The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/block/blk-settings.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Functions related to setting various queue properties from drivers
    3  */
    4 #include <linux/kernel.h>
    5 #include <linux/module.h>
    6 #include <linux/init.h>
    7 #include <linux/bio.h>
    8 #include <linux/blkdev.h>
    9 #include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
   10 #include <linux/gcd.h>
   11 #include <linux/lcm.h>
   12 #include <linux/jiffies.h>
   13 #include <linux/gfp.h>
   14 
   15 #include "blk.h"
   16 
   17 unsigned long blk_max_low_pfn;
   18 EXPORT_SYMBOL(blk_max_low_pfn);
   19 
   20 unsigned long blk_max_pfn;
   21 
   22 /**
   23  * blk_queue_prep_rq - set a prepare_request function for queue
   24  * @q:          queue
   25  * @pfn:        prepare_request function
   26  *
   27  * It's possible for a queue to register a prepare_request callback which
   28  * is invoked before the request is handed to the request_fn. The goal of
   29  * the function is to prepare a request for I/O, it can be used to build a
   30  * cdb from the request data for instance.
   31  *
   32  */
   33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
   34 {
   35         q->prep_rq_fn = pfn;
   36 }
   37 EXPORT_SYMBOL(blk_queue_prep_rq);
   38 
   39 /**
   40  * blk_queue_unprep_rq - set an unprepare_request function for queue
   41  * @q:          queue
   42  * @ufn:        unprepare_request function
   43  *
   44  * It's possible for a queue to register an unprepare_request callback
   45  * which is invoked before the request is finally completed. The goal
   46  * of the function is to deallocate any data that was allocated in the
   47  * prepare_request callback.
   48  *
   49  */
   50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
   51 {
   52         q->unprep_rq_fn = ufn;
   53 }
   54 EXPORT_SYMBOL(blk_queue_unprep_rq);
   55 
   56 /**
   57  * blk_queue_merge_bvec - set a merge_bvec function for queue
   58  * @q:          queue
   59  * @mbfn:       merge_bvec_fn
   60  *
   61  * Usually queues have static limitations on the max sectors or segments that
   62  * we can put in a request. Stacking drivers may have some settings that
   63  * are dynamic, and thus we have to query the queue whether it is ok to
   64  * add a new bio_vec to a bio at a given offset or not. If the block device
   65  * has such limitations, it needs to register a merge_bvec_fn to control
   66  * the size of bio's sent to it. Note that a block device *must* allow a
   67  * single page to be added to an empty bio. The block device driver may want
   68  * to use the bio_split() function to deal with these bio's. By default
   69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
   70  * honored.
   71  */
   72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
   73 {
   74         q->merge_bvec_fn = mbfn;
   75 }
   76 EXPORT_SYMBOL(blk_queue_merge_bvec);
   77 
   78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
   79 {
   80         q->softirq_done_fn = fn;
   81 }
   82 EXPORT_SYMBOL(blk_queue_softirq_done);
   83 
   84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
   85 {
   86         q->rq_timeout = timeout;
   87 }
   88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
   89 
   90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
   91 {
   92         q->rq_timed_out_fn = fn;
   93 }
   94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
   95 
   96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
   97 {
   98         q->lld_busy_fn = fn;
   99 }
  100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
  101 
  102 /**
  103  * blk_set_default_limits - reset limits to default values
  104  * @lim:  the queue_limits structure to reset
  105  *
  106  * Description:
  107  *   Returns a queue_limit struct to its default state.
  108  */
  109 void blk_set_default_limits(struct queue_limits *lim)
  110 {
  111         lim->max_segments = BLK_MAX_SEGMENTS;
  112         lim->max_integrity_segments = 0;
  113         lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  114         lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
  115         lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
  116         lim->max_write_same_sectors = 0;
  117         lim->max_discard_sectors = 0;
  118         lim->discard_granularity = 0;
  119         lim->discard_alignment = 0;
  120         lim->discard_misaligned = 0;
  121         lim->discard_zeroes_data = 0;
  122         lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
  123         lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
  124         lim->alignment_offset = 0;
  125         lim->io_opt = 0;
  126         lim->misaligned = 0;
  127         lim->cluster = 1;
  128 }
  129 EXPORT_SYMBOL(blk_set_default_limits);
  130 
  131 /**
  132  * blk_set_stacking_limits - set default limits for stacking devices
  133  * @lim:  the queue_limits structure to reset
  134  *
  135  * Description:
  136  *   Returns a queue_limit struct to its default state. Should be used
  137  *   by stacking drivers like DM that have no internal limits.
  138  */
  139 void blk_set_stacking_limits(struct queue_limits *lim)
  140 {
  141         blk_set_default_limits(lim);
  142 
  143         /* Inherit limits from component devices */
  144         lim->discard_zeroes_data = 1;
  145         lim->max_segments = USHRT_MAX;
  146         lim->max_hw_sectors = UINT_MAX;
  147         lim->max_sectors = UINT_MAX;
  148         lim->max_write_same_sectors = UINT_MAX;
  149 }
  150 EXPORT_SYMBOL(blk_set_stacking_limits);
  151 
  152 /**
  153  * blk_queue_make_request - define an alternate make_request function for a device
  154  * @q:  the request queue for the device to be affected
  155  * @mfn: the alternate make_request function
  156  *
  157  * Description:
  158  *    The normal way for &struct bios to be passed to a device
  159  *    driver is for them to be collected into requests on a request
  160  *    queue, and then to allow the device driver to select requests
  161  *    off that queue when it is ready.  This works well for many block
  162  *    devices. However some block devices (typically virtual devices
  163  *    such as md or lvm) do not benefit from the processing on the
  164  *    request queue, and are served best by having the requests passed
  165  *    directly to them.  This can be achieved by providing a function
  166  *    to blk_queue_make_request().
  167  *
  168  * Caveat:
  169  *    The driver that does this *must* be able to deal appropriately
  170  *    with buffers in "highmemory". This can be accomplished by either calling
  171  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  172  *    blk_queue_bounce() to create a buffer in normal memory.
  173  **/
  174 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
  175 {
  176         /*
  177          * set defaults
  178          */
  179         q->nr_requests = BLKDEV_MAX_RQ;
  180 
  181         q->make_request_fn = mfn;
  182         blk_queue_dma_alignment(q, 511);
  183         blk_queue_congestion_threshold(q);
  184         q->nr_batching = BLK_BATCH_REQ;
  185 
  186         blk_set_default_limits(&q->limits);
  187 
  188         /*
  189          * by default assume old behaviour and bounce for any highmem page
  190          */
  191         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  192 }
  193 EXPORT_SYMBOL(blk_queue_make_request);
  194 
  195 /**
  196  * blk_queue_bounce_limit - set bounce buffer limit for queue
  197  * @q: the request queue for the device
  198  * @dma_mask: the maximum address the device can handle
  199  *
  200  * Description:
  201  *    Different hardware can have different requirements as to what pages
  202  *    it can do I/O directly to. A low level driver can call
  203  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
  204  *    buffers for doing I/O to pages residing above @dma_mask.
  205  **/
  206 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
  207 {
  208         unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
  209         int dma = 0;
  210 
  211         q->bounce_gfp = GFP_NOIO;
  212 #if BITS_PER_LONG == 64
  213         /*
  214          * Assume anything <= 4GB can be handled by IOMMU.  Actually
  215          * some IOMMUs can handle everything, but I don't know of a
  216          * way to test this here.
  217          */
  218         if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  219                 dma = 1;
  220         q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
  221 #else
  222         if (b_pfn < blk_max_low_pfn)
  223                 dma = 1;
  224         q->limits.bounce_pfn = b_pfn;
  225 #endif
  226         if (dma) {
  227                 init_emergency_isa_pool();
  228                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
  229                 q->limits.bounce_pfn = b_pfn;
  230         }
  231 }
  232 EXPORT_SYMBOL(blk_queue_bounce_limit);
  233 
  234 /**
  235  * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
  236  * @limits: the queue limits
  237  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
  238  *
  239  * Description:
  240  *    Enables a low level driver to set a hard upper limit,
  241  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
  242  *    the device driver based upon the combined capabilities of I/O
  243  *    controller and storage device.
  244  *
  245  *    max_sectors is a soft limit imposed by the block layer for
  246  *    filesystem type requests.  This value can be overridden on a
  247  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
  248  *    The soft limit can not exceed max_hw_sectors.
  249  **/
  250 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
  251 {
  252         if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
  253                 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  254                 printk(KERN_INFO "%s: set to minimum %d\n",
  255                        __func__, max_hw_sectors);
  256         }
  257 
  258         limits->max_hw_sectors = max_hw_sectors;
  259         limits->max_sectors = min_t(unsigned int, max_hw_sectors,
  260                                     BLK_DEF_MAX_SECTORS);
  261 }
  262 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
  263 
  264 /**
  265  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
  266  * @q:  the request queue for the device
  267  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
  268  *
  269  * Description:
  270  *    See description for blk_limits_max_hw_sectors().
  271  **/
  272 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
  273 {
  274         blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
  275 }
  276 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
  277 
  278 /**
  279  * blk_queue_max_discard_sectors - set max sectors for a single discard
  280  * @q:  the request queue for the device
  281  * @max_discard_sectors: maximum number of sectors to discard
  282  **/
  283 void blk_queue_max_discard_sectors(struct request_queue *q,
  284                 unsigned int max_discard_sectors)
  285 {
  286         q->limits.max_discard_sectors = max_discard_sectors;
  287 }
  288 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
  289 
  290 /**
  291  * blk_queue_max_write_same_sectors - set max sectors for a single write same
  292  * @q:  the request queue for the device
  293  * @max_write_same_sectors: maximum number of sectors to write per command
  294  **/
  295 void blk_queue_max_write_same_sectors(struct request_queue *q,
  296                                       unsigned int max_write_same_sectors)
  297 {
  298         q->limits.max_write_same_sectors = max_write_same_sectors;
  299 }
  300 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
  301 
  302 /**
  303  * blk_queue_max_segments - set max hw segments for a request for this queue
  304  * @q:  the request queue for the device
  305  * @max_segments:  max number of segments
  306  *
  307  * Description:
  308  *    Enables a low level driver to set an upper limit on the number of
  309  *    hw data segments in a request.
  310  **/
  311 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
  312 {
  313         if (!max_segments) {
  314                 max_segments = 1;
  315                 printk(KERN_INFO "%s: set to minimum %d\n",
  316                        __func__, max_segments);
  317         }
  318 
  319         q->limits.max_segments = max_segments;
  320 }
  321 EXPORT_SYMBOL(blk_queue_max_segments);
  322 
  323 /**
  324  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  325  * @q:  the request queue for the device
  326  * @max_size:  max size of segment in bytes
  327  *
  328  * Description:
  329  *    Enables a low level driver to set an upper limit on the size of a
  330  *    coalesced segment
  331  **/
  332 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  333 {
  334         if (max_size < PAGE_CACHE_SIZE) {
  335                 max_size = PAGE_CACHE_SIZE;
  336                 printk(KERN_INFO "%s: set to minimum %d\n",
  337                        __func__, max_size);
  338         }
  339 
  340         q->limits.max_segment_size = max_size;
  341 }
  342 EXPORT_SYMBOL(blk_queue_max_segment_size);
  343 
  344 /**
  345  * blk_queue_logical_block_size - set logical block size for the queue
  346  * @q:  the request queue for the device
  347  * @size:  the logical block size, in bytes
  348  *
  349  * Description:
  350  *   This should be set to the lowest possible block size that the
  351  *   storage device can address.  The default of 512 covers most
  352  *   hardware.
  353  **/
  354 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
  355 {
  356         q->limits.logical_block_size = size;
  357 
  358         if (q->limits.physical_block_size < size)
  359                 q->limits.physical_block_size = size;
  360 
  361         if (q->limits.io_min < q->limits.physical_block_size)
  362                 q->limits.io_min = q->limits.physical_block_size;
  363 }
  364 EXPORT_SYMBOL(blk_queue_logical_block_size);
  365 
  366 /**
  367  * blk_queue_physical_block_size - set physical block size for the queue
  368  * @q:  the request queue for the device
  369  * @size:  the physical block size, in bytes
  370  *
  371  * Description:
  372  *   This should be set to the lowest possible sector size that the
  373  *   hardware can operate on without reverting to read-modify-write
  374  *   operations.
  375  */
  376 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
  377 {
  378         q->limits.physical_block_size = size;
  379 
  380         if (q->limits.physical_block_size < q->limits.logical_block_size)
  381                 q->limits.physical_block_size = q->limits.logical_block_size;
  382 
  383         if (q->limits.io_min < q->limits.physical_block_size)
  384                 q->limits.io_min = q->limits.physical_block_size;
  385 }
  386 EXPORT_SYMBOL(blk_queue_physical_block_size);
  387 
  388 /**
  389  * blk_queue_alignment_offset - set physical block alignment offset
  390  * @q:  the request queue for the device
  391  * @offset: alignment offset in bytes
  392  *
  393  * Description:
  394  *   Some devices are naturally misaligned to compensate for things like
  395  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
  396  *   should call this function for devices whose first sector is not
  397  *   naturally aligned.
  398  */
  399 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
  400 {
  401         q->limits.alignment_offset =
  402                 offset & (q->limits.physical_block_size - 1);
  403         q->limits.misaligned = 0;
  404 }
  405 EXPORT_SYMBOL(blk_queue_alignment_offset);
  406 
  407 /**
  408  * blk_limits_io_min - set minimum request size for a device
  409  * @limits: the queue limits
  410  * @min:  smallest I/O size in bytes
  411  *
  412  * Description:
  413  *   Some devices have an internal block size bigger than the reported
  414  *   hardware sector size.  This function can be used to signal the
  415  *   smallest I/O the device can perform without incurring a performance
  416  *   penalty.
  417  */
  418 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
  419 {
  420         limits->io_min = min;
  421 
  422         if (limits->io_min < limits->logical_block_size)
  423                 limits->io_min = limits->logical_block_size;
  424 
  425         if (limits->io_min < limits->physical_block_size)
  426                 limits->io_min = limits->physical_block_size;
  427 }
  428 EXPORT_SYMBOL(blk_limits_io_min);
  429 
  430 /**
  431  * blk_queue_io_min - set minimum request size for the queue
  432  * @q:  the request queue for the device
  433  * @min:  smallest I/O size in bytes
  434  *
  435  * Description:
  436  *   Storage devices may report a granularity or preferred minimum I/O
  437  *   size which is the smallest request the device can perform without
  438  *   incurring a performance penalty.  For disk drives this is often the
  439  *   physical block size.  For RAID arrays it is often the stripe chunk
  440  *   size.  A properly aligned multiple of minimum_io_size is the
  441  *   preferred request size for workloads where a high number of I/O
  442  *   operations is desired.
  443  */
  444 void blk_queue_io_min(struct request_queue *q, unsigned int min)
  445 {
  446         blk_limits_io_min(&q->limits, min);
  447 }
  448 EXPORT_SYMBOL(blk_queue_io_min);
  449 
  450 /**
  451  * blk_limits_io_opt - set optimal request size for a device
  452  * @limits: the queue limits
  453  * @opt:  smallest I/O size in bytes
  454  *
  455  * Description:
  456  *   Storage devices may report an optimal I/O size, which is the
  457  *   device's preferred unit for sustained I/O.  This is rarely reported
  458  *   for disk drives.  For RAID arrays it is usually the stripe width or
  459  *   the internal track size.  A properly aligned multiple of
  460  *   optimal_io_size is the preferred request size for workloads where
  461  *   sustained throughput is desired.
  462  */
  463 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
  464 {
  465         limits->io_opt = opt;
  466 }
  467 EXPORT_SYMBOL(blk_limits_io_opt);
  468 
  469 /**
  470  * blk_queue_io_opt - set optimal request size for the queue
  471  * @q:  the request queue for the device
  472  * @opt:  optimal request size in bytes
  473  *
  474  * Description:
  475  *   Storage devices may report an optimal I/O size, which is the
  476  *   device's preferred unit for sustained I/O.  This is rarely reported
  477  *   for disk drives.  For RAID arrays it is usually the stripe width or
  478  *   the internal track size.  A properly aligned multiple of
  479  *   optimal_io_size is the preferred request size for workloads where
  480  *   sustained throughput is desired.
  481  */
  482 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
  483 {
  484         blk_limits_io_opt(&q->limits, opt);
  485 }
  486 EXPORT_SYMBOL(blk_queue_io_opt);
  487 
  488 /**
  489  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  490  * @t:  the stacking driver (top)
  491  * @b:  the underlying device (bottom)
  492  **/
  493 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  494 {
  495         blk_stack_limits(&t->limits, &b->limits, 0);
  496 }
  497 EXPORT_SYMBOL(blk_queue_stack_limits);
  498 
  499 /**
  500  * blk_stack_limits - adjust queue_limits for stacked devices
  501  * @t:  the stacking driver limits (top device)
  502  * @b:  the underlying queue limits (bottom, component device)
  503  * @start:  first data sector within component device
  504  *
  505  * Description:
  506  *    This function is used by stacking drivers like MD and DM to ensure
  507  *    that all component devices have compatible block sizes and
  508  *    alignments.  The stacking driver must provide a queue_limits
  509  *    struct (top) and then iteratively call the stacking function for
  510  *    all component (bottom) devices.  The stacking function will
  511  *    attempt to combine the values and ensure proper alignment.
  512  *
  513  *    Returns 0 if the top and bottom queue_limits are compatible.  The
  514  *    top device's block sizes and alignment offsets may be adjusted to
  515  *    ensure alignment with the bottom device. If no compatible sizes
  516  *    and alignments exist, -1 is returned and the resulting top
  517  *    queue_limits will have the misaligned flag set to indicate that
  518  *    the alignment_offset is undefined.
  519  */
  520 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
  521                      sector_t start)
  522 {
  523         unsigned int top, bottom, alignment, ret = 0;
  524 
  525         t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
  526         t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
  527         t->max_write_same_sectors = min(t->max_write_same_sectors,
  528                                         b->max_write_same_sectors);
  529         t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
  530 
  531         t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
  532                                             b->seg_boundary_mask);
  533 
  534         t->max_segments = min_not_zero(t->max_segments, b->max_segments);
  535         t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
  536                                                  b->max_integrity_segments);
  537 
  538         t->max_segment_size = min_not_zero(t->max_segment_size,
  539                                            b->max_segment_size);
  540 
  541         t->misaligned |= b->misaligned;
  542 
  543         alignment = queue_limit_alignment_offset(b, start);
  544 
  545         /* Bottom device has different alignment.  Check that it is
  546          * compatible with the current top alignment.
  547          */
  548         if (t->alignment_offset != alignment) {
  549 
  550                 top = max(t->physical_block_size, t->io_min)
  551                         + t->alignment_offset;
  552                 bottom = max(b->physical_block_size, b->io_min) + alignment;
  553 
  554                 /* Verify that top and bottom intervals line up */
  555                 if (max(top, bottom) & (min(top, bottom) - 1)) {
  556                         t->misaligned = 1;
  557                         ret = -1;
  558                 }
  559         }
  560 
  561         t->logical_block_size = max(t->logical_block_size,
  562                                     b->logical_block_size);
  563 
  564         t->physical_block_size = max(t->physical_block_size,
  565                                      b->physical_block_size);
  566 
  567         t->io_min = max(t->io_min, b->io_min);
  568         t->io_opt = lcm(t->io_opt, b->io_opt);
  569 
  570         t->cluster &= b->cluster;
  571         t->discard_zeroes_data &= b->discard_zeroes_data;
  572 
  573         /* Physical block size a multiple of the logical block size? */
  574         if (t->physical_block_size & (t->logical_block_size - 1)) {
  575                 t->physical_block_size = t->logical_block_size;
  576                 t->misaligned = 1;
  577                 ret = -1;
  578         }
  579 
  580         /* Minimum I/O a multiple of the physical block size? */
  581         if (t->io_min & (t->physical_block_size - 1)) {
  582                 t->io_min = t->physical_block_size;
  583                 t->misaligned = 1;
  584                 ret = -1;
  585         }
  586 
  587         /* Optimal I/O a multiple of the physical block size? */
  588         if (t->io_opt & (t->physical_block_size - 1)) {
  589                 t->io_opt = 0;
  590                 t->misaligned = 1;
  591                 ret = -1;
  592         }
  593 
  594         /* Find lowest common alignment_offset */
  595         t->alignment_offset = lcm(t->alignment_offset, alignment)
  596                 & (max(t->physical_block_size, t->io_min) - 1);
  597 
  598         /* Verify that new alignment_offset is on a logical block boundary */
  599         if (t->alignment_offset & (t->logical_block_size - 1)) {
  600                 t->misaligned = 1;
  601                 ret = -1;
  602         }
  603 
  604         /* Discard alignment and granularity */
  605         if (b->discard_granularity) {
  606                 alignment = queue_limit_discard_alignment(b, start);
  607 
  608                 if (t->discard_granularity != 0 &&
  609                     t->discard_alignment != alignment) {
  610                         top = t->discard_granularity + t->discard_alignment;
  611                         bottom = b->discard_granularity + alignment;
  612 
  613                         /* Verify that top and bottom intervals line up */
  614                         if ((max(top, bottom) % min(top, bottom)) != 0)
  615                                 t->discard_misaligned = 1;
  616                 }
  617 
  618                 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
  619                                                       b->max_discard_sectors);
  620                 t->discard_granularity = max(t->discard_granularity,
  621                                              b->discard_granularity);
  622                 t->discard_alignment = lcm(t->discard_alignment, alignment) %
  623                         t->discard_granularity;
  624         }
  625 
  626         return ret;
  627 }
  628 EXPORT_SYMBOL(blk_stack_limits);
  629 
  630 /**
  631  * bdev_stack_limits - adjust queue limits for stacked drivers
  632  * @t:  the stacking driver limits (top device)
  633  * @bdev:  the component block_device (bottom)
  634  * @start:  first data sector within component device
  635  *
  636  * Description:
  637  *    Merges queue limits for a top device and a block_device.  Returns
  638  *    0 if alignment didn't change.  Returns -1 if adding the bottom
  639  *    device caused misalignment.
  640  */
  641 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
  642                       sector_t start)
  643 {
  644         struct request_queue *bq = bdev_get_queue(bdev);
  645 
  646         start += get_start_sect(bdev);
  647 
  648         return blk_stack_limits(t, &bq->limits, start);
  649 }
  650 EXPORT_SYMBOL(bdev_stack_limits);
  651 
  652 /**
  653  * disk_stack_limits - adjust queue limits for stacked drivers
  654  * @disk:  MD/DM gendisk (top)
  655  * @bdev:  the underlying block device (bottom)
  656  * @offset:  offset to beginning of data within component device
  657  *
  658  * Description:
  659  *    Merges the limits for a top level gendisk and a bottom level
  660  *    block_device.
  661  */
  662 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
  663                        sector_t offset)
  664 {
  665         struct request_queue *t = disk->queue;
  666 
  667         if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
  668                 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
  669 
  670                 disk_name(disk, 0, top);
  671                 bdevname(bdev, bottom);
  672 
  673                 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
  674                        top, bottom);
  675         }
  676 }
  677 EXPORT_SYMBOL(disk_stack_limits);
  678 
  679 /**
  680  * blk_queue_dma_pad - set pad mask
  681  * @q:     the request queue for the device
  682  * @mask:  pad mask
  683  *
  684  * Set dma pad mask.
  685  *
  686  * Appending pad buffer to a request modifies the last entry of a
  687  * scatter list such that it includes the pad buffer.
  688  **/
  689 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
  690 {
  691         q->dma_pad_mask = mask;
  692 }
  693 EXPORT_SYMBOL(blk_queue_dma_pad);
  694 
  695 /**
  696  * blk_queue_update_dma_pad - update pad mask
  697  * @q:     the request queue for the device
  698  * @mask:  pad mask
  699  *
  700  * Update dma pad mask.
  701  *
  702  * Appending pad buffer to a request modifies the last entry of a
  703  * scatter list such that it includes the pad buffer.
  704  **/
  705 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
  706 {
  707         if (mask > q->dma_pad_mask)
  708                 q->dma_pad_mask = mask;
  709 }
  710 EXPORT_SYMBOL(blk_queue_update_dma_pad);
  711 
  712 /**
  713  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
  714  * @q:  the request queue for the device
  715  * @dma_drain_needed: fn which returns non-zero if drain is necessary
  716  * @buf:        physically contiguous buffer
  717  * @size:       size of the buffer in bytes
  718  *
  719  * Some devices have excess DMA problems and can't simply discard (or
  720  * zero fill) the unwanted piece of the transfer.  They have to have a
  721  * real area of memory to transfer it into.  The use case for this is
  722  * ATAPI devices in DMA mode.  If the packet command causes a transfer
  723  * bigger than the transfer size some HBAs will lock up if there
  724  * aren't DMA elements to contain the excess transfer.  What this API
  725  * does is adjust the queue so that the buf is always appended
  726  * silently to the scatterlist.
  727  *
  728  * Note: This routine adjusts max_hw_segments to make room for appending
  729  * the drain buffer.  If you call blk_queue_max_segments() after calling
  730  * this routine, you must set the limit to one fewer than your device
  731  * can support otherwise there won't be room for the drain buffer.
  732  */
  733 int blk_queue_dma_drain(struct request_queue *q,
  734                                dma_drain_needed_fn *dma_drain_needed,
  735                                void *buf, unsigned int size)
  736 {
  737         if (queue_max_segments(q) < 2)
  738                 return -EINVAL;
  739         /* make room for appending the drain */
  740         blk_queue_max_segments(q, queue_max_segments(q) - 1);
  741         q->dma_drain_needed = dma_drain_needed;
  742         q->dma_drain_buffer = buf;
  743         q->dma_drain_size = size;
  744 
  745         return 0;
  746 }
  747 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
  748 
  749 /**
  750  * blk_queue_segment_boundary - set boundary rules for segment merging
  751  * @q:  the request queue for the device
  752  * @mask:  the memory boundary mask
  753  **/
  754 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  755 {
  756         if (mask < PAGE_CACHE_SIZE - 1) {
  757                 mask = PAGE_CACHE_SIZE - 1;
  758                 printk(KERN_INFO "%s: set to minimum %lx\n",
  759                        __func__, mask);
  760         }
  761 
  762         q->limits.seg_boundary_mask = mask;
  763 }
  764 EXPORT_SYMBOL(blk_queue_segment_boundary);
  765 
  766 /**
  767  * blk_queue_dma_alignment - set dma length and memory alignment
  768  * @q:     the request queue for the device
  769  * @mask:  alignment mask
  770  *
  771  * description:
  772  *    set required memory and length alignment for direct dma transactions.
  773  *    this is used when building direct io requests for the queue.
  774  *
  775  **/
  776 void blk_queue_dma_alignment(struct request_queue *q, int mask)
  777 {
  778         q->dma_alignment = mask;
  779 }
  780 EXPORT_SYMBOL(blk_queue_dma_alignment);
  781 
  782 /**
  783  * blk_queue_update_dma_alignment - update dma length and memory alignment
  784  * @q:     the request queue for the device
  785  * @mask:  alignment mask
  786  *
  787  * description:
  788  *    update required memory and length alignment for direct dma transactions.
  789  *    If the requested alignment is larger than the current alignment, then
  790  *    the current queue alignment is updated to the new value, otherwise it
  791  *    is left alone.  The design of this is to allow multiple objects
  792  *    (driver, device, transport etc) to set their respective
  793  *    alignments without having them interfere.
  794  *
  795  **/
  796 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
  797 {
  798         BUG_ON(mask > PAGE_SIZE);
  799 
  800         if (mask > q->dma_alignment)
  801                 q->dma_alignment = mask;
  802 }
  803 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
  804 
  805 /**
  806  * blk_queue_flush - configure queue's cache flush capability
  807  * @q:          the request queue for the device
  808  * @flush:      0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
  809  *
  810  * Tell block layer cache flush capability of @q.  If it supports
  811  * flushing, REQ_FLUSH should be set.  If it supports bypassing
  812  * write cache for individual writes, REQ_FUA should be set.
  813  */
  814 void blk_queue_flush(struct request_queue *q, unsigned int flush)
  815 {
  816         WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
  817 
  818         if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
  819                 flush &= ~REQ_FUA;
  820 
  821         q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
  822 }
  823 EXPORT_SYMBOL_GPL(blk_queue_flush);
  824 
  825 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
  826 {
  827         q->flush_not_queueable = !queueable;
  828 }
  829 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
  830 
  831 static int __init blk_settings_init(void)
  832 {
  833         blk_max_low_pfn = max_low_pfn - 1;
  834         blk_max_pfn = max_pfn - 1;
  835         return 0;
  836 }
  837 subsys_initcall(blk_settings_init);

Cache object: 131d0f1ce5eb52b8749db37e87b7681e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.