The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/block/cfq-iosched.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *  CFQ, or complete fairness queueing, disk scheduler.
    3  *
    4  *  Based on ideas from a previously unfinished io
    5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
    6  *
    7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
    8  */
    9 #include <linux/module.h>
   10 #include <linux/slab.h>
   11 #include <linux/blkdev.h>
   12 #include <linux/elevator.h>
   13 #include <linux/jiffies.h>
   14 #include <linux/rbtree.h>
   15 #include <linux/ioprio.h>
   16 #include <linux/blktrace_api.h>
   17 #include "blk.h"
   18 #include "blk-cgroup.h"
   19 
   20 /*
   21  * tunables
   22  */
   23 /* max queue in one round of service */
   24 static const int cfq_quantum = 8;
   25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
   26 /* maximum backwards seek, in KiB */
   27 static const int cfq_back_max = 16 * 1024;
   28 /* penalty of a backwards seek */
   29 static const int cfq_back_penalty = 2;
   30 static const int cfq_slice_sync = HZ / 10;
   31 static int cfq_slice_async = HZ / 25;
   32 static const int cfq_slice_async_rq = 2;
   33 static int cfq_slice_idle = HZ / 125;
   34 static int cfq_group_idle = HZ / 125;
   35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
   36 static const int cfq_hist_divisor = 4;
   37 
   38 /*
   39  * offset from end of service tree
   40  */
   41 #define CFQ_IDLE_DELAY          (HZ / 5)
   42 
   43 /*
   44  * below this threshold, we consider thinktime immediate
   45  */
   46 #define CFQ_MIN_TT              (2)
   47 
   48 #define CFQ_SLICE_SCALE         (5)
   49 #define CFQ_HW_QUEUE_MIN        (5)
   50 #define CFQ_SERVICE_SHIFT       12
   51 
   52 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
   53 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
   54 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
   55 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
   56 
   57 #define RQ_CIC(rq)              icq_to_cic((rq)->elv.icq)
   58 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elv.priv[0])
   59 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elv.priv[1])
   60 
   61 static struct kmem_cache *cfq_pool;
   62 
   63 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
   64 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
   65 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
   66 
   67 #define sample_valid(samples)   ((samples) > 80)
   68 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
   69 
   70 struct cfq_ttime {
   71         unsigned long last_end_request;
   72 
   73         unsigned long ttime_total;
   74         unsigned long ttime_samples;
   75         unsigned long ttime_mean;
   76 };
   77 
   78 /*
   79  * Most of our rbtree usage is for sorting with min extraction, so
   80  * if we cache the leftmost node we don't have to walk down the tree
   81  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
   82  * move this into the elevator for the rq sorting as well.
   83  */
   84 struct cfq_rb_root {
   85         struct rb_root rb;
   86         struct rb_node *left;
   87         unsigned count;
   88         unsigned total_weight;
   89         u64 min_vdisktime;
   90         struct cfq_ttime ttime;
   91 };
   92 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, \
   93                         .ttime = {.last_end_request = jiffies,},}
   94 
   95 /*
   96  * Per process-grouping structure
   97  */
   98 struct cfq_queue {
   99         /* reference count */
  100         int ref;
  101         /* various state flags, see below */
  102         unsigned int flags;
  103         /* parent cfq_data */
  104         struct cfq_data *cfqd;
  105         /* service_tree member */
  106         struct rb_node rb_node;
  107         /* service_tree key */
  108         unsigned long rb_key;
  109         /* prio tree member */
  110         struct rb_node p_node;
  111         /* prio tree root we belong to, if any */
  112         struct rb_root *p_root;
  113         /* sorted list of pending requests */
  114         struct rb_root sort_list;
  115         /* if fifo isn't expired, next request to serve */
  116         struct request *next_rq;
  117         /* requests queued in sort_list */
  118         int queued[2];
  119         /* currently allocated requests */
  120         int allocated[2];
  121         /* fifo list of requests in sort_list */
  122         struct list_head fifo;
  123 
  124         /* time when queue got scheduled in to dispatch first request. */
  125         unsigned long dispatch_start;
  126         unsigned int allocated_slice;
  127         unsigned int slice_dispatch;
  128         /* time when first request from queue completed and slice started. */
  129         unsigned long slice_start;
  130         unsigned long slice_end;
  131         long slice_resid;
  132 
  133         /* pending priority requests */
  134         int prio_pending;
  135         /* number of requests that are on the dispatch list or inside driver */
  136         int dispatched;
  137 
  138         /* io prio of this group */
  139         unsigned short ioprio, org_ioprio;
  140         unsigned short ioprio_class;
  141 
  142         pid_t pid;
  143 
  144         u32 seek_history;
  145         sector_t last_request_pos;
  146 
  147         struct cfq_rb_root *service_tree;
  148         struct cfq_queue *new_cfqq;
  149         struct cfq_group *cfqg;
  150         /* Number of sectors dispatched from queue in single dispatch round */
  151         unsigned long nr_sectors;
  152 };
  153 
  154 /*
  155  * First index in the service_trees.
  156  * IDLE is handled separately, so it has negative index
  157  */
  158 enum wl_prio_t {
  159         BE_WORKLOAD = 0,
  160         RT_WORKLOAD = 1,
  161         IDLE_WORKLOAD = 2,
  162         CFQ_PRIO_NR,
  163 };
  164 
  165 /*
  166  * Second index in the service_trees.
  167  */
  168 enum wl_type_t {
  169         ASYNC_WORKLOAD = 0,
  170         SYNC_NOIDLE_WORKLOAD = 1,
  171         SYNC_WORKLOAD = 2
  172 };
  173 
  174 struct cfqg_stats {
  175 #ifdef CONFIG_CFQ_GROUP_IOSCHED
  176         /* total bytes transferred */
  177         struct blkg_rwstat              service_bytes;
  178         /* total IOs serviced, post merge */
  179         struct blkg_rwstat              serviced;
  180         /* number of ios merged */
  181         struct blkg_rwstat              merged;
  182         /* total time spent on device in ns, may not be accurate w/ queueing */
  183         struct blkg_rwstat              service_time;
  184         /* total time spent waiting in scheduler queue in ns */
  185         struct blkg_rwstat              wait_time;
  186         /* number of IOs queued up */
  187         struct blkg_rwstat              queued;
  188         /* total sectors transferred */
  189         struct blkg_stat                sectors;
  190         /* total disk time and nr sectors dispatched by this group */
  191         struct blkg_stat                time;
  192 #ifdef CONFIG_DEBUG_BLK_CGROUP
  193         /* time not charged to this cgroup */
  194         struct blkg_stat                unaccounted_time;
  195         /* sum of number of ios queued across all samples */
  196         struct blkg_stat                avg_queue_size_sum;
  197         /* count of samples taken for average */
  198         struct blkg_stat                avg_queue_size_samples;
  199         /* how many times this group has been removed from service tree */
  200         struct blkg_stat                dequeue;
  201         /* total time spent waiting for it to be assigned a timeslice. */
  202         struct blkg_stat                group_wait_time;
  203         /* time spent idling for this blkcg_gq */
  204         struct blkg_stat                idle_time;
  205         /* total time with empty current active q with other requests queued */
  206         struct blkg_stat                empty_time;
  207         /* fields after this shouldn't be cleared on stat reset */
  208         uint64_t                        start_group_wait_time;
  209         uint64_t                        start_idle_time;
  210         uint64_t                        start_empty_time;
  211         uint16_t                        flags;
  212 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
  213 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
  214 };
  215 
  216 /* This is per cgroup per device grouping structure */
  217 struct cfq_group {
  218         /* must be the first member */
  219         struct blkg_policy_data pd;
  220 
  221         /* group service_tree member */
  222         struct rb_node rb_node;
  223 
  224         /* group service_tree key */
  225         u64 vdisktime;
  226         unsigned int weight;
  227         unsigned int new_weight;
  228         unsigned int dev_weight;
  229 
  230         /* number of cfqq currently on this group */
  231         int nr_cfqq;
  232 
  233         /*
  234          * Per group busy queues average. Useful for workload slice calc. We
  235          * create the array for each prio class but at run time it is used
  236          * only for RT and BE class and slot for IDLE class remains unused.
  237          * This is primarily done to avoid confusion and a gcc warning.
  238          */
  239         unsigned int busy_queues_avg[CFQ_PRIO_NR];
  240         /*
  241          * rr lists of queues with requests. We maintain service trees for
  242          * RT and BE classes. These trees are subdivided in subclasses
  243          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  244          * class there is no subclassification and all the cfq queues go on
  245          * a single tree service_tree_idle.
  246          * Counts are embedded in the cfq_rb_root
  247          */
  248         struct cfq_rb_root service_trees[2][3];
  249         struct cfq_rb_root service_tree_idle;
  250 
  251         unsigned long saved_workload_slice;
  252         enum wl_type_t saved_workload;
  253         enum wl_prio_t saved_serving_prio;
  254 
  255         /* number of requests that are on the dispatch list or inside driver */
  256         int dispatched;
  257         struct cfq_ttime ttime;
  258         struct cfqg_stats stats;
  259 };
  260 
  261 struct cfq_io_cq {
  262         struct io_cq            icq;            /* must be the first member */
  263         struct cfq_queue        *cfqq[2];
  264         struct cfq_ttime        ttime;
  265         int                     ioprio;         /* the current ioprio */
  266 #ifdef CONFIG_CFQ_GROUP_IOSCHED
  267         uint64_t                blkcg_id;       /* the current blkcg ID */
  268 #endif
  269 };
  270 
  271 /*
  272  * Per block device queue structure
  273  */
  274 struct cfq_data {
  275         struct request_queue *queue;
  276         /* Root service tree for cfq_groups */
  277         struct cfq_rb_root grp_service_tree;
  278         struct cfq_group *root_group;
  279 
  280         /*
  281          * The priority currently being served
  282          */
  283         enum wl_prio_t serving_prio;
  284         enum wl_type_t serving_type;
  285         unsigned long workload_expires;
  286         struct cfq_group *serving_group;
  287 
  288         /*
  289          * Each priority tree is sorted by next_request position.  These
  290          * trees are used when determining if two or more queues are
  291          * interleaving requests (see cfq_close_cooperator).
  292          */
  293         struct rb_root prio_trees[CFQ_PRIO_LISTS];
  294 
  295         unsigned int busy_queues;
  296         unsigned int busy_sync_queues;
  297 
  298         int rq_in_driver;
  299         int rq_in_flight[2];
  300 
  301         /*
  302          * queue-depth detection
  303          */
  304         int rq_queued;
  305         int hw_tag;
  306         /*
  307          * hw_tag can be
  308          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  309          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  310          *  0 => no NCQ
  311          */
  312         int hw_tag_est_depth;
  313         unsigned int hw_tag_samples;
  314 
  315         /*
  316          * idle window management
  317          */
  318         struct timer_list idle_slice_timer;
  319         struct work_struct unplug_work;
  320 
  321         struct cfq_queue *active_queue;
  322         struct cfq_io_cq *active_cic;
  323 
  324         /*
  325          * async queue for each priority case
  326          */
  327         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  328         struct cfq_queue *async_idle_cfqq;
  329 
  330         sector_t last_position;
  331 
  332         /*
  333          * tunables, see top of file
  334          */
  335         unsigned int cfq_quantum;
  336         unsigned int cfq_fifo_expire[2];
  337         unsigned int cfq_back_penalty;
  338         unsigned int cfq_back_max;
  339         unsigned int cfq_slice[2];
  340         unsigned int cfq_slice_async_rq;
  341         unsigned int cfq_slice_idle;
  342         unsigned int cfq_group_idle;
  343         unsigned int cfq_latency;
  344         unsigned int cfq_target_latency;
  345 
  346         /*
  347          * Fallback dummy cfqq for extreme OOM conditions
  348          */
  349         struct cfq_queue oom_cfqq;
  350 
  351         unsigned long last_delayed_sync;
  352 };
  353 
  354 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  355 
  356 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  357                                             enum wl_prio_t prio,
  358                                             enum wl_type_t type)
  359 {
  360         if (!cfqg)
  361                 return NULL;
  362 
  363         if (prio == IDLE_WORKLOAD)
  364                 return &cfqg->service_tree_idle;
  365 
  366         return &cfqg->service_trees[prio][type];
  367 }
  368 
  369 enum cfqq_state_flags {
  370         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
  371         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
  372         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
  373         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  374         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
  375         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
  376         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
  377         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
  378         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
  379         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
  380         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
  381         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
  382         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
  383 };
  384 
  385 #define CFQ_CFQQ_FNS(name)                                              \
  386 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
  387 {                                                                       \
  388         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
  389 }                                                                       \
  390 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
  391 {                                                                       \
  392         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
  393 }                                                                       \
  394 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
  395 {                                                                       \
  396         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
  397 }
  398 
  399 CFQ_CFQQ_FNS(on_rr);
  400 CFQ_CFQQ_FNS(wait_request);
  401 CFQ_CFQQ_FNS(must_dispatch);
  402 CFQ_CFQQ_FNS(must_alloc_slice);
  403 CFQ_CFQQ_FNS(fifo_expire);
  404 CFQ_CFQQ_FNS(idle_window);
  405 CFQ_CFQQ_FNS(prio_changed);
  406 CFQ_CFQQ_FNS(slice_new);
  407 CFQ_CFQQ_FNS(sync);
  408 CFQ_CFQQ_FNS(coop);
  409 CFQ_CFQQ_FNS(split_coop);
  410 CFQ_CFQQ_FNS(deep);
  411 CFQ_CFQQ_FNS(wait_busy);
  412 #undef CFQ_CFQQ_FNS
  413 
  414 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
  415 {
  416         return pd ? container_of(pd, struct cfq_group, pd) : NULL;
  417 }
  418 
  419 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
  420 {
  421         return pd_to_blkg(&cfqg->pd);
  422 }
  423 
  424 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
  425 
  426 /* cfqg stats flags */
  427 enum cfqg_stats_flags {
  428         CFQG_stats_waiting = 0,
  429         CFQG_stats_idling,
  430         CFQG_stats_empty,
  431 };
  432 
  433 #define CFQG_FLAG_FNS(name)                                             \
  434 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)     \
  435 {                                                                       \
  436         stats->flags |= (1 << CFQG_stats_##name);                       \
  437 }                                                                       \
  438 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)    \
  439 {                                                                       \
  440         stats->flags &= ~(1 << CFQG_stats_##name);                      \
  441 }                                                                       \
  442 static inline int cfqg_stats_##name(struct cfqg_stats *stats)           \
  443 {                                                                       \
  444         return (stats->flags & (1 << CFQG_stats_##name)) != 0;          \
  445 }                                                                       \
  446 
  447 CFQG_FLAG_FNS(waiting)
  448 CFQG_FLAG_FNS(idling)
  449 CFQG_FLAG_FNS(empty)
  450 #undef CFQG_FLAG_FNS
  451 
  452 /* This should be called with the queue_lock held. */
  453 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
  454 {
  455         unsigned long long now;
  456 
  457         if (!cfqg_stats_waiting(stats))
  458                 return;
  459 
  460         now = sched_clock();
  461         if (time_after64(now, stats->start_group_wait_time))
  462                 blkg_stat_add(&stats->group_wait_time,
  463                               now - stats->start_group_wait_time);
  464         cfqg_stats_clear_waiting(stats);
  465 }
  466 
  467 /* This should be called with the queue_lock held. */
  468 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
  469                                                  struct cfq_group *curr_cfqg)
  470 {
  471         struct cfqg_stats *stats = &cfqg->stats;
  472 
  473         if (cfqg_stats_waiting(stats))
  474                 return;
  475         if (cfqg == curr_cfqg)
  476                 return;
  477         stats->start_group_wait_time = sched_clock();
  478         cfqg_stats_mark_waiting(stats);
  479 }
  480 
  481 /* This should be called with the queue_lock held. */
  482 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
  483 {
  484         unsigned long long now;
  485 
  486         if (!cfqg_stats_empty(stats))
  487                 return;
  488 
  489         now = sched_clock();
  490         if (time_after64(now, stats->start_empty_time))
  491                 blkg_stat_add(&stats->empty_time,
  492                               now - stats->start_empty_time);
  493         cfqg_stats_clear_empty(stats);
  494 }
  495 
  496 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
  497 {
  498         blkg_stat_add(&cfqg->stats.dequeue, 1);
  499 }
  500 
  501 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
  502 {
  503         struct cfqg_stats *stats = &cfqg->stats;
  504 
  505         if (blkg_rwstat_sum(&stats->queued))
  506                 return;
  507 
  508         /*
  509          * group is already marked empty. This can happen if cfqq got new
  510          * request in parent group and moved to this group while being added
  511          * to service tree. Just ignore the event and move on.
  512          */
  513         if (cfqg_stats_empty(stats))
  514                 return;
  515 
  516         stats->start_empty_time = sched_clock();
  517         cfqg_stats_mark_empty(stats);
  518 }
  519 
  520 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
  521 {
  522         struct cfqg_stats *stats = &cfqg->stats;
  523 
  524         if (cfqg_stats_idling(stats)) {
  525                 unsigned long long now = sched_clock();
  526 
  527                 if (time_after64(now, stats->start_idle_time))
  528                         blkg_stat_add(&stats->idle_time,
  529                                       now - stats->start_idle_time);
  530                 cfqg_stats_clear_idling(stats);
  531         }
  532 }
  533 
  534 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
  535 {
  536         struct cfqg_stats *stats = &cfqg->stats;
  537 
  538         BUG_ON(cfqg_stats_idling(stats));
  539 
  540         stats->start_idle_time = sched_clock();
  541         cfqg_stats_mark_idling(stats);
  542 }
  543 
  544 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
  545 {
  546         struct cfqg_stats *stats = &cfqg->stats;
  547 
  548         blkg_stat_add(&stats->avg_queue_size_sum,
  549                       blkg_rwstat_sum(&stats->queued));
  550         blkg_stat_add(&stats->avg_queue_size_samples, 1);
  551         cfqg_stats_update_group_wait_time(stats);
  552 }
  553 
  554 #else   /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
  555 
  556 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
  557 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
  558 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
  559 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
  560 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
  561 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
  562 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
  563 
  564 #endif  /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
  565 
  566 #ifdef CONFIG_CFQ_GROUP_IOSCHED
  567 
  568 static struct blkcg_policy blkcg_policy_cfq;
  569 
  570 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
  571 {
  572         return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
  573 }
  574 
  575 static inline void cfqg_get(struct cfq_group *cfqg)
  576 {
  577         return blkg_get(cfqg_to_blkg(cfqg));
  578 }
  579 
  580 static inline void cfqg_put(struct cfq_group *cfqg)
  581 {
  582         return blkg_put(cfqg_to_blkg(cfqg));
  583 }
  584 
  585 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  do {                    \
  586         char __pbuf[128];                                               \
  587                                                                         \
  588         blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));  \
  589         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  590                           cfq_cfqq_sync((cfqq)) ? 'S' : 'A',            \
  591                           __pbuf, ##args);                              \
  592 } while (0)
  593 
  594 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)  do {                    \
  595         char __pbuf[128];                                               \
  596                                                                         \
  597         blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));          \
  598         blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);    \
  599 } while (0)
  600 
  601 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
  602                                             struct cfq_group *curr_cfqg, int rw)
  603 {
  604         blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
  605         cfqg_stats_end_empty_time(&cfqg->stats);
  606         cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
  607 }
  608 
  609 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
  610                         unsigned long time, unsigned long unaccounted_time)
  611 {
  612         blkg_stat_add(&cfqg->stats.time, time);
  613 #ifdef CONFIG_DEBUG_BLK_CGROUP
  614         blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
  615 #endif
  616 }
  617 
  618 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
  619 {
  620         blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
  621 }
  622 
  623 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
  624 {
  625         blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
  626 }
  627 
  628 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
  629                                               uint64_t bytes, int rw)
  630 {
  631         blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
  632         blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
  633         blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
  634 }
  635 
  636 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
  637                         uint64_t start_time, uint64_t io_start_time, int rw)
  638 {
  639         struct cfqg_stats *stats = &cfqg->stats;
  640         unsigned long long now = sched_clock();
  641 
  642         if (time_after64(now, io_start_time))
  643                 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
  644         if (time_after64(io_start_time, start_time))
  645                 blkg_rwstat_add(&stats->wait_time, rw,
  646                                 io_start_time - start_time);
  647 }
  648 
  649 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
  650 {
  651         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  652         struct cfqg_stats *stats = &cfqg->stats;
  653 
  654         /* queued stats shouldn't be cleared */
  655         blkg_rwstat_reset(&stats->service_bytes);
  656         blkg_rwstat_reset(&stats->serviced);
  657         blkg_rwstat_reset(&stats->merged);
  658         blkg_rwstat_reset(&stats->service_time);
  659         blkg_rwstat_reset(&stats->wait_time);
  660         blkg_stat_reset(&stats->time);
  661 #ifdef CONFIG_DEBUG_BLK_CGROUP
  662         blkg_stat_reset(&stats->unaccounted_time);
  663         blkg_stat_reset(&stats->avg_queue_size_sum);
  664         blkg_stat_reset(&stats->avg_queue_size_samples);
  665         blkg_stat_reset(&stats->dequeue);
  666         blkg_stat_reset(&stats->group_wait_time);
  667         blkg_stat_reset(&stats->idle_time);
  668         blkg_stat_reset(&stats->empty_time);
  669 #endif
  670 }
  671 
  672 #else   /* CONFIG_CFQ_GROUP_IOSCHED */
  673 
  674 static inline void cfqg_get(struct cfq_group *cfqg) { }
  675 static inline void cfqg_put(struct cfq_group *cfqg) { }
  676 
  677 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
  678         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  679 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
  680 
  681 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
  682                         struct cfq_group *curr_cfqg, int rw) { }
  683 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
  684                         unsigned long time, unsigned long unaccounted_time) { }
  685 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
  686 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
  687 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
  688                                               uint64_t bytes, int rw) { }
  689 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
  690                         uint64_t start_time, uint64_t io_start_time, int rw) { }
  691 
  692 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
  693 
  694 #define cfq_log(cfqd, fmt, args...)     \
  695         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  696 
  697 /* Traverses through cfq group service trees */
  698 #define for_each_cfqg_st(cfqg, i, j, st) \
  699         for (i = 0; i <= IDLE_WORKLOAD; i++) \
  700                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  701                         : &cfqg->service_tree_idle; \
  702                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  703                         (i == IDLE_WORKLOAD && j == 0); \
  704                         j++, st = i < IDLE_WORKLOAD ? \
  705                         &cfqg->service_trees[i][j]: NULL) \
  706 
  707 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  708         struct cfq_ttime *ttime, bool group_idle)
  709 {
  710         unsigned long slice;
  711         if (!sample_valid(ttime->ttime_samples))
  712                 return false;
  713         if (group_idle)
  714                 slice = cfqd->cfq_group_idle;
  715         else
  716                 slice = cfqd->cfq_slice_idle;
  717         return ttime->ttime_mean > slice;
  718 }
  719 
  720 static inline bool iops_mode(struct cfq_data *cfqd)
  721 {
  722         /*
  723          * If we are not idling on queues and it is a NCQ drive, parallel
  724          * execution of requests is on and measuring time is not possible
  725          * in most of the cases until and unless we drive shallower queue
  726          * depths and that becomes a performance bottleneck. In such cases
  727          * switch to start providing fairness in terms of number of IOs.
  728          */
  729         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  730                 return true;
  731         else
  732                 return false;
  733 }
  734 
  735 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  736 {
  737         if (cfq_class_idle(cfqq))
  738                 return IDLE_WORKLOAD;
  739         if (cfq_class_rt(cfqq))
  740                 return RT_WORKLOAD;
  741         return BE_WORKLOAD;
  742 }
  743 
  744 
  745 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  746 {
  747         if (!cfq_cfqq_sync(cfqq))
  748                 return ASYNC_WORKLOAD;
  749         if (!cfq_cfqq_idle_window(cfqq))
  750                 return SYNC_NOIDLE_WORKLOAD;
  751         return SYNC_WORKLOAD;
  752 }
  753 
  754 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  755                                         struct cfq_data *cfqd,
  756                                         struct cfq_group *cfqg)
  757 {
  758         if (wl == IDLE_WORKLOAD)
  759                 return cfqg->service_tree_idle.count;
  760 
  761         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  762                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  763                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  764 }
  765 
  766 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  767                                         struct cfq_group *cfqg)
  768 {
  769         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  770                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  771 }
  772 
  773 static void cfq_dispatch_insert(struct request_queue *, struct request *);
  774 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
  775                                        struct cfq_io_cq *cic, struct bio *bio,
  776                                        gfp_t gfp_mask);
  777 
  778 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  779 {
  780         /* cic->icq is the first member, %NULL will convert to %NULL */
  781         return container_of(icq, struct cfq_io_cq, icq);
  782 }
  783 
  784 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  785                                                struct io_context *ioc)
  786 {
  787         if (ioc)
  788                 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  789         return NULL;
  790 }
  791 
  792 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  793 {
  794         return cic->cfqq[is_sync];
  795 }
  796 
  797 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  798                                 bool is_sync)
  799 {
  800         cic->cfqq[is_sync] = cfqq;
  801 }
  802 
  803 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  804 {
  805         return cic->icq.q->elevator->elevator_data;
  806 }
  807 
  808 /*
  809  * We regard a request as SYNC, if it's either a read or has the SYNC bit
  810  * set (in which case it could also be direct WRITE).
  811  */
  812 static inline bool cfq_bio_sync(struct bio *bio)
  813 {
  814         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  815 }
  816 
  817 /*
  818  * scheduler run of queue, if there are requests pending and no one in the
  819  * driver that will restart queueing
  820  */
  821 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  822 {
  823         if (cfqd->busy_queues) {
  824                 cfq_log(cfqd, "schedule dispatch");
  825                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  826         }
  827 }
  828 
  829 /*
  830  * Scale schedule slice based on io priority. Use the sync time slice only
  831  * if a queue is marked sync and has sync io queued. A sync queue with async
  832  * io only, should not get full sync slice length.
  833  */
  834 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  835                                  unsigned short prio)
  836 {
  837         const int base_slice = cfqd->cfq_slice[sync];
  838 
  839         WARN_ON(prio >= IOPRIO_BE_NR);
  840 
  841         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  842 }
  843 
  844 static inline int
  845 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  846 {
  847         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  848 }
  849 
  850 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  851 {
  852         u64 d = delta << CFQ_SERVICE_SHIFT;
  853 
  854         d = d * CFQ_WEIGHT_DEFAULT;
  855         do_div(d, cfqg->weight);
  856         return d;
  857 }
  858 
  859 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  860 {
  861         s64 delta = (s64)(vdisktime - min_vdisktime);
  862         if (delta > 0)
  863                 min_vdisktime = vdisktime;
  864 
  865         return min_vdisktime;
  866 }
  867 
  868 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  869 {
  870         s64 delta = (s64)(vdisktime - min_vdisktime);
  871         if (delta < 0)
  872                 min_vdisktime = vdisktime;
  873 
  874         return min_vdisktime;
  875 }
  876 
  877 static void update_min_vdisktime(struct cfq_rb_root *st)
  878 {
  879         struct cfq_group *cfqg;
  880 
  881         if (st->left) {
  882                 cfqg = rb_entry_cfqg(st->left);
  883                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  884                                                   cfqg->vdisktime);
  885         }
  886 }
  887 
  888 /*
  889  * get averaged number of queues of RT/BE priority.
  890  * average is updated, with a formula that gives more weight to higher numbers,
  891  * to quickly follows sudden increases and decrease slowly
  892  */
  893 
  894 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  895                                         struct cfq_group *cfqg, bool rt)
  896 {
  897         unsigned min_q, max_q;
  898         unsigned mult  = cfq_hist_divisor - 1;
  899         unsigned round = cfq_hist_divisor / 2;
  900         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  901 
  902         min_q = min(cfqg->busy_queues_avg[rt], busy);
  903         max_q = max(cfqg->busy_queues_avg[rt], busy);
  904         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  905                 cfq_hist_divisor;
  906         return cfqg->busy_queues_avg[rt];
  907 }
  908 
  909 static inline unsigned
  910 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  911 {
  912         struct cfq_rb_root *st = &cfqd->grp_service_tree;
  913 
  914         return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
  915 }
  916 
  917 static inline unsigned
  918 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  919 {
  920         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  921         if (cfqd->cfq_latency) {
  922                 /*
  923                  * interested queues (we consider only the ones with the same
  924                  * priority class in the cfq group)
  925                  */
  926                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  927                                                 cfq_class_rt(cfqq));
  928                 unsigned sync_slice = cfqd->cfq_slice[1];
  929                 unsigned expect_latency = sync_slice * iq;
  930                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  931 
  932                 if (expect_latency > group_slice) {
  933                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  934                         /* scale low_slice according to IO priority
  935                          * and sync vs async */
  936                         unsigned low_slice =
  937                                 min(slice, base_low_slice * slice / sync_slice);
  938                         /* the adapted slice value is scaled to fit all iqs
  939                          * into the target latency */
  940                         slice = max(slice * group_slice / expect_latency,
  941                                     low_slice);
  942                 }
  943         }
  944         return slice;
  945 }
  946 
  947 static inline void
  948 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  949 {
  950         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  951 
  952         cfqq->slice_start = jiffies;
  953         cfqq->slice_end = jiffies + slice;
  954         cfqq->allocated_slice = slice;
  955         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  956 }
  957 
  958 /*
  959  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  960  * isn't valid until the first request from the dispatch is activated
  961  * and the slice time set.
  962  */
  963 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  964 {
  965         if (cfq_cfqq_slice_new(cfqq))
  966                 return false;
  967         if (time_before(jiffies, cfqq->slice_end))
  968                 return false;
  969 
  970         return true;
  971 }
  972 
  973 /*
  974  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  975  * We choose the request that is closest to the head right now. Distance
  976  * behind the head is penalized and only allowed to a certain extent.
  977  */
  978 static struct request *
  979 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  980 {
  981         sector_t s1, s2, d1 = 0, d2 = 0;
  982         unsigned long back_max;
  983 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
  984 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
  985         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  986 
  987         if (rq1 == NULL || rq1 == rq2)
  988                 return rq2;
  989         if (rq2 == NULL)
  990                 return rq1;
  991 
  992         if (rq_is_sync(rq1) != rq_is_sync(rq2))
  993                 return rq_is_sync(rq1) ? rq1 : rq2;
  994 
  995         if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  996                 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  997 
  998         s1 = blk_rq_pos(rq1);
  999         s2 = blk_rq_pos(rq2);
 1000 
 1001         /*
 1002          * by definition, 1KiB is 2 sectors
 1003          */
 1004         back_max = cfqd->cfq_back_max * 2;
 1005 
 1006         /*
 1007          * Strict one way elevator _except_ in the case where we allow
 1008          * short backward seeks which are biased as twice the cost of a
 1009          * similar forward seek.
 1010          */
 1011         if (s1 >= last)
 1012                 d1 = s1 - last;
 1013         else if (s1 + back_max >= last)
 1014                 d1 = (last - s1) * cfqd->cfq_back_penalty;
 1015         else
 1016                 wrap |= CFQ_RQ1_WRAP;
 1017 
 1018         if (s2 >= last)
 1019                 d2 = s2 - last;
 1020         else if (s2 + back_max >= last)
 1021                 d2 = (last - s2) * cfqd->cfq_back_penalty;
 1022         else
 1023                 wrap |= CFQ_RQ2_WRAP;
 1024 
 1025         /* Found required data */
 1026 
 1027         /*
 1028          * By doing switch() on the bit mask "wrap" we avoid having to
 1029          * check two variables for all permutations: --> faster!
 1030          */
 1031         switch (wrap) {
 1032         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
 1033                 if (d1 < d2)
 1034                         return rq1;
 1035                 else if (d2 < d1)
 1036                         return rq2;
 1037                 else {
 1038                         if (s1 >= s2)
 1039                                 return rq1;
 1040                         else
 1041                                 return rq2;
 1042                 }
 1043 
 1044         case CFQ_RQ2_WRAP:
 1045                 return rq1;
 1046         case CFQ_RQ1_WRAP:
 1047                 return rq2;
 1048         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
 1049         default:
 1050                 /*
 1051                  * Since both rqs are wrapped,
 1052                  * start with the one that's further behind head
 1053                  * (--> only *one* back seek required),
 1054                  * since back seek takes more time than forward.
 1055                  */
 1056                 if (s1 <= s2)
 1057                         return rq1;
 1058                 else
 1059                         return rq2;
 1060         }
 1061 }
 1062 
 1063 /*
 1064  * The below is leftmost cache rbtree addon
 1065  */
 1066 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
 1067 {
 1068         /* Service tree is empty */
 1069         if (!root->count)
 1070                 return NULL;
 1071 
 1072         if (!root->left)
 1073                 root->left = rb_first(&root->rb);
 1074 
 1075         if (root->left)
 1076                 return rb_entry(root->left, struct cfq_queue, rb_node);
 1077 
 1078         return NULL;
 1079 }
 1080 
 1081 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
 1082 {
 1083         if (!root->left)
 1084                 root->left = rb_first(&root->rb);
 1085 
 1086         if (root->left)
 1087                 return rb_entry_cfqg(root->left);
 1088 
 1089         return NULL;
 1090 }
 1091 
 1092 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 1093 {
 1094         rb_erase(n, root);
 1095         RB_CLEAR_NODE(n);
 1096 }
 1097 
 1098 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
 1099 {
 1100         if (root->left == n)
 1101                 root->left = NULL;
 1102         rb_erase_init(n, &root->rb);
 1103         --root->count;
 1104 }
 1105 
 1106 /*
 1107  * would be nice to take fifo expire time into account as well
 1108  */
 1109 static struct request *
 1110 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 1111                   struct request *last)
 1112 {
 1113         struct rb_node *rbnext = rb_next(&last->rb_node);
 1114         struct rb_node *rbprev = rb_prev(&last->rb_node);
 1115         struct request *next = NULL, *prev = NULL;
 1116 
 1117         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
 1118 
 1119         if (rbprev)
 1120                 prev = rb_entry_rq(rbprev);
 1121 
 1122         if (rbnext)
 1123                 next = rb_entry_rq(rbnext);
 1124         else {
 1125                 rbnext = rb_first(&cfqq->sort_list);
 1126                 if (rbnext && rbnext != &last->rb_node)
 1127                         next = rb_entry_rq(rbnext);
 1128         }
 1129 
 1130         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
 1131 }
 1132 
 1133 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
 1134                                       struct cfq_queue *cfqq)
 1135 {
 1136         /*
 1137          * just an approximation, should be ok.
 1138          */
 1139         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
 1140                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
 1141 }
 1142 
 1143 static inline s64
 1144 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
 1145 {
 1146         return cfqg->vdisktime - st->min_vdisktime;
 1147 }
 1148 
 1149 static void
 1150 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
 1151 {
 1152         struct rb_node **node = &st->rb.rb_node;
 1153         struct rb_node *parent = NULL;
 1154         struct cfq_group *__cfqg;
 1155         s64 key = cfqg_key(st, cfqg);
 1156         int left = 1;
 1157 
 1158         while (*node != NULL) {
 1159                 parent = *node;
 1160                 __cfqg = rb_entry_cfqg(parent);
 1161 
 1162                 if (key < cfqg_key(st, __cfqg))
 1163                         node = &parent->rb_left;
 1164                 else {
 1165                         node = &parent->rb_right;
 1166                         left = 0;
 1167                 }
 1168         }
 1169 
 1170         if (left)
 1171                 st->left = &cfqg->rb_node;
 1172 
 1173         rb_link_node(&cfqg->rb_node, parent, node);
 1174         rb_insert_color(&cfqg->rb_node, &st->rb);
 1175 }
 1176 
 1177 static void
 1178 cfq_update_group_weight(struct cfq_group *cfqg)
 1179 {
 1180         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
 1181         if (cfqg->new_weight) {
 1182                 cfqg->weight = cfqg->new_weight;
 1183                 cfqg->new_weight = 0;
 1184         }
 1185 }
 1186 
 1187 static void
 1188 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
 1189 {
 1190         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
 1191 
 1192         cfq_update_group_weight(cfqg);
 1193         __cfq_group_service_tree_add(st, cfqg);
 1194         st->total_weight += cfqg->weight;
 1195 }
 1196 
 1197 static void
 1198 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
 1199 {
 1200         struct cfq_rb_root *st = &cfqd->grp_service_tree;
 1201         struct cfq_group *__cfqg;
 1202         struct rb_node *n;
 1203 
 1204         cfqg->nr_cfqq++;
 1205         if (!RB_EMPTY_NODE(&cfqg->rb_node))
 1206                 return;
 1207 
 1208         /*
 1209          * Currently put the group at the end. Later implement something
 1210          * so that groups get lesser vtime based on their weights, so that
 1211          * if group does not loose all if it was not continuously backlogged.
 1212          */
 1213         n = rb_last(&st->rb);
 1214         if (n) {
 1215                 __cfqg = rb_entry_cfqg(n);
 1216                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
 1217         } else
 1218                 cfqg->vdisktime = st->min_vdisktime;
 1219         cfq_group_service_tree_add(st, cfqg);
 1220 }
 1221 
 1222 static void
 1223 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
 1224 {
 1225         st->total_weight -= cfqg->weight;
 1226         if (!RB_EMPTY_NODE(&cfqg->rb_node))
 1227                 cfq_rb_erase(&cfqg->rb_node, st);
 1228 }
 1229 
 1230 static void
 1231 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
 1232 {
 1233         struct cfq_rb_root *st = &cfqd->grp_service_tree;
 1234 
 1235         BUG_ON(cfqg->nr_cfqq < 1);
 1236         cfqg->nr_cfqq--;
 1237 
 1238         /* If there are other cfq queues under this group, don't delete it */
 1239         if (cfqg->nr_cfqq)
 1240                 return;
 1241 
 1242         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
 1243         cfq_group_service_tree_del(st, cfqg);
 1244         cfqg->saved_workload_slice = 0;
 1245         cfqg_stats_update_dequeue(cfqg);
 1246 }
 1247 
 1248 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
 1249                                                 unsigned int *unaccounted_time)
 1250 {
 1251         unsigned int slice_used;
 1252 
 1253         /*
 1254          * Queue got expired before even a single request completed or
 1255          * got expired immediately after first request completion.
 1256          */
 1257         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
 1258                 /*
 1259                  * Also charge the seek time incurred to the group, otherwise
 1260                  * if there are mutiple queues in the group, each can dispatch
 1261                  * a single request on seeky media and cause lots of seek time
 1262                  * and group will never know it.
 1263                  */
 1264                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
 1265                                         1);
 1266         } else {
 1267                 slice_used = jiffies - cfqq->slice_start;
 1268                 if (slice_used > cfqq->allocated_slice) {
 1269                         *unaccounted_time = slice_used - cfqq->allocated_slice;
 1270                         slice_used = cfqq->allocated_slice;
 1271                 }
 1272                 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
 1273                         *unaccounted_time += cfqq->slice_start -
 1274                                         cfqq->dispatch_start;
 1275         }
 1276 
 1277         return slice_used;
 1278 }
 1279 
 1280 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
 1281                                 struct cfq_queue *cfqq)
 1282 {
 1283         struct cfq_rb_root *st = &cfqd->grp_service_tree;
 1284         unsigned int used_sl, charge, unaccounted_sl = 0;
 1285         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
 1286                         - cfqg->service_tree_idle.count;
 1287 
 1288         BUG_ON(nr_sync < 0);
 1289         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
 1290 
 1291         if (iops_mode(cfqd))
 1292                 charge = cfqq->slice_dispatch;
 1293         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
 1294                 charge = cfqq->allocated_slice;
 1295 
 1296         /* Can't update vdisktime while group is on service tree */
 1297         cfq_group_service_tree_del(st, cfqg);
 1298         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
 1299         /* If a new weight was requested, update now, off tree */
 1300         cfq_group_service_tree_add(st, cfqg);
 1301 
 1302         /* This group is being expired. Save the context */
 1303         if (time_after(cfqd->workload_expires, jiffies)) {
 1304                 cfqg->saved_workload_slice = cfqd->workload_expires
 1305                                                 - jiffies;
 1306                 cfqg->saved_workload = cfqd->serving_type;
 1307                 cfqg->saved_serving_prio = cfqd->serving_prio;
 1308         } else
 1309                 cfqg->saved_workload_slice = 0;
 1310 
 1311         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
 1312                                         st->min_vdisktime);
 1313         cfq_log_cfqq(cfqq->cfqd, cfqq,
 1314                      "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
 1315                      used_sl, cfqq->slice_dispatch, charge,
 1316                      iops_mode(cfqd), cfqq->nr_sectors);
 1317         cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
 1318         cfqg_stats_set_start_empty_time(cfqg);
 1319 }
 1320 
 1321 /**
 1322  * cfq_init_cfqg_base - initialize base part of a cfq_group
 1323  * @cfqg: cfq_group to initialize
 1324  *
 1325  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
 1326  * is enabled or not.
 1327  */
 1328 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
 1329 {
 1330         struct cfq_rb_root *st;
 1331         int i, j;
 1332 
 1333         for_each_cfqg_st(cfqg, i, j, st)
 1334                 *st = CFQ_RB_ROOT;
 1335         RB_CLEAR_NODE(&cfqg->rb_node);
 1336 
 1337         cfqg->ttime.last_end_request = jiffies;
 1338 }
 1339 
 1340 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 1341 static void cfq_pd_init(struct blkcg_gq *blkg)
 1342 {
 1343         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
 1344 
 1345         cfq_init_cfqg_base(cfqg);
 1346         cfqg->weight = blkg->blkcg->cfq_weight;
 1347 }
 1348 
 1349 /*
 1350  * Search for the cfq group current task belongs to. request_queue lock must
 1351  * be held.
 1352  */
 1353 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
 1354                                                 struct blkcg *blkcg)
 1355 {
 1356         struct request_queue *q = cfqd->queue;
 1357         struct cfq_group *cfqg = NULL;
 1358 
 1359         /* avoid lookup for the common case where there's no blkcg */
 1360         if (blkcg == &blkcg_root) {
 1361                 cfqg = cfqd->root_group;
 1362         } else {
 1363                 struct blkcg_gq *blkg;
 1364 
 1365                 blkg = blkg_lookup_create(blkcg, q);
 1366                 if (!IS_ERR(blkg))
 1367                         cfqg = blkg_to_cfqg(blkg);
 1368         }
 1369 
 1370         return cfqg;
 1371 }
 1372 
 1373 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
 1374 {
 1375         /* Currently, all async queues are mapped to root group */
 1376         if (!cfq_cfqq_sync(cfqq))
 1377                 cfqg = cfqq->cfqd->root_group;
 1378 
 1379         cfqq->cfqg = cfqg;
 1380         /* cfqq reference on cfqg */
 1381         cfqg_get(cfqg);
 1382 }
 1383 
 1384 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
 1385                                      struct blkg_policy_data *pd, int off)
 1386 {
 1387         struct cfq_group *cfqg = pd_to_cfqg(pd);
 1388 
 1389         if (!cfqg->dev_weight)
 1390                 return 0;
 1391         return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
 1392 }
 1393 
 1394 static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
 1395                                     struct seq_file *sf)
 1396 {
 1397         blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
 1398                           cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
 1399                           false);
 1400         return 0;
 1401 }
 1402 
 1403 static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
 1404                             struct seq_file *sf)
 1405 {
 1406         seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
 1407         return 0;
 1408 }
 1409 
 1410 static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
 1411                                   const char *buf)
 1412 {
 1413         struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 1414         struct blkg_conf_ctx ctx;
 1415         struct cfq_group *cfqg;
 1416         int ret;
 1417 
 1418         ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
 1419         if (ret)
 1420                 return ret;
 1421 
 1422         ret = -EINVAL;
 1423         cfqg = blkg_to_cfqg(ctx.blkg);
 1424         if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
 1425                 cfqg->dev_weight = ctx.v;
 1426                 cfqg->new_weight = cfqg->dev_weight ?: blkcg->cfq_weight;
 1427                 ret = 0;
 1428         }
 1429 
 1430         blkg_conf_finish(&ctx);
 1431         return ret;
 1432 }
 1433 
 1434 static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
 1435 {
 1436         struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 1437         struct blkcg_gq *blkg;
 1438         struct hlist_node *n;
 1439 
 1440         if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
 1441                 return -EINVAL;
 1442 
 1443         spin_lock_irq(&blkcg->lock);
 1444         blkcg->cfq_weight = (unsigned int)val;
 1445 
 1446         hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
 1447                 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
 1448 
 1449                 if (cfqg && !cfqg->dev_weight)
 1450                         cfqg->new_weight = blkcg->cfq_weight;
 1451         }
 1452 
 1453         spin_unlock_irq(&blkcg->lock);
 1454         return 0;
 1455 }
 1456 
 1457 static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
 1458                            struct seq_file *sf)
 1459 {
 1460         struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 1461 
 1462         blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
 1463                           cft->private, false);
 1464         return 0;
 1465 }
 1466 
 1467 static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
 1468                              struct seq_file *sf)
 1469 {
 1470         struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 1471 
 1472         blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
 1473                           cft->private, true);
 1474         return 0;
 1475 }
 1476 
 1477 #ifdef CONFIG_DEBUG_BLK_CGROUP
 1478 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
 1479                                       struct blkg_policy_data *pd, int off)
 1480 {
 1481         struct cfq_group *cfqg = pd_to_cfqg(pd);
 1482         u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
 1483         u64 v = 0;
 1484 
 1485         if (samples) {
 1486                 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
 1487                 do_div(v, samples);
 1488         }
 1489         __blkg_prfill_u64(sf, pd, v);
 1490         return 0;
 1491 }
 1492 
 1493 /* print avg_queue_size */
 1494 static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
 1495                                      struct seq_file *sf)
 1496 {
 1497         struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
 1498 
 1499         blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
 1500                           &blkcg_policy_cfq, 0, false);
 1501         return 0;
 1502 }
 1503 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
 1504 
 1505 static struct cftype cfq_blkcg_files[] = {
 1506         {
 1507                 .name = "weight_device",
 1508                 .read_seq_string = cfqg_print_weight_device,
 1509                 .write_string = cfqg_set_weight_device,
 1510                 .max_write_len = 256,
 1511         },
 1512         {
 1513                 .name = "weight",
 1514                 .read_seq_string = cfq_print_weight,
 1515                 .write_u64 = cfq_set_weight,
 1516         },
 1517         {
 1518                 .name = "time",
 1519                 .private = offsetof(struct cfq_group, stats.time),
 1520                 .read_seq_string = cfqg_print_stat,
 1521         },
 1522         {
 1523                 .name = "sectors",
 1524                 .private = offsetof(struct cfq_group, stats.sectors),
 1525                 .read_seq_string = cfqg_print_stat,
 1526         },
 1527         {
 1528                 .name = "io_service_bytes",
 1529                 .private = offsetof(struct cfq_group, stats.service_bytes),
 1530                 .read_seq_string = cfqg_print_rwstat,
 1531         },
 1532         {
 1533                 .name = "io_serviced",
 1534                 .private = offsetof(struct cfq_group, stats.serviced),
 1535                 .read_seq_string = cfqg_print_rwstat,
 1536         },
 1537         {
 1538                 .name = "io_service_time",
 1539                 .private = offsetof(struct cfq_group, stats.service_time),
 1540                 .read_seq_string = cfqg_print_rwstat,
 1541         },
 1542         {
 1543                 .name = "io_wait_time",
 1544                 .private = offsetof(struct cfq_group, stats.wait_time),
 1545                 .read_seq_string = cfqg_print_rwstat,
 1546         },
 1547         {
 1548                 .name = "io_merged",
 1549                 .private = offsetof(struct cfq_group, stats.merged),
 1550                 .read_seq_string = cfqg_print_rwstat,
 1551         },
 1552         {
 1553                 .name = "io_queued",
 1554                 .private = offsetof(struct cfq_group, stats.queued),
 1555                 .read_seq_string = cfqg_print_rwstat,
 1556         },
 1557 #ifdef CONFIG_DEBUG_BLK_CGROUP
 1558         {
 1559                 .name = "avg_queue_size",
 1560                 .read_seq_string = cfqg_print_avg_queue_size,
 1561         },
 1562         {
 1563                 .name = "group_wait_time",
 1564                 .private = offsetof(struct cfq_group, stats.group_wait_time),
 1565                 .read_seq_string = cfqg_print_stat,
 1566         },
 1567         {
 1568                 .name = "idle_time",
 1569                 .private = offsetof(struct cfq_group, stats.idle_time),
 1570                 .read_seq_string = cfqg_print_stat,
 1571         },
 1572         {
 1573                 .name = "empty_time",
 1574                 .private = offsetof(struct cfq_group, stats.empty_time),
 1575                 .read_seq_string = cfqg_print_stat,
 1576         },
 1577         {
 1578                 .name = "dequeue",
 1579                 .private = offsetof(struct cfq_group, stats.dequeue),
 1580                 .read_seq_string = cfqg_print_stat,
 1581         },
 1582         {
 1583                 .name = "unaccounted_time",
 1584                 .private = offsetof(struct cfq_group, stats.unaccounted_time),
 1585                 .read_seq_string = cfqg_print_stat,
 1586         },
 1587 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
 1588         { }     /* terminate */
 1589 };
 1590 #else /* GROUP_IOSCHED */
 1591 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
 1592                                                 struct blkcg *blkcg)
 1593 {
 1594         return cfqd->root_group;
 1595 }
 1596 
 1597 static inline void
 1598 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
 1599         cfqq->cfqg = cfqg;
 1600 }
 1601 
 1602 #endif /* GROUP_IOSCHED */
 1603 
 1604 /*
 1605  * The cfqd->service_trees holds all pending cfq_queue's that have
 1606  * requests waiting to be processed. It is sorted in the order that
 1607  * we will service the queues.
 1608  */
 1609 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 1610                                  bool add_front)
 1611 {
 1612         struct rb_node **p, *parent;
 1613         struct cfq_queue *__cfqq;
 1614         unsigned long rb_key;
 1615         struct cfq_rb_root *service_tree;
 1616         int left;
 1617         int new_cfqq = 1;
 1618 
 1619         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
 1620                                                 cfqq_type(cfqq));
 1621         if (cfq_class_idle(cfqq)) {
 1622                 rb_key = CFQ_IDLE_DELAY;
 1623                 parent = rb_last(&service_tree->rb);
 1624                 if (parent && parent != &cfqq->rb_node) {
 1625                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
 1626                         rb_key += __cfqq->rb_key;
 1627                 } else
 1628                         rb_key += jiffies;
 1629         } else if (!add_front) {
 1630                 /*
 1631                  * Get our rb key offset. Subtract any residual slice
 1632                  * value carried from last service. A negative resid
 1633                  * count indicates slice overrun, and this should position
 1634                  * the next service time further away in the tree.
 1635                  */
 1636                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
 1637                 rb_key -= cfqq->slice_resid;
 1638                 cfqq->slice_resid = 0;
 1639         } else {
 1640                 rb_key = -HZ;
 1641                 __cfqq = cfq_rb_first(service_tree);
 1642                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
 1643         }
 1644 
 1645         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
 1646                 new_cfqq = 0;
 1647                 /*
 1648                  * same position, nothing more to do
 1649                  */
 1650                 if (rb_key == cfqq->rb_key &&
 1651                     cfqq->service_tree == service_tree)
 1652                         return;
 1653 
 1654                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
 1655                 cfqq->service_tree = NULL;
 1656         }
 1657 
 1658         left = 1;
 1659         parent = NULL;
 1660         cfqq->service_tree = service_tree;
 1661         p = &service_tree->rb.rb_node;
 1662         while (*p) {
 1663                 struct rb_node **n;
 1664 
 1665                 parent = *p;
 1666                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
 1667 
 1668                 /*
 1669                  * sort by key, that represents service time.
 1670                  */
 1671                 if (time_before(rb_key, __cfqq->rb_key))
 1672                         n = &(*p)->rb_left;
 1673                 else {
 1674                         n = &(*p)->rb_right;
 1675                         left = 0;
 1676                 }
 1677 
 1678                 p = n;
 1679         }
 1680 
 1681         if (left)
 1682                 service_tree->left = &cfqq->rb_node;
 1683 
 1684         cfqq->rb_key = rb_key;
 1685         rb_link_node(&cfqq->rb_node, parent, p);
 1686         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
 1687         service_tree->count++;
 1688         if (add_front || !new_cfqq)
 1689                 return;
 1690         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
 1691 }
 1692 
 1693 static struct cfq_queue *
 1694 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
 1695                      sector_t sector, struct rb_node **ret_parent,
 1696                      struct rb_node ***rb_link)
 1697 {
 1698         struct rb_node **p, *parent;
 1699         struct cfq_queue *cfqq = NULL;
 1700 
 1701         parent = NULL;
 1702         p = &root->rb_node;
 1703         while (*p) {
 1704                 struct rb_node **n;
 1705 
 1706                 parent = *p;
 1707                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
 1708 
 1709                 /*
 1710                  * Sort strictly based on sector.  Smallest to the left,
 1711                  * largest to the right.
 1712                  */
 1713                 if (sector > blk_rq_pos(cfqq->next_rq))
 1714                         n = &(*p)->rb_right;
 1715                 else if (sector < blk_rq_pos(cfqq->next_rq))
 1716                         n = &(*p)->rb_left;
 1717                 else
 1718                         break;
 1719                 p = n;
 1720                 cfqq = NULL;
 1721         }
 1722 
 1723         *ret_parent = parent;
 1724         if (rb_link)
 1725                 *rb_link = p;
 1726         return cfqq;
 1727 }
 1728 
 1729 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 1730 {
 1731         struct rb_node **p, *parent;
 1732         struct cfq_queue *__cfqq;
 1733 
 1734         if (cfqq->p_root) {
 1735                 rb_erase(&cfqq->p_node, cfqq->p_root);
 1736                 cfqq->p_root = NULL;
 1737         }
 1738 
 1739         if (cfq_class_idle(cfqq))
 1740                 return;
 1741         if (!cfqq->next_rq)
 1742                 return;
 1743 
 1744         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
 1745         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
 1746                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
 1747         if (!__cfqq) {
 1748                 rb_link_node(&cfqq->p_node, parent, p);
 1749                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
 1750         } else
 1751                 cfqq->p_root = NULL;
 1752 }
 1753 
 1754 /*
 1755  * Update cfqq's position in the service tree.
 1756  */
 1757 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 1758 {
 1759         /*
 1760          * Resorting requires the cfqq to be on the RR list already.
 1761          */
 1762         if (cfq_cfqq_on_rr(cfqq)) {
 1763                 cfq_service_tree_add(cfqd, cfqq, 0);
 1764                 cfq_prio_tree_add(cfqd, cfqq);
 1765         }
 1766 }
 1767 
 1768 /*
 1769  * add to busy list of queues for service, trying to be fair in ordering
 1770  * the pending list according to last request service
 1771  */
 1772 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 1773 {
 1774         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
 1775         BUG_ON(cfq_cfqq_on_rr(cfqq));
 1776         cfq_mark_cfqq_on_rr(cfqq);
 1777         cfqd->busy_queues++;
 1778         if (cfq_cfqq_sync(cfqq))
 1779                 cfqd->busy_sync_queues++;
 1780 
 1781         cfq_resort_rr_list(cfqd, cfqq);
 1782 }
 1783 
 1784 /*
 1785  * Called when the cfqq no longer has requests pending, remove it from
 1786  * the service tree.
 1787  */
 1788 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 1789 {
 1790         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
 1791         BUG_ON(!cfq_cfqq_on_rr(cfqq));
 1792         cfq_clear_cfqq_on_rr(cfqq);
 1793 
 1794         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
 1795                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
 1796                 cfqq->service_tree = NULL;
 1797         }
 1798         if (cfqq->p_root) {
 1799                 rb_erase(&cfqq->p_node, cfqq->p_root);
 1800                 cfqq->p_root = NULL;
 1801         }
 1802 
 1803         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
 1804         BUG_ON(!cfqd->busy_queues);
 1805         cfqd->busy_queues--;
 1806         if (cfq_cfqq_sync(cfqq))
 1807                 cfqd->busy_sync_queues--;
 1808 }
 1809 
 1810 /*
 1811  * rb tree support functions
 1812  */
 1813 static void cfq_del_rq_rb(struct request *rq)
 1814 {
 1815         struct cfq_queue *cfqq = RQ_CFQQ(rq);
 1816         const int sync = rq_is_sync(rq);
 1817 
 1818         BUG_ON(!cfqq->queued[sync]);
 1819         cfqq->queued[sync]--;
 1820 
 1821         elv_rb_del(&cfqq->sort_list, rq);
 1822 
 1823         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
 1824                 /*
 1825                  * Queue will be deleted from service tree when we actually
 1826                  * expire it later. Right now just remove it from prio tree
 1827                  * as it is empty.
 1828                  */
 1829                 if (cfqq->p_root) {
 1830                         rb_erase(&cfqq->p_node, cfqq->p_root);
 1831                         cfqq->p_root = NULL;
 1832                 }
 1833         }
 1834 }
 1835 
 1836 static void cfq_add_rq_rb(struct request *rq)
 1837 {
 1838         struct cfq_queue *cfqq = RQ_CFQQ(rq);
 1839         struct cfq_data *cfqd = cfqq->cfqd;
 1840         struct request *prev;
 1841 
 1842         cfqq->queued[rq_is_sync(rq)]++;
 1843 
 1844         elv_rb_add(&cfqq->sort_list, rq);
 1845 
 1846         if (!cfq_cfqq_on_rr(cfqq))
 1847                 cfq_add_cfqq_rr(cfqd, cfqq);
 1848 
 1849         /*
 1850          * check if this request is a better next-serve candidate
 1851          */
 1852         prev = cfqq->next_rq;
 1853         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
 1854 
 1855         /*
 1856          * adjust priority tree position, if ->next_rq changes
 1857          */
 1858         if (prev != cfqq->next_rq)
 1859                 cfq_prio_tree_add(cfqd, cfqq);
 1860 
 1861         BUG_ON(!cfqq->next_rq);
 1862 }
 1863 
 1864 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
 1865 {
 1866         elv_rb_del(&cfqq->sort_list, rq);
 1867         cfqq->queued[rq_is_sync(rq)]--;
 1868         cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
 1869         cfq_add_rq_rb(rq);
 1870         cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
 1871                                  rq->cmd_flags);
 1872 }
 1873 
 1874 static struct request *
 1875 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
 1876 {
 1877         struct task_struct *tsk = current;
 1878         struct cfq_io_cq *cic;
 1879         struct cfq_queue *cfqq;
 1880 
 1881         cic = cfq_cic_lookup(cfqd, tsk->io_context);
 1882         if (!cic)
 1883                 return NULL;
 1884 
 1885         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
 1886         if (cfqq) {
 1887                 sector_t sector = bio->bi_sector + bio_sectors(bio);
 1888 
 1889                 return elv_rb_find(&cfqq->sort_list, sector);
 1890         }
 1891 
 1892         return NULL;
 1893 }
 1894 
 1895 static void cfq_activate_request(struct request_queue *q, struct request *rq)
 1896 {
 1897         struct cfq_data *cfqd = q->elevator->elevator_data;
 1898 
 1899         cfqd->rq_in_driver++;
 1900         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
 1901                                                 cfqd->rq_in_driver);
 1902 
 1903         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
 1904 }
 1905 
 1906 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
 1907 {
 1908         struct cfq_data *cfqd = q->elevator->elevator_data;
 1909 
 1910         WARN_ON(!cfqd->rq_in_driver);
 1911         cfqd->rq_in_driver--;
 1912         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
 1913                                                 cfqd->rq_in_driver);
 1914 }
 1915 
 1916 static void cfq_remove_request(struct request *rq)
 1917 {
 1918         struct cfq_queue *cfqq = RQ_CFQQ(rq);
 1919 
 1920         if (cfqq->next_rq == rq)
 1921                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
 1922 
 1923         list_del_init(&rq->queuelist);
 1924         cfq_del_rq_rb(rq);
 1925 
 1926         cfqq->cfqd->rq_queued--;
 1927         cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
 1928         if (rq->cmd_flags & REQ_PRIO) {
 1929                 WARN_ON(!cfqq->prio_pending);
 1930                 cfqq->prio_pending--;
 1931         }
 1932 }
 1933 
 1934 static int cfq_merge(struct request_queue *q, struct request **req,
 1935                      struct bio *bio)
 1936 {
 1937         struct cfq_data *cfqd = q->elevator->elevator_data;
 1938         struct request *__rq;
 1939 
 1940         __rq = cfq_find_rq_fmerge(cfqd, bio);
 1941         if (__rq && elv_rq_merge_ok(__rq, bio)) {
 1942                 *req = __rq;
 1943                 return ELEVATOR_FRONT_MERGE;
 1944         }
 1945 
 1946         return ELEVATOR_NO_MERGE;
 1947 }
 1948 
 1949 static void cfq_merged_request(struct request_queue *q, struct request *req,
 1950                                int type)
 1951 {
 1952         if (type == ELEVATOR_FRONT_MERGE) {
 1953                 struct cfq_queue *cfqq = RQ_CFQQ(req);
 1954 
 1955                 cfq_reposition_rq_rb(cfqq, req);
 1956         }
 1957 }
 1958 
 1959 static void cfq_bio_merged(struct request_queue *q, struct request *req,
 1960                                 struct bio *bio)
 1961 {
 1962         cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
 1963 }
 1964 
 1965 static void
 1966 cfq_merged_requests(struct request_queue *q, struct request *rq,
 1967                     struct request *next)
 1968 {
 1969         struct cfq_queue *cfqq = RQ_CFQQ(rq);
 1970         struct cfq_data *cfqd = q->elevator->elevator_data;
 1971 
 1972         /*
 1973          * reposition in fifo if next is older than rq
 1974          */
 1975         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
 1976             time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
 1977             cfqq == RQ_CFQQ(next)) {
 1978                 list_move(&rq->queuelist, &next->queuelist);
 1979                 rq_set_fifo_time(rq, rq_fifo_time(next));
 1980         }
 1981 
 1982         if (cfqq->next_rq == next)
 1983                 cfqq->next_rq = rq;
 1984         cfq_remove_request(next);
 1985         cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
 1986 
 1987         cfqq = RQ_CFQQ(next);
 1988         /*
 1989          * all requests of this queue are merged to other queues, delete it
 1990          * from the service tree. If it's the active_queue,
 1991          * cfq_dispatch_requests() will choose to expire it or do idle
 1992          */
 1993         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
 1994             cfqq != cfqd->active_queue)
 1995                 cfq_del_cfqq_rr(cfqd, cfqq);
 1996 }
 1997 
 1998 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
 1999                            struct bio *bio)
 2000 {
 2001         struct cfq_data *cfqd = q->elevator->elevator_data;
 2002         struct cfq_io_cq *cic;
 2003         struct cfq_queue *cfqq;
 2004 
 2005         /*
 2006          * Disallow merge of a sync bio into an async request.
 2007          */
 2008         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
 2009                 return false;
 2010 
 2011         /*
 2012          * Lookup the cfqq that this bio will be queued with and allow
 2013          * merge only if rq is queued there.
 2014          */
 2015         cic = cfq_cic_lookup(cfqd, current->io_context);
 2016         if (!cic)
 2017                 return false;
 2018 
 2019         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
 2020         return cfqq == RQ_CFQQ(rq);
 2021 }
 2022 
 2023 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 2024 {
 2025         del_timer(&cfqd->idle_slice_timer);
 2026         cfqg_stats_update_idle_time(cfqq->cfqg);
 2027 }
 2028 
 2029 static void __cfq_set_active_queue(struct cfq_data *cfqd,
 2030                                    struct cfq_queue *cfqq)
 2031 {
 2032         if (cfqq) {
 2033                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
 2034                                 cfqd->serving_prio, cfqd->serving_type);
 2035                 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
 2036                 cfqq->slice_start = 0;
 2037                 cfqq->dispatch_start = jiffies;
 2038                 cfqq->allocated_slice = 0;
 2039                 cfqq->slice_end = 0;
 2040                 cfqq->slice_dispatch = 0;
 2041                 cfqq->nr_sectors = 0;
 2042 
 2043                 cfq_clear_cfqq_wait_request(cfqq);
 2044                 cfq_clear_cfqq_must_dispatch(cfqq);
 2045                 cfq_clear_cfqq_must_alloc_slice(cfqq);
 2046                 cfq_clear_cfqq_fifo_expire(cfqq);
 2047                 cfq_mark_cfqq_slice_new(cfqq);
 2048 
 2049                 cfq_del_timer(cfqd, cfqq);
 2050         }
 2051 
 2052         cfqd->active_queue = cfqq;
 2053 }
 2054 
 2055 /*
 2056  * current cfqq expired its slice (or was too idle), select new one
 2057  */
 2058 static void
 2059 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 2060                     bool timed_out)
 2061 {
 2062         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
 2063 
 2064         if (cfq_cfqq_wait_request(cfqq))
 2065                 cfq_del_timer(cfqd, cfqq);
 2066 
 2067         cfq_clear_cfqq_wait_request(cfqq);
 2068         cfq_clear_cfqq_wait_busy(cfqq);
 2069 
 2070         /*
 2071          * If this cfqq is shared between multiple processes, check to
 2072          * make sure that those processes are still issuing I/Os within
 2073          * the mean seek distance.  If not, it may be time to break the
 2074          * queues apart again.
 2075          */
 2076         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
 2077                 cfq_mark_cfqq_split_coop(cfqq);
 2078 
 2079         /*
 2080          * store what was left of this slice, if the queue idled/timed out
 2081          */
 2082         if (timed_out) {
 2083                 if (cfq_cfqq_slice_new(cfqq))
 2084                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
 2085                 else
 2086                         cfqq->slice_resid = cfqq->slice_end - jiffies;
 2087                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
 2088         }
 2089 
 2090         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
 2091 
 2092         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
 2093                 cfq_del_cfqq_rr(cfqd, cfqq);
 2094 
 2095         cfq_resort_rr_list(cfqd, cfqq);
 2096 
 2097         if (cfqq == cfqd->active_queue)
 2098                 cfqd->active_queue = NULL;
 2099 
 2100         if (cfqd->active_cic) {
 2101                 put_io_context(cfqd->active_cic->icq.ioc);
 2102                 cfqd->active_cic = NULL;
 2103         }
 2104 }
 2105 
 2106 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
 2107 {
 2108         struct cfq_queue *cfqq = cfqd->active_queue;
 2109 
 2110         if (cfqq)
 2111                 __cfq_slice_expired(cfqd, cfqq, timed_out);
 2112 }
 2113 
 2114 /*
 2115  * Get next queue for service. Unless we have a queue preemption,
 2116  * we'll simply select the first cfqq in the service tree.
 2117  */
 2118 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
 2119 {
 2120         struct cfq_rb_root *service_tree =
 2121                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
 2122                                         cfqd->serving_type);
 2123 
 2124         if (!cfqd->rq_queued)
 2125                 return NULL;
 2126 
 2127         /* There is nothing to dispatch */
 2128         if (!service_tree)
 2129                 return NULL;
 2130         if (RB_EMPTY_ROOT(&service_tree->rb))
 2131                 return NULL;
 2132         return cfq_rb_first(service_tree);
 2133 }
 2134 
 2135 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
 2136 {
 2137         struct cfq_group *cfqg;
 2138         struct cfq_queue *cfqq;
 2139         int i, j;
 2140         struct cfq_rb_root *st;
 2141 
 2142         if (!cfqd->rq_queued)
 2143                 return NULL;
 2144 
 2145         cfqg = cfq_get_next_cfqg(cfqd);
 2146         if (!cfqg)
 2147                 return NULL;
 2148 
 2149         for_each_cfqg_st(cfqg, i, j, st)
 2150                 if ((cfqq = cfq_rb_first(st)) != NULL)
 2151                         return cfqq;
 2152         return NULL;
 2153 }
 2154 
 2155 /*
 2156  * Get and set a new active queue for service.
 2157  */
 2158 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
 2159                                               struct cfq_queue *cfqq)
 2160 {
 2161         if (!cfqq)
 2162                 cfqq = cfq_get_next_queue(cfqd);
 2163 
 2164         __cfq_set_active_queue(cfqd, cfqq);
 2165         return cfqq;
 2166 }
 2167 
 2168 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
 2169                                           struct request *rq)
 2170 {
 2171         if (blk_rq_pos(rq) >= cfqd->last_position)
 2172                 return blk_rq_pos(rq) - cfqd->last_position;
 2173         else
 2174                 return cfqd->last_position - blk_rq_pos(rq);
 2175 }
 2176 
 2177 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 2178                                struct request *rq)
 2179 {
 2180         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
 2181 }
 2182 
 2183 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
 2184                                     struct cfq_queue *cur_cfqq)
 2185 {
 2186         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
 2187         struct rb_node *parent, *node;
 2188         struct cfq_queue *__cfqq;
 2189         sector_t sector = cfqd->last_position;
 2190 
 2191         if (RB_EMPTY_ROOT(root))
 2192                 return NULL;
 2193 
 2194         /*
 2195          * First, if we find a request starting at the end of the last
 2196          * request, choose it.
 2197          */
 2198         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
 2199         if (__cfqq)
 2200                 return __cfqq;
 2201 
 2202         /*
 2203          * If the exact sector wasn't found, the parent of the NULL leaf
 2204          * will contain the closest sector.
 2205          */
 2206         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
 2207         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
 2208                 return __cfqq;
 2209 
 2210         if (blk_rq_pos(__cfqq->next_rq) < sector)
 2211                 node = rb_next(&__cfqq->p_node);
 2212         else
 2213                 node = rb_prev(&__cfqq->p_node);
 2214         if (!node)
 2215                 return NULL;
 2216 
 2217         __cfqq = rb_entry(node, struct cfq_queue, p_node);
 2218         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
 2219                 return __cfqq;
 2220 
 2221         return NULL;
 2222 }
 2223 
 2224 /*
 2225  * cfqd - obvious
 2226  * cur_cfqq - passed in so that we don't decide that the current queue is
 2227  *            closely cooperating with itself.
 2228  *
 2229  * So, basically we're assuming that that cur_cfqq has dispatched at least
 2230  * one request, and that cfqd->last_position reflects a position on the disk
 2231  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 2232  * assumption.
 2233  */
 2234 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
 2235                                               struct cfq_queue *cur_cfqq)
 2236 {
 2237         struct cfq_queue *cfqq;
 2238 
 2239         if (cfq_class_idle(cur_cfqq))
 2240                 return NULL;
 2241         if (!cfq_cfqq_sync(cur_cfqq))
 2242                 return NULL;
 2243         if (CFQQ_SEEKY(cur_cfqq))
 2244                 return NULL;
 2245 
 2246         /*
 2247          * Don't search priority tree if it's the only queue in the group.
 2248          */
 2249         if (cur_cfqq->cfqg->nr_cfqq == 1)
 2250                 return NULL;
 2251 
 2252         /*
 2253          * We should notice if some of the queues are cooperating, eg
 2254          * working closely on the same area of the disk. In that case,
 2255          * we can group them together and don't waste time idling.
 2256          */
 2257         cfqq = cfqq_close(cfqd, cur_cfqq);
 2258         if (!cfqq)
 2259                 return NULL;
 2260 
 2261         /* If new queue belongs to different cfq_group, don't choose it */
 2262         if (cur_cfqq->cfqg != cfqq->cfqg)
 2263                 return NULL;
 2264 
 2265         /*
 2266          * It only makes sense to merge sync queues.
 2267          */
 2268         if (!cfq_cfqq_sync(cfqq))
 2269                 return NULL;
 2270         if (CFQQ_SEEKY(cfqq))
 2271                 return NULL;
 2272 
 2273         /*
 2274          * Do not merge queues of different priority classes
 2275          */
 2276         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
 2277                 return NULL;
 2278 
 2279         return cfqq;
 2280 }
 2281 
 2282 /*
 2283  * Determine whether we should enforce idle window for this queue.
 2284  */
 2285 
 2286 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 2287 {
 2288         enum wl_prio_t prio = cfqq_prio(cfqq);
 2289         struct cfq_rb_root *service_tree = cfqq->service_tree;
 2290 
 2291         BUG_ON(!service_tree);
 2292         BUG_ON(!service_tree->count);
 2293 
 2294         if (!cfqd->cfq_slice_idle)
 2295                 return false;
 2296 
 2297         /* We never do for idle class queues. */
 2298         if (prio == IDLE_WORKLOAD)
 2299                 return false;
 2300 
 2301         /* We do for queues that were marked with idle window flag. */
 2302         if (cfq_cfqq_idle_window(cfqq) &&
 2303            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
 2304                 return true;
 2305 
 2306         /*
 2307          * Otherwise, we do only if they are the last ones
 2308          * in their service tree.
 2309          */
 2310         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
 2311            !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
 2312                 return true;
 2313         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
 2314                         service_tree->count);
 2315         return false;
 2316 }
 2317 
 2318 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
 2319 {
 2320         struct cfq_queue *cfqq = cfqd->active_queue;
 2321         struct cfq_io_cq *cic;
 2322         unsigned long sl, group_idle = 0;
 2323 
 2324         /*
 2325          * SSD device without seek penalty, disable idling. But only do so
 2326          * for devices that support queuing, otherwise we still have a problem
 2327          * with sync vs async workloads.
 2328          */
 2329         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
 2330                 return;
 2331 
 2332         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
 2333         WARN_ON(cfq_cfqq_slice_new(cfqq));
 2334 
 2335         /*
 2336          * idle is disabled, either manually or by past process history
 2337          */
 2338         if (!cfq_should_idle(cfqd, cfqq)) {
 2339                 /* no queue idling. Check for group idling */
 2340                 if (cfqd->cfq_group_idle)
 2341                         group_idle = cfqd->cfq_group_idle;
 2342                 else
 2343                         return;
 2344         }
 2345 
 2346         /*
 2347          * still active requests from this queue, don't idle
 2348          */
 2349         if (cfqq->dispatched)
 2350                 return;
 2351 
 2352         /*
 2353          * task has exited, don't wait
 2354          */
 2355         cic = cfqd->active_cic;
 2356         if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
 2357                 return;
 2358 
 2359         /*
 2360          * If our average think time is larger than the remaining time
 2361          * slice, then don't idle. This avoids overrunning the allotted
 2362          * time slice.
 2363          */
 2364         if (sample_valid(cic->ttime.ttime_samples) &&
 2365             (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
 2366                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
 2367                              cic->ttime.ttime_mean);
 2368                 return;
 2369         }
 2370 
 2371         /* There are other queues in the group, don't do group idle */
 2372         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
 2373                 return;
 2374 
 2375         cfq_mark_cfqq_wait_request(cfqq);
 2376 
 2377         if (group_idle)
 2378                 sl = cfqd->cfq_group_idle;
 2379         else
 2380                 sl = cfqd->cfq_slice_idle;
 2381 
 2382         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
 2383         cfqg_stats_set_start_idle_time(cfqq->cfqg);
 2384         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
 2385                         group_idle ? 1 : 0);
 2386 }
 2387 
 2388 /*
 2389  * Move request from internal lists to the request queue dispatch list.
 2390  */
 2391 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
 2392 {
 2393         struct cfq_data *cfqd = q->elevator->elevator_data;
 2394         struct cfq_queue *cfqq = RQ_CFQQ(rq);
 2395 
 2396         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
 2397 
 2398         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
 2399         cfq_remove_request(rq);
 2400         cfqq->dispatched++;
 2401         (RQ_CFQG(rq))->dispatched++;
 2402         elv_dispatch_sort(q, rq);
 2403 
 2404         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
 2405         cfqq->nr_sectors += blk_rq_sectors(rq);
 2406         cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
 2407 }
 2408 
 2409 /*
 2410  * return expired entry, or NULL to just start from scratch in rbtree
 2411  */
 2412 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
 2413 {
 2414         struct request *rq = NULL;
 2415 
 2416         if (cfq_cfqq_fifo_expire(cfqq))
 2417                 return NULL;
 2418 
 2419         cfq_mark_cfqq_fifo_expire(cfqq);
 2420 
 2421         if (list_empty(&cfqq->fifo))
 2422                 return NULL;
 2423 
 2424         rq = rq_entry_fifo(cfqq->fifo.next);
 2425         if (time_before(jiffies, rq_fifo_time(rq)))
 2426                 rq = NULL;
 2427 
 2428         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
 2429         return rq;
 2430 }
 2431 
 2432 static inline int
 2433 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 2434 {
 2435         const int base_rq = cfqd->cfq_slice_async_rq;
 2436 
 2437         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
 2438 
 2439         return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
 2440 }
 2441 
 2442 /*
 2443  * Must be called with the queue_lock held.
 2444  */
 2445 static int cfqq_process_refs(struct cfq_queue *cfqq)
 2446 {
 2447         int process_refs, io_refs;
 2448 
 2449         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
 2450         process_refs = cfqq->ref - io_refs;
 2451         BUG_ON(process_refs < 0);
 2452         return process_refs;
 2453 }
 2454 
 2455 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
 2456 {
 2457         int process_refs, new_process_refs;
 2458         struct cfq_queue *__cfqq;
 2459 
 2460         /*
 2461          * If there are no process references on the new_cfqq, then it is
 2462          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
 2463          * chain may have dropped their last reference (not just their
 2464          * last process reference).
 2465          */
 2466         if (!cfqq_process_refs(new_cfqq))
 2467                 return;
 2468 
 2469         /* Avoid a circular list and skip interim queue merges */
 2470         while ((__cfqq = new_cfqq->new_cfqq)) {
 2471                 if (__cfqq == cfqq)
 2472                         return;
 2473                 new_cfqq = __cfqq;
 2474         }
 2475 
 2476         process_refs = cfqq_process_refs(cfqq);
 2477         new_process_refs = cfqq_process_refs(new_cfqq);
 2478         /*
 2479          * If the process for the cfqq has gone away, there is no
 2480          * sense in merging the queues.
 2481          */
 2482         if (process_refs == 0 || new_process_refs == 0)
 2483                 return;
 2484 
 2485         /*
 2486          * Merge in the direction of the lesser amount of work.
 2487          */
 2488         if (new_process_refs >= process_refs) {
 2489                 cfqq->new_cfqq = new_cfqq;
 2490                 new_cfqq->ref += process_refs;
 2491         } else {
 2492                 new_cfqq->new_cfqq = cfqq;
 2493                 cfqq->ref += new_process_refs;
 2494         }
 2495 }
 2496 
 2497 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
 2498                                 struct cfq_group *cfqg, enum wl_prio_t prio)
 2499 {
 2500         struct cfq_queue *queue;
 2501         int i;
 2502         bool key_valid = false;
 2503         unsigned long lowest_key = 0;
 2504         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
 2505 
 2506         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
 2507                 /* select the one with lowest rb_key */
 2508                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
 2509                 if (queue &&
 2510                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
 2511                         lowest_key = queue->rb_key;
 2512                         cur_best = i;
 2513                         key_valid = true;
 2514                 }
 2515         }
 2516 
 2517         return cur_best;
 2518 }
 2519 
 2520 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
 2521 {
 2522         unsigned slice;
 2523         unsigned count;
 2524         struct cfq_rb_root *st;
 2525         unsigned group_slice;
 2526         enum wl_prio_t original_prio = cfqd->serving_prio;
 2527 
 2528         /* Choose next priority. RT > BE > IDLE */
 2529         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
 2530                 cfqd->serving_prio = RT_WORKLOAD;
 2531         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
 2532                 cfqd->serving_prio = BE_WORKLOAD;
 2533         else {
 2534                 cfqd->serving_prio = IDLE_WORKLOAD;
 2535                 cfqd->workload_expires = jiffies + 1;
 2536                 return;
 2537         }
 2538 
 2539         if (original_prio != cfqd->serving_prio)
 2540                 goto new_workload;
 2541 
 2542         /*
 2543          * For RT and BE, we have to choose also the type
 2544          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
 2545          * expiration time
 2546          */
 2547         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
 2548         count = st->count;
 2549 
 2550         /*
 2551          * check workload expiration, and that we still have other queues ready
 2552          */
 2553         if (count && !time_after(jiffies, cfqd->workload_expires))
 2554                 return;
 2555 
 2556 new_workload:
 2557         /* otherwise select new workload type */
 2558         cfqd->serving_type =
 2559                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
 2560         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
 2561         count = st->count;
 2562 
 2563         /*
 2564          * the workload slice is computed as a fraction of target latency
 2565          * proportional to the number of queues in that workload, over
 2566          * all the queues in the same priority class
 2567          */
 2568         group_slice = cfq_group_slice(cfqd, cfqg);
 2569 
 2570         slice = group_slice * count /
 2571                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
 2572                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
 2573 
 2574         if (cfqd->serving_type == ASYNC_WORKLOAD) {
 2575                 unsigned int tmp;
 2576 
 2577                 /*
 2578                  * Async queues are currently system wide. Just taking
 2579                  * proportion of queues with-in same group will lead to higher
 2580                  * async ratio system wide as generally root group is going
 2581                  * to have higher weight. A more accurate thing would be to
 2582                  * calculate system wide asnc/sync ratio.
 2583                  */
 2584                 tmp = cfqd->cfq_target_latency *
 2585                         cfqg_busy_async_queues(cfqd, cfqg);
 2586                 tmp = tmp/cfqd->busy_queues;
 2587                 slice = min_t(unsigned, slice, tmp);
 2588 
 2589                 /* async workload slice is scaled down according to
 2590                  * the sync/async slice ratio. */
 2591                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
 2592         } else
 2593                 /* sync workload slice is at least 2 * cfq_slice_idle */
 2594                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
 2595 
 2596         slice = max_t(unsigned, slice, CFQ_MIN_TT);
 2597         cfq_log(cfqd, "workload slice:%d", slice);
 2598         cfqd->workload_expires = jiffies + slice;
 2599 }
 2600 
 2601 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
 2602 {
 2603         struct cfq_rb_root *st = &cfqd->grp_service_tree;
 2604         struct cfq_group *cfqg;
 2605 
 2606         if (RB_EMPTY_ROOT(&st->rb))
 2607                 return NULL;
 2608         cfqg = cfq_rb_first_group(st);
 2609         update_min_vdisktime(st);
 2610         return cfqg;
 2611 }
 2612 
 2613 static void cfq_choose_cfqg(struct cfq_data *cfqd)
 2614 {
 2615         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
 2616 
 2617         cfqd->serving_group = cfqg;
 2618 
 2619         /* Restore the workload type data */
 2620         if (cfqg->saved_workload_slice) {
 2621                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
 2622                 cfqd->serving_type = cfqg->saved_workload;
 2623                 cfqd->serving_prio = cfqg->saved_serving_prio;
 2624         } else
 2625                 cfqd->workload_expires = jiffies - 1;
 2626 
 2627         choose_service_tree(cfqd, cfqg);
 2628 }
 2629 
 2630 /*
 2631  * Select a queue for service. If we have a current active queue,
 2632  * check whether to continue servicing it, or retrieve and set a new one.
 2633  */
 2634 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
 2635 {
 2636         struct cfq_queue *cfqq, *new_cfqq = NULL;
 2637 
 2638         cfqq = cfqd->active_queue;
 2639         if (!cfqq)
 2640                 goto new_queue;
 2641 
 2642         if (!cfqd->rq_queued)
 2643                 return NULL;
 2644 
 2645         /*
 2646          * We were waiting for group to get backlogged. Expire the queue
 2647          */
 2648         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
 2649                 goto expire;
 2650 
 2651         /*
 2652          * The active queue has run out of time, expire it and select new.
 2653          */
 2654         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
 2655                 /*
 2656                  * If slice had not expired at the completion of last request
 2657                  * we might not have turned on wait_busy flag. Don't expire
 2658                  * the queue yet. Allow the group to get backlogged.
 2659                  *
 2660                  * The very fact that we have used the slice, that means we
 2661                  * have been idling all along on this queue and it should be
 2662                  * ok to wait for this request to complete.
 2663                  */
 2664                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
 2665                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
 2666                         cfqq = NULL;
 2667                         goto keep_queue;
 2668                 } else
 2669                         goto check_group_idle;
 2670         }
 2671 
 2672         /*
 2673          * The active queue has requests and isn't expired, allow it to
 2674          * dispatch.
 2675          */
 2676         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
 2677                 goto keep_queue;
 2678 
 2679         /*
 2680          * If another queue has a request waiting within our mean seek
 2681          * distance, let it run.  The expire code will check for close
 2682          * cooperators and put the close queue at the front of the service
 2683          * tree.  If possible, merge the expiring queue with the new cfqq.
 2684          */
 2685         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
 2686         if (new_cfqq) {
 2687                 if (!cfqq->new_cfqq)
 2688                         cfq_setup_merge(cfqq, new_cfqq);
 2689                 goto expire;
 2690         }
 2691 
 2692         /*
 2693          * No requests pending. If the active queue still has requests in
 2694          * flight or is idling for a new request, allow either of these
 2695          * conditions to happen (or time out) before selecting a new queue.
 2696          */
 2697         if (timer_pending(&cfqd->idle_slice_timer)) {
 2698                 cfqq = NULL;
 2699                 goto keep_queue;
 2700         }
 2701 
 2702         /*
 2703          * This is a deep seek queue, but the device is much faster than
 2704          * the queue can deliver, don't idle
 2705          **/
 2706         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
 2707             (cfq_cfqq_slice_new(cfqq) ||
 2708             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
 2709                 cfq_clear_cfqq_deep(cfqq);
 2710                 cfq_clear_cfqq_idle_window(cfqq);
 2711         }
 2712 
 2713         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
 2714                 cfqq = NULL;
 2715                 goto keep_queue;
 2716         }
 2717 
 2718         /*
 2719          * If group idle is enabled and there are requests dispatched from
 2720          * this group, wait for requests to complete.
 2721          */
 2722 check_group_idle:
 2723         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
 2724             cfqq->cfqg->dispatched &&
 2725             !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
 2726                 cfqq = NULL;
 2727                 goto keep_queue;
 2728         }
 2729 
 2730 expire:
 2731         cfq_slice_expired(cfqd, 0);
 2732 new_queue:
 2733         /*
 2734          * Current queue expired. Check if we have to switch to a new
 2735          * service tree
 2736          */
 2737         if (!new_cfqq)
 2738                 cfq_choose_cfqg(cfqd);
 2739 
 2740         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
 2741 keep_queue:
 2742         return cfqq;
 2743 }
 2744 
 2745 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
 2746 {
 2747         int dispatched = 0;
 2748 
 2749         while (cfqq->next_rq) {
 2750                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
 2751                 dispatched++;
 2752         }
 2753 
 2754         BUG_ON(!list_empty(&cfqq->fifo));
 2755 
 2756         /* By default cfqq is not expired if it is empty. Do it explicitly */
 2757         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
 2758         return dispatched;
 2759 }
 2760 
 2761 /*
 2762  * Drain our current requests. Used for barriers and when switching
 2763  * io schedulers on-the-fly.
 2764  */
 2765 static int cfq_forced_dispatch(struct cfq_data *cfqd)
 2766 {
 2767         struct cfq_queue *cfqq;
 2768         int dispatched = 0;
 2769 
 2770         /* Expire the timeslice of the current active queue first */
 2771         cfq_slice_expired(cfqd, 0);
 2772         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
 2773                 __cfq_set_active_queue(cfqd, cfqq);
 2774                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
 2775         }
 2776 
 2777         BUG_ON(cfqd->busy_queues);
 2778 
 2779         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
 2780         return dispatched;
 2781 }
 2782 
 2783 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
 2784         struct cfq_queue *cfqq)
 2785 {
 2786         /* the queue hasn't finished any request, can't estimate */
 2787         if (cfq_cfqq_slice_new(cfqq))
 2788                 return true;
 2789         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
 2790                 cfqq->slice_end))
 2791                 return true;
 2792 
 2793         return false;
 2794 }
 2795 
 2796 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 2797 {
 2798         unsigned int max_dispatch;
 2799 
 2800         /*
 2801          * Drain async requests before we start sync IO
 2802          */
 2803         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
 2804                 return false;
 2805 
 2806         /*
 2807          * If this is an async queue and we have sync IO in flight, let it wait
 2808          */
 2809         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
 2810                 return false;
 2811 
 2812         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
 2813         if (cfq_class_idle(cfqq))
 2814                 max_dispatch = 1;
 2815 
 2816         /*
 2817          * Does this cfqq already have too much IO in flight?
 2818          */
 2819         if (cfqq->dispatched >= max_dispatch) {
 2820                 bool promote_sync = false;
 2821                 /*
 2822                  * idle queue must always only have a single IO in flight
 2823                  */
 2824                 if (cfq_class_idle(cfqq))
 2825                         return false;
 2826 
 2827                 /*
 2828                  * If there is only one sync queue
 2829                  * we can ignore async queue here and give the sync
 2830                  * queue no dispatch limit. The reason is a sync queue can
 2831                  * preempt async queue, limiting the sync queue doesn't make
 2832                  * sense. This is useful for aiostress test.
 2833                  */
 2834                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
 2835                         promote_sync = true;
 2836 
 2837                 /*
 2838                  * We have other queues, don't allow more IO from this one
 2839                  */
 2840                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
 2841                                 !promote_sync)
 2842                         return false;
 2843 
 2844                 /*
 2845                  * Sole queue user, no limit
 2846                  */
 2847                 if (cfqd->busy_queues == 1 || promote_sync)
 2848                         max_dispatch = -1;
 2849                 else
 2850                         /*
 2851                          * Normally we start throttling cfqq when cfq_quantum/2
 2852                          * requests have been dispatched. But we can drive
 2853                          * deeper queue depths at the beginning of slice
 2854                          * subjected to upper limit of cfq_quantum.
 2855                          * */
 2856                         max_dispatch = cfqd->cfq_quantum;
 2857         }
 2858 
 2859         /*
 2860          * Async queues must wait a bit before being allowed dispatch.
 2861          * We also ramp up the dispatch depth gradually for async IO,
 2862          * based on the last sync IO we serviced
 2863          */
 2864         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
 2865                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
 2866                 unsigned int depth;
 2867 
 2868                 depth = last_sync / cfqd->cfq_slice[1];
 2869                 if (!depth && !cfqq->dispatched)
 2870                         depth = 1;
 2871                 if (depth < max_dispatch)
 2872                         max_dispatch = depth;
 2873         }
 2874 
 2875         /*
 2876          * If we're below the current max, allow a dispatch
 2877          */
 2878         return cfqq->dispatched < max_dispatch;
 2879 }
 2880 
 2881 /*
 2882  * Dispatch a request from cfqq, moving them to the request queue
 2883  * dispatch list.
 2884  */
 2885 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 2886 {
 2887         struct request *rq;
 2888 
 2889         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
 2890 
 2891         if (!cfq_may_dispatch(cfqd, cfqq))
 2892                 return false;
 2893 
 2894         /*
 2895          * follow expired path, else get first next available
 2896          */
 2897         rq = cfq_check_fifo(cfqq);
 2898         if (!rq)
 2899                 rq = cfqq->next_rq;
 2900 
 2901         /*
 2902          * insert request into driver dispatch list
 2903          */
 2904         cfq_dispatch_insert(cfqd->queue, rq);
 2905 
 2906         if (!cfqd->active_cic) {
 2907                 struct cfq_io_cq *cic = RQ_CIC(rq);
 2908 
 2909                 atomic_long_inc(&cic->icq.ioc->refcount);
 2910                 cfqd->active_cic = cic;
 2911         }
 2912 
 2913         return true;
 2914 }
 2915 
 2916 /*
 2917  * Find the cfqq that we need to service and move a request from that to the
 2918  * dispatch list
 2919  */
 2920 static int cfq_dispatch_requests(struct request_queue *q, int force)
 2921 {
 2922         struct cfq_data *cfqd = q->elevator->elevator_data;
 2923         struct cfq_queue *cfqq;
 2924 
 2925         if (!cfqd->busy_queues)
 2926                 return 0;
 2927 
 2928         if (unlikely(force))
 2929                 return cfq_forced_dispatch(cfqd);
 2930 
 2931         cfqq = cfq_select_queue(cfqd);
 2932         if (!cfqq)
 2933                 return 0;
 2934 
 2935         /*
 2936          * Dispatch a request from this cfqq, if it is allowed
 2937          */
 2938         if (!cfq_dispatch_request(cfqd, cfqq))
 2939                 return 0;
 2940 
 2941         cfqq->slice_dispatch++;
 2942         cfq_clear_cfqq_must_dispatch(cfqq);
 2943 
 2944         /*
 2945          * expire an async queue immediately if it has used up its slice. idle
 2946          * queue always expire after 1 dispatch round.
 2947          */
 2948         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
 2949             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
 2950             cfq_class_idle(cfqq))) {
 2951                 cfqq->slice_end = jiffies + 1;
 2952                 cfq_slice_expired(cfqd, 0);
 2953         }
 2954 
 2955         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
 2956         return 1;
 2957 }
 2958 
 2959 /*
 2960  * task holds one reference to the queue, dropped when task exits. each rq
 2961  * in-flight on this queue also holds a reference, dropped when rq is freed.
 2962  *
 2963  * Each cfq queue took a reference on the parent group. Drop it now.
 2964  * queue lock must be held here.
 2965  */
 2966 static void cfq_put_queue(struct cfq_queue *cfqq)
 2967 {
 2968         struct cfq_data *cfqd = cfqq->cfqd;
 2969         struct cfq_group *cfqg;
 2970 
 2971         BUG_ON(cfqq->ref <= 0);
 2972 
 2973         cfqq->ref--;
 2974         if (cfqq->ref)
 2975                 return;
 2976 
 2977         cfq_log_cfqq(cfqd, cfqq, "put_queue");
 2978         BUG_ON(rb_first(&cfqq->sort_list));
 2979         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
 2980         cfqg = cfqq->cfqg;
 2981 
 2982         if (unlikely(cfqd->active_queue == cfqq)) {
 2983                 __cfq_slice_expired(cfqd, cfqq, 0);
 2984                 cfq_schedule_dispatch(cfqd);
 2985         }
 2986 
 2987         BUG_ON(cfq_cfqq_on_rr(cfqq));
 2988         kmem_cache_free(cfq_pool, cfqq);
 2989         cfqg_put(cfqg);
 2990 }
 2991 
 2992 static void cfq_put_cooperator(struct cfq_queue *cfqq)
 2993 {
 2994         struct cfq_queue *__cfqq, *next;
 2995 
 2996         /*
 2997          * If this queue was scheduled to merge with another queue, be
 2998          * sure to drop the reference taken on that queue (and others in
 2999          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
 3000          */
 3001         __cfqq = cfqq->new_cfqq;
 3002         while (__cfqq) {
 3003                 if (__cfqq == cfqq) {
 3004                         WARN(1, "cfqq->new_cfqq loop detected\n");
 3005                         break;
 3006                 }
 3007                 next = __cfqq->new_cfqq;
 3008                 cfq_put_queue(__cfqq);
 3009                 __cfqq = next;
 3010         }
 3011 }
 3012 
 3013 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 3014 {
 3015         if (unlikely(cfqq == cfqd->active_queue)) {
 3016                 __cfq_slice_expired(cfqd, cfqq, 0);
 3017                 cfq_schedule_dispatch(cfqd);
 3018         }
 3019 
 3020         cfq_put_cooperator(cfqq);
 3021 
 3022         cfq_put_queue(cfqq);
 3023 }
 3024 
 3025 static void cfq_init_icq(struct io_cq *icq)
 3026 {
 3027         struct cfq_io_cq *cic = icq_to_cic(icq);
 3028 
 3029         cic->ttime.last_end_request = jiffies;
 3030 }
 3031 
 3032 static void cfq_exit_icq(struct io_cq *icq)
 3033 {
 3034         struct cfq_io_cq *cic = icq_to_cic(icq);
 3035         struct cfq_data *cfqd = cic_to_cfqd(cic);
 3036 
 3037         if (cic->cfqq[BLK_RW_ASYNC]) {
 3038                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
 3039                 cic->cfqq[BLK_RW_ASYNC] = NULL;
 3040         }
 3041 
 3042         if (cic->cfqq[BLK_RW_SYNC]) {
 3043                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
 3044                 cic->cfqq[BLK_RW_SYNC] = NULL;
 3045         }
 3046 }
 3047 
 3048 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
 3049 {
 3050         struct task_struct *tsk = current;
 3051         int ioprio_class;
 3052 
 3053         if (!cfq_cfqq_prio_changed(cfqq))
 3054                 return;
 3055 
 3056         ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
 3057         switch (ioprio_class) {
 3058         default:
 3059                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
 3060         case IOPRIO_CLASS_NONE:
 3061                 /*
 3062                  * no prio set, inherit CPU scheduling settings
 3063                  */
 3064                 cfqq->ioprio = task_nice_ioprio(tsk);
 3065                 cfqq->ioprio_class = task_nice_ioclass(tsk);
 3066                 break;
 3067         case IOPRIO_CLASS_RT:
 3068                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
 3069                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
 3070                 break;
 3071         case IOPRIO_CLASS_BE:
 3072                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
 3073                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
 3074                 break;
 3075         case IOPRIO_CLASS_IDLE:
 3076                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
 3077                 cfqq->ioprio = 7;
 3078                 cfq_clear_cfqq_idle_window(cfqq);
 3079                 break;
 3080         }
 3081 
 3082         /*
 3083          * keep track of original prio settings in case we have to temporarily
 3084          * elevate the priority of this queue
 3085          */
 3086         cfqq->org_ioprio = cfqq->ioprio;
 3087         cfq_clear_cfqq_prio_changed(cfqq);
 3088 }
 3089 
 3090 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
 3091 {
 3092         int ioprio = cic->icq.ioc->ioprio;
 3093         struct cfq_data *cfqd = cic_to_cfqd(cic);
 3094         struct cfq_queue *cfqq;
 3095 
 3096         /*
 3097          * Check whether ioprio has changed.  The condition may trigger
 3098          * spuriously on a newly created cic but there's no harm.
 3099          */
 3100         if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
 3101                 return;
 3102 
 3103         cfqq = cic->cfqq[BLK_RW_ASYNC];
 3104         if (cfqq) {
 3105                 struct cfq_queue *new_cfqq;
 3106                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
 3107                                          GFP_ATOMIC);
 3108                 if (new_cfqq) {
 3109                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
 3110                         cfq_put_queue(cfqq);
 3111                 }
 3112         }
 3113 
 3114         cfqq = cic->cfqq[BLK_RW_SYNC];
 3115         if (cfqq)
 3116                 cfq_mark_cfqq_prio_changed(cfqq);
 3117 
 3118         cic->ioprio = ioprio;
 3119 }
 3120 
 3121 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 3122                           pid_t pid, bool is_sync)
 3123 {
 3124         RB_CLEAR_NODE(&cfqq->rb_node);
 3125         RB_CLEAR_NODE(&cfqq->p_node);
 3126         INIT_LIST_HEAD(&cfqq->fifo);
 3127 
 3128         cfqq->ref = 0;
 3129         cfqq->cfqd = cfqd;
 3130 
 3131         cfq_mark_cfqq_prio_changed(cfqq);
 3132 
 3133         if (is_sync) {
 3134                 if (!cfq_class_idle(cfqq))
 3135                         cfq_mark_cfqq_idle_window(cfqq);
 3136                 cfq_mark_cfqq_sync(cfqq);
 3137         }
 3138         cfqq->pid = pid;
 3139 }
 3140 
 3141 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 3142 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
 3143 {
 3144         struct cfq_data *cfqd = cic_to_cfqd(cic);
 3145         struct cfq_queue *sync_cfqq;
 3146         uint64_t id;
 3147 
 3148         rcu_read_lock();
 3149         id = bio_blkcg(bio)->id;
 3150         rcu_read_unlock();
 3151 
 3152         /*
 3153          * Check whether blkcg has changed.  The condition may trigger
 3154          * spuriously on a newly created cic but there's no harm.
 3155          */
 3156         if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
 3157                 return;
 3158 
 3159         sync_cfqq = cic_to_cfqq(cic, 1);
 3160         if (sync_cfqq) {
 3161                 /*
 3162                  * Drop reference to sync queue. A new sync queue will be
 3163                  * assigned in new group upon arrival of a fresh request.
 3164                  */
 3165                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
 3166                 cic_set_cfqq(cic, NULL, 1);
 3167                 cfq_put_queue(sync_cfqq);
 3168         }
 3169 
 3170         cic->blkcg_id = id;
 3171 }
 3172 #else
 3173 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
 3174 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
 3175 
 3176 static struct cfq_queue *
 3177 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
 3178                      struct bio *bio, gfp_t gfp_mask)
 3179 {
 3180         struct blkcg *blkcg;
 3181         struct cfq_queue *cfqq, *new_cfqq = NULL;
 3182         struct cfq_group *cfqg;
 3183 
 3184 retry:
 3185         rcu_read_lock();
 3186 
 3187         blkcg = bio_blkcg(bio);
 3188         cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
 3189         cfqq = cic_to_cfqq(cic, is_sync);
 3190 
 3191         /*
 3192          * Always try a new alloc if we fell back to the OOM cfqq
 3193          * originally, since it should just be a temporary situation.
 3194          */
 3195         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
 3196                 cfqq = NULL;
 3197                 if (new_cfqq) {
 3198                         cfqq = new_cfqq;
 3199                         new_cfqq = NULL;
 3200                 } else if (gfp_mask & __GFP_WAIT) {
 3201                         rcu_read_unlock();
 3202                         spin_unlock_irq(cfqd->queue->queue_lock);
 3203                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
 3204                                         gfp_mask | __GFP_ZERO,
 3205                                         cfqd->queue->node);
 3206                         spin_lock_irq(cfqd->queue->queue_lock);
 3207                         if (new_cfqq)
 3208                                 goto retry;
 3209                 } else {
 3210                         cfqq = kmem_cache_alloc_node(cfq_pool,
 3211                                         gfp_mask | __GFP_ZERO,
 3212                                         cfqd->queue->node);
 3213                 }
 3214 
 3215                 if (cfqq) {
 3216                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
 3217                         cfq_init_prio_data(cfqq, cic);
 3218                         cfq_link_cfqq_cfqg(cfqq, cfqg);
 3219                         cfq_log_cfqq(cfqd, cfqq, "alloced");
 3220                 } else
 3221                         cfqq = &cfqd->oom_cfqq;
 3222         }
 3223 
 3224         if (new_cfqq)
 3225                 kmem_cache_free(cfq_pool, new_cfqq);
 3226 
 3227         rcu_read_unlock();
 3228         return cfqq;
 3229 }
 3230 
 3231 static struct cfq_queue **
 3232 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
 3233 {
 3234         switch (ioprio_class) {
 3235         case IOPRIO_CLASS_RT:
 3236                 return &cfqd->async_cfqq[0][ioprio];
 3237         case IOPRIO_CLASS_NONE:
 3238                 ioprio = IOPRIO_NORM;
 3239                 /* fall through */
 3240         case IOPRIO_CLASS_BE:
 3241                 return &cfqd->async_cfqq[1][ioprio];
 3242         case IOPRIO_CLASS_IDLE:
 3243                 return &cfqd->async_idle_cfqq;
 3244         default:
 3245                 BUG();
 3246         }
 3247 }
 3248 
 3249 static struct cfq_queue *
 3250 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
 3251               struct bio *bio, gfp_t gfp_mask)
 3252 {
 3253         const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
 3254         const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
 3255         struct cfq_queue **async_cfqq = NULL;
 3256         struct cfq_queue *cfqq = NULL;
 3257 
 3258         if (!is_sync) {
 3259                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
 3260                 cfqq = *async_cfqq;
 3261         }
 3262 
 3263         if (!cfqq)
 3264                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
 3265 
 3266         /*
 3267          * pin the queue now that it's allocated, scheduler exit will prune it
 3268          */
 3269         if (!is_sync && !(*async_cfqq)) {
 3270                 cfqq->ref++;
 3271                 *async_cfqq = cfqq;
 3272         }
 3273 
 3274         cfqq->ref++;
 3275         return cfqq;
 3276 }
 3277 
 3278 static void
 3279 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
 3280 {
 3281         unsigned long elapsed = jiffies - ttime->last_end_request;
 3282         elapsed = min(elapsed, 2UL * slice_idle);
 3283 
 3284         ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
 3285         ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
 3286         ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
 3287 }
 3288 
 3289 static void
 3290 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 3291                         struct cfq_io_cq *cic)
 3292 {
 3293         if (cfq_cfqq_sync(cfqq)) {
 3294                 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
 3295                 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
 3296                         cfqd->cfq_slice_idle);
 3297         }
 3298 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 3299         __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
 3300 #endif
 3301 }
 3302 
 3303 static void
 3304 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 3305                        struct request *rq)
 3306 {
 3307         sector_t sdist = 0;
 3308         sector_t n_sec = blk_rq_sectors(rq);
 3309         if (cfqq->last_request_pos) {
 3310                 if (cfqq->last_request_pos < blk_rq_pos(rq))
 3311                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
 3312                 else
 3313                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
 3314         }
 3315 
 3316         cfqq->seek_history <<= 1;
 3317         if (blk_queue_nonrot(cfqd->queue))
 3318                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
 3319         else
 3320                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
 3321 }
 3322 
 3323 /*
 3324  * Disable idle window if the process thinks too long or seeks so much that
 3325  * it doesn't matter
 3326  */
 3327 static void
 3328 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 3329                        struct cfq_io_cq *cic)
 3330 {
 3331         int old_idle, enable_idle;
 3332 
 3333         /*
 3334          * Don't idle for async or idle io prio class
 3335          */
 3336         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
 3337                 return;
 3338 
 3339         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
 3340 
 3341         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
 3342                 cfq_mark_cfqq_deep(cfqq);
 3343 
 3344         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
 3345                 enable_idle = 0;
 3346         else if (!atomic_read(&cic->icq.ioc->active_ref) ||
 3347                  !cfqd->cfq_slice_idle ||
 3348                  (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
 3349                 enable_idle = 0;
 3350         else if (sample_valid(cic->ttime.ttime_samples)) {
 3351                 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
 3352                         enable_idle = 0;
 3353                 else
 3354                         enable_idle = 1;
 3355         }
 3356 
 3357         if (old_idle != enable_idle) {
 3358                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
 3359                 if (enable_idle)
 3360                         cfq_mark_cfqq_idle_window(cfqq);
 3361                 else
 3362                         cfq_clear_cfqq_idle_window(cfqq);
 3363         }
 3364 }
 3365 
 3366 /*
 3367  * Check if new_cfqq should preempt the currently active queue. Return 0 for
 3368  * no or if we aren't sure, a 1 will cause a preempt.
 3369  */
 3370 static bool
 3371 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
 3372                    struct request *rq)
 3373 {
 3374         struct cfq_queue *cfqq;
 3375 
 3376         cfqq = cfqd->active_queue;
 3377         if (!cfqq)
 3378                 return false;
 3379 
 3380         if (cfq_class_idle(new_cfqq))
 3381                 return false;
 3382 
 3383         if (cfq_class_idle(cfqq))
 3384                 return true;
 3385 
 3386         /*
 3387          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
 3388          */
 3389         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
 3390                 return false;
 3391 
 3392         /*
 3393          * if the new request is sync, but the currently running queue is
 3394          * not, let the sync request have priority.
 3395          */
 3396         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
 3397                 return true;
 3398 
 3399         if (new_cfqq->cfqg != cfqq->cfqg)
 3400                 return false;
 3401 
 3402         if (cfq_slice_used(cfqq))
 3403                 return true;
 3404 
 3405         /* Allow preemption only if we are idling on sync-noidle tree */
 3406         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
 3407             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
 3408             new_cfqq->service_tree->count == 2 &&
 3409             RB_EMPTY_ROOT(&cfqq->sort_list))
 3410                 return true;
 3411 
 3412         /*
 3413          * So both queues are sync. Let the new request get disk time if
 3414          * it's a metadata request and the current queue is doing regular IO.
 3415          */
 3416         if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
 3417                 return true;
 3418 
 3419         /*
 3420          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
 3421          */
 3422         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
 3423                 return true;
 3424 
 3425         /* An idle queue should not be idle now for some reason */
 3426         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
 3427                 return true;
 3428 
 3429         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
 3430                 return false;
 3431 
 3432         /*
 3433          * if this request is as-good as one we would expect from the
 3434          * current cfqq, let it preempt
 3435          */
 3436         if (cfq_rq_close(cfqd, cfqq, rq))
 3437                 return true;
 3438 
 3439         return false;
 3440 }
 3441 
 3442 /*
 3443  * cfqq preempts the active queue. if we allowed preempt with no slice left,
 3444  * let it have half of its nominal slice.
 3445  */
 3446 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 3447 {
 3448         enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
 3449 
 3450         cfq_log_cfqq(cfqd, cfqq, "preempt");
 3451         cfq_slice_expired(cfqd, 1);
 3452 
 3453         /*
 3454          * workload type is changed, don't save slice, otherwise preempt
 3455          * doesn't happen
 3456          */
 3457         if (old_type != cfqq_type(cfqq))
 3458                 cfqq->cfqg->saved_workload_slice = 0;
 3459 
 3460         /*
 3461          * Put the new queue at the front of the of the current list,
 3462          * so we know that it will be selected next.
 3463          */
 3464         BUG_ON(!cfq_cfqq_on_rr(cfqq));
 3465 
 3466         cfq_service_tree_add(cfqd, cfqq, 1);
 3467 
 3468         cfqq->slice_end = 0;
 3469         cfq_mark_cfqq_slice_new(cfqq);
 3470 }
 3471 
 3472 /*
 3473  * Called when a new fs request (rq) is added (to cfqq). Check if there's
 3474  * something we should do about it
 3475  */
 3476 static void
 3477 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 3478                 struct request *rq)
 3479 {
 3480         struct cfq_io_cq *cic = RQ_CIC(rq);
 3481 
 3482         cfqd->rq_queued++;
 3483         if (rq->cmd_flags & REQ_PRIO)
 3484                 cfqq->prio_pending++;
 3485 
 3486         cfq_update_io_thinktime(cfqd, cfqq, cic);
 3487         cfq_update_io_seektime(cfqd, cfqq, rq);
 3488         cfq_update_idle_window(cfqd, cfqq, cic);
 3489 
 3490         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
 3491 
 3492         if (cfqq == cfqd->active_queue) {
 3493                 /*
 3494                  * Remember that we saw a request from this process, but
 3495                  * don't start queuing just yet. Otherwise we risk seeing lots
 3496                  * of tiny requests, because we disrupt the normal plugging
 3497                  * and merging. If the request is already larger than a single
 3498                  * page, let it rip immediately. For that case we assume that
 3499                  * merging is already done. Ditto for a busy system that
 3500                  * has other work pending, don't risk delaying until the
 3501                  * idle timer unplug to continue working.
 3502                  */
 3503                 if (cfq_cfqq_wait_request(cfqq)) {
 3504                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
 3505                             cfqd->busy_queues > 1) {
 3506                                 cfq_del_timer(cfqd, cfqq);
 3507                                 cfq_clear_cfqq_wait_request(cfqq);
 3508                                 __blk_run_queue(cfqd->queue);
 3509                         } else {
 3510                                 cfqg_stats_update_idle_time(cfqq->cfqg);
 3511                                 cfq_mark_cfqq_must_dispatch(cfqq);
 3512                         }
 3513                 }
 3514         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
 3515                 /*
 3516                  * not the active queue - expire current slice if it is
 3517                  * idle and has expired it's mean thinktime or this new queue
 3518                  * has some old slice time left and is of higher priority or
 3519                  * this new queue is RT and the current one is BE
 3520                  */
 3521                 cfq_preempt_queue(cfqd, cfqq);
 3522                 __blk_run_queue(cfqd->queue);
 3523         }
 3524 }
 3525 
 3526 static void cfq_insert_request(struct request_queue *q, struct request *rq)
 3527 {
 3528         struct cfq_data *cfqd = q->elevator->elevator_data;
 3529         struct cfq_queue *cfqq = RQ_CFQQ(rq);
 3530 
 3531         cfq_log_cfqq(cfqd, cfqq, "insert_request");
 3532         cfq_init_prio_data(cfqq, RQ_CIC(rq));
 3533 
 3534         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
 3535         list_add_tail(&rq->queuelist, &cfqq->fifo);
 3536         cfq_add_rq_rb(rq);
 3537         cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
 3538                                  rq->cmd_flags);
 3539         cfq_rq_enqueued(cfqd, cfqq, rq);
 3540 }
 3541 
 3542 /*
 3543  * Update hw_tag based on peak queue depth over 50 samples under
 3544  * sufficient load.
 3545  */
 3546 static void cfq_update_hw_tag(struct cfq_data *cfqd)
 3547 {
 3548         struct cfq_queue *cfqq = cfqd->active_queue;
 3549 
 3550         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
 3551                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
 3552 
 3553         if (cfqd->hw_tag == 1)
 3554                 return;
 3555 
 3556         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
 3557             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
 3558                 return;
 3559 
 3560         /*
 3561          * If active queue hasn't enough requests and can idle, cfq might not
 3562          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
 3563          * case
 3564          */
 3565         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
 3566             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
 3567             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
 3568                 return;
 3569 
 3570         if (cfqd->hw_tag_samples++ < 50)
 3571                 return;
 3572 
 3573         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
 3574                 cfqd->hw_tag = 1;
 3575         else
 3576                 cfqd->hw_tag = 0;
 3577 }
 3578 
 3579 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 3580 {
 3581         struct cfq_io_cq *cic = cfqd->active_cic;
 3582 
 3583         /* If the queue already has requests, don't wait */
 3584         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
 3585                 return false;
 3586 
 3587         /* If there are other queues in the group, don't wait */
 3588         if (cfqq->cfqg->nr_cfqq > 1)
 3589                 return false;
 3590 
 3591         /* the only queue in the group, but think time is big */
 3592         if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
 3593                 return false;
 3594 
 3595         if (cfq_slice_used(cfqq))
 3596                 return true;
 3597 
 3598         /* if slice left is less than think time, wait busy */
 3599         if (cic && sample_valid(cic->ttime.ttime_samples)
 3600             && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
 3601                 return true;
 3602 
 3603         /*
 3604          * If think times is less than a jiffy than ttime_mean=0 and above
 3605          * will not be true. It might happen that slice has not expired yet
 3606          * but will expire soon (4-5 ns) during select_queue(). To cover the
 3607          * case where think time is less than a jiffy, mark the queue wait
 3608          * busy if only 1 jiffy is left in the slice.
 3609          */
 3610         if (cfqq->slice_end - jiffies == 1)
 3611                 return true;
 3612 
 3613         return false;
 3614 }
 3615 
 3616 static void cfq_completed_request(struct request_queue *q, struct request *rq)
 3617 {
 3618         struct cfq_queue *cfqq = RQ_CFQQ(rq);
 3619         struct cfq_data *cfqd = cfqq->cfqd;
 3620         const int sync = rq_is_sync(rq);
 3621         unsigned long now;
 3622 
 3623         now = jiffies;
 3624         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
 3625                      !!(rq->cmd_flags & REQ_NOIDLE));
 3626 
 3627         cfq_update_hw_tag(cfqd);
 3628 
 3629         WARN_ON(!cfqd->rq_in_driver);
 3630         WARN_ON(!cfqq->dispatched);
 3631         cfqd->rq_in_driver--;
 3632         cfqq->dispatched--;
 3633         (RQ_CFQG(rq))->dispatched--;
 3634         cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
 3635                                      rq_io_start_time_ns(rq), rq->cmd_flags);
 3636 
 3637         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
 3638 
 3639         if (sync) {
 3640                 struct cfq_rb_root *service_tree;
 3641 
 3642                 RQ_CIC(rq)->ttime.last_end_request = now;
 3643 
 3644                 if (cfq_cfqq_on_rr(cfqq))
 3645                         service_tree = cfqq->service_tree;
 3646                 else
 3647                         service_tree = service_tree_for(cfqq->cfqg,
 3648                                 cfqq_prio(cfqq), cfqq_type(cfqq));
 3649                 service_tree->ttime.last_end_request = now;
 3650                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
 3651                         cfqd->last_delayed_sync = now;
 3652         }
 3653 
 3654 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 3655         cfqq->cfqg->ttime.last_end_request = now;
 3656 #endif
 3657 
 3658         /*
 3659          * If this is the active queue, check if it needs to be expired,
 3660          * or if we want to idle in case it has no pending requests.
 3661          */
 3662         if (cfqd->active_queue == cfqq) {
 3663                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
 3664 
 3665                 if (cfq_cfqq_slice_new(cfqq)) {
 3666                         cfq_set_prio_slice(cfqd, cfqq);
 3667                         cfq_clear_cfqq_slice_new(cfqq);
 3668                 }
 3669 
 3670                 /*
 3671                  * Should we wait for next request to come in before we expire
 3672                  * the queue.
 3673                  */
 3674                 if (cfq_should_wait_busy(cfqd, cfqq)) {
 3675                         unsigned long extend_sl = cfqd->cfq_slice_idle;
 3676                         if (!cfqd->cfq_slice_idle)
 3677                                 extend_sl = cfqd->cfq_group_idle;
 3678                         cfqq->slice_end = jiffies + extend_sl;
 3679                         cfq_mark_cfqq_wait_busy(cfqq);
 3680                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
 3681                 }
 3682 
 3683                 /*
 3684                  * Idling is not enabled on:
 3685                  * - expired queues
 3686                  * - idle-priority queues
 3687                  * - async queues
 3688                  * - queues with still some requests queued
 3689                  * - when there is a close cooperator
 3690                  */
 3691                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
 3692                         cfq_slice_expired(cfqd, 1);
 3693                 else if (sync && cfqq_empty &&
 3694                          !cfq_close_cooperator(cfqd, cfqq)) {
 3695                         cfq_arm_slice_timer(cfqd);
 3696                 }
 3697         }
 3698 
 3699         if (!cfqd->rq_in_driver)
 3700                 cfq_schedule_dispatch(cfqd);
 3701 }
 3702 
 3703 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
 3704 {
 3705         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
 3706                 cfq_mark_cfqq_must_alloc_slice(cfqq);
 3707                 return ELV_MQUEUE_MUST;
 3708         }
 3709 
 3710         return ELV_MQUEUE_MAY;
 3711 }
 3712 
 3713 static int cfq_may_queue(struct request_queue *q, int rw)
 3714 {
 3715         struct cfq_data *cfqd = q->elevator->elevator_data;
 3716         struct task_struct *tsk = current;
 3717         struct cfq_io_cq *cic;
 3718         struct cfq_queue *cfqq;
 3719 
 3720         /*
 3721          * don't force setup of a queue from here, as a call to may_queue
 3722          * does not necessarily imply that a request actually will be queued.
 3723          * so just lookup a possibly existing queue, or return 'may queue'
 3724          * if that fails
 3725          */
 3726         cic = cfq_cic_lookup(cfqd, tsk->io_context);
 3727         if (!cic)
 3728                 return ELV_MQUEUE_MAY;
 3729 
 3730         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
 3731         if (cfqq) {
 3732                 cfq_init_prio_data(cfqq, cic);
 3733 
 3734                 return __cfq_may_queue(cfqq);
 3735         }
 3736 
 3737         return ELV_MQUEUE_MAY;
 3738 }
 3739 
 3740 /*
 3741  * queue lock held here
 3742  */
 3743 static void cfq_put_request(struct request *rq)
 3744 {
 3745         struct cfq_queue *cfqq = RQ_CFQQ(rq);
 3746 
 3747         if (cfqq) {
 3748                 const int rw = rq_data_dir(rq);
 3749 
 3750                 BUG_ON(!cfqq->allocated[rw]);
 3751                 cfqq->allocated[rw]--;
 3752 
 3753                 /* Put down rq reference on cfqg */
 3754                 cfqg_put(RQ_CFQG(rq));
 3755                 rq->elv.priv[0] = NULL;
 3756                 rq->elv.priv[1] = NULL;
 3757 
 3758                 cfq_put_queue(cfqq);
 3759         }
 3760 }
 3761 
 3762 static struct cfq_queue *
 3763 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
 3764                 struct cfq_queue *cfqq)
 3765 {
 3766         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
 3767         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
 3768         cfq_mark_cfqq_coop(cfqq->new_cfqq);
 3769         cfq_put_queue(cfqq);
 3770         return cic_to_cfqq(cic, 1);
 3771 }
 3772 
 3773 /*
 3774  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 3775  * was the last process referring to said cfqq.
 3776  */
 3777 static struct cfq_queue *
 3778 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
 3779 {
 3780         if (cfqq_process_refs(cfqq) == 1) {
 3781                 cfqq->pid = current->pid;
 3782                 cfq_clear_cfqq_coop(cfqq);
 3783                 cfq_clear_cfqq_split_coop(cfqq);
 3784                 return cfqq;
 3785         }
 3786 
 3787         cic_set_cfqq(cic, NULL, 1);
 3788 
 3789         cfq_put_cooperator(cfqq);
 3790 
 3791         cfq_put_queue(cfqq);
 3792         return NULL;
 3793 }
 3794 /*
 3795  * Allocate cfq data structures associated with this request.
 3796  */
 3797 static int
 3798 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
 3799                 gfp_t gfp_mask)
 3800 {
 3801         struct cfq_data *cfqd = q->elevator->elevator_data;
 3802         struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
 3803         const int rw = rq_data_dir(rq);
 3804         const bool is_sync = rq_is_sync(rq);
 3805         struct cfq_queue *cfqq;
 3806 
 3807         might_sleep_if(gfp_mask & __GFP_WAIT);
 3808 
 3809         spin_lock_irq(q->queue_lock);
 3810 
 3811         check_ioprio_changed(cic, bio);
 3812         check_blkcg_changed(cic, bio);
 3813 new_queue:
 3814         cfqq = cic_to_cfqq(cic, is_sync);
 3815         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
 3816                 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
 3817                 cic_set_cfqq(cic, cfqq, is_sync);
 3818         } else {
 3819                 /*
 3820                  * If the queue was seeky for too long, break it apart.
 3821                  */
 3822                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
 3823                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
 3824                         cfqq = split_cfqq(cic, cfqq);
 3825                         if (!cfqq)
 3826                                 goto new_queue;
 3827                 }
 3828 
 3829                 /*
 3830                  * Check to see if this queue is scheduled to merge with
 3831                  * another, closely cooperating queue.  The merging of
 3832                  * queues happens here as it must be done in process context.
 3833                  * The reference on new_cfqq was taken in merge_cfqqs.
 3834                  */
 3835                 if (cfqq->new_cfqq)
 3836                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
 3837         }
 3838 
 3839         cfqq->allocated[rw]++;
 3840 
 3841         cfqq->ref++;
 3842         cfqg_get(cfqq->cfqg);
 3843         rq->elv.priv[0] = cfqq;
 3844         rq->elv.priv[1] = cfqq->cfqg;
 3845         spin_unlock_irq(q->queue_lock);
 3846         return 0;
 3847 }
 3848 
 3849 static void cfq_kick_queue(struct work_struct *work)
 3850 {
 3851         struct cfq_data *cfqd =
 3852                 container_of(work, struct cfq_data, unplug_work);
 3853         struct request_queue *q = cfqd->queue;
 3854 
 3855         spin_lock_irq(q->queue_lock);
 3856         __blk_run_queue(cfqd->queue);
 3857         spin_unlock_irq(q->queue_lock);
 3858 }
 3859 
 3860 /*
 3861  * Timer running if the active_queue is currently idling inside its time slice
 3862  */
 3863 static void cfq_idle_slice_timer(unsigned long data)
 3864 {
 3865         struct cfq_data *cfqd = (struct cfq_data *) data;
 3866         struct cfq_queue *cfqq;
 3867         unsigned long flags;
 3868         int timed_out = 1;
 3869 
 3870         cfq_log(cfqd, "idle timer fired");
 3871 
 3872         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
 3873 
 3874         cfqq = cfqd->active_queue;
 3875         if (cfqq) {
 3876                 timed_out = 0;
 3877 
 3878                 /*
 3879                  * We saw a request before the queue expired, let it through
 3880                  */
 3881                 if (cfq_cfqq_must_dispatch(cfqq))
 3882                         goto out_kick;
 3883 
 3884                 /*
 3885                  * expired
 3886                  */
 3887                 if (cfq_slice_used(cfqq))
 3888                         goto expire;
 3889 
 3890                 /*
 3891                  * only expire and reinvoke request handler, if there are
 3892                  * other queues with pending requests
 3893                  */
 3894                 if (!cfqd->busy_queues)
 3895                         goto out_cont;
 3896 
 3897                 /*
 3898                  * not expired and it has a request pending, let it dispatch
 3899                  */
 3900                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
 3901                         goto out_kick;
 3902 
 3903                 /*
 3904                  * Queue depth flag is reset only when the idle didn't succeed
 3905                  */
 3906                 cfq_clear_cfqq_deep(cfqq);
 3907         }
 3908 expire:
 3909         cfq_slice_expired(cfqd, timed_out);
 3910 out_kick:
 3911         cfq_schedule_dispatch(cfqd);
 3912 out_cont:
 3913         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
 3914 }
 3915 
 3916 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
 3917 {
 3918         del_timer_sync(&cfqd->idle_slice_timer);
 3919         cancel_work_sync(&cfqd->unplug_work);
 3920 }
 3921 
 3922 static void cfq_put_async_queues(struct cfq_data *cfqd)
 3923 {
 3924         int i;
 3925 
 3926         for (i = 0; i < IOPRIO_BE_NR; i++) {
 3927                 if (cfqd->async_cfqq[0][i])
 3928                         cfq_put_queue(cfqd->async_cfqq[0][i]);
 3929                 if (cfqd->async_cfqq[1][i])
 3930                         cfq_put_queue(cfqd->async_cfqq[1][i]);
 3931         }
 3932 
 3933         if (cfqd->async_idle_cfqq)
 3934                 cfq_put_queue(cfqd->async_idle_cfqq);
 3935 }
 3936 
 3937 static void cfq_exit_queue(struct elevator_queue *e)
 3938 {
 3939         struct cfq_data *cfqd = e->elevator_data;
 3940         struct request_queue *q = cfqd->queue;
 3941 
 3942         cfq_shutdown_timer_wq(cfqd);
 3943 
 3944         spin_lock_irq(q->queue_lock);
 3945 
 3946         if (cfqd->active_queue)
 3947                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
 3948 
 3949         cfq_put_async_queues(cfqd);
 3950 
 3951         spin_unlock_irq(q->queue_lock);
 3952 
 3953         cfq_shutdown_timer_wq(cfqd);
 3954 
 3955 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 3956         blkcg_deactivate_policy(q, &blkcg_policy_cfq);
 3957 #else
 3958         kfree(cfqd->root_group);
 3959 #endif
 3960         kfree(cfqd);
 3961 }
 3962 
 3963 static int cfq_init_queue(struct request_queue *q)
 3964 {
 3965         struct cfq_data *cfqd;
 3966         struct blkcg_gq *blkg __maybe_unused;
 3967         int i, ret;
 3968 
 3969         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
 3970         if (!cfqd)
 3971                 return -ENOMEM;
 3972 
 3973         cfqd->queue = q;
 3974         q->elevator->elevator_data = cfqd;
 3975 
 3976         /* Init root service tree */
 3977         cfqd->grp_service_tree = CFQ_RB_ROOT;
 3978 
 3979         /* Init root group and prefer root group over other groups by default */
 3980 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 3981         ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
 3982         if (ret)
 3983                 goto out_free;
 3984 
 3985         cfqd->root_group = blkg_to_cfqg(q->root_blkg);
 3986 #else
 3987         ret = -ENOMEM;
 3988         cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
 3989                                         GFP_KERNEL, cfqd->queue->node);
 3990         if (!cfqd->root_group)
 3991                 goto out_free;
 3992 
 3993         cfq_init_cfqg_base(cfqd->root_group);
 3994 #endif
 3995         cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
 3996 
 3997         /*
 3998          * Not strictly needed (since RB_ROOT just clears the node and we
 3999          * zeroed cfqd on alloc), but better be safe in case someone decides
 4000          * to add magic to the rb code
 4001          */
 4002         for (i = 0; i < CFQ_PRIO_LISTS; i++)
 4003                 cfqd->prio_trees[i] = RB_ROOT;
 4004 
 4005         /*
 4006          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
 4007          * Grab a permanent reference to it, so that the normal code flow
 4008          * will not attempt to free it.  oom_cfqq is linked to root_group
 4009          * but shouldn't hold a reference as it'll never be unlinked.  Lose
 4010          * the reference from linking right away.
 4011          */
 4012         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
 4013         cfqd->oom_cfqq.ref++;
 4014 
 4015         spin_lock_irq(q->queue_lock);
 4016         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
 4017         cfqg_put(cfqd->root_group);
 4018         spin_unlock_irq(q->queue_lock);
 4019 
 4020         init_timer(&cfqd->idle_slice_timer);
 4021         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
 4022         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
 4023 
 4024         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
 4025 
 4026         cfqd->cfq_quantum = cfq_quantum;
 4027         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
 4028         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
 4029         cfqd->cfq_back_max = cfq_back_max;
 4030         cfqd->cfq_back_penalty = cfq_back_penalty;
 4031         cfqd->cfq_slice[0] = cfq_slice_async;
 4032         cfqd->cfq_slice[1] = cfq_slice_sync;
 4033         cfqd->cfq_target_latency = cfq_target_latency;
 4034         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
 4035         cfqd->cfq_slice_idle = cfq_slice_idle;
 4036         cfqd->cfq_group_idle = cfq_group_idle;
 4037         cfqd->cfq_latency = 1;
 4038         cfqd->hw_tag = -1;
 4039         /*
 4040          * we optimistically start assuming sync ops weren't delayed in last
 4041          * second, in order to have larger depth for async operations.
 4042          */
 4043         cfqd->last_delayed_sync = jiffies - HZ;
 4044         return 0;
 4045 
 4046 out_free:
 4047         kfree(cfqd);
 4048         return ret;
 4049 }
 4050 
 4051 /*
 4052  * sysfs parts below -->
 4053  */
 4054 static ssize_t
 4055 cfq_var_show(unsigned int var, char *page)
 4056 {
 4057         return sprintf(page, "%d\n", var);
 4058 }
 4059 
 4060 static ssize_t
 4061 cfq_var_store(unsigned int *var, const char *page, size_t count)
 4062 {
 4063         char *p = (char *) page;
 4064 
 4065         *var = simple_strtoul(p, &p, 10);
 4066         return count;
 4067 }
 4068 
 4069 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
 4070 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
 4071 {                                                                       \
 4072         struct cfq_data *cfqd = e->elevator_data;                       \
 4073         unsigned int __data = __VAR;                                    \
 4074         if (__CONV)                                                     \
 4075                 __data = jiffies_to_msecs(__data);                      \
 4076         return cfq_var_show(__data, (page));                            \
 4077 }
 4078 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
 4079 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
 4080 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
 4081 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
 4082 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
 4083 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
 4084 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
 4085 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
 4086 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
 4087 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
 4088 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
 4089 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
 4090 #undef SHOW_FUNCTION
 4091 
 4092 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
 4093 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
 4094 {                                                                       \
 4095         struct cfq_data *cfqd = e->elevator_data;                       \
 4096         unsigned int __data;                                            \
 4097         int ret = cfq_var_store(&__data, (page), count);                \
 4098         if (__data < (MIN))                                             \
 4099                 __data = (MIN);                                         \
 4100         else if (__data > (MAX))                                        \
 4101                 __data = (MAX);                                         \
 4102         if (__CONV)                                                     \
 4103                 *(__PTR) = msecs_to_jiffies(__data);                    \
 4104         else                                                            \
 4105                 *(__PTR) = __data;                                      \
 4106         return ret;                                                     \
 4107 }
 4108 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
 4109 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
 4110                 UINT_MAX, 1);
 4111 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
 4112                 UINT_MAX, 1);
 4113 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
 4114 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
 4115                 UINT_MAX, 0);
 4116 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
 4117 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
 4118 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
 4119 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
 4120 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
 4121                 UINT_MAX, 0);
 4122 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
 4123 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
 4124 #undef STORE_FUNCTION
 4125 
 4126 #define CFQ_ATTR(name) \
 4127         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
 4128 
 4129 static struct elv_fs_entry cfq_attrs[] = {
 4130         CFQ_ATTR(quantum),
 4131         CFQ_ATTR(fifo_expire_sync),
 4132         CFQ_ATTR(fifo_expire_async),
 4133         CFQ_ATTR(back_seek_max),
 4134         CFQ_ATTR(back_seek_penalty),
 4135         CFQ_ATTR(slice_sync),
 4136         CFQ_ATTR(slice_async),
 4137         CFQ_ATTR(slice_async_rq),
 4138         CFQ_ATTR(slice_idle),
 4139         CFQ_ATTR(group_idle),
 4140         CFQ_ATTR(low_latency),
 4141         CFQ_ATTR(target_latency),
 4142         __ATTR_NULL
 4143 };
 4144 
 4145 static struct elevator_type iosched_cfq = {
 4146         .ops = {
 4147                 .elevator_merge_fn =            cfq_merge,
 4148                 .elevator_merged_fn =           cfq_merged_request,
 4149                 .elevator_merge_req_fn =        cfq_merged_requests,
 4150                 .elevator_allow_merge_fn =      cfq_allow_merge,
 4151                 .elevator_bio_merged_fn =       cfq_bio_merged,
 4152                 .elevator_dispatch_fn =         cfq_dispatch_requests,
 4153                 .elevator_add_req_fn =          cfq_insert_request,
 4154                 .elevator_activate_req_fn =     cfq_activate_request,
 4155                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
 4156                 .elevator_completed_req_fn =    cfq_completed_request,
 4157                 .elevator_former_req_fn =       elv_rb_former_request,
 4158                 .elevator_latter_req_fn =       elv_rb_latter_request,
 4159                 .elevator_init_icq_fn =         cfq_init_icq,
 4160                 .elevator_exit_icq_fn =         cfq_exit_icq,
 4161                 .elevator_set_req_fn =          cfq_set_request,
 4162                 .elevator_put_req_fn =          cfq_put_request,
 4163                 .elevator_may_queue_fn =        cfq_may_queue,
 4164                 .elevator_init_fn =             cfq_init_queue,
 4165                 .elevator_exit_fn =             cfq_exit_queue,
 4166         },
 4167         .icq_size       =       sizeof(struct cfq_io_cq),
 4168         .icq_align      =       __alignof__(struct cfq_io_cq),
 4169         .elevator_attrs =       cfq_attrs,
 4170         .elevator_name  =       "cfq",
 4171         .elevator_owner =       THIS_MODULE,
 4172 };
 4173 
 4174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 4175 static struct blkcg_policy blkcg_policy_cfq = {
 4176         .pd_size                = sizeof(struct cfq_group),
 4177         .cftypes                = cfq_blkcg_files,
 4178 
 4179         .pd_init_fn             = cfq_pd_init,
 4180         .pd_reset_stats_fn      = cfq_pd_reset_stats,
 4181 };
 4182 #endif
 4183 
 4184 static int __init cfq_init(void)
 4185 {
 4186         int ret;
 4187 
 4188         /*
 4189          * could be 0 on HZ < 1000 setups
 4190          */
 4191         if (!cfq_slice_async)
 4192                 cfq_slice_async = 1;
 4193         if (!cfq_slice_idle)
 4194                 cfq_slice_idle = 1;
 4195 
 4196 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 4197         if (!cfq_group_idle)
 4198                 cfq_group_idle = 1;
 4199 
 4200         ret = blkcg_policy_register(&blkcg_policy_cfq);
 4201         if (ret)
 4202                 return ret;
 4203 #else
 4204         cfq_group_idle = 0;
 4205 #endif
 4206 
 4207         ret = -ENOMEM;
 4208         cfq_pool = KMEM_CACHE(cfq_queue, 0);
 4209         if (!cfq_pool)
 4210                 goto err_pol_unreg;
 4211 
 4212         ret = elv_register(&iosched_cfq);
 4213         if (ret)
 4214                 goto err_free_pool;
 4215 
 4216         return 0;
 4217 
 4218 err_free_pool:
 4219         kmem_cache_destroy(cfq_pool);
 4220 err_pol_unreg:
 4221 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 4222         blkcg_policy_unregister(&blkcg_policy_cfq);
 4223 #endif
 4224         return ret;
 4225 }
 4226 
 4227 static void __exit cfq_exit(void)
 4228 {
 4229 #ifdef CONFIG_CFQ_GROUP_IOSCHED
 4230         blkcg_policy_unregister(&blkcg_policy_cfq);
 4231 #endif
 4232         elv_unregister(&iosched_cfq);
 4233         kmem_cache_destroy(cfq_pool);
 4234 }
 4235 
 4236 module_init(cfq_init);
 4237 module_exit(cfq_exit);
 4238 
 4239 MODULE_AUTHOR("Jens Axboe");
 4240 MODULE_LICENSE("GPL");
 4241 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");

Cache object: 8a57d8c5d5dc1468e47c02c48707f160


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.