The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/arm/xscale/ixp425/ixp425_qmgr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006 Sam Leffler, Errno Consulting
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer,
   10  *    without modification.
   11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
   12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
   13  *    redistribution must be conditioned upon including a substantially
   14  *    similar Disclaimer requirement for further binary redistribution.
   15  *
   16  * NO WARRANTY
   17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
   20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
   21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
   22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
   25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   27  * THE POSSIBILITY OF SUCH DAMAGES.
   28  */
   29 
   30 /*-
   31  * Copyright (c) 2001-2005, Intel Corporation.
   32  * All rights reserved.
   33  *
   34  * Redistribution and use in source and binary forms, with or without
   35  * modification, are permitted provided that the following conditions
   36  * are met:
   37  * 1. Redistributions of source code must retain the above copyright
   38  *    notice, this list of conditions and the following disclaimer.
   39  * 2. Redistributions in binary form must reproduce the above copyright
   40  *    notice, this list of conditions and the following disclaimer in the
   41  *    documentation and/or other materials provided with the distribution.
   42  * 3. Neither the name of the Intel Corporation nor the names of its contributors
   43  *    may be used to endorse or promote products derived from this software
   44  *    without specific prior written permission.
   45  *
   46  *
   47  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
   48  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
   51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   57  * SUCH DAMAGE.
   58 */
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD: releng/11.0/sys/arm/xscale/ixp425/ixp425_qmgr.c 299069 2016-05-04 15:48:59Z pfg $");
   61 
   62 /*
   63  * Intel XScale Queue Manager support.
   64  *
   65  * Each IXP4XXX device has a hardware block that implements a priority
   66  * queue manager that is shared between the XScale cpu and the backend
   67  * devices (such as the NPE).  Queues are accessed by reading/writing
   68  * special memory locations.  The queue contents are mapped into a shared
   69  * SRAM region with entries managed in a circular buffer.  The XScale
   70  * processor can receive interrupts based on queue contents (a condition
   71  * code determines when interrupts should be delivered).
   72  *
   73  * The code here basically replaces the qmgr class in the Intel Access
   74  * Library (IAL).
   75  */
   76 #include <sys/param.h>
   77 #include <sys/systm.h>
   78 #include <sys/kernel.h>
   79 #include <sys/module.h>
   80 #include <sys/time.h>
   81 #include <sys/bus.h>
   82 #include <sys/resource.h>
   83 #include <sys/rman.h>
   84 #include <sys/sysctl.h>
   85 
   86 #include <machine/bus.h>
   87 #include <machine/cpu.h>
   88 #include <machine/cpufunc.h>
   89 #include <machine/resource.h>
   90 #include <machine/intr.h>
   91 #include <arm/xscale/ixp425/ixp425reg.h>
   92 #include <arm/xscale/ixp425/ixp425var.h>
   93 
   94 #include <arm/xscale/ixp425/ixp425_qmgr.h>
   95 
   96 /*
   97  * State per AQM hw queue.
   98  * This structure holds q configuration and dispatch state.
   99  */
  100 struct qmgrInfo {
  101         int             qSizeInWords;           /* queue size in words */
  102 
  103         uint32_t        qOflowStatBitMask;      /* overflow status mask */
  104         int             qWriteCount;            /* queue write count */
  105 
  106         bus_size_t      qAccRegAddr;            /* access register */
  107         bus_size_t      qUOStatRegAddr;         /* status register */
  108         bus_size_t      qConfigRegAddr;         /* config register */
  109         int             qSizeInEntries;         /* queue size in entries */
  110 
  111         uint32_t        qUflowStatBitMask;      /* underflow status mask */
  112         int             qReadCount;             /* queue read count */
  113 
  114         /* XXX union */
  115         uint32_t        qStatRegAddr;
  116         uint32_t        qStatBitsOffset;
  117         uint32_t        qStat0BitMask;
  118         uint32_t        qStat1BitMask;
  119 
  120         uint32_t        intRegCheckMask;        /* interrupt reg check mask */
  121         void            (*cb)(int, void *);     /* callback function */
  122         void            *cbarg;                 /* callback argument */
  123         int             priority;               /* dispatch priority */
  124 #if 0
  125         /* NB: needed only for A0 parts */
  126         u_int           statusWordOffset;       /* status word offset */
  127         uint32_t        statusMask;             /* status mask */
  128         uint32_t        statusCheckValue;       /* status check value */
  129 #endif
  130 };
  131 
  132 struct ixpqmgr_softc {
  133         device_t                sc_dev;
  134         bus_space_tag_t         sc_iot;
  135         bus_space_handle_t      sc_ioh;
  136 
  137         struct resource         *sc_irq1;       /* IRQ resource */
  138         void                    *sc_ih1;        /* interrupt handler */
  139         int                     sc_rid1;        /* resource id for irq */
  140 
  141         struct resource         *sc_irq2;
  142         void                    *sc_ih2;
  143         int                     sc_rid2;
  144 
  145         struct qmgrInfo         qinfo[IX_QMGR_MAX_NUM_QUEUES];
  146         /*
  147          * This array contains a list of queue identifiers ordered by
  148          * priority. The table is split logically between queue
  149          * identifiers 0-31 and 32-63.  To optimize lookups bit masks
  150          * are kept for the first-32 and last-32 q's.  When the
  151          * table needs to be rebuilt mark rebuildTable and it'll
  152          * happen after the next interrupt.
  153          */
  154         int                     priorityTable[IX_QMGR_MAX_NUM_QUEUES];
  155         uint32_t                lowPriorityTableFirstHalfMask;
  156         uint32_t                uppPriorityTableFirstHalfMask;
  157         int                     rebuildTable;   /* rebuild priorityTable */
  158 
  159         uint32_t                aqmFreeSramAddress;     /* SRAM free space */
  160 };
  161 
  162 static int qmgr_debug;
  163 SYSCTL_INT(_debug, OID_AUTO, qmgr, CTLFLAG_RWTUN, &qmgr_debug,
  164            0, "IXP4XX Q-Manager debug msgs");
  165 #define DPRINTF(dev, fmt, ...) do {                                     \
  166         if (qmgr_debug) printf(fmt, __VA_ARGS__);                       \
  167 } while (0)
  168 #define DPRINTFn(n, dev, fmt, ...) do {                                 \
  169         if (qmgr_debug >= n) printf(fmt, __VA_ARGS__);                  \
  170 } while (0)
  171 
  172 static struct ixpqmgr_softc *ixpqmgr_sc = NULL;
  173 
  174 static void ixpqmgr_rebuild(struct ixpqmgr_softc *);
  175 static void ixpqmgr_intr(void *);
  176 
  177 static void aqm_int_enable(struct ixpqmgr_softc *sc, int qId);
  178 static void aqm_int_disable(struct ixpqmgr_softc *sc, int qId);
  179 static void aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf);
  180 static void aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId);
  181 static void aqm_reset(struct ixpqmgr_softc *sc);
  182 
  183 static void
  184 dummyCallback(int qId, void *arg)
  185 {
  186         /* XXX complain */
  187 }
  188 
  189 static uint32_t
  190 aqm_reg_read(struct ixpqmgr_softc *sc, bus_size_t off)
  191 {
  192         DPRINTFn(9, sc->sc_dev, "%s(0x%x)\n", __func__, (int)off);
  193         return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
  194 }
  195 
  196 static void
  197 aqm_reg_write(struct ixpqmgr_softc *sc, bus_size_t off, uint32_t val)
  198 {
  199         DPRINTFn(9, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, (int)off, val);
  200         bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
  201 }
  202 
  203 static int
  204 ixpqmgr_probe(device_t dev)
  205 {
  206         device_set_desc(dev, "IXP4XX Q-Manager");
  207         return 0;
  208 }
  209 
  210 static int
  211 ixpqmgr_attach(device_t dev)
  212 {
  213         struct ixpqmgr_softc *sc = device_get_softc(dev);
  214         struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
  215         int i, err;
  216 
  217         ixpqmgr_sc = sc;
  218 
  219         sc->sc_dev = dev;
  220         sc->sc_iot = sa->sc_iot;
  221         if (bus_space_map(sc->sc_iot, IXP425_QMGR_HWBASE, IXP425_QMGR_SIZE,
  222             0, &sc->sc_ioh))
  223                 panic("%s: Cannot map registers", device_get_name(dev));
  224 
  225         /* NB: we only use the lower 32 q's */
  226 
  227         /* Set up QMGR interrupts */
  228         sc->sc_rid1 = 0;
  229         sc->sc_irq1 = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_rid1,
  230             IXP425_INT_QUE1_32, IXP425_INT_QUE1_32, 1, RF_ACTIVE);
  231         sc->sc_rid2 = 1;
  232         sc->sc_irq2 = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_rid2,
  233             IXP425_INT_QUE33_64, IXP425_INT_QUE33_64, 1, RF_ACTIVE);
  234 
  235         if (sc->sc_irq1 == NULL || sc->sc_irq2 == NULL)
  236                 panic("Unable to allocate the qmgr irqs.\n");
  237 
  238         err = bus_setup_intr(dev, sc->sc_irq1, INTR_TYPE_NET | INTR_MPSAFE,
  239             NULL, ixpqmgr_intr, NULL, &sc->sc_ih1);
  240         if (err) {
  241                 device_printf(dev, "failed to set up qmgr irq=%d\n",
  242                    IXP425_INT_QUE1_32);
  243                 return (ENXIO);
  244         }
  245         err = bus_setup_intr(dev, sc->sc_irq2, INTR_TYPE_NET | INTR_MPSAFE,
  246             NULL, ixpqmgr_intr, NULL, &sc->sc_ih2);
  247         if (err) {
  248                 device_printf(dev, "failed to set up qmgr irq=%d\n",
  249                    IXP425_INT_QUE33_64);
  250                 return (ENXIO);
  251         }
  252 
  253         /* NB: softc is pre-zero'd */
  254         for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++) {
  255             struct qmgrInfo *qi = &sc->qinfo[i];
  256 
  257             qi->cb = dummyCallback;
  258             qi->priority = IX_QMGR_Q_PRIORITY_0;        /* default priority */
  259             /*
  260              * There are two interrupt registers, 32 bits each. One
  261              * for the lower queues(0-31) and one for the upper
  262              * queues(32-63). Therefore need to mod by 32 i.e the
  263              * min upper queue identifier.
  264              */
  265             qi->intRegCheckMask = (1<<(i%(IX_QMGR_MIN_QUEUPP_QID)));
  266 
  267             /*
  268              * Register addresses and bit masks are calculated and
  269              * stored here to optimize QRead, QWrite and QStatusGet
  270              * functions.
  271              */
  272 
  273             /* AQM Queue access reg addresses, per queue */
  274             qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
  275             qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
  276             qi->qConfigRegAddr = IX_QMGR_Q_CONFIG_ADDR_GET(i);
  277 
  278             /* AQM Queue lower-group (0-31), only */
  279             if (i < IX_QMGR_MIN_QUEUPP_QID) {
  280                 /* AQM Q underflow/overflow status reg address, per queue */
  281                 qi->qUOStatRegAddr = IX_QMGR_QUEUOSTAT0_OFFSET +
  282                     ((i / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD) *
  283                      sizeof(uint32_t));
  284 
  285                 /* AQM Q underflow status bit masks for status reg per queue */
  286                 qi->qUflowStatBitMask =
  287                     (IX_QMGR_UNDERFLOW_BIT_OFFSET + 1) <<
  288                     ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
  289                      (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
  290 
  291                 /* AQM Q overflow status bit masks for status reg, per queue */
  292                 qi->qOflowStatBitMask =
  293                     (IX_QMGR_OVERFLOW_BIT_OFFSET + 1) <<
  294                     ((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
  295                      (32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
  296 
  297                 /* AQM Q lower-group (0-31) status reg addresses, per queue */
  298                 qi->qStatRegAddr = IX_QMGR_QUELOWSTAT0_OFFSET +
  299                     ((i / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
  300                      sizeof(uint32_t));
  301 
  302                 /* AQM Q lower-group (0-31) status register bit offset */
  303                 qi->qStatBitsOffset =
  304                     (i & (IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD - 1)) *
  305                     (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD);
  306             } else { /* AQM Q upper-group (32-63), only */
  307                 qi->qUOStatRegAddr = 0;         /* XXX */
  308 
  309                 /* AQM Q upper-group (32-63) Nearly Empty status reg bitmasks */
  310                 qi->qStat0BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
  311 
  312                 /* AQM Q upper-group (32-63) Full status register bitmasks */
  313                 qi->qStat1BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
  314             }
  315         }
  316         
  317         sc->aqmFreeSramAddress = 0x100; /* Q buffer space starts at 0x2100 */
  318 
  319         ixpqmgr_rebuild(sc);            /* build initial priority table */
  320         aqm_reset(sc);                  /* reset h/w */
  321         return (0);
  322 }
  323 
  324 static int
  325 ixpqmgr_detach(device_t dev)
  326 {
  327         struct ixpqmgr_softc *sc = device_get_softc(dev);
  328 
  329         aqm_reset(sc);          /* disable interrupts */
  330         bus_teardown_intr(dev, sc->sc_irq1, sc->sc_ih1);
  331         bus_teardown_intr(dev, sc->sc_irq2, sc->sc_ih2);
  332         bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rid1, sc->sc_irq1);
  333         bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rid2, sc->sc_irq2);
  334         bus_space_unmap(sc->sc_iot, sc->sc_ioh, IXP425_QMGR_SIZE);
  335         return (0);
  336 }
  337 
  338 int
  339 ixpqmgr_qconfig(int qId, int qEntries, int ne, int nf, int srcSel,
  340     qconfig_hand_t *cb, void *cbarg)
  341 {
  342         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  343         struct qmgrInfo *qi = &sc->qinfo[qId];
  344 
  345         DPRINTF(sc->sc_dev, "%s(%u, %u, %u, %u, %u, %p, %p)\n",
  346             __func__, qId, qEntries, ne, nf, srcSel, cb, cbarg);
  347 
  348         /* NB: entry size is always 1 */
  349         qi->qSizeInWords = qEntries;
  350 
  351         qi->qReadCount = 0;
  352         qi->qWriteCount = 0;
  353         qi->qSizeInEntries = qEntries;  /* XXX kept for code clarity */
  354 
  355         if (cb == NULL) {
  356             /* Reset to dummy callback */
  357             qi->cb = dummyCallback;
  358             qi->cbarg = NULL;
  359         } else {
  360             qi->cb = cb;
  361             qi->cbarg = cbarg;
  362         }
  363 
  364         /* Write the config register; NB must be AFTER qinfo setup */
  365         aqm_qcfg(sc, qId, ne, nf);
  366         /*
  367          * Account for space just allocated to queue.
  368          */
  369         sc->aqmFreeSramAddress += (qi->qSizeInWords * sizeof(uint32_t));
  370 
  371         /* Set the interrupt source if this queue is in the range 0-31 */
  372         if (qId < IX_QMGR_MIN_QUEUPP_QID)
  373             aqm_srcsel_write(sc, qId, srcSel);
  374 
  375         if (cb != NULL)                         /* Enable the interrupt */
  376             aqm_int_enable(sc, qId);
  377 
  378         sc->rebuildTable = TRUE;
  379 
  380         return 0;               /* XXX */
  381 }
  382 
  383 int
  384 ixpqmgr_qwrite(int qId, uint32_t entry)
  385 {
  386         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  387         struct qmgrInfo *qi = &sc->qinfo[qId];
  388 
  389         DPRINTFn(3, sc->sc_dev, "%s(%u, 0x%x) writeCount %u size %u\n",
  390             __func__, qId, entry, qi->qWriteCount, qi->qSizeInEntries);
  391 
  392         /* write the entry */
  393         aqm_reg_write(sc, qi->qAccRegAddr, entry);
  394 
  395         /* NB: overflow is available for lower queues only */
  396         if (qId < IX_QMGR_MIN_QUEUPP_QID) {
  397             int qSize = qi->qSizeInEntries;
  398             /*
  399              * Increment the current number of entries in the queue
  400              * and check for overflow .
  401              */
  402             if (qi->qWriteCount++ == qSize) {   /* check for overflow */
  403                 uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
  404                 int qPtrs;
  405 
  406                 /*
  407                  * Read the status twice because the status may
  408                  * not be immediately ready after the write operation
  409                  */
  410                 if ((status & qi->qOflowStatBitMask) ||
  411                     ((status = aqm_reg_read(sc, qi->qUOStatRegAddr)) & qi->qOflowStatBitMask)) {
  412                     /*
  413                      * The queue is full, clear the overflow status bit if set.
  414                      */
  415                     aqm_reg_write(sc, qi->qUOStatRegAddr,
  416                         status & ~qi->qOflowStatBitMask);
  417                     qi->qWriteCount = qSize;
  418                     DPRINTFn(5, sc->sc_dev,
  419                         "%s(%u, 0x%x) Q full, overflow status cleared\n",
  420                         __func__, qId, entry);
  421                     return ENOSPC;
  422                 }
  423                 /*
  424                  * No overflow occurred : someone is draining the queue
  425                  * and the current counter needs to be
  426                  * updated from the current number of entries in the queue
  427                  */
  428 
  429                 /* calculate number of words in q */
  430                 qPtrs = aqm_reg_read(sc, qi->qConfigRegAddr);
  431                 DPRINTFn(2, sc->sc_dev,
  432                     "%s(%u, 0x%x) Q full, no overflow status, qConfig 0x%x\n",
  433                     __func__, qId, entry, qPtrs);
  434                 qPtrs = (qPtrs - (qPtrs >> 7)) & 0x7f;
  435 
  436                 if (qPtrs == 0) {
  437                     /*
  438                      * The queue may be full at the time of the
  439                      * snapshot. Next access will check
  440                      * the overflow status again.
  441                      */
  442                     qi->qWriteCount = qSize;
  443                 } else {
  444                     /* convert the number of words to a number of entries */
  445                     qi->qWriteCount = qPtrs & (qSize - 1);
  446                 }
  447             }
  448         }
  449         return 0;
  450 }
  451 
  452 int
  453 ixpqmgr_qread(int qId, uint32_t *entry)
  454 {
  455         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  456         struct qmgrInfo *qi = &sc->qinfo[qId];
  457         bus_size_t off = qi->qAccRegAddr;
  458 
  459         *entry = aqm_reg_read(sc, off);
  460 
  461         /*
  462          * Reset the current read count : next access to the read function
  463          * will force a underflow status check.
  464          */
  465         qi->qReadCount = 0;
  466 
  467         /* Check if underflow occurred on the read */
  468         if (*entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
  469             /* get the queue status */
  470             uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
  471 
  472             if (status & qi->qUflowStatBitMask) { /* clear underflow status */
  473                 aqm_reg_write(sc, qi->qUOStatRegAddr,
  474                     status &~ qi->qUflowStatBitMask);
  475                 return ENOSPC;
  476             }
  477         }
  478         return 0;
  479 }
  480 
  481 int
  482 ixpqmgr_qreadm(int qId, uint32_t n, uint32_t *p)
  483 {
  484         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  485         struct qmgrInfo *qi = &sc->qinfo[qId];
  486         uint32_t entry;
  487         bus_size_t off = qi->qAccRegAddr;
  488 
  489         entry = aqm_reg_read(sc, off);
  490         while (--n) {
  491             if (entry == 0) {
  492                 /* if we read a NULL entry, stop. We have underflowed */
  493                 break;
  494             }
  495             *p++ = entry;       /* store */
  496             entry = aqm_reg_read(sc, off);
  497         }
  498         *p = entry;
  499 
  500         /*
  501          * Reset the current read count : next access to the read function
  502          * will force a underflow status check.
  503          */
  504         qi->qReadCount = 0;
  505 
  506         /* Check if underflow occurred on the read */
  507         if (entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
  508             /* get the queue status */
  509             uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
  510 
  511             if (status & qi->qUflowStatBitMask) { /* clear underflow status */
  512                 aqm_reg_write(sc, qi->qUOStatRegAddr,
  513                     status &~ qi->qUflowStatBitMask);
  514                 return ENOSPC;
  515             }
  516         }
  517         return 0;
  518 }
  519 
  520 uint32_t
  521 ixpqmgr_getqstatus(int qId)
  522 {
  523 #define QLOWSTATMASK \
  524     ((1 << (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD)) - 1)
  525         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  526         const struct qmgrInfo *qi = &sc->qinfo[qId];
  527         uint32_t status;
  528 
  529         if (qId < IX_QMGR_MIN_QUEUPP_QID) {
  530             /* read the status of a queue in the range 0-31 */
  531             status = aqm_reg_read(sc, qi->qStatRegAddr);
  532 
  533             /* mask out the status bits relevant only to this queue */
  534             status = (status >> qi->qStatBitsOffset) & QLOWSTATMASK;
  535         } else { /* read status of a queue in the range 32-63 */
  536             status = 0;
  537             if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT0_OFFSET)&qi->qStat0BitMask)
  538                 status |= IX_QMGR_Q_STATUS_NE_BIT_MASK; /* nearly empty */
  539             if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT1_OFFSET)&qi->qStat1BitMask)
  540                 status |= IX_QMGR_Q_STATUS_F_BIT_MASK;  /* full */
  541         }
  542         return status;
  543 #undef QLOWSTATMASK
  544 }
  545 
  546 uint32_t
  547 ixpqmgr_getqconfig(int qId)
  548 {
  549         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  550 
  551         return aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId));
  552 }
  553 
  554 void
  555 ixpqmgr_dump(void)
  556 {
  557         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  558         int i, a;
  559 
  560         /* status registers */
  561         printf("0x%04x: %08x %08x %08x %08x\n"
  562                 , 0x400
  563                 , aqm_reg_read(sc, 0x400)
  564                 , aqm_reg_read(sc, 0x400+4)
  565                 , aqm_reg_read(sc, 0x400+8)
  566                 , aqm_reg_read(sc, 0x400+12)
  567         );
  568         printf("0x%04x: %08x %08x %08x %08x\n"
  569                 , 0x410
  570                 , aqm_reg_read(sc, 0x410)
  571                 , aqm_reg_read(sc, 0x410+4)
  572                 , aqm_reg_read(sc, 0x410+8)
  573                 , aqm_reg_read(sc, 0x410+12)
  574         );
  575         printf("0x%04x: %08x %08x %08x %08x\n"
  576                 , 0x420
  577                 , aqm_reg_read(sc, 0x420)
  578                 , aqm_reg_read(sc, 0x420+4)
  579                 , aqm_reg_read(sc, 0x420+8)
  580                 , aqm_reg_read(sc, 0x420+12)
  581         );
  582         printf("0x%04x: %08x %08x %08x %08x\n"
  583                 , 0x430
  584                 , aqm_reg_read(sc, 0x430)
  585                 , aqm_reg_read(sc, 0x430+4)
  586                 , aqm_reg_read(sc, 0x430+8)
  587                 , aqm_reg_read(sc, 0x430+12)
  588         );
  589         /* q configuration registers */
  590         for (a = 0x2000; a < 0x20ff; a += 32)
  591                 printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
  592                         , a
  593                         , aqm_reg_read(sc, a)
  594                         , aqm_reg_read(sc, a+4)
  595                         , aqm_reg_read(sc, a+8)
  596                         , aqm_reg_read(sc, a+12)
  597                         , aqm_reg_read(sc, a+16)
  598                         , aqm_reg_read(sc, a+20)
  599                         , aqm_reg_read(sc, a+24)
  600                         , aqm_reg_read(sc, a+28)
  601                 );
  602         /* allocated SRAM */
  603         for (i = 0x100; i < sc->aqmFreeSramAddress; i += 32) {
  604                 a = 0x2000 + i;
  605                 printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
  606                         , a
  607                         , aqm_reg_read(sc, a)
  608                         , aqm_reg_read(sc, a+4)
  609                         , aqm_reg_read(sc, a+8)
  610                         , aqm_reg_read(sc, a+12)
  611                         , aqm_reg_read(sc, a+16)
  612                         , aqm_reg_read(sc, a+20)
  613                         , aqm_reg_read(sc, a+24)
  614                         , aqm_reg_read(sc, a+28)
  615                 );
  616         }
  617         for (i = 0; i < 16; i++) {
  618                 printf("Q[%2d] config 0x%08x status 0x%02x  "
  619                        "Q[%2d] config 0x%08x status 0x%02x\n"
  620                     , i, ixpqmgr_getqconfig(i), ixpqmgr_getqstatus(i)
  621                     , i+16, ixpqmgr_getqconfig(i+16), ixpqmgr_getqstatus(i+16)
  622                 );
  623         }
  624 }
  625 
  626 void
  627 ixpqmgr_notify_enable(int qId, int srcSel)
  628 {
  629         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  630 #if 0
  631         /* Calculate the checkMask and checkValue for this q */
  632         aqm_calc_statuscheck(sc, qId, srcSel);
  633 #endif
  634         /* Set the interrupt source if this queue is in the range 0-31 */
  635         if (qId < IX_QMGR_MIN_QUEUPP_QID)
  636             aqm_srcsel_write(sc, qId, srcSel);
  637 
  638         /* Enable the interrupt */
  639         aqm_int_enable(sc, qId);
  640 }
  641 
  642 void
  643 ixpqmgr_notify_disable(int qId)
  644 {
  645         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  646 
  647         aqm_int_disable(sc, qId);
  648 }
  649 
  650 /*
  651  * Rebuild the priority table used by the dispatcher.
  652  */
  653 static void
  654 ixpqmgr_rebuild(struct ixpqmgr_softc *sc)
  655 {
  656         int q, pri;
  657         int lowQuePriorityTableIndex, uppQuePriorityTableIndex;
  658         struct qmgrInfo *qi;
  659 
  660         sc->lowPriorityTableFirstHalfMask = 0;
  661         sc->uppPriorityTableFirstHalfMask = 0;
  662         
  663         lowQuePriorityTableIndex = 0;
  664         uppQuePriorityTableIndex = 32;
  665         for (pri = 0; pri < IX_QMGR_NUM_PRIORITY_LEVELS; pri++) {
  666             /* low priority q's */
  667             for (q = 0; q < IX_QMGR_MIN_QUEUPP_QID; q++) {
  668                 qi = &sc->qinfo[q];
  669                 if (qi->priority == pri) {
  670                     /*
  671                      * Build the priority table bitmask which match the
  672                      * queues of the first half of the priority table.
  673                      */
  674                     if (lowQuePriorityTableIndex < 16) {
  675                         sc->lowPriorityTableFirstHalfMask |=
  676                             qi->intRegCheckMask;
  677                     }
  678                     sc->priorityTable[lowQuePriorityTableIndex++] = q;
  679                 }
  680             }
  681             /* high priority q's */
  682             for (; q < IX_QMGR_MAX_NUM_QUEUES; q++) {
  683                 qi = &sc->qinfo[q];
  684                 if (qi->priority == pri) {
  685                     /*
  686                      * Build the priority table bitmask which match the
  687                      * queues of the first half of the priority table .
  688                      */
  689                     if (uppQuePriorityTableIndex < 48) {
  690                         sc->uppPriorityTableFirstHalfMask |=
  691                             qi->intRegCheckMask;
  692                     }
  693                     sc->priorityTable[uppQuePriorityTableIndex++] = q;
  694                 }
  695             }
  696         }
  697         sc->rebuildTable = FALSE;
  698 }
  699 
  700 /*
  701  * Count the number of leading zero bits in a word,
  702  * and return the same value than the CLZ instruction.
  703  * Note this is similar to the standard ffs function but
  704  * it counts zero's from the MSB instead of the LSB.
  705  *
  706  * word (in)    return value (out)
  707  * 0x80000000   0
  708  * 0x40000000   1
  709  * ,,,          ,,,
  710  * 0x00000002   30
  711  * 0x00000001   31
  712  * 0x00000000   32
  713  *
  714  * The C version of this function is used as a replacement
  715  * for system not providing the equivalent of the CLZ
  716  * assembly language instruction.
  717  *
  718  * Note that this version is big-endian
  719  */
  720 static unsigned int
  721 _lzcount(uint32_t word)
  722 {
  723         unsigned int lzcount = 0;
  724 
  725         if (word == 0)
  726             return 32;
  727         while ((word & 0x80000000) == 0) {
  728             word <<= 1;
  729             lzcount++;
  730         }
  731         return lzcount;
  732 }
  733 
  734 static void
  735 ixpqmgr_intr(void *arg)
  736 {
  737         struct ixpqmgr_softc *sc = ixpqmgr_sc;
  738         uint32_t intRegVal;                /* Interrupt reg val */
  739         struct qmgrInfo *qi;
  740         int priorityTableIndex;         /* Priority table index */
  741         int qIndex;                     /* Current queue being processed */
  742 
  743         /* Read the interrupt register */
  744         intRegVal = aqm_reg_read(sc, IX_QMGR_QINTREG0_OFFSET);
  745         /* Write back to clear interrupt */
  746         aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, intRegVal);
  747 
  748         DPRINTFn(5, sc->sc_dev, "%s: ISR0 0x%x ISR1 0x%x\n",
  749             __func__, intRegVal, aqm_reg_read(sc, IX_QMGR_QINTREG1_OFFSET));
  750 
  751         /* No queue has interrupt register set */
  752         if (intRegVal != 0) {
  753                 /* get the first queue Id from the interrupt register value */
  754                 qIndex = (32 - 1) - _lzcount(intRegVal);
  755 
  756                 DPRINTFn(2, sc->sc_dev, "%s: ISR0 0x%x qIndex %u\n",
  757                     __func__, intRegVal, qIndex);
  758 
  759                 /*
  760                  * Optimize for single callback case.
  761                  */
  762                  qi = &sc->qinfo[qIndex];
  763                  if (intRegVal == qi->intRegCheckMask) {
  764                     /*
  765                      * Only 1 queue event triggered a notification.
  766                      * Call the callback function for this queue
  767                      */
  768                     qi->cb(qIndex, qi->cbarg);
  769                  } else {
  770                      /*
  771                       * The event is triggered by more than 1 queue,
  772                       * the queue search will start from the beginning
  773                       * or the middle of the priority table.
  774                       *
  775                       * The search will end when all the bits of the interrupt
  776                       * register are cleared. There is no need to maintain
  777                       * a separate value and test it at each iteration.
  778                       */
  779                      if (intRegVal & sc->lowPriorityTableFirstHalfMask) {
  780                          priorityTableIndex = 0;
  781                      } else {
  782                          priorityTableIndex = 16;
  783                      }
  784                      /*
  785                       * Iterate over the priority table until all the bits
  786                       * of the interrupt register are cleared.
  787                       */
  788                      do {
  789                          qIndex = sc->priorityTable[priorityTableIndex++];
  790                          qi = &sc->qinfo[qIndex];
  791 
  792                          /* If this queue caused this interrupt to be raised */
  793                          if (intRegVal & qi->intRegCheckMask) {
  794                              /* Call the callback function for this queue */
  795                              qi->cb(qIndex, qi->cbarg);
  796                              /* Clear the interrupt register bit */
  797                              intRegVal &= ~qi->intRegCheckMask;
  798                          }
  799                       } while (intRegVal);
  800                  }
  801          }
  802 
  803         /* Rebuild the priority table if needed */
  804         if (sc->rebuildTable)
  805             ixpqmgr_rebuild(sc);
  806 }
  807 
  808 #if 0
  809 /*
  810  * Generate the parameters used to check if a Q's status matches
  811  * the specified source select.  We calculate which status word
  812  * to check (statusWordOffset), the value to check the status
  813  * against (statusCheckValue) and the mask (statusMask) to mask
  814  * out all but the bits to check in the status word.
  815  */
  816 static void
  817 aqm_calc_statuscheck(int qId, IxQMgrSourceId srcSel)
  818 {
  819         struct qmgrInfo *qi = &qinfo[qId];
  820         uint32_t shiftVal;
  821 
  822         if (qId < IX_QMGR_MIN_QUEUPP_QID) {
  823             switch (srcSel) {
  824             case IX_QMGR_Q_SOURCE_ID_E:
  825                 qi->statusCheckValue = IX_QMGR_Q_STATUS_E_BIT_MASK;
  826                 qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
  827                 break;
  828             case IX_QMGR_Q_SOURCE_ID_NE:
  829                 qi->statusCheckValue = IX_QMGR_Q_STATUS_NE_BIT_MASK;
  830                 qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
  831                 break;
  832             case IX_QMGR_Q_SOURCE_ID_NF:
  833                 qi->statusCheckValue = IX_QMGR_Q_STATUS_NF_BIT_MASK;
  834                 qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
  835                 break;
  836             case IX_QMGR_Q_SOURCE_ID_F:
  837                 qi->statusCheckValue = IX_QMGR_Q_STATUS_F_BIT_MASK;
  838                 qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
  839                 break;
  840             case IX_QMGR_Q_SOURCE_ID_NOT_E:
  841                 qi->statusCheckValue = 0;
  842                 qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
  843                 break;
  844             case IX_QMGR_Q_SOURCE_ID_NOT_NE:
  845                 qi->statusCheckValue = 0;
  846                 qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
  847                 break;
  848             case IX_QMGR_Q_SOURCE_ID_NOT_NF:
  849                 qi->statusCheckValue = 0;
  850                 qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
  851                 break;
  852             case IX_QMGR_Q_SOURCE_ID_NOT_F:
  853                 qi->statusCheckValue = 0;
  854                 qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
  855                 break;
  856             default:
  857                 /* Should never hit */
  858                 IX_OSAL_ASSERT(0);
  859                 break;
  860             }
  861 
  862             /* One nibble of status per queue so need to shift the
  863              * check value and mask out to the correct position.
  864              */
  865             shiftVal = (qId % IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
  866                 IX_QMGR_QUELOWSTAT_BITS_PER_Q;
  867 
  868             /* Calculate the which status word to check from the qId,
  869              * 8 Qs status per word
  870              */
  871             qi->statusWordOffset = qId / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD;
  872 
  873             qi->statusCheckValue <<= shiftVal;
  874             qi->statusMask <<= shiftVal;
  875         } else {
  876             /* One status word */
  877             qi->statusWordOffset = 0;
  878             /* Single bits per queue and int source bit hardwired  NE,
  879              * Qs start at 32.
  880              */
  881             qi->statusMask = 1 << (qId - IX_QMGR_MIN_QUEUPP_QID);
  882             qi->statusCheckValue = qi->statusMask;
  883         }
  884 }
  885 #endif
  886 
  887 static void
  888 aqm_int_enable(struct ixpqmgr_softc *sc, int qId)
  889 {
  890         bus_size_t reg;
  891         uint32_t v;
  892         
  893         if (qId < IX_QMGR_MIN_QUEUPP_QID)
  894             reg = IX_QMGR_QUEIEREG0_OFFSET;
  895         else
  896             reg = IX_QMGR_QUEIEREG1_OFFSET;
  897         v = aqm_reg_read(sc, reg);
  898         aqm_reg_write(sc, reg, v | (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
  899 
  900         DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
  901             __func__, qId, reg, v, aqm_reg_read(sc, reg));
  902 }
  903 
  904 static void
  905 aqm_int_disable(struct ixpqmgr_softc *sc, int qId)
  906 {
  907         bus_size_t reg;
  908         uint32_t v;
  909 
  910         if (qId < IX_QMGR_MIN_QUEUPP_QID)
  911             reg = IX_QMGR_QUEIEREG0_OFFSET;
  912         else
  913             reg = IX_QMGR_QUEIEREG1_OFFSET;
  914         v = aqm_reg_read(sc, reg);
  915         aqm_reg_write(sc, reg, v &~ (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
  916 
  917         DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
  918             __func__, qId, reg, v, aqm_reg_read(sc, reg));
  919 }
  920 
  921 static unsigned
  922 log2(unsigned n)
  923 {
  924         unsigned count;
  925         /*
  926          * N.B. this function will return 0 if supplied 0.
  927          */
  928         for (count = 0; n/2; count++)
  929             n /= 2;
  930         return count;
  931 }
  932 
  933 static __inline unsigned
  934 toAqmEntrySize(int entrySize)
  935 {
  936         /* entrySize  1("00"),2("01"),4("10") */
  937         return log2(entrySize);
  938 }
  939 
  940 static __inline unsigned
  941 toAqmBufferSize(unsigned bufferSizeInWords)
  942 {
  943         /* bufferSize 16("00"),32("01),64("10"),128("11") */
  944         return log2(bufferSizeInWords / IX_QMGR_MIN_BUFFER_SIZE);
  945 }
  946 
  947 static __inline unsigned
  948 toAqmWatermark(int watermark)
  949 {
  950         /*
  951          * Watermarks 0("000"),1("001"),2("010"),4("011"),
  952          * 8("100"),16("101"),32("110"),64("111")
  953          */
  954         return log2(2 * watermark);
  955 }
  956 
  957 static void
  958 aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf)
  959 {
  960         const struct qmgrInfo *qi = &sc->qinfo[qId];
  961         uint32_t qCfg;
  962         uint32_t baseAddress;
  963 
  964         /* Build config register */
  965         qCfg = ((toAqmEntrySize(1) & IX_QMGR_ENTRY_SIZE_MASK) <<
  966                     IX_QMGR_Q_CONFIG_ESIZE_OFFSET)
  967              | ((toAqmBufferSize(qi->qSizeInWords) & IX_QMGR_SIZE_MASK) <<
  968                     IX_QMGR_Q_CONFIG_BSIZE_OFFSET);
  969 
  970         /* baseAddress, calculated relative to start address */
  971         baseAddress = sc->aqmFreeSramAddress;
  972                 
  973         /* base address must be word-aligned */
  974         KASSERT((baseAddress % IX_QMGR_BASE_ADDR_16_WORD_ALIGN) == 0,
  975             ("address not word-aligned"));
  976 
  977         /* Now convert to a 16 word pointer as required by QUECONFIG register */
  978         baseAddress >>= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
  979         qCfg |= baseAddress << IX_QMGR_Q_CONFIG_BADDR_OFFSET;
  980 
  981         /* set watermarks */
  982         qCfg |= (toAqmWatermark(ne) << IX_QMGR_Q_CONFIG_NE_OFFSET)
  983              |  (toAqmWatermark(nf) << IX_QMGR_Q_CONFIG_NF_OFFSET);
  984 
  985         DPRINTF(sc->sc_dev, "%s(%u, %u, %u) 0x%x => 0x%x @ 0x%x\n",
  986             __func__, qId, ne, nf,
  987             aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId)),
  988             qCfg, IX_QMGR_Q_CONFIG_ADDR_GET(qId));
  989 
  990         aqm_reg_write(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId), qCfg);
  991 }
  992 
  993 static void
  994 aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId)
  995 {
  996         bus_size_t off;
  997         uint32_t v;
  998 
  999         /*
 1000          * Calculate the register offset; multiple queues split across registers
 1001          */
 1002         off = IX_QMGR_INT0SRCSELREG0_OFFSET +
 1003             ((qId / IX_QMGR_INTSRC_NUM_QUE_PER_WORD) * sizeof(uint32_t));
 1004 
 1005         v = aqm_reg_read(sc, off);
 1006         if (off == IX_QMGR_INT0SRCSELREG0_OFFSET && qId == 0) {
 1007             /* Queue 0 at INT0SRCSELREG should not corrupt the value bit-3  */
 1008             v |= 0x7;
 1009         } else {
 1010           const uint32_t bpq = 32 / IX_QMGR_INTSRC_NUM_QUE_PER_WORD;
 1011           uint32_t mask;
 1012           int qshift;
 1013 
 1014           qshift = (qId & (IX_QMGR_INTSRC_NUM_QUE_PER_WORD-1)) * bpq;
 1015           mask = ((1 << bpq) - 1) << qshift;    /* q's status mask */
 1016 
 1017           /* merge sourceId */
 1018           v = (v &~ mask) | ((sourceId << qshift) & mask);
 1019         }
 1020 
 1021         DPRINTF(sc->sc_dev, "%s(%u, %u) 0x%x => 0x%x @ 0x%lx\n",
 1022             __func__, qId, sourceId, aqm_reg_read(sc, off), v, off);
 1023         aqm_reg_write(sc, off, v);
 1024 }
 1025 
 1026 /*
 1027  * Reset AQM registers to default values.
 1028  */
 1029 static void
 1030 aqm_reset(struct ixpqmgr_softc *sc)
 1031 {
 1032         int i;
 1033 
 1034         /* Reset queues 0..31 status registers 0..3 */
 1035         aqm_reg_write(sc, IX_QMGR_QUELOWSTAT0_OFFSET,
 1036                 IX_QMGR_QUELOWSTAT_RESET_VALUE);
 1037         aqm_reg_write(sc, IX_QMGR_QUELOWSTAT1_OFFSET,
 1038                 IX_QMGR_QUELOWSTAT_RESET_VALUE);
 1039         aqm_reg_write(sc, IX_QMGR_QUELOWSTAT2_OFFSET,
 1040                 IX_QMGR_QUELOWSTAT_RESET_VALUE);
 1041         aqm_reg_write(sc, IX_QMGR_QUELOWSTAT3_OFFSET,
 1042                 IX_QMGR_QUELOWSTAT_RESET_VALUE);
 1043 
 1044         /* Reset underflow/overflow status registers 0..1 */
 1045         aqm_reg_write(sc, IX_QMGR_QUEUOSTAT0_OFFSET,
 1046                 IX_QMGR_QUEUOSTAT_RESET_VALUE);
 1047         aqm_reg_write(sc, IX_QMGR_QUEUOSTAT1_OFFSET,
 1048                 IX_QMGR_QUEUOSTAT_RESET_VALUE);
 1049         
 1050         /* Reset queues 32..63 nearly empty status registers */
 1051         aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT0_OFFSET,
 1052                 IX_QMGR_QUEUPPSTAT0_RESET_VALUE);
 1053 
 1054         /* Reset queues 32..63 full status registers */
 1055         aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT1_OFFSET,
 1056                 IX_QMGR_QUEUPPSTAT1_RESET_VALUE);
 1057 
 1058         /* Reset int0 status flag source select registers 0..3 */
 1059         aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG0_OFFSET,
 1060                              IX_QMGR_INT0SRCSELREG_RESET_VALUE);
 1061         aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG1_OFFSET,
 1062                              IX_QMGR_INT0SRCSELREG_RESET_VALUE);
 1063         aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG2_OFFSET,
 1064                              IX_QMGR_INT0SRCSELREG_RESET_VALUE);
 1065         aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG3_OFFSET,
 1066                              IX_QMGR_INT0SRCSELREG_RESET_VALUE);
 1067         
 1068         /* Reset queue interrupt enable register 0..1 */
 1069         aqm_reg_write(sc, IX_QMGR_QUEIEREG0_OFFSET,
 1070                 IX_QMGR_QUEIEREG_RESET_VALUE);
 1071         aqm_reg_write(sc, IX_QMGR_QUEIEREG1_OFFSET,
 1072                 IX_QMGR_QUEIEREG_RESET_VALUE);
 1073 
 1074         /* Reset queue interrupt register 0..1 */
 1075         aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
 1076         aqm_reg_write(sc, IX_QMGR_QINTREG1_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
 1077 
 1078         /* Reset queue configuration words 0..63 */
 1079         for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++)
 1080             aqm_reg_write(sc, sc->qinfo[i].qConfigRegAddr,
 1081                 IX_QMGR_QUECONFIG_RESET_VALUE);
 1082 
 1083         /* XXX zero SRAM to simplify debugging */
 1084         for (i = IX_QMGR_QUEBUFFER_SPACE_OFFSET;
 1085              i < IX_QMGR_AQM_SRAM_SIZE_IN_BYTES; i += sizeof(uint32_t))
 1086             aqm_reg_write(sc, i, 0);
 1087 }
 1088 
 1089 static device_method_t ixpqmgr_methods[] = {
 1090         DEVMETHOD(device_probe,         ixpqmgr_probe),
 1091         DEVMETHOD(device_attach,        ixpqmgr_attach),
 1092         DEVMETHOD(device_detach,        ixpqmgr_detach),
 1093 
 1094         { 0, 0 }
 1095 };
 1096 
 1097 static driver_t ixpqmgr_driver = {
 1098         "ixpqmgr",
 1099         ixpqmgr_methods,
 1100         sizeof(struct ixpqmgr_softc),
 1101 };
 1102 static devclass_t ixpqmgr_devclass;
 1103 
 1104 DRIVER_MODULE(ixpqmgr, ixp, ixpqmgr_driver, ixpqmgr_devclass, 0, 0);

Cache object: 05860ef32f67aa637191564f3151a4e7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.