LOCK(sc);
 1380         npestart_locked(ifp);
 1381         NPE_UNLOCK(sc);
 1382 }
 1383 
 1384 static void
 1385 npe_stopxmit(struct npe_softc *sc)
 1386 {
 1387         struct npedma *dma = &sc->txdma;
 1388         int i;
 1389 
 1390         NPE_ASSERT_LOCKED(sc);
 1391 
 1392         /* XXX qmgr */
 1393         for (i = 0; i < dma->nbuf; i++) {
 1394                 struct npebuf *npe = &dma->buf[i];
 1395 
 1396                 if (npe->ix_m != NULL) {
 1397                         bus_dmamap_unload(dma->mtag, npe->ix_map);
 1398                         m_freem(npe->ix_m);
 1399                         npe->ix_m = NULL;
 1400                 }
 1401         }
 1402 }
 1403 
 1404 static void
 1405 npe_stoprecv(struct npe_softc *sc)
 1406 {
 1407         struct npedma *dma = &sc->rxdma;
 1408         int i;
 1409 
 1410         NPE_ASSERT_LOCKED(sc);
 1411 
 1412         /* XXX qmgr */
 1413         for (i = 0; i < dma->nbuf; i++) {
 1414                 struct npebuf *npe = &dma->buf[i];
 1415 
 1416                 if (npe->ix_m != NULL) {
 1417                         bus_dmamap_unload(dma->mtag, npe->ix_map);
 1418                         m_freem(npe->ix_m);
 1419                         npe->ix_m = NULL;
 1420                 }
 1421         }
 1422 }
 1423 
 1424 /*
 1425  * Turn off interrupts, and stop the nic.
 1426  */
 1427 void
 1428 npestop(struct npe_softc *sc)
 1429 {
 1430         struct ifnet *ifp = sc->sc_ifp;
 1431 
 1432         /*  disable transmitter and reciver in the MAC  */
 1433         WR4(sc, NPE_MAC_RX_CNTRL1,
 1434             RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
 1435         WR4(sc, NPE_MAC_TX_CNTRL1,
 1436             RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
 1437 
 1438         sc->npe_watchdog_timer = 0;
 1439         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1440 
 1441         callout_stop(&sc->tick_ch);
 1442 
 1443         npe_stopxmit(sc);
 1444         npe_stoprecv(sc);
 1445         /* XXX go into loopback & drain q's? */
 1446         /* XXX but beware of disabling tx above */
 1447 
 1448         /*
 1449          * The MAC core rx/tx disable may leave the MAC hardware in an
 1450          * unpredictable state. A hw reset is executed before resetting
 1451          * all the MAC parameters to a known value.
 1452          */
 1453         WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
 1454         DELAY(NPE_MAC_RESET_DELAY);
 1455         WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
 1456         WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
 1457 }
 1458 
 1459 void
 1460 npewatchdog(struct npe_softc *sc)
 1461 {
 1462         NPE_ASSERT_LOCKED(sc);
 1463 
 1464         if (sc->npe_watchdog_timer == 0 || --sc->npe_watchdog_timer != 0)
 1465                 return;
 1466 
 1467         device_printf(sc->sc_dev, "watchdog timeout\n");
 1468         if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1);
 1469 
 1470         npeinit_locked(sc);
 1471 }
 1472 
 1473 static int
 1474 npeioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1475 {
 1476         struct npe_softc *sc = ifp->if_softc;
 1477         struct mii_data *mii;
 1478         struct ifreq *ifr = (struct ifreq *)data;       
 1479         int error = 0;
 1480 #ifdef DEVICE_POLLING
 1481         int mask;
 1482 #endif
 1483 
 1484         switch (cmd) {
 1485         case SIOCSIFFLAGS:
 1486                 NPE_LOCK(sc);
 1487                 if ((ifp->if_flags & IFF_UP) == 0 &&
 1488                     ifp->if_drv_flags & IFF_DRV_RUNNING) {
 1489                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1490                         npestop(sc);
 1491                 } else {
 1492                         /* reinitialize card on any parameter change */
 1493                         npeinit_locked(sc);
 1494                 }
 1495                 NPE_UNLOCK(sc);
 1496                 break;
 1497 
 1498         case SIOCADDMULTI:
 1499         case SIOCDELMULTI:
 1500                 /* update multicast filter list. */
 1501                 NPE_LOCK(sc);
 1502                 npe_setmcast(sc);
 1503                 NPE_UNLOCK(sc);
 1504                 error = 0;
 1505                 break;
 1506 
 1507         case SIOCSIFMEDIA:
 1508         case SIOCGIFMEDIA:
 1509                 mii = device_get_softc(sc->sc_mii);
 1510                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 1511                 break;
 1512 
 1513 #ifdef DEVICE_POLLING
 1514         case SIOCSIFCAP:
 1515                 mask = ifp->if_capenable ^ ifr->ifr_reqcap;
 1516                 if (mask & IFCAP_POLLING) {
 1517                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
 1518                                 error = ether_poll_register(npe_poll, ifp);
 1519                                 if (error)
 1520                                         return error;
 1521                                 NPE_LOCK(sc);
 1522                                 /* disable callbacks XXX txdone is shared */
 1523                                 ixpqmgr_notify_disable(sc->rx_qid);
 1524                                 ixpqmgr_notify_disable(sc->tx_doneqid);
 1525                                 ifp->if_capenable |= IFCAP_POLLING;
 1526                                 NPE_UNLOCK(sc);
 1527                         } else {
 1528                                 error = ether_poll_deregister(ifp);
 1529                                 /* NB: always enable qmgr callbacks */
 1530                                 NPE_LOCK(sc);
 1531                                 /* enable qmgr callbacks */
 1532                                 ixpqmgr_notify_enable(sc->rx_qid,
 1533                                     IX_QMGR_Q_SOURCE_ID_NOT_E);
 1534                                 ixpqmgr_notify_enable(sc->tx_doneqid,
 1535                                     IX_QMGR_Q_SOURCE_ID_NOT_E);
 1536                                 ifp->if_capenable &= ~IFCAP_POLLING;
 1537                                 NPE_UNLOCK(sc);
 1538                         }
 1539                 }
 1540                 break;
 1541 #endif
 1542         default:
 1543                 error = ether_ioctl(ifp, cmd, data);
 1544                 break;
 1545         }
 1546         return error;
 1547 }
 1548 
 1549 /*
 1550  * Setup a traffic class -> rx queue mapping.
 1551  */
 1552 static int
 1553 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
 1554 {
 1555         uint32_t msg[2];
 1556 
 1557         msg[0] = (NPE_SETRXQOSENTRY << 24) | (sc->sc_npeid << 20) | classix;
 1558         msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
 1559         return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg);
 1560 }
 1561 
 1562 static int
 1563 npe_setportaddress(struct npe_softc *sc, const uint8_t mac[ETHER_ADDR_LEN])
 1564 {
 1565         uint32_t msg[2];
 1566 
 1567         msg[0] = (NPE_SETPORTADDRESS << 24)
 1568                | (sc->sc_npeid << 20)
 1569                | (mac[0] << 8)
 1570                | (mac[1] << 0);
 1571         msg[1] = (mac[2] << 24)
 1572                | (mac[3] << 16)
 1573                | (mac[4] << 8)
 1574                | (mac[5] << 0);
 1575         return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg);
 1576 }
 1577 
 1578 static int
 1579 npe_setfirewallmode(struct npe_softc *sc, int onoff)
 1580 {
 1581         uint32_t msg[2];
 1582 
 1583         /* XXX honor onoff */
 1584         msg[0] = (NPE_SETFIREWALLMODE << 24) | (sc->sc_npeid << 20);
 1585         msg[1] = 0;
 1586         return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg);
 1587 }
 1588 
 1589 /*
 1590  * Update and reset the statistics in the NPE.
 1591  */
 1592 static int
 1593 npe_updatestats(struct npe_softc *sc)
 1594 {
 1595         uint32_t msg[2];
 1596 
 1597         msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
 1598         msg[1] = sc->sc_stats_phys;     /* physical address of stat block */
 1599         return ixpnpe_sendmsg_async(sc->sc_npe, msg);
 1600 }
 1601 
 1602 #if 0
 1603 /*
 1604  * Get the current statistics block.
 1605  */
 1606 static int
 1607 npe_getstats(struct npe_softc *sc)
 1608 {
 1609         uint32_t msg[2];
 1610 
 1611         msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
 1612         msg[1] = sc->sc_stats_phys;     /* physical address of stat block */
 1613         return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
 1614 }
 1615 
 1616 /*
 1617  * Query the image id of the loaded firmware.
 1618  */
 1619 static uint32_t
 1620 npe_getimageid(struct npe_softc *sc)
 1621 {
 1622         uint32_t msg[2];
 1623 
 1624         msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
 1625         msg[1] = 0;
 1626         return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
 1627 }
 1628 
 1629 /*
 1630  * Enable/disable loopback.
 1631  */
 1632 static int
 1633 npe_setloopback(struct npe_softc *sc, int ena)
 1634 {
 1635         uint32_t msg[2];
 1636 
 1637         msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
 1638         msg[1] = 0;
 1639         return ixpnpe_sendandrecvmsg_sync(sc->sc_npe, msg, msg);
 1640 }
 1641 #endif
 1642 
 1643 static void
 1644 npe_child_detached(device_t dev, device_t child)
 1645 {
 1646         struct npe_softc *sc;
 1647 
 1648         sc = device_get_softc(dev);
 1649         if (child == sc->sc_mii)
 1650                 sc->sc_mii = NULL;
 1651 }
 1652 
 1653 /*
 1654  * MII bus support routines.
 1655  */
 1656 #define MII_RD4(sc, reg)        bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
 1657 #define MII_WR4(sc, reg, v) \
 1658         bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
 1659 
 1660 static uint32_t
 1661 npe_mii_mdio_read(struct npe_softc *sc, int reg)
 1662 {
 1663         uint32_t v;
 1664 
 1665         /* NB: registers are known to be sequential */
 1666         v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
 1667         v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
 1668         v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
 1669         v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
 1670         return v;
 1671 }
 1672 
 1673 static void
 1674 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
 1675 {
 1676         /* NB: registers are known to be sequential */
 1677         MII_WR4(sc, reg+0, cmd & 0xff);
 1678         MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
 1679         MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
 1680         MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
 1681 }
 1682 
 1683 static int
 1684 npe_mii_mdio_wait(struct npe_softc *sc)
 1685 {
 1686         uint32_t v;
 1687         int i;
 1688 
 1689         /* NB: typically this takes 25-30 trips */
 1690         for (i = 0; i < 1000; i++) {
 1691                 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
 1692                 if ((v & NPE_MII_GO) == 0)
 1693                         return 1;
 1694                 DELAY(1);
 1695         }
 1696         device_printf(sc->sc_dev, "%s: timeout after ~1ms, cmd 0x%x\n",
 1697             __func__, v);
 1698         return 0;               /* NB: timeout */
 1699 }
 1700 
 1701 static int
 1702 npe_miibus_readreg(device_t dev, int phy, int reg)
 1703 {
 1704         struct npe_softc *sc = device_get_softc(dev);
 1705         uint32_t v;
 1706 
 1707         v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL) | NPE_MII_GO;
 1708         npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
 1709         if (npe_mii_mdio_wait(sc))
 1710                 v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
 1711         else
 1712                 v = 0xffff | NPE_MII_READ_FAIL;
 1713         return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
 1714 }
 1715 
 1716 static int
 1717 npe_miibus_writereg(device_t dev, int phy, int reg, int data)
 1718 {
 1719         struct npe_softc *sc = device_get_softc(dev);
 1720         uint32_t v;
 1721 
 1722         v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
 1723           | data | NPE_MII_WRITE
 1724           | NPE_MII_GO;
 1725         npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
 1726         /* XXX complain about timeout */
 1727         (void) npe_mii_mdio_wait(sc);
 1728         return (0);
 1729 }
 1730 
 1731 static void
 1732 npe_miibus_statchg(device_t dev)
 1733 {
 1734         struct npe_softc *sc = device_get_softc(dev);
 1735         struct mii_data *mii = device_get_softc(sc->sc_mii);
 1736         uint32_t tx1, rx1;
 1737 
 1738         /* sync MAC duplex state */
 1739         tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
 1740         rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
 1741         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
 1742                 tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
 1743                 rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
 1744         } else {
 1745                 tx1 |= NPE_TX_CNTRL1_DUPLEX;
 1746                 rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
 1747         }
 1748         WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
 1749         WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
 1750 }
 1751 
 1752 static device_method_t npe_methods[] = {
 1753         /* Device interface */
 1754         DEVMETHOD(device_probe,         npe_probe),
 1755         DEVMETHOD(device_attach,        npe_attach),
 1756         DEVMETHOD(device_detach,        npe_detach),
 1757 
 1758         /* Bus interface */
 1759         DEVMETHOD(bus_child_detached,   npe_child_detached),
 1760 
 1761         /* MII interface */
 1762         DEVMETHOD(miibus_readreg,       npe_miibus_readreg),
 1763         DEVMETHOD(miibus_writereg,      npe_miibus_writereg),
 1764         DEVMETHOD(miibus_statchg,       npe_miibus_statchg),
 1765 
 1766         { 0, 0 }
 1767 };
 1768 
 1769 static driver_t npe_driver = {
 1770         "npe",
 1771         npe_methods,
 1772         sizeof(struct npe_softc),
 1773 };
 1774 
 1775 DRIVER_MODULE(npe, ixp, npe_driver, npe_devclass, 0, 0);
 1776 DRIVER_MODULE(miibus, npe, miibus_driver, miibus_devclass, 0, 0);
 1777 MODULE_DEPEND(npe, ixpqmgr, 1, 1, 1);
 1778 MODULE_DEPEND(npe, miibus, 1, 1, 1);
 1779 MODULE_DEPEND(npe, ether, 1, 1, 1);

Cache object: 064b46a6760f032d45cec5c7d2e96524


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.