The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/block/blk-throttle.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Interface for controlling IO bandwidth on a request queue
    3  *
    4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
    5  */
    6 
    7 #include <linux/module.h>
    8 #include <linux/slab.h>
    9 #include <linux/blkdev.h>
   10 #include <linux/bio.h>
   11 #include <linux/blktrace_api.h>
   12 #include "blk-cgroup.h"
   13 #include "blk.h"
   14 
   15 /* Max dispatch from a group in 1 round */
   16 static int throtl_grp_quantum = 8;
   17 
   18 /* Total max dispatch from all groups in one round */
   19 static int throtl_quantum = 32;
   20 
   21 /* Throttling is performed over 100ms slice and after that slice is renewed */
   22 static unsigned long throtl_slice = HZ/10;      /* 100 ms */
   23 
   24 static struct blkcg_policy blkcg_policy_throtl;
   25 
   26 /* A workqueue to queue throttle related work */
   27 static struct workqueue_struct *kthrotld_workqueue;
   28 static void throtl_schedule_delayed_work(struct throtl_data *td,
   29                                 unsigned long delay);
   30 
   31 struct throtl_rb_root {
   32         struct rb_root rb;
   33         struct rb_node *left;
   34         unsigned int count;
   35         unsigned long min_disptime;
   36 };
   37 
   38 #define THROTL_RB_ROOT  (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
   39                         .count = 0, .min_disptime = 0}
   40 
   41 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
   42 
   43 /* Per-cpu group stats */
   44 struct tg_stats_cpu {
   45         /* total bytes transferred */
   46         struct blkg_rwstat              service_bytes;
   47         /* total IOs serviced, post merge */
   48         struct blkg_rwstat              serviced;
   49 };
   50 
   51 struct throtl_grp {
   52         /* must be the first member */
   53         struct blkg_policy_data pd;
   54 
   55         /* active throtl group service_tree member */
   56         struct rb_node rb_node;
   57 
   58         /*
   59          * Dispatch time in jiffies. This is the estimated time when group
   60          * will unthrottle and is ready to dispatch more bio. It is used as
   61          * key to sort active groups in service tree.
   62          */
   63         unsigned long disptime;
   64 
   65         unsigned int flags;
   66 
   67         /* Two lists for READ and WRITE */
   68         struct bio_list bio_lists[2];
   69 
   70         /* Number of queued bios on READ and WRITE lists */
   71         unsigned int nr_queued[2];
   72 
   73         /* bytes per second rate limits */
   74         uint64_t bps[2];
   75 
   76         /* IOPS limits */
   77         unsigned int iops[2];
   78 
   79         /* Number of bytes disptached in current slice */
   80         uint64_t bytes_disp[2];
   81         /* Number of bio's dispatched in current slice */
   82         unsigned int io_disp[2];
   83 
   84         /* When did we start a new slice */
   85         unsigned long slice_start[2];
   86         unsigned long slice_end[2];
   87 
   88         /* Some throttle limits got updated for the group */
   89         int limits_changed;
   90 
   91         /* Per cpu stats pointer */
   92         struct tg_stats_cpu __percpu *stats_cpu;
   93 
   94         /* List of tgs waiting for per cpu stats memory to be allocated */
   95         struct list_head stats_alloc_node;
   96 };
   97 
   98 struct throtl_data
   99 {
  100         /* service tree for active throtl groups */
  101         struct throtl_rb_root tg_service_tree;
  102 
  103         struct request_queue *queue;
  104 
  105         /* Total Number of queued bios on READ and WRITE lists */
  106         unsigned int nr_queued[2];
  107 
  108         /*
  109          * number of total undestroyed groups
  110          */
  111         unsigned int nr_undestroyed_grps;
  112 
  113         /* Work for dispatching throttled bios */
  114         struct delayed_work throtl_work;
  115 
  116         int limits_changed;
  117 };
  118 
  119 /* list and work item to allocate percpu group stats */
  120 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
  121 static LIST_HEAD(tg_stats_alloc_list);
  122 
  123 static void tg_stats_alloc_fn(struct work_struct *);
  124 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
  125 
  126 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
  127 {
  128         return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
  129 }
  130 
  131 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
  132 {
  133         return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
  134 }
  135 
  136 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
  137 {
  138         return pd_to_blkg(&tg->pd);
  139 }
  140 
  141 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
  142 {
  143         return blkg_to_tg(td->queue->root_blkg);
  144 }
  145 
  146 enum tg_state_flags {
  147         THROTL_TG_FLAG_on_rr = 0,       /* on round-robin busy list */
  148 };
  149 
  150 #define THROTL_TG_FNS(name)                                             \
  151 static inline void throtl_mark_tg_##name(struct throtl_grp *tg)         \
  152 {                                                                       \
  153         (tg)->flags |= (1 << THROTL_TG_FLAG_##name);                    \
  154 }                                                                       \
  155 static inline void throtl_clear_tg_##name(struct throtl_grp *tg)        \
  156 {                                                                       \
  157         (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);                   \
  158 }                                                                       \
  159 static inline int throtl_tg_##name(const struct throtl_grp *tg)         \
  160 {                                                                       \
  161         return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;       \
  162 }
  163 
  164 THROTL_TG_FNS(on_rr);
  165 
  166 #define throtl_log_tg(td, tg, fmt, args...)     do {                    \
  167         char __pbuf[128];                                               \
  168                                                                         \
  169         blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf));              \
  170         blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \
  171 } while (0)
  172 
  173 #define throtl_log(td, fmt, args...)    \
  174         blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
  175 
  176 static inline unsigned int total_nr_queued(struct throtl_data *td)
  177 {
  178         return td->nr_queued[0] + td->nr_queued[1];
  179 }
  180 
  181 /*
  182  * Worker for allocating per cpu stat for tgs. This is scheduled on the
  183  * system_wq once there are some groups on the alloc_list waiting for
  184  * allocation.
  185  */
  186 static void tg_stats_alloc_fn(struct work_struct *work)
  187 {
  188         static struct tg_stats_cpu *stats_cpu;  /* this fn is non-reentrant */
  189         struct delayed_work *dwork = to_delayed_work(work);
  190         bool empty = false;
  191 
  192 alloc_stats:
  193         if (!stats_cpu) {
  194                 stats_cpu = alloc_percpu(struct tg_stats_cpu);
  195                 if (!stats_cpu) {
  196                         /* allocation failed, try again after some time */
  197                         schedule_delayed_work(dwork, msecs_to_jiffies(10));
  198                         return;
  199                 }
  200         }
  201 
  202         spin_lock_irq(&tg_stats_alloc_lock);
  203 
  204         if (!list_empty(&tg_stats_alloc_list)) {
  205                 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
  206                                                          struct throtl_grp,
  207                                                          stats_alloc_node);
  208                 swap(tg->stats_cpu, stats_cpu);
  209                 list_del_init(&tg->stats_alloc_node);
  210         }
  211 
  212         empty = list_empty(&tg_stats_alloc_list);
  213         spin_unlock_irq(&tg_stats_alloc_lock);
  214         if (!empty)
  215                 goto alloc_stats;
  216 }
  217 
  218 static void throtl_pd_init(struct blkcg_gq *blkg)
  219 {
  220         struct throtl_grp *tg = blkg_to_tg(blkg);
  221         unsigned long flags;
  222 
  223         RB_CLEAR_NODE(&tg->rb_node);
  224         bio_list_init(&tg->bio_lists[0]);
  225         bio_list_init(&tg->bio_lists[1]);
  226         tg->limits_changed = false;
  227 
  228         tg->bps[READ] = -1;
  229         tg->bps[WRITE] = -1;
  230         tg->iops[READ] = -1;
  231         tg->iops[WRITE] = -1;
  232 
  233         /*
  234          * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
  235          * but percpu allocator can't be called from IO path.  Queue tg on
  236          * tg_stats_alloc_list and allocate from work item.
  237          */
  238         spin_lock_irqsave(&tg_stats_alloc_lock, flags);
  239         list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
  240         schedule_delayed_work(&tg_stats_alloc_work, 0);
  241         spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
  242 }
  243 
  244 static void throtl_pd_exit(struct blkcg_gq *blkg)
  245 {
  246         struct throtl_grp *tg = blkg_to_tg(blkg);
  247         unsigned long flags;
  248 
  249         spin_lock_irqsave(&tg_stats_alloc_lock, flags);
  250         list_del_init(&tg->stats_alloc_node);
  251         spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
  252 
  253         free_percpu(tg->stats_cpu);
  254 }
  255 
  256 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
  257 {
  258         struct throtl_grp *tg = blkg_to_tg(blkg);
  259         int cpu;
  260 
  261         if (tg->stats_cpu == NULL)
  262                 return;
  263 
  264         for_each_possible_cpu(cpu) {
  265                 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
  266 
  267                 blkg_rwstat_reset(&sc->service_bytes);
  268                 blkg_rwstat_reset(&sc->serviced);
  269         }
  270 }
  271 
  272 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
  273                                            struct blkcg *blkcg)
  274 {
  275         /*
  276          * This is the common case when there are no blkcgs.  Avoid lookup
  277          * in this case
  278          */
  279         if (blkcg == &blkcg_root)
  280                 return td_root_tg(td);
  281 
  282         return blkg_to_tg(blkg_lookup(blkcg, td->queue));
  283 }
  284 
  285 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
  286                                                   struct blkcg *blkcg)
  287 {
  288         struct request_queue *q = td->queue;
  289         struct throtl_grp *tg = NULL;
  290 
  291         /*
  292          * This is the common case when there are no blkcgs.  Avoid lookup
  293          * in this case
  294          */
  295         if (blkcg == &blkcg_root) {
  296                 tg = td_root_tg(td);
  297         } else {
  298                 struct blkcg_gq *blkg;
  299 
  300                 blkg = blkg_lookup_create(blkcg, q);
  301 
  302                 /* if %NULL and @q is alive, fall back to root_tg */
  303                 if (!IS_ERR(blkg))
  304                         tg = blkg_to_tg(blkg);
  305                 else if (!blk_queue_dying(q))
  306                         tg = td_root_tg(td);
  307         }
  308 
  309         return tg;
  310 }
  311 
  312 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
  313 {
  314         /* Service tree is empty */
  315         if (!root->count)
  316                 return NULL;
  317 
  318         if (!root->left)
  319                 root->left = rb_first(&root->rb);
  320 
  321         if (root->left)
  322                 return rb_entry_tg(root->left);
  323 
  324         return NULL;
  325 }
  326 
  327 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  328 {
  329         rb_erase(n, root);
  330         RB_CLEAR_NODE(n);
  331 }
  332 
  333 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
  334 {
  335         if (root->left == n)
  336                 root->left = NULL;
  337         rb_erase_init(n, &root->rb);
  338         --root->count;
  339 }
  340 
  341 static void update_min_dispatch_time(struct throtl_rb_root *st)
  342 {
  343         struct throtl_grp *tg;
  344 
  345         tg = throtl_rb_first(st);
  346         if (!tg)
  347                 return;
  348 
  349         st->min_disptime = tg->disptime;
  350 }
  351 
  352 static void
  353 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
  354 {
  355         struct rb_node **node = &st->rb.rb_node;
  356         struct rb_node *parent = NULL;
  357         struct throtl_grp *__tg;
  358         unsigned long key = tg->disptime;
  359         int left = 1;
  360 
  361         while (*node != NULL) {
  362                 parent = *node;
  363                 __tg = rb_entry_tg(parent);
  364 
  365                 if (time_before(key, __tg->disptime))
  366                         node = &parent->rb_left;
  367                 else {
  368                         node = &parent->rb_right;
  369                         left = 0;
  370                 }
  371         }
  372 
  373         if (left)
  374                 st->left = &tg->rb_node;
  375 
  376         rb_link_node(&tg->rb_node, parent, node);
  377         rb_insert_color(&tg->rb_node, &st->rb);
  378 }
  379 
  380 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
  381 {
  382         struct throtl_rb_root *st = &td->tg_service_tree;
  383 
  384         tg_service_tree_add(st, tg);
  385         throtl_mark_tg_on_rr(tg);
  386         st->count++;
  387 }
  388 
  389 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
  390 {
  391         if (!throtl_tg_on_rr(tg))
  392                 __throtl_enqueue_tg(td, tg);
  393 }
  394 
  395 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
  396 {
  397         throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
  398         throtl_clear_tg_on_rr(tg);
  399 }
  400 
  401 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
  402 {
  403         if (throtl_tg_on_rr(tg))
  404                 __throtl_dequeue_tg(td, tg);
  405 }
  406 
  407 static void throtl_schedule_next_dispatch(struct throtl_data *td)
  408 {
  409         struct throtl_rb_root *st = &td->tg_service_tree;
  410 
  411         /*
  412          * If there are more bios pending, schedule more work.
  413          */
  414         if (!total_nr_queued(td))
  415                 return;
  416 
  417         BUG_ON(!st->count);
  418 
  419         update_min_dispatch_time(st);
  420 
  421         if (time_before_eq(st->min_disptime, jiffies))
  422                 throtl_schedule_delayed_work(td, 0);
  423         else
  424                 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
  425 }
  426 
  427 static inline void
  428 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
  429 {
  430         tg->bytes_disp[rw] = 0;
  431         tg->io_disp[rw] = 0;
  432         tg->slice_start[rw] = jiffies;
  433         tg->slice_end[rw] = jiffies + throtl_slice;
  434         throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
  435                         rw == READ ? 'R' : 'W', tg->slice_start[rw],
  436                         tg->slice_end[rw], jiffies);
  437 }
  438 
  439 static inline void throtl_set_slice_end(struct throtl_data *td,
  440                 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
  441 {
  442         tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
  443 }
  444 
  445 static inline void throtl_extend_slice(struct throtl_data *td,
  446                 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
  447 {
  448         tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
  449         throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
  450                         rw == READ ? 'R' : 'W', tg->slice_start[rw],
  451                         tg->slice_end[rw], jiffies);
  452 }
  453 
  454 /* Determine if previously allocated or extended slice is complete or not */
  455 static bool
  456 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
  457 {
  458         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
  459                 return 0;
  460 
  461         return 1;
  462 }
  463 
  464 /* Trim the used slices and adjust slice start accordingly */
  465 static inline void
  466 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
  467 {
  468         unsigned long nr_slices, time_elapsed, io_trim;
  469         u64 bytes_trim, tmp;
  470 
  471         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
  472 
  473         /*
  474          * If bps are unlimited (-1), then time slice don't get
  475          * renewed. Don't try to trim the slice if slice is used. A new
  476          * slice will start when appropriate.
  477          */
  478         if (throtl_slice_used(td, tg, rw))
  479                 return;
  480 
  481         /*
  482          * A bio has been dispatched. Also adjust slice_end. It might happen
  483          * that initially cgroup limit was very low resulting in high
  484          * slice_end, but later limit was bumped up and bio was dispached
  485          * sooner, then we need to reduce slice_end. A high bogus slice_end
  486          * is bad because it does not allow new slice to start.
  487          */
  488 
  489         throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
  490 
  491         time_elapsed = jiffies - tg->slice_start[rw];
  492 
  493         nr_slices = time_elapsed / throtl_slice;
  494 
  495         if (!nr_slices)
  496                 return;
  497         tmp = tg->bps[rw] * throtl_slice * nr_slices;
  498         do_div(tmp, HZ);
  499         bytes_trim = tmp;
  500 
  501         io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
  502 
  503         if (!bytes_trim && !io_trim)
  504                 return;
  505 
  506         if (tg->bytes_disp[rw] >= bytes_trim)
  507                 tg->bytes_disp[rw] -= bytes_trim;
  508         else
  509                 tg->bytes_disp[rw] = 0;
  510 
  511         if (tg->io_disp[rw] >= io_trim)
  512                 tg->io_disp[rw] -= io_trim;
  513         else
  514                 tg->io_disp[rw] = 0;
  515 
  516         tg->slice_start[rw] += nr_slices * throtl_slice;
  517 
  518         throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
  519                         " start=%lu end=%lu jiffies=%lu",
  520                         rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
  521                         tg->slice_start[rw], tg->slice_end[rw], jiffies);
  522 }
  523 
  524 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
  525                 struct bio *bio, unsigned long *wait)
  526 {
  527         bool rw = bio_data_dir(bio);
  528         unsigned int io_allowed;
  529         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
  530         u64 tmp;
  531 
  532         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
  533 
  534         /* Slice has just started. Consider one slice interval */
  535         if (!jiffy_elapsed)
  536                 jiffy_elapsed_rnd = throtl_slice;
  537 
  538         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
  539 
  540         /*
  541          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
  542          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
  543          * will allow dispatch after 1 second and after that slice should
  544          * have been trimmed.
  545          */
  546 
  547         tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
  548         do_div(tmp, HZ);
  549 
  550         if (tmp > UINT_MAX)
  551                 io_allowed = UINT_MAX;
  552         else
  553                 io_allowed = tmp;
  554 
  555         if (tg->io_disp[rw] + 1 <= io_allowed) {
  556                 if (wait)
  557                         *wait = 0;
  558                 return 1;
  559         }
  560 
  561         /* Calc approx time to dispatch */
  562         jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
  563 
  564         if (jiffy_wait > jiffy_elapsed)
  565                 jiffy_wait = jiffy_wait - jiffy_elapsed;
  566         else
  567                 jiffy_wait = 1;
  568 
  569         if (wait)
  570                 *wait = jiffy_wait;
  571         return 0;
  572 }
  573 
  574 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
  575                 struct bio *bio, unsigned long *wait)
  576 {
  577         bool rw = bio_data_dir(bio);
  578         u64 bytes_allowed, extra_bytes, tmp;
  579         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
  580 
  581         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
  582 
  583         /* Slice has just started. Consider one slice interval */
  584         if (!jiffy_elapsed)
  585                 jiffy_elapsed_rnd = throtl_slice;
  586 
  587         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
  588 
  589         tmp = tg->bps[rw] * jiffy_elapsed_rnd;
  590         do_div(tmp, HZ);
  591         bytes_allowed = tmp;
  592 
  593         if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
  594                 if (wait)
  595                         *wait = 0;
  596                 return 1;
  597         }
  598 
  599         /* Calc approx time to dispatch */
  600         extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
  601         jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
  602 
  603         if (!jiffy_wait)
  604                 jiffy_wait = 1;
  605 
  606         /*
  607          * This wait time is without taking into consideration the rounding
  608          * up we did. Add that time also.
  609          */
  610         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
  611         if (wait)
  612                 *wait = jiffy_wait;
  613         return 0;
  614 }
  615 
  616 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
  617         if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
  618                 return 1;
  619         return 0;
  620 }
  621 
  622 /*
  623  * Returns whether one can dispatch a bio or not. Also returns approx number
  624  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
  625  */
  626 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
  627                                 struct bio *bio, unsigned long *wait)
  628 {
  629         bool rw = bio_data_dir(bio);
  630         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
  631 
  632         /*
  633          * Currently whole state machine of group depends on first bio
  634          * queued in the group bio list. So one should not be calling
  635          * this function with a different bio if there are other bios
  636          * queued.
  637          */
  638         BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
  639 
  640         /* If tg->bps = -1, then BW is unlimited */
  641         if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
  642                 if (wait)
  643                         *wait = 0;
  644                 return 1;
  645         }
  646 
  647         /*
  648          * If previous slice expired, start a new one otherwise renew/extend
  649          * existing slice to make sure it is at least throtl_slice interval
  650          * long since now.
  651          */
  652         if (throtl_slice_used(td, tg, rw))
  653                 throtl_start_new_slice(td, tg, rw);
  654         else {
  655                 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
  656                         throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
  657         }
  658 
  659         if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
  660             && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
  661                 if (wait)
  662                         *wait = 0;
  663                 return 1;
  664         }
  665 
  666         max_wait = max(bps_wait, iops_wait);
  667 
  668         if (wait)
  669                 *wait = max_wait;
  670 
  671         if (time_before(tg->slice_end[rw], jiffies + max_wait))
  672                 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
  673 
  674         return 0;
  675 }
  676 
  677 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
  678                                          int rw)
  679 {
  680         struct throtl_grp *tg = blkg_to_tg(blkg);
  681         struct tg_stats_cpu *stats_cpu;
  682         unsigned long flags;
  683 
  684         /* If per cpu stats are not allocated yet, don't do any accounting. */
  685         if (tg->stats_cpu == NULL)
  686                 return;
  687 
  688         /*
  689          * Disabling interrupts to provide mutual exclusion between two
  690          * writes on same cpu. It probably is not needed for 64bit. Not
  691          * optimizing that case yet.
  692          */
  693         local_irq_save(flags);
  694 
  695         stats_cpu = this_cpu_ptr(tg->stats_cpu);
  696 
  697         blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
  698         blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
  699 
  700         local_irq_restore(flags);
  701 }
  702 
  703 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
  704 {
  705         bool rw = bio_data_dir(bio);
  706 
  707         /* Charge the bio to the group */
  708         tg->bytes_disp[rw] += bio->bi_size;
  709         tg->io_disp[rw]++;
  710 
  711         throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
  712 }
  713 
  714 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
  715                         struct bio *bio)
  716 {
  717         bool rw = bio_data_dir(bio);
  718 
  719         bio_list_add(&tg->bio_lists[rw], bio);
  720         /* Take a bio reference on tg */
  721         blkg_get(tg_to_blkg(tg));
  722         tg->nr_queued[rw]++;
  723         td->nr_queued[rw]++;
  724         throtl_enqueue_tg(td, tg);
  725 }
  726 
  727 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
  728 {
  729         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
  730         struct bio *bio;
  731 
  732         if ((bio = bio_list_peek(&tg->bio_lists[READ])))
  733                 tg_may_dispatch(td, tg, bio, &read_wait);
  734 
  735         if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
  736                 tg_may_dispatch(td, tg, bio, &write_wait);
  737 
  738         min_wait = min(read_wait, write_wait);
  739         disptime = jiffies + min_wait;
  740 
  741         /* Update dispatch time */
  742         throtl_dequeue_tg(td, tg);
  743         tg->disptime = disptime;
  744         throtl_enqueue_tg(td, tg);
  745 }
  746 
  747 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
  748                                 bool rw, struct bio_list *bl)
  749 {
  750         struct bio *bio;
  751 
  752         bio = bio_list_pop(&tg->bio_lists[rw]);
  753         tg->nr_queued[rw]--;
  754         /* Drop bio reference on blkg */
  755         blkg_put(tg_to_blkg(tg));
  756 
  757         BUG_ON(td->nr_queued[rw] <= 0);
  758         td->nr_queued[rw]--;
  759 
  760         throtl_charge_bio(tg, bio);
  761         bio_list_add(bl, bio);
  762         bio->bi_rw |= REQ_THROTTLED;
  763 
  764         throtl_trim_slice(td, tg, rw);
  765 }
  766 
  767 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
  768                                 struct bio_list *bl)
  769 {
  770         unsigned int nr_reads = 0, nr_writes = 0;
  771         unsigned int max_nr_reads = throtl_grp_quantum*3/4;
  772         unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
  773         struct bio *bio;
  774 
  775         /* Try to dispatch 75% READS and 25% WRITES */
  776 
  777         while ((bio = bio_list_peek(&tg->bio_lists[READ]))
  778                 && tg_may_dispatch(td, tg, bio, NULL)) {
  779 
  780                 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
  781                 nr_reads++;
  782 
  783                 if (nr_reads >= max_nr_reads)
  784                         break;
  785         }
  786 
  787         while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
  788                 && tg_may_dispatch(td, tg, bio, NULL)) {
  789 
  790                 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
  791                 nr_writes++;
  792 
  793                 if (nr_writes >= max_nr_writes)
  794                         break;
  795         }
  796 
  797         return nr_reads + nr_writes;
  798 }
  799 
  800 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
  801 {
  802         unsigned int nr_disp = 0;
  803         struct throtl_grp *tg;
  804         struct throtl_rb_root *st = &td->tg_service_tree;
  805 
  806         while (1) {
  807                 tg = throtl_rb_first(st);
  808 
  809                 if (!tg)
  810                         break;
  811 
  812                 if (time_before(jiffies, tg->disptime))
  813                         break;
  814 
  815                 throtl_dequeue_tg(td, tg);
  816 
  817                 nr_disp += throtl_dispatch_tg(td, tg, bl);
  818 
  819                 if (tg->nr_queued[0] || tg->nr_queued[1]) {
  820                         tg_update_disptime(td, tg);
  821                         throtl_enqueue_tg(td, tg);
  822                 }
  823 
  824                 if (nr_disp >= throtl_quantum)
  825                         break;
  826         }
  827 
  828         return nr_disp;
  829 }
  830 
  831 static void throtl_process_limit_change(struct throtl_data *td)
  832 {
  833         struct request_queue *q = td->queue;
  834         struct blkcg_gq *blkg, *n;
  835 
  836         if (!td->limits_changed)
  837                 return;
  838 
  839         xchg(&td->limits_changed, false);
  840 
  841         throtl_log(td, "limits changed");
  842 
  843         list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
  844                 struct throtl_grp *tg = blkg_to_tg(blkg);
  845 
  846                 if (!tg->limits_changed)
  847                         continue;
  848 
  849                 if (!xchg(&tg->limits_changed, false))
  850                         continue;
  851 
  852                 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
  853                         " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
  854                         tg->iops[READ], tg->iops[WRITE]);
  855 
  856                 /*
  857                  * Restart the slices for both READ and WRITES. It
  858                  * might happen that a group's limit are dropped
  859                  * suddenly and we don't want to account recently
  860                  * dispatched IO with new low rate
  861                  */
  862                 throtl_start_new_slice(td, tg, 0);
  863                 throtl_start_new_slice(td, tg, 1);
  864 
  865                 if (throtl_tg_on_rr(tg))
  866                         tg_update_disptime(td, tg);
  867         }
  868 }
  869 
  870 /* Dispatch throttled bios. Should be called without queue lock held. */
  871 static int throtl_dispatch(struct request_queue *q)
  872 {
  873         struct throtl_data *td = q->td;
  874         unsigned int nr_disp = 0;
  875         struct bio_list bio_list_on_stack;
  876         struct bio *bio;
  877         struct blk_plug plug;
  878 
  879         spin_lock_irq(q->queue_lock);
  880 
  881         throtl_process_limit_change(td);
  882 
  883         if (!total_nr_queued(td))
  884                 goto out;
  885 
  886         bio_list_init(&bio_list_on_stack);
  887 
  888         throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
  889                         total_nr_queued(td), td->nr_queued[READ],
  890                         td->nr_queued[WRITE]);
  891 
  892         nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
  893 
  894         if (nr_disp)
  895                 throtl_log(td, "bios disp=%u", nr_disp);
  896 
  897         throtl_schedule_next_dispatch(td);
  898 out:
  899         spin_unlock_irq(q->queue_lock);
  900 
  901         /*
  902          * If we dispatched some requests, unplug the queue to make sure
  903          * immediate dispatch
  904          */
  905         if (nr_disp) {
  906                 blk_start_plug(&plug);
  907                 while((bio = bio_list_pop(&bio_list_on_stack)))
  908                         generic_make_request(bio);
  909                 blk_finish_plug(&plug);
  910         }
  911         return nr_disp;
  912 }
  913 
  914 void blk_throtl_work(struct work_struct *work)
  915 {
  916         struct throtl_data *td = container_of(work, struct throtl_data,
  917                                         throtl_work.work);
  918         struct request_queue *q = td->queue;
  919 
  920         throtl_dispatch(q);
  921 }
  922 
  923 /* Call with queue lock held */
  924 static void
  925 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
  926 {
  927 
  928         struct delayed_work *dwork = &td->throtl_work;
  929 
  930         /* schedule work if limits changed even if no bio is queued */
  931         if (total_nr_queued(td) || td->limits_changed) {
  932                 mod_delayed_work(kthrotld_workqueue, dwork, delay);
  933                 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
  934                                 delay, jiffies);
  935         }
  936 }
  937 
  938 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
  939                                 struct blkg_policy_data *pd, int off)
  940 {
  941         struct throtl_grp *tg = pd_to_tg(pd);
  942         struct blkg_rwstat rwstat = { }, tmp;
  943         int i, cpu;
  944 
  945         for_each_possible_cpu(cpu) {
  946                 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
  947 
  948                 tmp = blkg_rwstat_read((void *)sc + off);
  949                 for (i = 0; i < BLKG_RWSTAT_NR; i++)
  950                         rwstat.cnt[i] += tmp.cnt[i];
  951         }
  952 
  953         return __blkg_prfill_rwstat(sf, pd, &rwstat);
  954 }
  955 
  956 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
  957                                struct seq_file *sf)
  958 {
  959         struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
  960 
  961         blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
  962                           cft->private, true);
  963         return 0;
  964 }
  965 
  966 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
  967                               int off)
  968 {
  969         struct throtl_grp *tg = pd_to_tg(pd);
  970         u64 v = *(u64 *)((void *)tg + off);
  971 
  972         if (v == -1)
  973                 return 0;
  974         return __blkg_prfill_u64(sf, pd, v);
  975 }
  976 
  977 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
  978                                int off)
  979 {
  980         struct throtl_grp *tg = pd_to_tg(pd);
  981         unsigned int v = *(unsigned int *)((void *)tg + off);
  982 
  983         if (v == -1)
  984                 return 0;
  985         return __blkg_prfill_u64(sf, pd, v);
  986 }
  987 
  988 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
  989                              struct seq_file *sf)
  990 {
  991         blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
  992                           &blkcg_policy_throtl, cft->private, false);
  993         return 0;
  994 }
  995 
  996 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
  997                               struct seq_file *sf)
  998 {
  999         blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
 1000                           &blkcg_policy_throtl, cft->private, false);
 1001         return 0;
 1002 }
 1003 
 1004 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
 1005                        bool is_u64)
 1006 {
 1007         struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 1008         struct blkg_conf_ctx ctx;
 1009         struct throtl_grp *tg;
 1010         struct throtl_data *td;
 1011         int ret;
 1012 
 1013         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
 1014         if (ret)
 1015                 return ret;
 1016 
 1017         tg = blkg_to_tg(ctx.blkg);
 1018         td = ctx.blkg->q->td;
 1019 
 1020         if (!ctx.v)
 1021                 ctx.v = -1;
 1022 
 1023         if (is_u64)
 1024                 *(u64 *)((void *)tg + cft->private) = ctx.v;
 1025         else
 1026                 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
 1027 
 1028         /* XXX: we don't need the following deferred processing */
 1029         xchg(&tg->limits_changed, true);
 1030         xchg(&td->limits_changed, true);
 1031         throtl_schedule_delayed_work(td, 0);
 1032 
 1033         blkg_conf_finish(&ctx);
 1034         return 0;
 1035 }
 1036 
 1037 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
 1038                            const char *buf)
 1039 {
 1040         return tg_set_conf(cgrp, cft, buf, true);
 1041 }
 1042 
 1043 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
 1044                             const char *buf)
 1045 {
 1046         return tg_set_conf(cgrp, cft, buf, false);
 1047 }
 1048 
 1049 static struct cftype throtl_files[] = {
 1050         {
 1051                 .name = "throttle.read_bps_device",
 1052                 .private = offsetof(struct throtl_grp, bps[READ]),
 1053                 .read_seq_string = tg_print_conf_u64,
 1054                 .write_string = tg_set_conf_u64,
 1055                 .max_write_len = 256,
 1056         },
 1057         {
 1058                 .name = "throttle.write_bps_device",
 1059                 .private = offsetof(struct throtl_grp, bps[WRITE]),
 1060                 .read_seq_string = tg_print_conf_u64,
 1061                 .write_string = tg_set_conf_u64,
 1062                 .max_write_len = 256,
 1063         },
 1064         {
 1065                 .name = "throttle.read_iops_device",
 1066                 .private = offsetof(struct throtl_grp, iops[READ]),
 1067                 .read_seq_string = tg_print_conf_uint,
 1068                 .write_string = tg_set_conf_uint,
 1069                 .max_write_len = 256,
 1070         },
 1071         {
 1072                 .name = "throttle.write_iops_device",
 1073                 .private = offsetof(struct throtl_grp, iops[WRITE]),
 1074                 .read_seq_string = tg_print_conf_uint,
 1075                 .write_string = tg_set_conf_uint,
 1076                 .max_write_len = 256,
 1077         },
 1078         {
 1079                 .name = "throttle.io_service_bytes",
 1080                 .private = offsetof(struct tg_stats_cpu, service_bytes),
 1081                 .read_seq_string = tg_print_cpu_rwstat,
 1082         },
 1083         {
 1084                 .name = "throttle.io_serviced",
 1085                 .private = offsetof(struct tg_stats_cpu, serviced),
 1086                 .read_seq_string = tg_print_cpu_rwstat,
 1087         },
 1088         { }     /* terminate */
 1089 };
 1090 
 1091 static void throtl_shutdown_wq(struct request_queue *q)
 1092 {
 1093         struct throtl_data *td = q->td;
 1094 
 1095         cancel_delayed_work_sync(&td->throtl_work);
 1096 }
 1097 
 1098 static struct blkcg_policy blkcg_policy_throtl = {
 1099         .pd_size                = sizeof(struct throtl_grp),
 1100         .cftypes                = throtl_files,
 1101 
 1102         .pd_init_fn             = throtl_pd_init,
 1103         .pd_exit_fn             = throtl_pd_exit,
 1104         .pd_reset_stats_fn      = throtl_pd_reset_stats,
 1105 };
 1106 
 1107 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
 1108 {
 1109         struct throtl_data *td = q->td;
 1110         struct throtl_grp *tg;
 1111         bool rw = bio_data_dir(bio), update_disptime = true;
 1112         struct blkcg *blkcg;
 1113         bool throttled = false;
 1114 
 1115         if (bio->bi_rw & REQ_THROTTLED) {
 1116                 bio->bi_rw &= ~REQ_THROTTLED;
 1117                 goto out;
 1118         }
 1119 
 1120         /*
 1121          * A throtl_grp pointer retrieved under rcu can be used to access
 1122          * basic fields like stats and io rates. If a group has no rules,
 1123          * just update the dispatch stats in lockless manner and return.
 1124          */
 1125         rcu_read_lock();
 1126         blkcg = bio_blkcg(bio);
 1127         tg = throtl_lookup_tg(td, blkcg);
 1128         if (tg) {
 1129                 if (tg_no_rule_group(tg, rw)) {
 1130                         throtl_update_dispatch_stats(tg_to_blkg(tg),
 1131                                                      bio->bi_size, bio->bi_rw);
 1132                         goto out_unlock_rcu;
 1133                 }
 1134         }
 1135 
 1136         /*
 1137          * Either group has not been allocated yet or it is not an unlimited
 1138          * IO group
 1139          */
 1140         spin_lock_irq(q->queue_lock);
 1141         tg = throtl_lookup_create_tg(td, blkcg);
 1142         if (unlikely(!tg))
 1143                 goto out_unlock;
 1144 
 1145         if (tg->nr_queued[rw]) {
 1146                 /*
 1147                  * There is already another bio queued in same dir. No
 1148                  * need to update dispatch time.
 1149                  */
 1150                 update_disptime = false;
 1151                 goto queue_bio;
 1152 
 1153         }
 1154 
 1155         /* Bio is with-in rate limit of group */
 1156         if (tg_may_dispatch(td, tg, bio, NULL)) {
 1157                 throtl_charge_bio(tg, bio);
 1158 
 1159                 /*
 1160                  * We need to trim slice even when bios are not being queued
 1161                  * otherwise it might happen that a bio is not queued for
 1162                  * a long time and slice keeps on extending and trim is not
 1163                  * called for a long time. Now if limits are reduced suddenly
 1164                  * we take into account all the IO dispatched so far at new
 1165                  * low rate and * newly queued IO gets a really long dispatch
 1166                  * time.
 1167                  *
 1168                  * So keep on trimming slice even if bio is not queued.
 1169                  */
 1170                 throtl_trim_slice(td, tg, rw);
 1171                 goto out_unlock;
 1172         }
 1173 
 1174 queue_bio:
 1175         throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
 1176                         " iodisp=%u iops=%u queued=%d/%d",
 1177                         rw == READ ? 'R' : 'W',
 1178                         tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
 1179                         tg->io_disp[rw], tg->iops[rw],
 1180                         tg->nr_queued[READ], tg->nr_queued[WRITE]);
 1181 
 1182         bio_associate_current(bio);
 1183         throtl_add_bio_tg(q->td, tg, bio);
 1184         throttled = true;
 1185 
 1186         if (update_disptime) {
 1187                 tg_update_disptime(td, tg);
 1188                 throtl_schedule_next_dispatch(td);
 1189         }
 1190 
 1191 out_unlock:
 1192         spin_unlock_irq(q->queue_lock);
 1193 out_unlock_rcu:
 1194         rcu_read_unlock();
 1195 out:
 1196         return throttled;
 1197 }
 1198 
 1199 /**
 1200  * blk_throtl_drain - drain throttled bios
 1201  * @q: request_queue to drain throttled bios for
 1202  *
 1203  * Dispatch all currently throttled bios on @q through ->make_request_fn().
 1204  */
 1205 void blk_throtl_drain(struct request_queue *q)
 1206         __releases(q->queue_lock) __acquires(q->queue_lock)
 1207 {
 1208         struct throtl_data *td = q->td;
 1209         struct throtl_rb_root *st = &td->tg_service_tree;
 1210         struct throtl_grp *tg;
 1211         struct bio_list bl;
 1212         struct bio *bio;
 1213 
 1214         queue_lockdep_assert_held(q);
 1215 
 1216         bio_list_init(&bl);
 1217 
 1218         while ((tg = throtl_rb_first(st))) {
 1219                 throtl_dequeue_tg(td, tg);
 1220 
 1221                 while ((bio = bio_list_peek(&tg->bio_lists[READ])))
 1222                         tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
 1223                 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
 1224                         tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
 1225         }
 1226         spin_unlock_irq(q->queue_lock);
 1227 
 1228         while ((bio = bio_list_pop(&bl)))
 1229                 generic_make_request(bio);
 1230 
 1231         spin_lock_irq(q->queue_lock);
 1232 }
 1233 
 1234 int blk_throtl_init(struct request_queue *q)
 1235 {
 1236         struct throtl_data *td;
 1237         int ret;
 1238 
 1239         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
 1240         if (!td)
 1241                 return -ENOMEM;
 1242 
 1243         td->tg_service_tree = THROTL_RB_ROOT;
 1244         td->limits_changed = false;
 1245         INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
 1246 
 1247         q->td = td;
 1248         td->queue = q;
 1249 
 1250         /* activate policy */
 1251         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
 1252         if (ret)
 1253                 kfree(td);
 1254         return ret;
 1255 }
 1256 
 1257 void blk_throtl_exit(struct request_queue *q)
 1258 {
 1259         BUG_ON(!q->td);
 1260         throtl_shutdown_wq(q);
 1261         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
 1262         kfree(q->td);
 1263 }
 1264 
 1265 static int __init throtl_init(void)
 1266 {
 1267         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
 1268         if (!kthrotld_workqueue)
 1269                 panic("Failed to create kthrotld\n");
 1270 
 1271         return blkcg_policy_register(&blkcg_policy_throtl);
 1272 }
 1273 
 1274 module_init(throtl_init);

Cache object: 9bbf1cf6845a9f4b13d330266f233fb0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.