FreeBSD/Linux Kernel Cross Reference
sys/arm64/iommu/smmu.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2019-2020 Ruslan Bukin <br@bsdpad.com>
5 *
6 * This software was developed by SRI International and the University of
7 * Cambridge Computer Laboratory (Department of Computer Science and
8 * Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
9 * DARPA SSITH research programme.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Hardware overview.
35 *
36 * An incoming transaction from a peripheral device has an address, size,
37 * attributes and StreamID.
38 *
39 * In case of PCI-based devices, StreamID is a PCI rid.
40 *
41 * The StreamID is used to select a Stream Table Entry (STE) in a Stream table,
42 * which contains per-device configuration.
43 *
44 * Stream table is a linear or 2-level walk table (this driver supports both).
45 * Note that a linear table could occupy 1GB or more of memory depending on
46 * sid_bits value.
47 *
48 * STE is used to locate a Context Descriptor, which is a struct in memory
49 * that describes stages of translation, translation table type, pointer to
50 * level 0 of page tables, ASID, etc.
51 *
52 * Hardware supports two stages of translation: Stage1 (S1) and Stage2 (S2):
53 * o S1 is used for the host machine traffic translation
54 * o S2 is for a hypervisor
55 *
56 * This driver enables S1 stage with standard AArch64 page tables.
57 *
58 * Note that SMMU does not share TLB with a main CPU.
59 * Command queue is used by this driver to Invalidate SMMU TLB, STE cache.
60 *
61 * An arm64 SoC could have more than one SMMU instance.
62 * ACPI IORT table describes which SMMU unit is assigned for a particular
63 * peripheral device.
64 *
65 * Queues.
66 *
67 * Register interface and Memory-based circular buffer queues are used
68 * to inferface SMMU.
69 *
70 * These are a Command queue for commands to send to the SMMU and an Event
71 * queue for event/fault reports from the SMMU. Optionally PRI queue is
72 * designed for PCIe page requests reception.
73 *
74 * Note that not every hardware supports PRI services. For instance they were
75 * not found in Neoverse N1 SDP machine.
76 * (This drivers does not implement PRI queue.)
77 *
78 * All SMMU queues are arranged as circular buffers in memory. They are used
79 * in a producer-consumer fashion so that an output queue contains data
80 * produced by the SMMU and consumed by software.
81 * An input queue contains data produced by software, consumed by the SMMU.
82 *
83 * Interrupts.
84 *
85 * Interrupts are not required by this driver for normal operation.
86 * The standard wired interrupt is only triggered when an event comes from
87 * the SMMU, which is only in a case of errors (e.g. translation fault).
88 */
89
90 #include "opt_platform.h"
91 #include "opt_acpi.h"
92
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95
96 #include <sys/param.h>
97 #include <sys/bitstring.h>
98 #include <sys/bus.h>
99 #include <sys/kernel.h>
100 #include <sys/malloc.h>
101 #include <sys/mutex.h>
102 #include <sys/rman.h>
103 #include <sys/lock.h>
104 #include <sys/sysctl.h>
105 #include <sys/tree.h>
106 #include <sys/taskqueue.h>
107 #include <vm/vm.h>
108 #include <vm/vm_page.h>
109 #ifdef DEV_ACPI
110 #include <contrib/dev/acpica/include/acpi.h>
111 #include <dev/acpica/acpivar.h>
112 #endif
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/iommu/iommu.h>
116 #include <arm64/iommu/iommu_pmap.h>
117
118 #include <machine/bus.h>
119
120 #ifdef FDT
121 #include <dev/fdt/fdt_common.h>
122 #include <dev/ofw/ofw_bus.h>
123 #include <dev/ofw/ofw_bus_subr.h>
124 #endif
125
126 #include "iommu.h"
127 #include "iommu_if.h"
128
129 #include "smmureg.h"
130 #include "smmuvar.h"
131
132 #define STRTAB_L1_SZ_SHIFT 20
133 #define STRTAB_SPLIT 8
134
135 #define STRTAB_L1_DESC_L2PTR_M (0x3fffffffffff << 6)
136 #define STRTAB_L1_DESC_DWORDS 1
137
138 #define STRTAB_STE_DWORDS 8
139
140 #define CMDQ_ENTRY_DWORDS 2
141 #define EVTQ_ENTRY_DWORDS 4
142 #define PRIQ_ENTRY_DWORDS 2
143
144 #define CD_DWORDS 8
145
146 #define Q_WRP(q, p) ((p) & (1 << (q)->size_log2))
147 #define Q_IDX(q, p) ((p) & ((1 << (q)->size_log2) - 1))
148 #define Q_OVF(p) ((p) & (1 << 31)) /* Event queue overflowed */
149
150 #define SMMU_Q_ALIGN (64 * 1024)
151
152 #define MAXADDR_48BIT 0xFFFFFFFFFFFFUL
153 #define MAXADDR_52BIT 0xFFFFFFFFFFFFFUL
154
155 static struct resource_spec smmu_spec[] = {
156 { SYS_RES_MEMORY, 0, RF_ACTIVE },
157 { SYS_RES_IRQ, 0, RF_ACTIVE },
158 { SYS_RES_IRQ, 1, RF_ACTIVE | RF_OPTIONAL },
159 { SYS_RES_IRQ, 2, RF_ACTIVE },
160 { SYS_RES_IRQ, 3, RF_ACTIVE },
161 RESOURCE_SPEC_END
162 };
163
164 MALLOC_DEFINE(M_SMMU, "SMMU", SMMU_DEVSTR);
165
166 #define dprintf(fmt, ...)
167
168 struct smmu_event {
169 int ident;
170 char *str;
171 char *msg;
172 };
173
174 static struct smmu_event events[] = {
175 { 0x01, "F_UUT",
176 "Unsupported Upstream Transaction."},
177 { 0x02, "C_BAD_STREAMID",
178 "Transaction StreamID out of range."},
179 { 0x03, "F_STE_FETCH",
180 "Fetch of STE caused external abort."},
181 { 0x04, "C_BAD_STE",
182 "Used STE invalid."},
183 { 0x05, "F_BAD_ATS_TREQ",
184 "Address Translation Request disallowed for a StreamID "
185 "and a PCIe ATS Translation Request received."},
186 { 0x06, "F_STREAM_DISABLED",
187 "The STE of a transaction marks non-substream transactions "
188 "disabled."},
189 { 0x07, "F_TRANSL_FORBIDDEN",
190 "An incoming PCIe transaction is marked Translated but "
191 "SMMU bypass is disallowed for this StreamID."},
192 { 0x08, "C_BAD_SUBSTREAMID",
193 "Incoming SubstreamID present, but configuration is invalid."},
194 { 0x09, "F_CD_FETCH",
195 "Fetch of CD caused external abort."},
196 { 0x0a, "C_BAD_CD",
197 "Fetched CD invalid."},
198 { 0x0b, "F_WALK_EABT",
199 "An external abort occurred fetching (or updating) "
200 "a translation table descriptor."},
201 { 0x10, "F_TRANSLATION",
202 "Translation fault."},
203 { 0x11, "F_ADDR_SIZE",
204 "Address Size fault."},
205 { 0x12, "F_ACCESS",
206 "Access flag fault due to AF == 0 in a page or block TTD."},
207 { 0x13, "F_PERMISSION",
208 "Permission fault occurred on page access."},
209 { 0x20, "F_TLB_CONFLICT",
210 "A TLB conflict occurred because of the transaction."},
211 { 0x21, "F_CFG_CONFLICT",
212 "A configuration cache conflict occurred due to "
213 "the transaction."},
214 { 0x24, "E_PAGE_REQUEST",
215 "Speculative page request hint."},
216 { 0x25, "F_VMS_FETCH",
217 "Fetch of VMS caused external abort."},
218 { 0, NULL, NULL },
219 };
220
221 static int
222 smmu_q_has_space(struct smmu_queue *q)
223 {
224
225 /*
226 * See 6.3.27 SMMU_CMDQ_PROD
227 *
228 * There is space in the queue for additional commands if:
229 * SMMU_CMDQ_CONS.RD != SMMU_CMDQ_PROD.WR ||
230 * SMMU_CMDQ_CONS.RD_WRAP == SMMU_CMDQ_PROD.WR_WRAP
231 */
232
233 if (Q_IDX(q, q->lc.cons) != Q_IDX(q, q->lc.prod) ||
234 Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
235 return (1);
236
237 return (0);
238 }
239
240 static int
241 smmu_q_empty(struct smmu_queue *q)
242 {
243
244 if (Q_IDX(q, q->lc.cons) == Q_IDX(q, q->lc.prod) &&
245 Q_WRP(q, q->lc.cons) == Q_WRP(q, q->lc.prod))
246 return (1);
247
248 return (0);
249 }
250
251 static int __unused
252 smmu_q_consumed(struct smmu_queue *q, uint32_t prod)
253 {
254
255 if ((Q_WRP(q, q->lc.cons) == Q_WRP(q, prod)) &&
256 (Q_IDX(q, q->lc.cons) >= Q_IDX(q, prod)))
257 return (1);
258
259 if ((Q_WRP(q, q->lc.cons) != Q_WRP(q, prod)) &&
260 (Q_IDX(q, q->lc.cons) <= Q_IDX(q, prod)))
261 return (1);
262
263 return (0);
264 }
265
266 static uint32_t
267 smmu_q_inc_cons(struct smmu_queue *q)
268 {
269 uint32_t cons;
270 uint32_t val;
271
272 cons = (Q_WRP(q, q->lc.cons) | Q_IDX(q, q->lc.cons)) + 1;
273 val = (Q_OVF(q->lc.cons) | Q_WRP(q, cons) | Q_IDX(q, cons));
274
275 return (val);
276 }
277
278 static uint32_t
279 smmu_q_inc_prod(struct smmu_queue *q)
280 {
281 uint32_t prod;
282 uint32_t val;
283
284 prod = (Q_WRP(q, q->lc.prod) | Q_IDX(q, q->lc.prod)) + 1;
285 val = (Q_OVF(q->lc.prod) | Q_WRP(q, prod) | Q_IDX(q, prod));
286
287 return (val);
288 }
289
290 static int
291 smmu_write_ack(struct smmu_softc *sc, uint32_t reg,
292 uint32_t reg_ack, uint32_t val)
293 {
294 uint32_t v;
295 int timeout;
296
297 timeout = 100000;
298
299 bus_write_4(sc->res[0], reg, val);
300
301 do {
302 v = bus_read_4(sc->res[0], reg_ack);
303 if (v == val)
304 break;
305 } while (timeout--);
306
307 if (timeout <= 0) {
308 device_printf(sc->dev, "Failed to write reg.\n");
309 return (-1);
310 }
311
312 return (0);
313 }
314
315 static inline int
316 ilog2(long x)
317 {
318
319 KASSERT(x > 0 && powerof2(x), ("%s: invalid arg %ld", __func__, x));
320
321 return (flsl(x) - 1);
322 }
323
324 static int
325 smmu_init_queue(struct smmu_softc *sc, struct smmu_queue *q,
326 uint32_t prod_off, uint32_t cons_off, uint32_t dwords)
327 {
328 int sz;
329
330 sz = (1 << q->size_log2) * dwords * 8;
331
332 /* Set up the command circular buffer */
333 q->vaddr = contigmalloc(sz, M_SMMU,
334 M_WAITOK | M_ZERO, 0, (1ul << 48) - 1, SMMU_Q_ALIGN, 0);
335 if (q->vaddr == NULL) {
336 device_printf(sc->dev, "failed to allocate %d bytes\n", sz);
337 return (-1);
338 }
339
340 q->prod_off = prod_off;
341 q->cons_off = cons_off;
342 q->paddr = vtophys(q->vaddr);
343
344 q->base = CMDQ_BASE_RA | EVENTQ_BASE_WA | PRIQ_BASE_WA;
345 q->base |= q->paddr & Q_BASE_ADDR_M;
346 q->base |= q->size_log2 << Q_LOG2SIZE_S;
347
348 return (0);
349 }
350
351 static int
352 smmu_init_queues(struct smmu_softc *sc)
353 {
354 int err;
355
356 /* Command queue. */
357 err = smmu_init_queue(sc, &sc->cmdq,
358 SMMU_CMDQ_PROD, SMMU_CMDQ_CONS, CMDQ_ENTRY_DWORDS);
359 if (err)
360 return (ENXIO);
361
362 /* Event queue. */
363 err = smmu_init_queue(sc, &sc->evtq,
364 SMMU_EVENTQ_PROD, SMMU_EVENTQ_CONS, EVTQ_ENTRY_DWORDS);
365 if (err)
366 return (ENXIO);
367
368 if (!(sc->features & SMMU_FEATURE_PRI))
369 return (0);
370
371 /* PRI queue. */
372 err = smmu_init_queue(sc, &sc->priq,
373 SMMU_PRIQ_PROD, SMMU_PRIQ_CONS, PRIQ_ENTRY_DWORDS);
374 if (err)
375 return (ENXIO);
376
377 return (0);
378 }
379
380 /*
381 * Dump 2LVL or linear STE.
382 */
383 static void
384 smmu_dump_ste(struct smmu_softc *sc, int sid)
385 {
386 struct smmu_strtab *strtab;
387 struct l1_desc *l1_desc;
388 uint64_t *ste, *l1;
389 int i;
390
391 strtab = &sc->strtab;
392
393 if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
394 i = sid >> STRTAB_SPLIT;
395 l1 = (void *)((uint64_t)strtab->vaddr +
396 STRTAB_L1_DESC_DWORDS * 8 * i);
397 device_printf(sc->dev, "L1 ste == %lx\n", l1[0]);
398
399 l1_desc = &strtab->l1[i];
400 ste = l1_desc->va;
401 if (ste == NULL) /* L2 is not initialized */
402 return;
403 } else {
404 ste = (void *)((uint64_t)strtab->vaddr +
405 sid * (STRTAB_STE_DWORDS << 3));
406 }
407
408 /* Dump L2 or linear STE. */
409 for (i = 0; i < STRTAB_STE_DWORDS; i++)
410 device_printf(sc->dev, "ste[%d] == %lx\n", i, ste[i]);
411 }
412
413 static void __unused
414 smmu_dump_cd(struct smmu_softc *sc, struct smmu_cd *cd)
415 {
416 uint64_t *vaddr;
417 int i;
418
419 device_printf(sc->dev, "%s\n", __func__);
420
421 vaddr = cd->vaddr;
422 for (i = 0; i < CD_DWORDS; i++)
423 device_printf(sc->dev, "cd[%d] == %lx\n", i, vaddr[i]);
424 }
425
426 static void
427 smmu_evtq_dequeue(struct smmu_softc *sc, uint32_t *evt)
428 {
429 struct smmu_queue *evtq;
430 void *entry_addr;
431
432 evtq = &sc->evtq;
433
434 evtq->lc.val = bus_read_8(sc->res[0], evtq->prod_off);
435 entry_addr = (void *)((uint64_t)evtq->vaddr +
436 evtq->lc.cons * EVTQ_ENTRY_DWORDS * 8);
437 memcpy(evt, entry_addr, EVTQ_ENTRY_DWORDS * 8);
438 evtq->lc.cons = smmu_q_inc_cons(evtq);
439 bus_write_4(sc->res[0], evtq->cons_off, evtq->lc.cons);
440 }
441
442 static void
443 smmu_print_event(struct smmu_softc *sc, uint32_t *evt)
444 {
445 struct smmu_event *ev;
446 uintptr_t input_addr;
447 uint8_t event_id;
448 device_t dev;
449 int sid;
450 int i;
451
452 dev = sc->dev;
453
454 ev = NULL;
455 event_id = evt[0] & 0xff;
456 for (i = 0; events[i].ident != 0; i++) {
457 if (events[i].ident == event_id) {
458 ev = &events[i];
459 break;
460 }
461 }
462
463 sid = evt[1];
464 input_addr = evt[5];
465 input_addr <<= 32;
466 input_addr |= evt[4];
467
468 if (smmu_quirks_check(dev, sid, event_id, input_addr)) {
469 /* The event is known. Don't print anything. */
470 return;
471 }
472
473 if (ev) {
474 device_printf(sc->dev,
475 "Event %s (%s) received.\n", ev->str, ev->msg);
476 } else
477 device_printf(sc->dev, "Event 0x%x received\n", event_id);
478
479 device_printf(sc->dev, "SID %x, Input Address: %jx\n",
480 sid, input_addr);
481
482 for (i = 0; i < 8; i++)
483 device_printf(sc->dev, "evt[%d] %x\n", i, evt[i]);
484
485 smmu_dump_ste(sc, sid);
486 }
487
488 static void
489 make_cmd(struct smmu_softc *sc, uint64_t *cmd,
490 struct smmu_cmdq_entry *entry)
491 {
492
493 memset(cmd, 0, CMDQ_ENTRY_DWORDS * 8);
494 cmd[0] = entry->opcode << CMD_QUEUE_OPCODE_S;
495
496 switch (entry->opcode) {
497 case CMD_TLBI_NH_VA:
498 cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
499 cmd[1] = entry->tlbi.addr & TLBI_1_ADDR_M;
500 if (entry->tlbi.leaf) {
501 /*
502 * Leaf flag means that only cached entries
503 * for the last level of translation table walk
504 * are required to be invalidated.
505 */
506 cmd[1] |= TLBI_1_LEAF;
507 }
508 break;
509 case CMD_TLBI_NH_ASID:
510 cmd[0] |= (uint64_t)entry->tlbi.asid << TLBI_0_ASID_S;
511 break;
512 case CMD_TLBI_NSNH_ALL:
513 case CMD_TLBI_NH_ALL:
514 case CMD_TLBI_EL2_ALL:
515 break;
516 case CMD_CFGI_CD:
517 cmd[0] |= ((uint64_t)entry->cfgi.ssid << CFGI_0_SSID_S);
518 /* FALLTROUGH */
519 case CMD_CFGI_STE:
520 cmd[0] |= ((uint64_t)entry->cfgi.sid << CFGI_0_STE_SID_S);
521 cmd[1] |= ((uint64_t)entry->cfgi.leaf << CFGI_1_LEAF_S);
522 break;
523 case CMD_CFGI_STE_RANGE:
524 cmd[1] = (31 << CFGI_1_STE_RANGE_S);
525 break;
526 case CMD_SYNC:
527 cmd[0] |= SYNC_0_MSH_IS | SYNC_0_MSIATTR_OIWB;
528 if (entry->sync.msiaddr) {
529 cmd[0] |= SYNC_0_CS_SIG_IRQ;
530 cmd[1] |= (entry->sync.msiaddr & SYNC_1_MSIADDRESS_M);
531 } else
532 cmd[0] |= SYNC_0_CS_SIG_SEV;
533 break;
534 case CMD_PREFETCH_CONFIG:
535 cmd[0] |= ((uint64_t)entry->prefetch.sid << PREFETCH_0_SID_S);
536 break;
537 };
538 }
539
540 static void
541 smmu_cmdq_enqueue_cmd(struct smmu_softc *sc, struct smmu_cmdq_entry *entry)
542 {
543 uint64_t cmd[CMDQ_ENTRY_DWORDS];
544 struct smmu_queue *cmdq;
545 void *entry_addr;
546
547 cmdq = &sc->cmdq;
548
549 make_cmd(sc, cmd, entry);
550
551 SMMU_LOCK(sc);
552
553 /* Ensure that a space is available. */
554 do {
555 cmdq->lc.cons = bus_read_4(sc->res[0], cmdq->cons_off);
556 } while (smmu_q_has_space(cmdq) == 0);
557
558 /* Write the command to the current prod entry. */
559 entry_addr = (void *)((uint64_t)cmdq->vaddr +
560 Q_IDX(cmdq, cmdq->lc.prod) * CMDQ_ENTRY_DWORDS * 8);
561 memcpy(entry_addr, cmd, CMDQ_ENTRY_DWORDS * 8);
562
563 /* Increment prod index. */
564 cmdq->lc.prod = smmu_q_inc_prod(cmdq);
565 bus_write_4(sc->res[0], cmdq->prod_off, cmdq->lc.prod);
566
567 SMMU_UNLOCK(sc);
568 }
569
570 static void __unused
571 smmu_poll_until_consumed(struct smmu_softc *sc, struct smmu_queue *q)
572 {
573
574 while (1) {
575 q->lc.val = bus_read_8(sc->res[0], q->prod_off);
576 if (smmu_q_empty(q))
577 break;
578 cpu_spinwait();
579 }
580 }
581
582 static int
583 smmu_sync(struct smmu_softc *sc)
584 {
585 struct smmu_cmdq_entry cmd;
586 struct smmu_queue *q;
587 uint32_t *base;
588 int timeout;
589 int prod;
590
591 q = &sc->cmdq;
592 prod = q->lc.prod;
593
594 /* Enqueue sync command. */
595 cmd.opcode = CMD_SYNC;
596 cmd.sync.msiaddr = q->paddr + Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8;
597 smmu_cmdq_enqueue_cmd(sc, &cmd);
598
599 /* Wait for the sync completion. */
600 base = (void *)((uint64_t)q->vaddr +
601 Q_IDX(q, prod) * CMDQ_ENTRY_DWORDS * 8);
602
603 /*
604 * It takes around 200 loops (6 instructions each)
605 * on Neoverse N1 to complete the sync.
606 */
607 timeout = 10000;
608
609 do {
610 if (*base == 0) {
611 /* MSI write completed. */
612 break;
613 }
614 cpu_spinwait();
615 } while (timeout--);
616
617 if (timeout < 0)
618 device_printf(sc->dev, "Failed to sync\n");
619
620 return (0);
621 }
622
623 static int
624 smmu_sync_cd(struct smmu_softc *sc, int sid, int ssid, bool leaf)
625 {
626 struct smmu_cmdq_entry cmd;
627
628 cmd.opcode = CMD_CFGI_CD;
629 cmd.cfgi.sid = sid;
630 cmd.cfgi.ssid = ssid;
631 cmd.cfgi.leaf = leaf;
632 smmu_cmdq_enqueue_cmd(sc, &cmd);
633
634 return (0);
635 }
636
637 static void
638 smmu_invalidate_all_sid(struct smmu_softc *sc)
639 {
640 struct smmu_cmdq_entry cmd;
641
642 /* Invalidate cached config */
643 cmd.opcode = CMD_CFGI_STE_RANGE;
644 smmu_cmdq_enqueue_cmd(sc, &cmd);
645 smmu_sync(sc);
646 }
647
648 static void
649 smmu_tlbi_all(struct smmu_softc *sc)
650 {
651 struct smmu_cmdq_entry cmd;
652
653 /* Invalidate entire TLB */
654 cmd.opcode = CMD_TLBI_NSNH_ALL;
655 smmu_cmdq_enqueue_cmd(sc, &cmd);
656 smmu_sync(sc);
657 }
658
659 static void
660 smmu_tlbi_asid(struct smmu_softc *sc, uint16_t asid)
661 {
662 struct smmu_cmdq_entry cmd;
663
664 /* Invalidate TLB for an ASID. */
665 cmd.opcode = CMD_TLBI_NH_ASID;
666 cmd.tlbi.asid = asid;
667 smmu_cmdq_enqueue_cmd(sc, &cmd);
668 smmu_sync(sc);
669 }
670
671 static void
672 smmu_tlbi_va(struct smmu_softc *sc, vm_offset_t va, uint16_t asid)
673 {
674 struct smmu_cmdq_entry cmd;
675
676 /* Invalidate specific range */
677 cmd.opcode = CMD_TLBI_NH_VA;
678 cmd.tlbi.asid = asid;
679 cmd.tlbi.vmid = 0;
680 cmd.tlbi.leaf = true; /* We change only L3. */
681 cmd.tlbi.addr = va;
682 smmu_cmdq_enqueue_cmd(sc, &cmd);
683 }
684
685 static void
686 smmu_invalidate_sid(struct smmu_softc *sc, uint32_t sid)
687 {
688 struct smmu_cmdq_entry cmd;
689
690 /* Invalidate cached config */
691 cmd.opcode = CMD_CFGI_STE;
692 cmd.cfgi.sid = sid;
693 smmu_cmdq_enqueue_cmd(sc, &cmd);
694 smmu_sync(sc);
695 }
696
697 static void
698 smmu_prefetch_sid(struct smmu_softc *sc, uint32_t sid)
699 {
700 struct smmu_cmdq_entry cmd;
701
702 cmd.opcode = CMD_PREFETCH_CONFIG;
703 cmd.prefetch.sid = sid;
704 smmu_cmdq_enqueue_cmd(sc, &cmd);
705 smmu_sync(sc);
706 }
707
708 /*
709 * Init STE in bypass mode. Traffic is not translated for the sid.
710 */
711 static void
712 smmu_init_ste_bypass(struct smmu_softc *sc, uint32_t sid, uint64_t *ste)
713 {
714 uint64_t val;
715
716 val = STE0_VALID | STE0_CONFIG_BYPASS;
717
718 ste[1] = STE1_SHCFG_INCOMING | STE1_EATS_FULLATS;
719 ste[2] = 0;
720 ste[3] = 0;
721 ste[4] = 0;
722 ste[5] = 0;
723 ste[6] = 0;
724 ste[7] = 0;
725
726 smmu_invalidate_sid(sc, sid);
727 ste[0] = val;
728 dsb(sy);
729 smmu_invalidate_sid(sc, sid);
730
731 smmu_prefetch_sid(sc, sid);
732 }
733
734 /*
735 * Enable Stage1 (S1) translation for the sid.
736 */
737 static int
738 smmu_init_ste_s1(struct smmu_softc *sc, struct smmu_cd *cd,
739 uint32_t sid, uint64_t *ste)
740 {
741 uint64_t val;
742
743 val = STE0_VALID;
744
745 /* S1 */
746 ste[1] = STE1_EATS_FULLATS |
747 STE1_S1CSH_IS |
748 STE1_S1CIR_WBRA |
749 STE1_S1COR_WBRA |
750 STE1_STRW_NS_EL1;
751 ste[2] = 0;
752 ste[3] = 0;
753 ste[4] = 0;
754 ste[5] = 0;
755 ste[6] = 0;
756 ste[7] = 0;
757
758 if (sc->features & SMMU_FEATURE_STALL &&
759 ((sc->features & SMMU_FEATURE_STALL_FORCE) == 0))
760 ste[1] |= STE1_S1STALLD;
761
762 /* Configure STE */
763 val |= (cd->paddr & STE0_S1CONTEXTPTR_M);
764 val |= STE0_CONFIG_S1_TRANS;
765
766 smmu_invalidate_sid(sc, sid);
767
768 /* The STE[0] has to be written in a single blast, last of all. */
769 ste[0] = val;
770 dsb(sy);
771
772 smmu_invalidate_sid(sc, sid);
773 smmu_sync_cd(sc, sid, 0, true);
774 smmu_invalidate_sid(sc, sid);
775
776 /* The sid will be used soon most likely. */
777 smmu_prefetch_sid(sc, sid);
778
779 return (0);
780 }
781
782 static uint64_t *
783 smmu_get_ste_addr(struct smmu_softc *sc, int sid)
784 {
785 struct smmu_strtab *strtab;
786 struct l1_desc *l1_desc;
787 uint64_t *addr;
788
789 strtab = &sc->strtab;
790
791 if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
792 l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
793 addr = l1_desc->va;
794 addr += (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
795 } else {
796 addr = (void *)((uint64_t)strtab->vaddr +
797 STRTAB_STE_DWORDS * 8 * sid);
798 };
799
800 return (addr);
801 }
802
803 static int
804 smmu_init_ste(struct smmu_softc *sc, struct smmu_cd *cd, int sid, bool bypass)
805 {
806 uint64_t *addr;
807
808 addr = smmu_get_ste_addr(sc, sid);
809
810 if (bypass)
811 smmu_init_ste_bypass(sc, sid, addr);
812 else
813 smmu_init_ste_s1(sc, cd, sid, addr);
814
815 smmu_sync(sc);
816
817 return (0);
818 }
819
820 static void
821 smmu_deinit_ste(struct smmu_softc *sc, int sid)
822 {
823 uint64_t *ste;
824
825 ste = smmu_get_ste_addr(sc, sid);
826 ste[0] = 0;
827
828 smmu_invalidate_sid(sc, sid);
829 smmu_sync_cd(sc, sid, 0, true);
830 smmu_invalidate_sid(sc, sid);
831
832 smmu_sync(sc);
833 }
834
835 static int
836 smmu_init_cd(struct smmu_softc *sc, struct smmu_domain *domain)
837 {
838 vm_paddr_t paddr;
839 uint64_t *ptr;
840 uint64_t val;
841 vm_size_t size;
842 struct smmu_cd *cd;
843 pmap_t p;
844
845 size = 1 * (CD_DWORDS << 3);
846
847 p = &domain->p;
848 cd = domain->cd = malloc(sizeof(struct smmu_cd),
849 M_SMMU, M_WAITOK | M_ZERO);
850
851 cd->vaddr = contigmalloc(size, M_SMMU,
852 M_WAITOK | M_ZERO, /* flags */
853 0, /* low */
854 (1ul << 40) - 1, /* high */
855 size, /* alignment */
856 0); /* boundary */
857 if (cd->vaddr == NULL) {
858 device_printf(sc->dev, "Failed to allocate CD\n");
859 return (ENXIO);
860 }
861
862 cd->size = size;
863 cd->paddr = vtophys(cd->vaddr);
864
865 ptr = cd->vaddr;
866
867 val = CD0_VALID;
868 val |= CD0_AA64;
869 val |= CD0_R;
870 val |= CD0_A;
871 val |= CD0_ASET;
872 val |= (uint64_t)domain->asid << CD0_ASID_S;
873 val |= CD0_TG0_4KB;
874 val |= CD0_EPD1; /* Disable TT1 */
875 val |= ((64 - sc->ias) << CD0_T0SZ_S);
876 val |= CD0_IPS_48BITS;
877
878 paddr = p->pm_l0_paddr & CD1_TTB0_M;
879 KASSERT(paddr == p->pm_l0_paddr, ("bad allocation 1"));
880
881 ptr[1] = paddr;
882 ptr[2] = 0;
883 ptr[3] = MAIR_ATTR(MAIR_DEVICE_nGnRnE, VM_MEMATTR_DEVICE) |
884 MAIR_ATTR(MAIR_NORMAL_NC, VM_MEMATTR_UNCACHEABLE) |
885 MAIR_ATTR(MAIR_NORMAL_WB, VM_MEMATTR_WRITE_BACK) |
886 MAIR_ATTR(MAIR_NORMAL_WT, VM_MEMATTR_WRITE_THROUGH);
887
888 /* Install the CD. */
889 ptr[0] = val;
890
891 return (0);
892 }
893
894 static int
895 smmu_init_strtab_linear(struct smmu_softc *sc)
896 {
897 struct smmu_strtab *strtab;
898 vm_paddr_t base;
899 uint32_t size;
900 uint64_t reg;
901
902 strtab = &sc->strtab;
903 strtab->num_l1_entries = (1 << sc->sid_bits);
904
905 size = strtab->num_l1_entries * (STRTAB_STE_DWORDS << 3);
906
907 if (bootverbose)
908 device_printf(sc->dev,
909 "%s: linear strtab size %d, num_l1_entries %d\n",
910 __func__, size, strtab->num_l1_entries);
911
912 strtab->vaddr = contigmalloc(size, M_SMMU,
913 M_WAITOK | M_ZERO, /* flags */
914 0, /* low */
915 (1ul << 48) - 1, /* high */
916 size, /* alignment */
917 0); /* boundary */
918 if (strtab->vaddr == NULL) {
919 device_printf(sc->dev, "failed to allocate strtab\n");
920 return (ENXIO);
921 }
922
923 reg = STRTAB_BASE_CFG_FMT_LINEAR;
924 reg |= sc->sid_bits << STRTAB_BASE_CFG_LOG2SIZE_S;
925 strtab->base_cfg = (uint32_t)reg;
926
927 base = vtophys(strtab->vaddr);
928
929 reg = base & STRTAB_BASE_ADDR_M;
930 KASSERT(reg == base, ("bad allocation 2"));
931 reg |= STRTAB_BASE_RA;
932 strtab->base = reg;
933
934 return (0);
935 }
936
937 static int
938 smmu_init_strtab_2lvl(struct smmu_softc *sc)
939 {
940 struct smmu_strtab *strtab;
941 vm_paddr_t base;
942 uint64_t reg_base;
943 uint32_t l1size;
944 uint32_t size;
945 uint32_t reg;
946 int sz;
947
948 strtab = &sc->strtab;
949
950 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
951 size = min(size, sc->sid_bits - STRTAB_SPLIT);
952 strtab->num_l1_entries = (1 << size);
953 size += STRTAB_SPLIT;
954
955 l1size = strtab->num_l1_entries * (STRTAB_L1_DESC_DWORDS << 3);
956
957 if (bootverbose)
958 device_printf(sc->dev,
959 "%s: size %d, l1 entries %d, l1size %d\n",
960 __func__, size, strtab->num_l1_entries, l1size);
961
962 strtab->vaddr = contigmalloc(l1size, M_SMMU,
963 M_WAITOK | M_ZERO, /* flags */
964 0, /* low */
965 (1ul << 48) - 1, /* high */
966 l1size, /* alignment */
967 0); /* boundary */
968 if (strtab->vaddr == NULL) {
969 device_printf(sc->dev, "Failed to allocate 2lvl strtab.\n");
970 return (ENOMEM);
971 }
972
973 sz = strtab->num_l1_entries * sizeof(struct l1_desc);
974
975 strtab->l1 = malloc(sz, M_SMMU, M_WAITOK | M_ZERO);
976 if (strtab->l1 == NULL) {
977 contigfree(strtab->vaddr, l1size, M_SMMU);
978 return (ENOMEM);
979 }
980
981 reg = STRTAB_BASE_CFG_FMT_2LVL;
982 reg |= size << STRTAB_BASE_CFG_LOG2SIZE_S;
983 reg |= STRTAB_SPLIT << STRTAB_BASE_CFG_SPLIT_S;
984 strtab->base_cfg = (uint32_t)reg;
985
986 base = vtophys(strtab->vaddr);
987
988 reg_base = base & STRTAB_BASE_ADDR_M;
989 KASSERT(reg_base == base, ("bad allocation 3"));
990 reg_base |= STRTAB_BASE_RA;
991 strtab->base = reg_base;
992
993 return (0);
994 }
995
996 static int
997 smmu_init_strtab(struct smmu_softc *sc)
998 {
999 int error;
1000
1001 if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE)
1002 error = smmu_init_strtab_2lvl(sc);
1003 else
1004 error = smmu_init_strtab_linear(sc);
1005
1006 return (error);
1007 }
1008
1009 static int
1010 smmu_init_l1_entry(struct smmu_softc *sc, int sid)
1011 {
1012 struct smmu_strtab *strtab;
1013 struct l1_desc *l1_desc;
1014 uint64_t *addr;
1015 uint64_t val;
1016 size_t size;
1017 int i;
1018
1019 strtab = &sc->strtab;
1020 l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
1021 if (l1_desc->va) {
1022 /* Already allocated. */
1023 return (0);
1024 }
1025
1026 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1027
1028 l1_desc->span = STRTAB_SPLIT + 1;
1029 l1_desc->size = size;
1030 l1_desc->va = contigmalloc(size, M_SMMU,
1031 M_WAITOK | M_ZERO, /* flags */
1032 0, /* low */
1033 (1ul << 48) - 1, /* high */
1034 size, /* alignment */
1035 0); /* boundary */
1036 if (l1_desc->va == NULL) {
1037 device_printf(sc->dev, "failed to allocate l2 entry\n");
1038 return (ENXIO);
1039 }
1040
1041 l1_desc->pa = vtophys(l1_desc->va);
1042
1043 i = sid >> STRTAB_SPLIT;
1044 addr = (void *)((uint64_t)strtab->vaddr +
1045 STRTAB_L1_DESC_DWORDS * 8 * i);
1046
1047 /* Install the L1 entry. */
1048 val = l1_desc->pa & STRTAB_L1_DESC_L2PTR_M;
1049 KASSERT(val == l1_desc->pa, ("bad allocation 4"));
1050 val |= l1_desc->span;
1051 *addr = val;
1052
1053 return (0);
1054 }
1055
1056 static void __unused
1057 smmu_deinit_l1_entry(struct smmu_softc *sc, int sid)
1058 {
1059 struct smmu_strtab *strtab;
1060 struct l1_desc *l1_desc;
1061 uint64_t *addr;
1062 int i;
1063
1064 strtab = &sc->strtab;
1065
1066 i = sid >> STRTAB_SPLIT;
1067 addr = (void *)((uint64_t)strtab->vaddr +
1068 STRTAB_L1_DESC_DWORDS * 8 * i);
1069 *addr = 0;
1070
1071 l1_desc = &strtab->l1[sid >> STRTAB_SPLIT];
1072 contigfree(l1_desc->va, l1_desc->size, M_SMMU);
1073 }
1074
1075 static int
1076 smmu_disable(struct smmu_softc *sc)
1077 {
1078 uint32_t reg;
1079 int error;
1080
1081 /* Disable SMMU */
1082 reg = bus_read_4(sc->res[0], SMMU_CR0);
1083 reg &= ~CR0_SMMUEN;
1084 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1085 if (error)
1086 device_printf(sc->dev, "Could not disable SMMU.\n");
1087
1088 return (0);
1089 }
1090
1091 static int
1092 smmu_event_intr(void *arg)
1093 {
1094 uint32_t evt[EVTQ_ENTRY_DWORDS * 2];
1095 struct smmu_softc *sc;
1096
1097 sc = arg;
1098
1099 do {
1100 smmu_evtq_dequeue(sc, evt);
1101 smmu_print_event(sc, evt);
1102 } while (!smmu_q_empty(&sc->evtq));
1103
1104 return (FILTER_HANDLED);
1105 }
1106
1107 static int __unused
1108 smmu_sync_intr(void *arg)
1109 {
1110 struct smmu_softc *sc;
1111
1112 sc = arg;
1113
1114 device_printf(sc->dev, "%s\n", __func__);
1115
1116 return (FILTER_HANDLED);
1117 }
1118
1119 static int
1120 smmu_gerr_intr(void *arg)
1121 {
1122 struct smmu_softc *sc;
1123
1124 sc = arg;
1125
1126 device_printf(sc->dev, "SMMU Global Error\n");
1127
1128 return (FILTER_HANDLED);
1129 }
1130
1131 static int
1132 smmu_enable_interrupts(struct smmu_softc *sc)
1133 {
1134 uint32_t reg;
1135 int error;
1136
1137 /* Disable MSI. */
1138 bus_write_8(sc->res[0], SMMU_GERROR_IRQ_CFG0, 0);
1139 bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG1, 0);
1140 bus_write_4(sc->res[0], SMMU_GERROR_IRQ_CFG2, 0);
1141
1142 bus_write_8(sc->res[0], SMMU_EVENTQ_IRQ_CFG0, 0);
1143 bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG1, 0);
1144 bus_write_4(sc->res[0], SMMU_EVENTQ_IRQ_CFG2, 0);
1145
1146 if (sc->features & CR0_PRIQEN) {
1147 bus_write_8(sc->res[0], SMMU_PRIQ_IRQ_CFG0, 0);
1148 bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG1, 0);
1149 bus_write_4(sc->res[0], SMMU_PRIQ_IRQ_CFG2, 0);
1150 }
1151
1152 /* Disable any interrupts. */
1153 error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, 0);
1154 if (error) {
1155 device_printf(sc->dev, "Could not disable interrupts.\n");
1156 return (ENXIO);
1157 }
1158
1159 /* Enable interrupts. */
1160 reg = IRQ_CTRL_EVENTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
1161 if (sc->features & SMMU_FEATURE_PRI)
1162 reg |= IRQ_CTRL_PRIQ_IRQEN;
1163
1164 error = smmu_write_ack(sc, SMMU_IRQ_CTRL, SMMU_IRQ_CTRLACK, reg);
1165 if (error) {
1166 device_printf(sc->dev, "Could not enable interrupts.\n");
1167 return (ENXIO);
1168 }
1169
1170 return (0);
1171 }
1172
1173 #ifdef DEV_ACPI
1174 static void
1175 smmu_configure_intr(struct smmu_softc *sc, struct resource *res)
1176 {
1177 struct intr_map_data_acpi *ad;
1178 struct intr_map_data *data;
1179
1180 data = rman_get_virtual(res);
1181 KASSERT(data != NULL, ("data is NULL"));
1182
1183 if (data->type == INTR_MAP_DATA_ACPI) {
1184 ad = (struct intr_map_data_acpi *)data;
1185 ad->trig = INTR_TRIGGER_EDGE;
1186 ad->pol = INTR_POLARITY_HIGH;
1187 }
1188 }
1189 #endif
1190
1191 static int
1192 smmu_setup_interrupts(struct smmu_softc *sc)
1193 {
1194 device_t dev;
1195 int error;
1196
1197 dev = sc->dev;
1198
1199 #ifdef DEV_ACPI
1200 /*
1201 * Configure SMMU interrupts as EDGE triggered manually
1202 * as ACPI tables carries no information for that.
1203 */
1204 smmu_configure_intr(sc, sc->res[1]);
1205 /* PRIQ is not in use. */
1206 smmu_configure_intr(sc, sc->res[3]);
1207 smmu_configure_intr(sc, sc->res[4]);
1208 #endif
1209
1210 error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC,
1211 smmu_event_intr, NULL, sc, &sc->intr_cookie[0]);
1212 if (error) {
1213 device_printf(dev, "Couldn't setup Event interrupt handler\n");
1214 return (ENXIO);
1215 }
1216
1217 error = bus_setup_intr(dev, sc->res[4], INTR_TYPE_MISC,
1218 smmu_gerr_intr, NULL, sc, &sc->intr_cookie[2]);
1219 if (error) {
1220 device_printf(dev, "Couldn't setup Gerr interrupt handler\n");
1221 return (ENXIO);
1222 }
1223
1224 return (0);
1225 }
1226
1227 static int
1228 smmu_reset(struct smmu_softc *sc)
1229 {
1230 struct smmu_cmdq_entry cmd;
1231 struct smmu_strtab *strtab;
1232 int error;
1233 int reg;
1234
1235 reg = bus_read_4(sc->res[0], SMMU_CR0);
1236
1237 if (reg & CR0_SMMUEN)
1238 device_printf(sc->dev,
1239 "%s: Warning: SMMU is enabled\n", __func__);
1240
1241 error = smmu_disable(sc);
1242 if (error)
1243 device_printf(sc->dev,
1244 "%s: Could not disable SMMU.\n", __func__);
1245
1246 if (smmu_enable_interrupts(sc) != 0) {
1247 device_printf(sc->dev, "Could not enable interrupts.\n");
1248 return (ENXIO);
1249 }
1250
1251 reg = CR1_TABLE_SH_IS |
1252 CR1_TABLE_OC_WBC |
1253 CR1_TABLE_IC_WBC |
1254 CR1_QUEUE_SH_IS |
1255 CR1_QUEUE_OC_WBC |
1256 CR1_QUEUE_IC_WBC;
1257 bus_write_4(sc->res[0], SMMU_CR1, reg);
1258
1259 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
1260 bus_write_4(sc->res[0], SMMU_CR2, reg);
1261
1262 /* Stream table. */
1263 strtab = &sc->strtab;
1264 bus_write_8(sc->res[0], SMMU_STRTAB_BASE, strtab->base);
1265 bus_write_4(sc->res[0], SMMU_STRTAB_BASE_CFG, strtab->base_cfg);
1266
1267 /* Command queue. */
1268 bus_write_8(sc->res[0], SMMU_CMDQ_BASE, sc->cmdq.base);
1269 bus_write_4(sc->res[0], SMMU_CMDQ_PROD, sc->cmdq.lc.prod);
1270 bus_write_4(sc->res[0], SMMU_CMDQ_CONS, sc->cmdq.lc.cons);
1271
1272 reg = CR0_CMDQEN;
1273 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1274 if (error) {
1275 device_printf(sc->dev, "Could not enable command queue\n");
1276 return (ENXIO);
1277 }
1278
1279 /* Invalidate cached configuration. */
1280 smmu_invalidate_all_sid(sc);
1281
1282 if (sc->features & SMMU_FEATURE_HYP) {
1283 cmd.opcode = CMD_TLBI_EL2_ALL;
1284 smmu_cmdq_enqueue_cmd(sc, &cmd);
1285 };
1286
1287 /* Invalidate TLB. */
1288 smmu_tlbi_all(sc);
1289
1290 /* Event queue */
1291 bus_write_8(sc->res[0], SMMU_EVENTQ_BASE, sc->evtq.base);
1292 bus_write_4(sc->res[0], SMMU_EVENTQ_PROD, sc->evtq.lc.prod);
1293 bus_write_4(sc->res[0], SMMU_EVENTQ_CONS, sc->evtq.lc.cons);
1294
1295 reg |= CR0_EVENTQEN;
1296 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1297 if (error) {
1298 device_printf(sc->dev, "Could not enable event queue\n");
1299 return (ENXIO);
1300 }
1301
1302 if (sc->features & SMMU_FEATURE_PRI) {
1303 /* PRI queue */
1304 bus_write_8(sc->res[0], SMMU_PRIQ_BASE, sc->priq.base);
1305 bus_write_4(sc->res[0], SMMU_PRIQ_PROD, sc->priq.lc.prod);
1306 bus_write_4(sc->res[0], SMMU_PRIQ_CONS, sc->priq.lc.cons);
1307
1308 reg |= CR0_PRIQEN;
1309 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1310 if (error) {
1311 device_printf(sc->dev, "Could not enable PRI queue\n");
1312 return (ENXIO);
1313 }
1314 }
1315
1316 if (sc->features & SMMU_FEATURE_ATS) {
1317 reg |= CR0_ATSCHK;
1318 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1319 if (error) {
1320 device_printf(sc->dev, "Could not enable ATS check.\n");
1321 return (ENXIO);
1322 }
1323 }
1324
1325 reg |= CR0_SMMUEN;
1326 error = smmu_write_ack(sc, SMMU_CR0, SMMU_CR0ACK, reg);
1327 if (error) {
1328 device_printf(sc->dev, "Could not enable SMMU.\n");
1329 return (ENXIO);
1330 }
1331
1332 return (0);
1333 }
1334
1335 static int
1336 smmu_check_features(struct smmu_softc *sc)
1337 {
1338 uint32_t reg;
1339 uint32_t val;
1340
1341 sc->features = 0;
1342
1343 reg = bus_read_4(sc->res[0], SMMU_IDR0);
1344
1345 if (reg & IDR0_ST_LVL_2) {
1346 if (bootverbose)
1347 device_printf(sc->dev,
1348 "2-level stream table supported.\n");
1349 sc->features |= SMMU_FEATURE_2_LVL_STREAM_TABLE;
1350 }
1351
1352 if (reg & IDR0_CD2L) {
1353 if (bootverbose)
1354 device_printf(sc->dev,
1355 "2-level CD table supported.\n");
1356 sc->features |= SMMU_FEATURE_2_LVL_CD;
1357 }
1358
1359 switch (reg & IDR0_TTENDIAN_M) {
1360 case IDR0_TTENDIAN_MIXED:
1361 if (bootverbose)
1362 device_printf(sc->dev, "Mixed endianess supported.\n");
1363 sc->features |= SMMU_FEATURE_TT_LE;
1364 sc->features |= SMMU_FEATURE_TT_BE;
1365 break;
1366 case IDR0_TTENDIAN_LITTLE:
1367 if (bootverbose)
1368 device_printf(sc->dev,
1369 "Little endian supported only.\n");
1370 sc->features |= SMMU_FEATURE_TT_LE;
1371 break;
1372 case IDR0_TTENDIAN_BIG:
1373 if (bootverbose)
1374 device_printf(sc->dev, "Big endian supported only.\n");
1375 sc->features |= SMMU_FEATURE_TT_BE;
1376 break;
1377 default:
1378 device_printf(sc->dev, "Unsupported endianness.\n");
1379 return (ENXIO);
1380 }
1381
1382 if (reg & IDR0_SEV)
1383 sc->features |= SMMU_FEATURE_SEV;
1384
1385 if (reg & IDR0_MSI) {
1386 if (bootverbose)
1387 device_printf(sc->dev, "MSI feature present.\n");
1388 sc->features |= SMMU_FEATURE_MSI;
1389 }
1390
1391 if (reg & IDR0_HYP) {
1392 if (bootverbose)
1393 device_printf(sc->dev, "HYP feature present.\n");
1394 sc->features |= SMMU_FEATURE_HYP;
1395 }
1396
1397 if (reg & IDR0_ATS)
1398 sc->features |= SMMU_FEATURE_ATS;
1399
1400 if (reg & IDR0_PRI)
1401 sc->features |= SMMU_FEATURE_PRI;
1402
1403 switch (reg & IDR0_STALL_MODEL_M) {
1404 case IDR0_STALL_MODEL_FORCE:
1405 /* Stall is forced. */
1406 sc->features |= SMMU_FEATURE_STALL_FORCE;
1407 /* FALLTHROUGH */
1408 case IDR0_STALL_MODEL_STALL:
1409 sc->features |= SMMU_FEATURE_STALL;
1410 break;
1411 }
1412
1413 /* Grab translation stages supported. */
1414 if (reg & IDR0_S1P) {
1415 if (bootverbose)
1416 device_printf(sc->dev,
1417 "Stage 1 translation supported.\n");
1418 sc->features |= SMMU_FEATURE_S1P;
1419 }
1420 if (reg & IDR0_S2P) {
1421 if (bootverbose)
1422 device_printf(sc->dev,
1423 "Stage 2 translation supported.\n");
1424 sc->features |= SMMU_FEATURE_S2P;
1425 }
1426
1427 switch (reg & IDR0_TTF_M) {
1428 case IDR0_TTF_ALL:
1429 case IDR0_TTF_AA64:
1430 sc->ias = 40;
1431 break;
1432 default:
1433 device_printf(sc->dev, "No AArch64 table format support.\n");
1434 return (ENXIO);
1435 }
1436
1437 if (reg & IDR0_ASID16)
1438 sc->asid_bits = 16;
1439 else
1440 sc->asid_bits = 8;
1441
1442 if (bootverbose)
1443 device_printf(sc->dev, "ASID bits %d\n", sc->asid_bits);
1444
1445 if (reg & IDR0_VMID16)
1446 sc->vmid_bits = 16;
1447 else
1448 sc->vmid_bits = 8;
1449
1450 reg = bus_read_4(sc->res[0], SMMU_IDR1);
1451
1452 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
1453 device_printf(sc->dev,
1454 "Embedded implementations not supported by this driver.\n");
1455 return (ENXIO);
1456 }
1457
1458 val = (reg & IDR1_CMDQS_M) >> IDR1_CMDQS_S;
1459 sc->cmdq.size_log2 = val;
1460 if (bootverbose)
1461 device_printf(sc->dev, "CMD queue bits %d\n", val);
1462
1463 val = (reg & IDR1_EVENTQS_M) >> IDR1_EVENTQS_S;
1464 sc->evtq.size_log2 = val;
1465 if (bootverbose)
1466 device_printf(sc->dev, "EVENT queue bits %d\n", val);
1467
1468 if (sc->features & SMMU_FEATURE_PRI) {
1469 val = (reg & IDR1_PRIQS_M) >> IDR1_PRIQS_S;
1470 sc->priq.size_log2 = val;
1471 if (bootverbose)
1472 device_printf(sc->dev, "PRI queue bits %d\n", val);
1473 }
1474
1475 sc->ssid_bits = (reg & IDR1_SSIDSIZE_M) >> IDR1_SSIDSIZE_S;
1476 sc->sid_bits = (reg & IDR1_SIDSIZE_M) >> IDR1_SIDSIZE_S;
1477
1478 if (sc->sid_bits <= STRTAB_SPLIT)
1479 sc->features &= ~SMMU_FEATURE_2_LVL_STREAM_TABLE;
1480
1481 if (bootverbose) {
1482 device_printf(sc->dev, "SSID bits %d\n", sc->ssid_bits);
1483 device_printf(sc->dev, "SID bits %d\n", sc->sid_bits);
1484 }
1485
1486 /* IDR3 */
1487 reg = bus_read_4(sc->res[0], SMMU_IDR3);
1488 if (reg & IDR3_RIL)
1489 sc->features |= SMMU_FEATURE_RANGE_INV;
1490
1491 /* IDR5 */
1492 reg = bus_read_4(sc->res[0], SMMU_IDR5);
1493
1494 switch (reg & IDR5_OAS_M) {
1495 case IDR5_OAS_32:
1496 sc->oas = 32;
1497 break;
1498 case IDR5_OAS_36:
1499 sc->oas = 36;
1500 break;
1501 case IDR5_OAS_40:
1502 sc->oas = 40;
1503 break;
1504 case IDR5_OAS_42:
1505 sc->oas = 42;
1506 break;
1507 case IDR5_OAS_44:
1508 sc->oas = 44;
1509 break;
1510 case IDR5_OAS_48:
1511 sc->oas = 48;
1512 break;
1513 case IDR5_OAS_52:
1514 sc->oas = 52;
1515 break;
1516 }
1517
1518 sc->pgsizes = 0;
1519 if (reg & IDR5_GRAN64K)
1520 sc->pgsizes |= 64 * 1024;
1521 if (reg & IDR5_GRAN16K)
1522 sc->pgsizes |= 16 * 1024;
1523 if (reg & IDR5_GRAN4K)
1524 sc->pgsizes |= 4 * 1024;
1525
1526 if ((reg & IDR5_VAX_M) == IDR5_VAX_52)
1527 sc->features |= SMMU_FEATURE_VAX;
1528
1529 return (0);
1530 }
1531
1532 static void
1533 smmu_init_asids(struct smmu_softc *sc)
1534 {
1535
1536 sc->asid_set_size = (1 << sc->asid_bits);
1537 sc->asid_set = bit_alloc(sc->asid_set_size, M_SMMU, M_WAITOK);
1538 mtx_init(&sc->asid_set_mutex, "asid set", NULL, MTX_SPIN);
1539 }
1540
1541 static int
1542 smmu_asid_alloc(struct smmu_softc *sc, int *new_asid)
1543 {
1544
1545 mtx_lock_spin(&sc->asid_set_mutex);
1546 bit_ffc(sc->asid_set, sc->asid_set_size, new_asid);
1547 if (*new_asid == -1) {
1548 mtx_unlock_spin(&sc->asid_set_mutex);
1549 return (ENOMEM);
1550 }
1551 bit_set(sc->asid_set, *new_asid);
1552 mtx_unlock_spin(&sc->asid_set_mutex);
1553
1554 return (0);
1555 }
1556
1557 static void
1558 smmu_asid_free(struct smmu_softc *sc, int asid)
1559 {
1560
1561 mtx_lock_spin(&sc->asid_set_mutex);
1562 bit_clear(sc->asid_set, asid);
1563 mtx_unlock_spin(&sc->asid_set_mutex);
1564 }
1565
1566 /*
1567 * Device interface.
1568 */
1569 int
1570 smmu_attach(device_t dev)
1571 {
1572 struct smmu_softc *sc;
1573 int error;
1574
1575 sc = device_get_softc(dev);
1576 sc->dev = dev;
1577
1578 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->dev), "smmu", MTX_DEF);
1579
1580 error = smmu_setup_interrupts(sc);
1581 if (error) {
1582 bus_release_resources(dev, smmu_spec, sc->res);
1583 return (ENXIO);
1584 }
1585
1586 error = smmu_check_features(sc);
1587 if (error) {
1588 device_printf(dev, "Some features are required "
1589 "but not supported by hardware.\n");
1590 return (ENXIO);
1591 }
1592
1593 smmu_init_asids(sc);
1594
1595 error = smmu_init_queues(sc);
1596 if (error) {
1597 device_printf(dev, "Couldn't allocate queues.\n");
1598 return (ENXIO);
1599 }
1600
1601 error = smmu_init_strtab(sc);
1602 if (error) {
1603 device_printf(dev, "Couldn't allocate strtab.\n");
1604 return (ENXIO);
1605 }
1606
1607 error = smmu_reset(sc);
1608 if (error) {
1609 device_printf(dev, "Couldn't reset SMMU.\n");
1610 return (ENXIO);
1611 }
1612
1613 return (0);
1614 }
1615
1616 int
1617 smmu_detach(device_t dev)
1618 {
1619 struct smmu_softc *sc;
1620
1621 sc = device_get_softc(dev);
1622
1623 bus_release_resources(dev, smmu_spec, sc->res);
1624
1625 return (0);
1626 }
1627
1628 static int
1629 smmu_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1630 {
1631 struct smmu_softc *sc;
1632
1633 sc = device_get_softc(dev);
1634
1635 device_printf(sc->dev, "%s\n", __func__);
1636
1637 return (ENOENT);
1638 }
1639
1640 static int
1641 smmu_unmap(device_t dev, struct iommu_domain *iodom,
1642 vm_offset_t va, bus_size_t size)
1643 {
1644 struct smmu_domain *domain;
1645 struct smmu_softc *sc;
1646 int err;
1647 int i;
1648
1649 sc = device_get_softc(dev);
1650
1651 domain = (struct smmu_domain *)iodom;
1652
1653 err = 0;
1654
1655 dprintf("%s: %lx, %ld, domain %d\n", __func__, va, size, domain->asid);
1656
1657 for (i = 0; i < size; i += PAGE_SIZE) {
1658 if (pmap_smmu_remove(&domain->p, va) == 0) {
1659 /* pmap entry removed, invalidate TLB. */
1660 smmu_tlbi_va(sc, va, domain->asid);
1661 } else {
1662 err = ENOENT;
1663 break;
1664 }
1665 va += PAGE_SIZE;
1666 }
1667
1668 smmu_sync(sc);
1669
1670 return (err);
1671 }
1672
1673 static int
1674 smmu_map(device_t dev, struct iommu_domain *iodom,
1675 vm_offset_t va, vm_page_t *ma, vm_size_t size,
1676 vm_prot_t prot)
1677 {
1678 struct smmu_domain *domain;
1679 struct smmu_softc *sc;
1680 vm_paddr_t pa;
1681 int error;
1682 int i;
1683
1684 sc = device_get_softc(dev);
1685
1686 domain = (struct smmu_domain *)iodom;
1687
1688 dprintf("%s: %lx -> %lx, %ld, domain %d\n", __func__, va, pa, size,
1689 domain->asid);
1690
1691 for (i = 0; size > 0; size -= PAGE_SIZE) {
1692 pa = VM_PAGE_TO_PHYS(ma[i++]);
1693 error = pmap_smmu_enter(&domain->p, va, pa, prot, 0);
1694 if (error)
1695 return (error);
1696 smmu_tlbi_va(sc, va, domain->asid);
1697 va += PAGE_SIZE;
1698 }
1699
1700 smmu_sync(sc);
1701
1702 return (0);
1703 }
1704
1705 static struct iommu_domain *
1706 smmu_domain_alloc(device_t dev, struct iommu_unit *iommu)
1707 {
1708 struct iommu_domain *iodom;
1709 struct smmu_domain *domain;
1710 struct smmu_unit *unit;
1711 struct smmu_softc *sc;
1712 int error;
1713 int new_asid;
1714
1715 sc = device_get_softc(dev);
1716
1717 unit = (struct smmu_unit *)iommu;
1718
1719 domain = malloc(sizeof(*domain), M_SMMU, M_WAITOK | M_ZERO);
1720
1721 error = smmu_asid_alloc(sc, &new_asid);
1722 if (error) {
1723 free(domain, M_SMMU);
1724 device_printf(sc->dev,
1725 "Could not allocate ASID for a new domain.\n");
1726 return (NULL);
1727 }
1728
1729 domain->asid = (uint16_t)new_asid;
1730
1731 iommu_pmap_pinit(&domain->p);
1732 PMAP_LOCK_INIT(&domain->p);
1733
1734 error = smmu_init_cd(sc, domain);
1735 if (error) {
1736 free(domain, M_SMMU);
1737 device_printf(sc->dev, "Could not initialize CD\n");
1738 return (NULL);
1739 }
1740
1741 smmu_tlbi_asid(sc, domain->asid);
1742
1743 LIST_INIT(&domain->ctx_list);
1744
1745 IOMMU_LOCK(iommu);
1746 LIST_INSERT_HEAD(&unit->domain_list, domain, next);
1747 IOMMU_UNLOCK(iommu);
1748
1749 iodom = &domain->iodom;
1750
1751 /*
1752 * Use 48-bit address space regardless of VAX bit
1753 * as we need 64k IOMMU_PAGE_SIZE for 52-bit space.
1754 */
1755 iodom->end = MAXADDR_48BIT;
1756
1757 return (iodom);
1758 }
1759
1760 static void
1761 smmu_domain_free(device_t dev, struct iommu_domain *iodom)
1762 {
1763 struct smmu_domain *domain;
1764 struct smmu_softc *sc;
1765 struct smmu_cd *cd;
1766
1767 sc = device_get_softc(dev);
1768
1769 domain = (struct smmu_domain *)iodom;
1770
1771 LIST_REMOVE(domain, next);
1772
1773 cd = domain->cd;
1774
1775 iommu_pmap_remove_pages(&domain->p);
1776 iommu_pmap_release(&domain->p);
1777
1778 smmu_tlbi_asid(sc, domain->asid);
1779 smmu_asid_free(sc, domain->asid);
1780
1781 contigfree(cd->vaddr, cd->size, M_SMMU);
1782 free(cd, M_SMMU);
1783
1784 free(domain, M_SMMU);
1785 }
1786
1787 static int
1788 smmu_set_buswide(device_t dev, struct smmu_domain *domain,
1789 struct smmu_ctx *ctx)
1790 {
1791 struct smmu_softc *sc;
1792 int i;
1793
1794 sc = device_get_softc(dev);
1795
1796 for (i = 0; i < PCI_SLOTMAX; i++)
1797 smmu_init_ste(sc, domain->cd, (ctx->sid | i), ctx->bypass);
1798
1799 return (0);
1800 }
1801
1802 #ifdef DEV_ACPI
1803 static int
1804 smmu_pci_get_sid_acpi(device_t child, u_int *xref0, u_int *sid0)
1805 {
1806 uint16_t rid;
1807 u_int xref;
1808 int seg;
1809 int err;
1810 int sid;
1811
1812 seg = pci_get_domain(child);
1813 rid = pci_get_rid(child);
1814
1815 err = acpi_iort_map_pci_smmuv3(seg, rid, &xref, &sid);
1816 if (err == 0) {
1817 if (sid0)
1818 *sid0 = sid;
1819 if (xref0)
1820 *xref0 = xref;
1821 }
1822
1823 return (err);
1824 }
1825 #endif
1826
1827 #ifdef FDT
1828 static int
1829 smmu_pci_get_sid_fdt(device_t child, u_int *xref0, u_int *sid0)
1830 {
1831 struct pci_id_ofw_iommu pi;
1832 uint64_t base, size;
1833 phandle_t node;
1834 u_int xref;
1835 int err;
1836
1837 err = pci_get_id(child, PCI_ID_OFW_IOMMU, (uintptr_t *)&pi);
1838 if (err == 0) {
1839 /* Our xref is memory base address. */
1840 node = OF_node_from_xref(pi.xref);
1841 fdt_regsize(node, &base, &size);
1842 xref = base;
1843
1844 if (sid0)
1845 *sid0 = pi.id;
1846 if (xref0)
1847 *xref0 = xref;
1848 }
1849
1850 return (err);
1851 }
1852 #endif
1853
1854 static struct iommu_ctx *
1855 smmu_ctx_alloc(device_t dev, struct iommu_domain *iodom, device_t child,
1856 bool disabled)
1857 {
1858 struct smmu_domain *domain;
1859 struct smmu_ctx *ctx;
1860
1861 domain = (struct smmu_domain *)iodom;
1862
1863 ctx = malloc(sizeof(struct smmu_ctx), M_SMMU, M_WAITOK | M_ZERO);
1864 ctx->dev = child;
1865 ctx->domain = domain;
1866 if (disabled)
1867 ctx->bypass = true;
1868
1869 IOMMU_DOMAIN_LOCK(iodom);
1870 LIST_INSERT_HEAD(&domain->ctx_list, ctx, next);
1871 IOMMU_DOMAIN_UNLOCK(iodom);
1872
1873 return (&ctx->ioctx);
1874 }
1875
1876 static int
1877 smmu_ctx_init(device_t dev, struct iommu_ctx *ioctx)
1878 {
1879 struct smmu_domain *domain;
1880 struct iommu_domain *iodom;
1881 struct smmu_softc *sc;
1882 struct smmu_ctx *ctx;
1883 devclass_t pci_class;
1884 u_int sid;
1885 int err;
1886
1887 ctx = (struct smmu_ctx *)ioctx;
1888
1889 sc = device_get_softc(dev);
1890
1891 domain = ctx->domain;
1892 iodom = (struct iommu_domain *)domain;
1893
1894 pci_class = devclass_find("pci");
1895 if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class) {
1896 #ifdef DEV_ACPI
1897 err = smmu_pci_get_sid_acpi(ctx->dev, NULL, &sid);
1898 #else
1899 err = smmu_pci_get_sid_fdt(ctx->dev, NULL, &sid);
1900 #endif
1901 if (err)
1902 return (err);
1903
1904 ioctx->rid = pci_get_rid(dev);
1905 ctx->sid = sid;
1906 ctx->vendor = pci_get_vendor(ctx->dev);
1907 ctx->device = pci_get_device(ctx->dev);
1908 }
1909
1910 if (sc->features & SMMU_FEATURE_2_LVL_STREAM_TABLE) {
1911 err = smmu_init_l1_entry(sc, ctx->sid);
1912 if (err)
1913 return (err);
1914 }
1915
1916 /*
1917 * Neoverse N1 SDP:
1918 * 0x800 xhci
1919 * 0x700 re
1920 * 0x600 sata
1921 */
1922
1923 smmu_init_ste(sc, domain->cd, ctx->sid, ctx->bypass);
1924
1925 if (device_get_devclass(device_get_parent(ctx->dev)) == pci_class)
1926 if (iommu_is_buswide_ctx(iodom->iommu, pci_get_bus(ctx->dev)))
1927 smmu_set_buswide(dev, domain, ctx);
1928
1929 return (0);
1930 }
1931
1932 static void
1933 smmu_ctx_free(device_t dev, struct iommu_ctx *ioctx)
1934 {
1935 struct smmu_softc *sc;
1936 struct smmu_ctx *ctx;
1937
1938 IOMMU_ASSERT_LOCKED(ioctx->domain->iommu);
1939
1940 sc = device_get_softc(dev);
1941 ctx = (struct smmu_ctx *)ioctx;
1942
1943 smmu_deinit_ste(sc, ctx->sid);
1944
1945 LIST_REMOVE(ctx, next);
1946
1947 free(ctx, M_SMMU);
1948 }
1949
1950 struct smmu_ctx *
1951 smmu_ctx_lookup_by_sid(device_t dev, u_int sid)
1952 {
1953 struct smmu_softc *sc;
1954 struct smmu_domain *domain;
1955 struct smmu_unit *unit;
1956 struct smmu_ctx *ctx;
1957
1958 sc = device_get_softc(dev);
1959
1960 unit = &sc->unit;
1961
1962 LIST_FOREACH(domain, &unit->domain_list, next) {
1963 LIST_FOREACH(ctx, &domain->ctx_list, next) {
1964 if (ctx->sid == sid)
1965 return (ctx);
1966 }
1967 }
1968
1969 return (NULL);
1970 }
1971
1972 static struct iommu_ctx *
1973 smmu_ctx_lookup(device_t dev, device_t child)
1974 {
1975 struct iommu_unit *iommu __diagused;
1976 struct smmu_softc *sc;
1977 struct smmu_domain *domain;
1978 struct smmu_unit *unit;
1979 struct smmu_ctx *ctx;
1980
1981 sc = device_get_softc(dev);
1982
1983 unit = &sc->unit;
1984 iommu = &unit->iommu;
1985
1986 IOMMU_ASSERT_LOCKED(iommu);
1987
1988 LIST_FOREACH(domain, &unit->domain_list, next) {
1989 IOMMU_DOMAIN_LOCK(&domain->iodom);
1990 LIST_FOREACH(ctx, &domain->ctx_list, next) {
1991 if (ctx->dev == child) {
1992 IOMMU_DOMAIN_UNLOCK(&domain->iodom);
1993 return (&ctx->ioctx);
1994 }
1995 }
1996 IOMMU_DOMAIN_UNLOCK(&domain->iodom);
1997 }
1998
1999 return (NULL);
2000 }
2001
2002 static int
2003 smmu_find(device_t dev, device_t child)
2004 {
2005 struct smmu_softc *sc;
2006 u_int xref;
2007 int err;
2008
2009 sc = device_get_softc(dev);
2010
2011 #ifdef DEV_ACPI
2012 err = smmu_pci_get_sid_acpi(child, &xref, NULL);
2013 #else
2014 err = smmu_pci_get_sid_fdt(child, &xref, NULL);
2015 #endif
2016 if (err)
2017 return (ENOENT);
2018
2019 /* Check if xref is ours. */
2020 if (xref != sc->xref)
2021 return (EFAULT);
2022
2023 return (0);
2024 }
2025
2026 #ifdef FDT
2027 static int
2028 smmu_ofw_md_data(device_t dev, struct iommu_ctx *ioctx, pcell_t *cells,
2029 int ncells)
2030 {
2031 struct smmu_ctx *ctx;
2032
2033 ctx = (struct smmu_ctx *)ioctx;
2034
2035 if (ncells != 1)
2036 return (-1);
2037
2038 ctx->sid = cells[0];
2039
2040 return (0);
2041 }
2042 #endif
2043
2044 static device_method_t smmu_methods[] = {
2045 /* Device interface */
2046 DEVMETHOD(device_detach, smmu_detach),
2047
2048 /* SMMU interface */
2049 DEVMETHOD(iommu_find, smmu_find),
2050 DEVMETHOD(iommu_map, smmu_map),
2051 DEVMETHOD(iommu_unmap, smmu_unmap),
2052 DEVMETHOD(iommu_domain_alloc, smmu_domain_alloc),
2053 DEVMETHOD(iommu_domain_free, smmu_domain_free),
2054 DEVMETHOD(iommu_ctx_alloc, smmu_ctx_alloc),
2055 DEVMETHOD(iommu_ctx_init, smmu_ctx_init),
2056 DEVMETHOD(iommu_ctx_free, smmu_ctx_free),
2057 DEVMETHOD(iommu_ctx_lookup, smmu_ctx_lookup),
2058 #ifdef FDT
2059 DEVMETHOD(iommu_ofw_md_data, smmu_ofw_md_data),
2060 #endif
2061
2062 /* Bus interface */
2063 DEVMETHOD(bus_read_ivar, smmu_read_ivar),
2064
2065 /* End */
2066 DEVMETHOD_END
2067 };
2068
2069 DEFINE_CLASS_0(smmu, smmu_driver, smmu_methods, sizeof(struct smmu_softc));
Cache object: 04b51515784f49ebbee200caff588e4d
|