The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/block/ll_rw_blk.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (C) 1991, 1992 Linus Torvalds
    3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
    4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
    5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
    6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> -  July2000
    7  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
    8  */
    9 
   10 /*
   11  * This handles all read/write requests to block devices
   12  */
   13 #include <linux/kernel.h>
   14 #include <linux/module.h>
   15 #include <linux/backing-dev.h>
   16 #include <linux/bio.h>
   17 #include <linux/blkdev.h>
   18 #include <linux/highmem.h>
   19 #include <linux/mm.h>
   20 #include <linux/kernel_stat.h>
   21 #include <linux/string.h>
   22 #include <linux/init.h>
   23 #include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
   24 #include <linux/completion.h>
   25 #include <linux/slab.h>
   26 #include <linux/swap.h>
   27 #include <linux/writeback.h>
   28 #include <linux/task_io_accounting_ops.h>
   29 #include <linux/interrupt.h>
   30 #include <linux/cpu.h>
   31 #include <linux/blktrace_api.h>
   32 #include <linux/fault-inject.h>
   33 #include <linux/scatterlist.h>
   34 
   35 /*
   36  * for max sense size
   37  */
   38 #include <scsi/scsi_cmnd.h>
   39 
   40 static void blk_unplug_work(struct work_struct *work);
   41 static void blk_unplug_timeout(unsigned long data);
   42 static void drive_stat_acct(struct request *rq, int new_io);
   43 static void init_request_from_bio(struct request *req, struct bio *bio);
   44 static int __make_request(struct request_queue *q, struct bio *bio);
   45 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
   46 static void blk_recalc_rq_segments(struct request *rq);
   47 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
   48                             struct bio *bio);
   49 
   50 /*
   51  * For the allocated request tables
   52  */
   53 static struct kmem_cache *request_cachep;
   54 
   55 /*
   56  * For queue allocation
   57  */
   58 static struct kmem_cache *requestq_cachep;
   59 
   60 /*
   61  * For io context allocations
   62  */
   63 static struct kmem_cache *iocontext_cachep;
   64 
   65 /*
   66  * Controlling structure to kblockd
   67  */
   68 static struct workqueue_struct *kblockd_workqueue;
   69 
   70 unsigned long blk_max_low_pfn, blk_max_pfn;
   71 
   72 EXPORT_SYMBOL(blk_max_low_pfn);
   73 EXPORT_SYMBOL(blk_max_pfn);
   74 
   75 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
   76 
   77 /* Amount of time in which a process may batch requests */
   78 #define BLK_BATCH_TIME  (HZ/50UL)
   79 
   80 /* Number of requests a "batching" process may submit */
   81 #define BLK_BATCH_REQ   32
   82 
   83 /*
   84  * Return the threshold (number of used requests) at which the queue is
   85  * considered to be congested.  It include a little hysteresis to keep the
   86  * context switch rate down.
   87  */
   88 static inline int queue_congestion_on_threshold(struct request_queue *q)
   89 {
   90         return q->nr_congestion_on;
   91 }
   92 
   93 /*
   94  * The threshold at which a queue is considered to be uncongested
   95  */
   96 static inline int queue_congestion_off_threshold(struct request_queue *q)
   97 {
   98         return q->nr_congestion_off;
   99 }
  100 
  101 static void blk_queue_congestion_threshold(struct request_queue *q)
  102 {
  103         int nr;
  104 
  105         nr = q->nr_requests - (q->nr_requests / 8) + 1;
  106         if (nr > q->nr_requests)
  107                 nr = q->nr_requests;
  108         q->nr_congestion_on = nr;
  109 
  110         nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  111         if (nr < 1)
  112                 nr = 1;
  113         q->nr_congestion_off = nr;
  114 }
  115 
  116 /**
  117  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  118  * @bdev:       device
  119  *
  120  * Locates the passed device's request queue and returns the address of its
  121  * backing_dev_info
  122  *
  123  * Will return NULL if the request queue cannot be located.
  124  */
  125 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  126 {
  127         struct backing_dev_info *ret = NULL;
  128         struct request_queue *q = bdev_get_queue(bdev);
  129 
  130         if (q)
  131                 ret = &q->backing_dev_info;
  132         return ret;
  133 }
  134 EXPORT_SYMBOL(blk_get_backing_dev_info);
  135 
  136 /**
  137  * blk_queue_prep_rq - set a prepare_request function for queue
  138  * @q:          queue
  139  * @pfn:        prepare_request function
  140  *
  141  * It's possible for a queue to register a prepare_request callback which
  142  * is invoked before the request is handed to the request_fn. The goal of
  143  * the function is to prepare a request for I/O, it can be used to build a
  144  * cdb from the request data for instance.
  145  *
  146  */
  147 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  148 {
  149         q->prep_rq_fn = pfn;
  150 }
  151 
  152 EXPORT_SYMBOL(blk_queue_prep_rq);
  153 
  154 /**
  155  * blk_queue_merge_bvec - set a merge_bvec function for queue
  156  * @q:          queue
  157  * @mbfn:       merge_bvec_fn
  158  *
  159  * Usually queues have static limitations on the max sectors or segments that
  160  * we can put in a request. Stacking drivers may have some settings that
  161  * are dynamic, and thus we have to query the queue whether it is ok to
  162  * add a new bio_vec to a bio at a given offset or not. If the block device
  163  * has such limitations, it needs to register a merge_bvec_fn to control
  164  * the size of bio's sent to it. Note that a block device *must* allow a
  165  * single page to be added to an empty bio. The block device driver may want
  166  * to use the bio_split() function to deal with these bio's. By default
  167  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  168  * honored.
  169  */
  170 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  171 {
  172         q->merge_bvec_fn = mbfn;
  173 }
  174 
  175 EXPORT_SYMBOL(blk_queue_merge_bvec);
  176 
  177 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  178 {
  179         q->softirq_done_fn = fn;
  180 }
  181 
  182 EXPORT_SYMBOL(blk_queue_softirq_done);
  183 
  184 /**
  185  * blk_queue_make_request - define an alternate make_request function for a device
  186  * @q:  the request queue for the device to be affected
  187  * @mfn: the alternate make_request function
  188  *
  189  * Description:
  190  *    The normal way for &struct bios to be passed to a device
  191  *    driver is for them to be collected into requests on a request
  192  *    queue, and then to allow the device driver to select requests
  193  *    off that queue when it is ready.  This works well for many block
  194  *    devices. However some block devices (typically virtual devices
  195  *    such as md or lvm) do not benefit from the processing on the
  196  *    request queue, and are served best by having the requests passed
  197  *    directly to them.  This can be achieved by providing a function
  198  *    to blk_queue_make_request().
  199  *
  200  * Caveat:
  201  *    The driver that does this *must* be able to deal appropriately
  202  *    with buffers in "highmemory". This can be accomplished by either calling
  203  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  204  *    blk_queue_bounce() to create a buffer in normal memory.
  205  **/
  206 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
  207 {
  208         /*
  209          * set defaults
  210          */
  211         q->nr_requests = BLKDEV_MAX_RQ;
  212         blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  213         blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  214         q->make_request_fn = mfn;
  215         q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  216         q->backing_dev_info.state = 0;
  217         q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  218         blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  219         blk_queue_hardsect_size(q, 512);
  220         blk_queue_dma_alignment(q, 511);
  221         blk_queue_congestion_threshold(q);
  222         q->nr_batching = BLK_BATCH_REQ;
  223 
  224         q->unplug_thresh = 4;           /* hmm */
  225         q->unplug_delay = (3 * HZ) / 1000;      /* 3 milliseconds */
  226         if (q->unplug_delay == 0)
  227                 q->unplug_delay = 1;
  228 
  229         INIT_WORK(&q->unplug_work, blk_unplug_work);
  230 
  231         q->unplug_timer.function = blk_unplug_timeout;
  232         q->unplug_timer.data = (unsigned long)q;
  233 
  234         /*
  235          * by default assume old behaviour and bounce for any highmem page
  236          */
  237         blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  238 }
  239 
  240 EXPORT_SYMBOL(blk_queue_make_request);
  241 
  242 static void rq_init(struct request_queue *q, struct request *rq)
  243 {
  244         INIT_LIST_HEAD(&rq->queuelist);
  245         INIT_LIST_HEAD(&rq->donelist);
  246 
  247         rq->errors = 0;
  248         rq->bio = rq->biotail = NULL;
  249         INIT_HLIST_NODE(&rq->hash);
  250         RB_CLEAR_NODE(&rq->rb_node);
  251         rq->ioprio = 0;
  252         rq->buffer = NULL;
  253         rq->ref_count = 1;
  254         rq->q = q;
  255         rq->special = NULL;
  256         rq->data_len = 0;
  257         rq->data = NULL;
  258         rq->nr_phys_segments = 0;
  259         rq->sense = NULL;
  260         rq->end_io = NULL;
  261         rq->end_io_data = NULL;
  262         rq->completion_data = NULL;
  263         rq->next_rq = NULL;
  264 }
  265 
  266 /**
  267  * blk_queue_ordered - does this queue support ordered writes
  268  * @q:        the request queue
  269  * @ordered:  one of QUEUE_ORDERED_*
  270  * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  271  *
  272  * Description:
  273  *   For journalled file systems, doing ordered writes on a commit
  274  *   block instead of explicitly doing wait_on_buffer (which is bad
  275  *   for performance) can be a big win. Block drivers supporting this
  276  *   feature should call this function and indicate so.
  277  *
  278  **/
  279 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
  280                       prepare_flush_fn *prepare_flush_fn)
  281 {
  282         if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  283             prepare_flush_fn == NULL) {
  284                 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  285                 return -EINVAL;
  286         }
  287 
  288         if (ordered != QUEUE_ORDERED_NONE &&
  289             ordered != QUEUE_ORDERED_DRAIN &&
  290             ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  291             ordered != QUEUE_ORDERED_DRAIN_FUA &&
  292             ordered != QUEUE_ORDERED_TAG &&
  293             ordered != QUEUE_ORDERED_TAG_FLUSH &&
  294             ordered != QUEUE_ORDERED_TAG_FUA) {
  295                 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  296                 return -EINVAL;
  297         }
  298 
  299         q->ordered = ordered;
  300         q->next_ordered = ordered;
  301         q->prepare_flush_fn = prepare_flush_fn;
  302 
  303         return 0;
  304 }
  305 
  306 EXPORT_SYMBOL(blk_queue_ordered);
  307 
  308 /*
  309  * Cache flushing for ordered writes handling
  310  */
  311 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
  312 {
  313         if (!q->ordseq)
  314                 return 0;
  315         return 1 << ffz(q->ordseq);
  316 }
  317 
  318 unsigned blk_ordered_req_seq(struct request *rq)
  319 {
  320         struct request_queue *q = rq->q;
  321 
  322         BUG_ON(q->ordseq == 0);
  323 
  324         if (rq == &q->pre_flush_rq)
  325                 return QUEUE_ORDSEQ_PREFLUSH;
  326         if (rq == &q->bar_rq)
  327                 return QUEUE_ORDSEQ_BAR;
  328         if (rq == &q->post_flush_rq)
  329                 return QUEUE_ORDSEQ_POSTFLUSH;
  330 
  331         /*
  332          * !fs requests don't need to follow barrier ordering.  Always
  333          * put them at the front.  This fixes the following deadlock.
  334          *
  335          * http://thread.gmane.org/gmane.linux.kernel/537473
  336          */
  337         if (!blk_fs_request(rq))
  338                 return QUEUE_ORDSEQ_DRAIN;
  339 
  340         if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  341             (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  342                 return QUEUE_ORDSEQ_DRAIN;
  343         else
  344                 return QUEUE_ORDSEQ_DONE;
  345 }
  346 
  347 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
  348 {
  349         struct request *rq;
  350         int uptodate;
  351 
  352         if (error && !q->orderr)
  353                 q->orderr = error;
  354 
  355         BUG_ON(q->ordseq & seq);
  356         q->ordseq |= seq;
  357 
  358         if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  359                 return;
  360 
  361         /*
  362          * Okay, sequence complete.
  363          */
  364         uptodate = 1;
  365         if (q->orderr)
  366                 uptodate = q->orderr;
  367 
  368         q->ordseq = 0;
  369         rq = q->orig_bar_rq;
  370 
  371         end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  372         end_that_request_last(rq, uptodate);
  373 }
  374 
  375 static void pre_flush_end_io(struct request *rq, int error)
  376 {
  377         elv_completed_request(rq->q, rq);
  378         blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  379 }
  380 
  381 static void bar_end_io(struct request *rq, int error)
  382 {
  383         elv_completed_request(rq->q, rq);
  384         blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  385 }
  386 
  387 static void post_flush_end_io(struct request *rq, int error)
  388 {
  389         elv_completed_request(rq->q, rq);
  390         blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  391 }
  392 
  393 static void queue_flush(struct request_queue *q, unsigned which)
  394 {
  395         struct request *rq;
  396         rq_end_io_fn *end_io;
  397 
  398         if (which == QUEUE_ORDERED_PREFLUSH) {
  399                 rq = &q->pre_flush_rq;
  400                 end_io = pre_flush_end_io;
  401         } else {
  402                 rq = &q->post_flush_rq;
  403                 end_io = post_flush_end_io;
  404         }
  405 
  406         rq->cmd_flags = REQ_HARDBARRIER;
  407         rq_init(q, rq);
  408         rq->elevator_private = NULL;
  409         rq->elevator_private2 = NULL;
  410         rq->rq_disk = q->bar_rq.rq_disk;
  411         rq->end_io = end_io;
  412         q->prepare_flush_fn(q, rq);
  413 
  414         elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  415 }
  416 
  417 static inline struct request *start_ordered(struct request_queue *q,
  418                                             struct request *rq)
  419 {
  420         q->orderr = 0;
  421         q->ordered = q->next_ordered;
  422         q->ordseq |= QUEUE_ORDSEQ_STARTED;
  423 
  424         /*
  425          * Prep proxy barrier request.
  426          */
  427         blkdev_dequeue_request(rq);
  428         q->orig_bar_rq = rq;
  429         rq = &q->bar_rq;
  430         rq->cmd_flags = 0;
  431         rq_init(q, rq);
  432         if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  433                 rq->cmd_flags |= REQ_RW;
  434         if (q->ordered & QUEUE_ORDERED_FUA)
  435                 rq->cmd_flags |= REQ_FUA;
  436         rq->elevator_private = NULL;
  437         rq->elevator_private2 = NULL;
  438         init_request_from_bio(rq, q->orig_bar_rq->bio);
  439         rq->end_io = bar_end_io;
  440 
  441         /*
  442          * Queue ordered sequence.  As we stack them at the head, we
  443          * need to queue in reverse order.  Note that we rely on that
  444          * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  445          * request gets inbetween ordered sequence. If this request is
  446          * an empty barrier, we don't need to do a postflush ever since
  447          * there will be no data written between the pre and post flush.
  448          * Hence a single flush will suffice.
  449          */
  450         if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
  451                 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  452         else
  453                 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  454 
  455         elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  456 
  457         if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  458                 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  459                 rq = &q->pre_flush_rq;
  460         } else
  461                 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  462 
  463         if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  464                 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  465         else
  466                 rq = NULL;
  467 
  468         return rq;
  469 }
  470 
  471 int blk_do_ordered(struct request_queue *q, struct request **rqp)
  472 {
  473         struct request *rq = *rqp;
  474         const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  475 
  476         if (!q->ordseq) {
  477                 if (!is_barrier)
  478                         return 1;
  479 
  480                 if (q->next_ordered != QUEUE_ORDERED_NONE) {
  481                         *rqp = start_ordered(q, rq);
  482                         return 1;
  483                 } else {
  484                         /*
  485                          * This can happen when the queue switches to
  486                          * ORDERED_NONE while this request is on it.
  487                          */
  488                         blkdev_dequeue_request(rq);
  489                         end_that_request_first(rq, -EOPNOTSUPP,
  490                                                rq->hard_nr_sectors);
  491                         end_that_request_last(rq, -EOPNOTSUPP);
  492                         *rqp = NULL;
  493                         return 0;
  494                 }
  495         }
  496 
  497         /*
  498          * Ordered sequence in progress
  499          */
  500 
  501         /* Special requests are not subject to ordering rules. */
  502         if (!blk_fs_request(rq) &&
  503             rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  504                 return 1;
  505 
  506         if (q->ordered & QUEUE_ORDERED_TAG) {
  507                 /* Ordered by tag.  Blocking the next barrier is enough. */
  508                 if (is_barrier && rq != &q->bar_rq)
  509                         *rqp = NULL;
  510         } else {
  511                 /* Ordered by draining.  Wait for turn. */
  512                 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  513                 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  514                         *rqp = NULL;
  515         }
  516 
  517         return 1;
  518 }
  519 
  520 static void req_bio_endio(struct request *rq, struct bio *bio,
  521                           unsigned int nbytes, int error)
  522 {
  523         struct request_queue *q = rq->q;
  524 
  525         if (&q->bar_rq != rq) {
  526                 if (error)
  527                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
  528                 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  529                         error = -EIO;
  530 
  531                 if (unlikely(nbytes > bio->bi_size)) {
  532                         printk("%s: want %u bytes done, only %u left\n",
  533                                __FUNCTION__, nbytes, bio->bi_size);
  534                         nbytes = bio->bi_size;
  535                 }
  536 
  537                 bio->bi_size -= nbytes;
  538                 bio->bi_sector += (nbytes >> 9);
  539                 if (bio->bi_size == 0)
  540                         bio_endio(bio, error);
  541         } else {
  542 
  543                 /*
  544                  * Okay, this is the barrier request in progress, just
  545                  * record the error;
  546                  */
  547                 if (error && !q->orderr)
  548                         q->orderr = error;
  549         }
  550 }
  551 
  552 /**
  553  * blk_queue_bounce_limit - set bounce buffer limit for queue
  554  * @q:  the request queue for the device
  555  * @dma_addr:   bus address limit
  556  *
  557  * Description:
  558  *    Different hardware can have different requirements as to what pages
  559  *    it can do I/O directly to. A low level driver can call
  560  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
  561  *    buffers for doing I/O to pages residing above @page.
  562  **/
  563 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
  564 {
  565         unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  566         int dma = 0;
  567 
  568         q->bounce_gfp = GFP_NOIO;
  569 #if BITS_PER_LONG == 64
  570         /* Assume anything <= 4GB can be handled by IOMMU.
  571            Actually some IOMMUs can handle everything, but I don't
  572            know of a way to test this here. */
  573         if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  574                 dma = 1;
  575         q->bounce_pfn = max_low_pfn;
  576 #else
  577         if (bounce_pfn < blk_max_low_pfn)
  578                 dma = 1;
  579         q->bounce_pfn = bounce_pfn;
  580 #endif
  581         if (dma) {
  582                 init_emergency_isa_pool();
  583                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
  584                 q->bounce_pfn = bounce_pfn;
  585         }
  586 }
  587 
  588 EXPORT_SYMBOL(blk_queue_bounce_limit);
  589 
  590 /**
  591  * blk_queue_max_sectors - set max sectors for a request for this queue
  592  * @q:  the request queue for the device
  593  * @max_sectors:  max sectors in the usual 512b unit
  594  *
  595  * Description:
  596  *    Enables a low level driver to set an upper limit on the size of
  597  *    received requests.
  598  **/
  599 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
  600 {
  601         if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  602                 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  603                 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  604         }
  605 
  606         if (BLK_DEF_MAX_SECTORS > max_sectors)
  607                 q->max_hw_sectors = q->max_sectors = max_sectors;
  608         else {
  609                 q->max_sectors = BLK_DEF_MAX_SECTORS;
  610                 q->max_hw_sectors = max_sectors;
  611         }
  612 }
  613 
  614 EXPORT_SYMBOL(blk_queue_max_sectors);
  615 
  616 /**
  617  * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  618  * @q:  the request queue for the device
  619  * @max_segments:  max number of segments
  620  *
  621  * Description:
  622  *    Enables a low level driver to set an upper limit on the number of
  623  *    physical data segments in a request.  This would be the largest sized
  624  *    scatter list the driver could handle.
  625  **/
  626 void blk_queue_max_phys_segments(struct request_queue *q,
  627                                  unsigned short max_segments)
  628 {
  629         if (!max_segments) {
  630                 max_segments = 1;
  631                 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  632         }
  633 
  634         q->max_phys_segments = max_segments;
  635 }
  636 
  637 EXPORT_SYMBOL(blk_queue_max_phys_segments);
  638 
  639 /**
  640  * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  641  * @q:  the request queue for the device
  642  * @max_segments:  max number of segments
  643  *
  644  * Description:
  645  *    Enables a low level driver to set an upper limit on the number of
  646  *    hw data segments in a request.  This would be the largest number of
  647  *    address/length pairs the host adapter can actually give as once
  648  *    to the device.
  649  **/
  650 void blk_queue_max_hw_segments(struct request_queue *q,
  651                                unsigned short max_segments)
  652 {
  653         if (!max_segments) {
  654                 max_segments = 1;
  655                 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  656         }
  657 
  658         q->max_hw_segments = max_segments;
  659 }
  660 
  661 EXPORT_SYMBOL(blk_queue_max_hw_segments);
  662 
  663 /**
  664  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  665  * @q:  the request queue for the device
  666  * @max_size:  max size of segment in bytes
  667  *
  668  * Description:
  669  *    Enables a low level driver to set an upper limit on the size of a
  670  *    coalesced segment
  671  **/
  672 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  673 {
  674         if (max_size < PAGE_CACHE_SIZE) {
  675                 max_size = PAGE_CACHE_SIZE;
  676                 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  677         }
  678 
  679         q->max_segment_size = max_size;
  680 }
  681 
  682 EXPORT_SYMBOL(blk_queue_max_segment_size);
  683 
  684 /**
  685  * blk_queue_hardsect_size - set hardware sector size for the queue
  686  * @q:  the request queue for the device
  687  * @size:  the hardware sector size, in bytes
  688  *
  689  * Description:
  690  *   This should typically be set to the lowest possible sector size
  691  *   that the hardware can operate on (possible without reverting to
  692  *   even internal read-modify-write operations). Usually the default
  693  *   of 512 covers most hardware.
  694  **/
  695 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
  696 {
  697         q->hardsect_size = size;
  698 }
  699 
  700 EXPORT_SYMBOL(blk_queue_hardsect_size);
  701 
  702 /*
  703  * Returns the minimum that is _not_ zero, unless both are zero.
  704  */
  705 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  706 
  707 /**
  708  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  709  * @t:  the stacking driver (top)
  710  * @b:  the underlying device (bottom)
  711  **/
  712 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  713 {
  714         /* zero is "infinity" */
  715         t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  716         t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  717 
  718         t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  719         t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  720         t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  721         t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  722         if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  723                 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  724 }
  725 
  726 EXPORT_SYMBOL(blk_queue_stack_limits);
  727 
  728 /**
  729  * blk_queue_segment_boundary - set boundary rules for segment merging
  730  * @q:  the request queue for the device
  731  * @mask:  the memory boundary mask
  732  **/
  733 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  734 {
  735         if (mask < PAGE_CACHE_SIZE - 1) {
  736                 mask = PAGE_CACHE_SIZE - 1;
  737                 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  738         }
  739 
  740         q->seg_boundary_mask = mask;
  741 }
  742 
  743 EXPORT_SYMBOL(blk_queue_segment_boundary);
  744 
  745 /**
  746  * blk_queue_dma_alignment - set dma length and memory alignment
  747  * @q:     the request queue for the device
  748  * @mask:  alignment mask
  749  *
  750  * description:
  751  *    set required memory and length aligment for direct dma transactions.
  752  *    this is used when buiding direct io requests for the queue.
  753  *
  754  **/
  755 void blk_queue_dma_alignment(struct request_queue *q, int mask)
  756 {
  757         q->dma_alignment = mask;
  758 }
  759 
  760 EXPORT_SYMBOL(blk_queue_dma_alignment);
  761 
  762 /**
  763  * blk_queue_update_dma_alignment - update dma length and memory alignment
  764  * @q:     the request queue for the device
  765  * @mask:  alignment mask
  766  *
  767  * description:
  768  *    update required memory and length aligment for direct dma transactions.
  769  *    If the requested alignment is larger than the current alignment, then
  770  *    the current queue alignment is updated to the new value, otherwise it
  771  *    is left alone.  The design of this is to allow multiple objects
  772  *    (driver, device, transport etc) to set their respective
  773  *    alignments without having them interfere.
  774  *
  775  **/
  776 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
  777 {
  778         BUG_ON(mask > PAGE_SIZE);
  779 
  780         if (mask > q->dma_alignment)
  781                 q->dma_alignment = mask;
  782 }
  783 
  784 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
  785 
  786 /**
  787  * blk_queue_find_tag - find a request by its tag and queue
  788  * @q:   The request queue for the device
  789  * @tag: The tag of the request
  790  *
  791  * Notes:
  792  *    Should be used when a device returns a tag and you want to match
  793  *    it with a request.
  794  *
  795  *    no locks need be held.
  796  **/
  797 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
  798 {
  799         return blk_map_queue_find_tag(q->queue_tags, tag);
  800 }
  801 
  802 EXPORT_SYMBOL(blk_queue_find_tag);
  803 
  804 /**
  805  * __blk_free_tags - release a given set of tag maintenance info
  806  * @bqt:        the tag map to free
  807  *
  808  * Tries to free the specified @bqt@.  Returns true if it was
  809  * actually freed and false if there are still references using it
  810  */
  811 static int __blk_free_tags(struct blk_queue_tag *bqt)
  812 {
  813         int retval;
  814 
  815         retval = atomic_dec_and_test(&bqt->refcnt);
  816         if (retval) {
  817                 BUG_ON(bqt->busy);
  818 
  819                 kfree(bqt->tag_index);
  820                 bqt->tag_index = NULL;
  821 
  822                 kfree(bqt->tag_map);
  823                 bqt->tag_map = NULL;
  824 
  825                 kfree(bqt);
  826 
  827         }
  828 
  829         return retval;
  830 }
  831 
  832 /**
  833  * __blk_queue_free_tags - release tag maintenance info
  834  * @q:  the request queue for the device
  835  *
  836  *  Notes:
  837  *    blk_cleanup_queue() will take care of calling this function, if tagging
  838  *    has been used. So there's no need to call this directly.
  839  **/
  840 static void __blk_queue_free_tags(struct request_queue *q)
  841 {
  842         struct blk_queue_tag *bqt = q->queue_tags;
  843 
  844         if (!bqt)
  845                 return;
  846 
  847         __blk_free_tags(bqt);
  848 
  849         q->queue_tags = NULL;
  850         q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  851 }
  852 
  853 
  854 /**
  855  * blk_free_tags - release a given set of tag maintenance info
  856  * @bqt:        the tag map to free
  857  *
  858  * For externally managed @bqt@ frees the map.  Callers of this
  859  * function must guarantee to have released all the queues that
  860  * might have been using this tag map.
  861  */
  862 void blk_free_tags(struct blk_queue_tag *bqt)
  863 {
  864         if (unlikely(!__blk_free_tags(bqt)))
  865                 BUG();
  866 }
  867 EXPORT_SYMBOL(blk_free_tags);
  868 
  869 /**
  870  * blk_queue_free_tags - release tag maintenance info
  871  * @q:  the request queue for the device
  872  *
  873  *  Notes:
  874  *      This is used to disabled tagged queuing to a device, yet leave
  875  *      queue in function.
  876  **/
  877 void blk_queue_free_tags(struct request_queue *q)
  878 {
  879         clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  880 }
  881 
  882 EXPORT_SYMBOL(blk_queue_free_tags);
  883 
  884 static int
  885 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
  886 {
  887         struct request **tag_index;
  888         unsigned long *tag_map;
  889         int nr_ulongs;
  890 
  891         if (q && depth > q->nr_requests * 2) {
  892                 depth = q->nr_requests * 2;
  893                 printk(KERN_ERR "%s: adjusted depth to %d\n",
  894                                 __FUNCTION__, depth);
  895         }
  896 
  897         tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  898         if (!tag_index)
  899                 goto fail;
  900 
  901         nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  902         tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  903         if (!tag_map)
  904                 goto fail;
  905 
  906         tags->real_max_depth = depth;
  907         tags->max_depth = depth;
  908         tags->tag_index = tag_index;
  909         tags->tag_map = tag_map;
  910 
  911         return 0;
  912 fail:
  913         kfree(tag_index);
  914         return -ENOMEM;
  915 }
  916 
  917 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  918                                                    int depth)
  919 {
  920         struct blk_queue_tag *tags;
  921 
  922         tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  923         if (!tags)
  924                 goto fail;
  925 
  926         if (init_tag_map(q, tags, depth))
  927                 goto fail;
  928 
  929         tags->busy = 0;
  930         atomic_set(&tags->refcnt, 1);
  931         return tags;
  932 fail:
  933         kfree(tags);
  934         return NULL;
  935 }
  936 
  937 /**
  938  * blk_init_tags - initialize the tag info for an external tag map
  939  * @depth:      the maximum queue depth supported
  940  * @tags: the tag to use
  941  **/
  942 struct blk_queue_tag *blk_init_tags(int depth)
  943 {
  944         return __blk_queue_init_tags(NULL, depth);
  945 }
  946 EXPORT_SYMBOL(blk_init_tags);
  947 
  948 /**
  949  * blk_queue_init_tags - initialize the queue tag info
  950  * @q:  the request queue for the device
  951  * @depth:  the maximum queue depth supported
  952  * @tags: the tag to use
  953  **/
  954 int blk_queue_init_tags(struct request_queue *q, int depth,
  955                         struct blk_queue_tag *tags)
  956 {
  957         int rc;
  958 
  959         BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  960 
  961         if (!tags && !q->queue_tags) {
  962                 tags = __blk_queue_init_tags(q, depth);
  963 
  964                 if (!tags)
  965                         goto fail;
  966         } else if (q->queue_tags) {
  967                 if ((rc = blk_queue_resize_tags(q, depth)))
  968                         return rc;
  969                 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  970                 return 0;
  971         } else
  972                 atomic_inc(&tags->refcnt);
  973 
  974         /*
  975          * assign it, all done
  976          */
  977         q->queue_tags = tags;
  978         q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  979         INIT_LIST_HEAD(&q->tag_busy_list);
  980         return 0;
  981 fail:
  982         kfree(tags);
  983         return -ENOMEM;
  984 }
  985 
  986 EXPORT_SYMBOL(blk_queue_init_tags);
  987 
  988 /**
  989  * blk_queue_resize_tags - change the queueing depth
  990  * @q:  the request queue for the device
  991  * @new_depth: the new max command queueing depth
  992  *
  993  *  Notes:
  994  *    Must be called with the queue lock held.
  995  **/
  996 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
  997 {
  998         struct blk_queue_tag *bqt = q->queue_tags;
  999         struct request **tag_index;
 1000         unsigned long *tag_map;
 1001         int max_depth, nr_ulongs;
 1002 
 1003         if (!bqt)
 1004                 return -ENXIO;
 1005 
 1006         /*
 1007          * if we already have large enough real_max_depth.  just
 1008          * adjust max_depth.  *NOTE* as requests with tag value
 1009          * between new_depth and real_max_depth can be in-flight, tag
 1010          * map can not be shrunk blindly here.
 1011          */
 1012         if (new_depth <= bqt->real_max_depth) {
 1013                 bqt->max_depth = new_depth;
 1014                 return 0;
 1015         }
 1016 
 1017         /*
 1018          * Currently cannot replace a shared tag map with a new
 1019          * one, so error out if this is the case
 1020          */
 1021         if (atomic_read(&bqt->refcnt) != 1)
 1022                 return -EBUSY;
 1023 
 1024         /*
 1025          * save the old state info, so we can copy it back
 1026          */
 1027         tag_index = bqt->tag_index;
 1028         tag_map = bqt->tag_map;
 1029         max_depth = bqt->real_max_depth;
 1030 
 1031         if (init_tag_map(q, bqt, new_depth))
 1032                 return -ENOMEM;
 1033 
 1034         memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
 1035         nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
 1036         memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
 1037 
 1038         kfree(tag_index);
 1039         kfree(tag_map);
 1040         return 0;
 1041 }
 1042 
 1043 EXPORT_SYMBOL(blk_queue_resize_tags);
 1044 
 1045 /**
 1046  * blk_queue_end_tag - end tag operations for a request
 1047  * @q:  the request queue for the device
 1048  * @rq: the request that has completed
 1049  *
 1050  *  Description:
 1051  *    Typically called when end_that_request_first() returns 0, meaning
 1052  *    all transfers have been done for a request. It's important to call
 1053  *    this function before end_that_request_last(), as that will put the
 1054  *    request back on the free list thus corrupting the internal tag list.
 1055  *
 1056  *  Notes:
 1057  *   queue lock must be held.
 1058  **/
 1059 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
 1060 {
 1061         struct blk_queue_tag *bqt = q->queue_tags;
 1062         int tag = rq->tag;
 1063 
 1064         BUG_ON(tag == -1);
 1065 
 1066         if (unlikely(tag >= bqt->real_max_depth))
 1067                 /*
 1068                  * This can happen after tag depth has been reduced.
 1069                  * FIXME: how about a warning or info message here?
 1070                  */
 1071                 return;
 1072 
 1073         list_del_init(&rq->queuelist);
 1074         rq->cmd_flags &= ~REQ_QUEUED;
 1075         rq->tag = -1;
 1076 
 1077         if (unlikely(bqt->tag_index[tag] == NULL))
 1078                 printk(KERN_ERR "%s: tag %d is missing\n",
 1079                        __FUNCTION__, tag);
 1080 
 1081         bqt->tag_index[tag] = NULL;
 1082 
 1083         if (unlikely(!test_bit(tag, bqt->tag_map))) {
 1084                 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
 1085                        __FUNCTION__, tag);
 1086                 return;
 1087         }
 1088         /*
 1089          * The tag_map bit acts as a lock for tag_index[bit], so we need
 1090          * unlock memory barrier semantics.
 1091          */
 1092         clear_bit_unlock(tag, bqt->tag_map);
 1093         bqt->busy--;
 1094 }
 1095 
 1096 EXPORT_SYMBOL(blk_queue_end_tag);
 1097 
 1098 /**
 1099  * blk_queue_start_tag - find a free tag and assign it
 1100  * @q:  the request queue for the device
 1101  * @rq:  the block request that needs tagging
 1102  *
 1103  *  Description:
 1104  *    This can either be used as a stand-alone helper, or possibly be
 1105  *    assigned as the queue &prep_rq_fn (in which case &struct request
 1106  *    automagically gets a tag assigned). Note that this function
 1107  *    assumes that any type of request can be queued! if this is not
 1108  *    true for your device, you must check the request type before
 1109  *    calling this function.  The request will also be removed from
 1110  *    the request queue, so it's the drivers responsibility to readd
 1111  *    it if it should need to be restarted for some reason.
 1112  *
 1113  *  Notes:
 1114  *   queue lock must be held.
 1115  **/
 1116 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
 1117 {
 1118         struct blk_queue_tag *bqt = q->queue_tags;
 1119         int tag;
 1120 
 1121         if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
 1122                 printk(KERN_ERR 
 1123                        "%s: request %p for device [%s] already tagged %d",
 1124                        __FUNCTION__, rq,
 1125                        rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
 1126                 BUG();
 1127         }
 1128 
 1129         /*
 1130          * Protect against shared tag maps, as we may not have exclusive
 1131          * access to the tag map.
 1132          */
 1133         do {
 1134                 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
 1135                 if (tag >= bqt->max_depth)
 1136                         return 1;
 1137 
 1138         } while (test_and_set_bit_lock(tag, bqt->tag_map));
 1139         /*
 1140          * We need lock ordering semantics given by test_and_set_bit_lock.
 1141          * See blk_queue_end_tag for details.
 1142          */
 1143 
 1144         rq->cmd_flags |= REQ_QUEUED;
 1145         rq->tag = tag;
 1146         bqt->tag_index[tag] = rq;
 1147         blkdev_dequeue_request(rq);
 1148         list_add(&rq->queuelist, &q->tag_busy_list);
 1149         bqt->busy++;
 1150         return 0;
 1151 }
 1152 
 1153 EXPORT_SYMBOL(blk_queue_start_tag);
 1154 
 1155 /**
 1156  * blk_queue_invalidate_tags - invalidate all pending tags
 1157  * @q:  the request queue for the device
 1158  *
 1159  *  Description:
 1160  *   Hardware conditions may dictate a need to stop all pending requests.
 1161  *   In this case, we will safely clear the block side of the tag queue and
 1162  *   readd all requests to the request queue in the right order.
 1163  *
 1164  *  Notes:
 1165  *   queue lock must be held.
 1166  **/
 1167 void blk_queue_invalidate_tags(struct request_queue *q)
 1168 {
 1169         struct list_head *tmp, *n;
 1170 
 1171         list_for_each_safe(tmp, n, &q->tag_busy_list)
 1172                 blk_requeue_request(q, list_entry_rq(tmp));
 1173 }
 1174 
 1175 EXPORT_SYMBOL(blk_queue_invalidate_tags);
 1176 
 1177 void blk_dump_rq_flags(struct request *rq, char *msg)
 1178 {
 1179         int bit;
 1180 
 1181         printk("%s: dev %s: type=%x, flags=%x\n", msg,
 1182                 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 1183                 rq->cmd_flags);
 1184 
 1185         printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
 1186                                                        rq->nr_sectors,
 1187                                                        rq->current_nr_sectors);
 1188         printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
 1189 
 1190         if (blk_pc_request(rq)) {
 1191                 printk("cdb: ");
 1192                 for (bit = 0; bit < sizeof(rq->cmd); bit++)
 1193                         printk("%02x ", rq->cmd[bit]);
 1194                 printk("\n");
 1195         }
 1196 }
 1197 
 1198 EXPORT_SYMBOL(blk_dump_rq_flags);
 1199 
 1200 void blk_recount_segments(struct request_queue *q, struct bio *bio)
 1201 {
 1202         struct request rq;
 1203         struct bio *nxt = bio->bi_next;
 1204         rq.q = q;
 1205         rq.bio = rq.biotail = bio;
 1206         bio->bi_next = NULL;
 1207         blk_recalc_rq_segments(&rq);
 1208         bio->bi_next = nxt;
 1209         bio->bi_phys_segments = rq.nr_phys_segments;
 1210         bio->bi_hw_segments = rq.nr_hw_segments;
 1211         bio->bi_flags |= (1 << BIO_SEG_VALID);
 1212 }
 1213 EXPORT_SYMBOL(blk_recount_segments);
 1214 
 1215 static void blk_recalc_rq_segments(struct request *rq)
 1216 {
 1217         int nr_phys_segs;
 1218         int nr_hw_segs;
 1219         unsigned int phys_size;
 1220         unsigned int hw_size;
 1221         struct bio_vec *bv, *bvprv = NULL;
 1222         int seg_size;
 1223         int hw_seg_size;
 1224         int cluster;
 1225         struct req_iterator iter;
 1226         int high, highprv = 1;
 1227         struct request_queue *q = rq->q;
 1228 
 1229         if (!rq->bio)
 1230                 return;
 1231 
 1232         cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
 1233         hw_seg_size = seg_size = 0;
 1234         phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
 1235         rq_for_each_segment(bv, rq, iter) {
 1236                 /*
 1237                  * the trick here is making sure that a high page is never
 1238                  * considered part of another segment, since that might
 1239                  * change with the bounce page.
 1240                  */
 1241                 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
 1242                 if (high || highprv)
 1243                         goto new_hw_segment;
 1244                 if (cluster) {
 1245                         if (seg_size + bv->bv_len > q->max_segment_size)
 1246                                 goto new_segment;
 1247                         if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
 1248                                 goto new_segment;
 1249                         if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
 1250                                 goto new_segment;
 1251                         if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
 1252                                 goto new_hw_segment;
 1253 
 1254                         seg_size += bv->bv_len;
 1255                         hw_seg_size += bv->bv_len;
 1256                         bvprv = bv;
 1257                         continue;
 1258                 }
 1259 new_segment:
 1260                 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
 1261                     !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
 1262                         hw_seg_size += bv->bv_len;
 1263                 else {
 1264 new_hw_segment:
 1265                         if (nr_hw_segs == 1 &&
 1266                             hw_seg_size > rq->bio->bi_hw_front_size)
 1267                                 rq->bio->bi_hw_front_size = hw_seg_size;
 1268                         hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
 1269                         nr_hw_segs++;
 1270                 }
 1271 
 1272                 nr_phys_segs++;
 1273                 bvprv = bv;
 1274                 seg_size = bv->bv_len;
 1275                 highprv = high;
 1276         }
 1277 
 1278         if (nr_hw_segs == 1 &&
 1279             hw_seg_size > rq->bio->bi_hw_front_size)
 1280                 rq->bio->bi_hw_front_size = hw_seg_size;
 1281         if (hw_seg_size > rq->biotail->bi_hw_back_size)
 1282                 rq->biotail->bi_hw_back_size = hw_seg_size;
 1283         rq->nr_phys_segments = nr_phys_segs;
 1284         rq->nr_hw_segments = nr_hw_segs;
 1285 }
 1286 
 1287 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
 1288                                    struct bio *nxt)
 1289 {
 1290         if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
 1291                 return 0;
 1292 
 1293         if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
 1294                 return 0;
 1295         if (bio->bi_size + nxt->bi_size > q->max_segment_size)
 1296                 return 0;
 1297 
 1298         /*
 1299          * bio and nxt are contigous in memory, check if the queue allows
 1300          * these two to be merged into one
 1301          */
 1302         if (BIO_SEG_BOUNDARY(q, bio, nxt))
 1303                 return 1;
 1304 
 1305         return 0;
 1306 }
 1307 
 1308 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
 1309                                  struct bio *nxt)
 1310 {
 1311         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 1312                 blk_recount_segments(q, bio);
 1313         if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
 1314                 blk_recount_segments(q, nxt);
 1315         if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
 1316             BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
 1317                 return 0;
 1318         if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
 1319                 return 0;
 1320 
 1321         return 1;
 1322 }
 1323 
 1324 /*
 1325  * map a request to scatterlist, return number of sg entries setup. Caller
 1326  * must make sure sg can hold rq->nr_phys_segments entries
 1327  */
 1328 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
 1329                   struct scatterlist *sglist)
 1330 {
 1331         struct bio_vec *bvec, *bvprv;
 1332         struct req_iterator iter;
 1333         struct scatterlist *sg;
 1334         int nsegs, cluster;
 1335 
 1336         nsegs = 0;
 1337         cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
 1338 
 1339         /*
 1340          * for each bio in rq
 1341          */
 1342         bvprv = NULL;
 1343         sg = NULL;
 1344         rq_for_each_segment(bvec, rq, iter) {
 1345                 int nbytes = bvec->bv_len;
 1346 
 1347                 if (bvprv && cluster) {
 1348                         if (sg->length + nbytes > q->max_segment_size)
 1349                                 goto new_segment;
 1350 
 1351                         if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
 1352                                 goto new_segment;
 1353                         if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
 1354                                 goto new_segment;
 1355 
 1356                         sg->length += nbytes;
 1357                 } else {
 1358 new_segment:
 1359                         if (!sg)
 1360                                 sg = sglist;
 1361                         else {
 1362                                 /*
 1363                                  * If the driver previously mapped a shorter
 1364                                  * list, we could see a termination bit
 1365                                  * prematurely unless it fully inits the sg
 1366                                  * table on each mapping. We KNOW that there
 1367                                  * must be more entries here or the driver
 1368                                  * would be buggy, so force clear the
 1369                                  * termination bit to avoid doing a full
 1370                                  * sg_init_table() in drivers for each command.
 1371                                  */
 1372                                 sg->page_link &= ~0x02;
 1373                                 sg = sg_next(sg);
 1374                         }
 1375 
 1376                         sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
 1377                         nsegs++;
 1378                 }
 1379                 bvprv = bvec;
 1380         } /* segments in rq */
 1381 
 1382         if (sg)
 1383                 sg_mark_end(sg);
 1384 
 1385         return nsegs;
 1386 }
 1387 
 1388 EXPORT_SYMBOL(blk_rq_map_sg);
 1389 
 1390 /*
 1391  * the standard queue merge functions, can be overridden with device
 1392  * specific ones if so desired
 1393  */
 1394 
 1395 static inline int ll_new_mergeable(struct request_queue *q,
 1396                                    struct request *req,
 1397                                    struct bio *bio)
 1398 {
 1399         int nr_phys_segs = bio_phys_segments(q, bio);
 1400 
 1401         if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
 1402                 req->cmd_flags |= REQ_NOMERGE;
 1403                 if (req == q->last_merge)
 1404                         q->last_merge = NULL;
 1405                 return 0;
 1406         }
 1407 
 1408         /*
 1409          * A hw segment is just getting larger, bump just the phys
 1410          * counter.
 1411          */
 1412         req->nr_phys_segments += nr_phys_segs;
 1413         return 1;
 1414 }
 1415 
 1416 static inline int ll_new_hw_segment(struct request_queue *q,
 1417                                     struct request *req,
 1418                                     struct bio *bio)
 1419 {
 1420         int nr_hw_segs = bio_hw_segments(q, bio);
 1421         int nr_phys_segs = bio_phys_segments(q, bio);
 1422 
 1423         if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
 1424             || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
 1425                 req->cmd_flags |= REQ_NOMERGE;
 1426                 if (req == q->last_merge)
 1427                         q->last_merge = NULL;
 1428                 return 0;
 1429         }
 1430 
 1431         /*
 1432          * This will form the start of a new hw segment.  Bump both
 1433          * counters.
 1434          */
 1435         req->nr_hw_segments += nr_hw_segs;
 1436         req->nr_phys_segments += nr_phys_segs;
 1437         return 1;
 1438 }
 1439 
 1440 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
 1441                             struct bio *bio)
 1442 {
 1443         unsigned short max_sectors;
 1444         int len;
 1445 
 1446         if (unlikely(blk_pc_request(req)))
 1447                 max_sectors = q->max_hw_sectors;
 1448         else
 1449                 max_sectors = q->max_sectors;
 1450 
 1451         if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
 1452                 req->cmd_flags |= REQ_NOMERGE;
 1453                 if (req == q->last_merge)
 1454                         q->last_merge = NULL;
 1455                 return 0;
 1456         }
 1457         if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
 1458                 blk_recount_segments(q, req->biotail);
 1459         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 1460                 blk_recount_segments(q, bio);
 1461         len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
 1462         if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
 1463             !BIOVEC_VIRT_OVERSIZE(len)) {
 1464                 int mergeable =  ll_new_mergeable(q, req, bio);
 1465 
 1466                 if (mergeable) {
 1467                         if (req->nr_hw_segments == 1)
 1468                                 req->bio->bi_hw_front_size = len;
 1469                         if (bio->bi_hw_segments == 1)
 1470                                 bio->bi_hw_back_size = len;
 1471                 }
 1472                 return mergeable;
 1473         }
 1474 
 1475         return ll_new_hw_segment(q, req, bio);
 1476 }
 1477 
 1478 static int ll_front_merge_fn(struct request_queue *q, struct request *req, 
 1479                              struct bio *bio)
 1480 {
 1481         unsigned short max_sectors;
 1482         int len;
 1483 
 1484         if (unlikely(blk_pc_request(req)))
 1485                 max_sectors = q->max_hw_sectors;
 1486         else
 1487                 max_sectors = q->max_sectors;
 1488 
 1489 
 1490         if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
 1491                 req->cmd_flags |= REQ_NOMERGE;
 1492                 if (req == q->last_merge)
 1493                         q->last_merge = NULL;
 1494                 return 0;
 1495         }
 1496         len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
 1497         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 1498                 blk_recount_segments(q, bio);
 1499         if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
 1500                 blk_recount_segments(q, req->bio);
 1501         if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
 1502             !BIOVEC_VIRT_OVERSIZE(len)) {
 1503                 int mergeable =  ll_new_mergeable(q, req, bio);
 1504 
 1505                 if (mergeable) {
 1506                         if (bio->bi_hw_segments == 1)
 1507                                 bio->bi_hw_front_size = len;
 1508                         if (req->nr_hw_segments == 1)
 1509                                 req->biotail->bi_hw_back_size = len;
 1510                 }
 1511                 return mergeable;
 1512         }
 1513 
 1514         return ll_new_hw_segment(q, req, bio);
 1515 }
 1516 
 1517 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
 1518                                 struct request *next)
 1519 {
 1520         int total_phys_segments;
 1521         int total_hw_segments;
 1522 
 1523         /*
 1524          * First check if the either of the requests are re-queued
 1525          * requests.  Can't merge them if they are.
 1526          */
 1527         if (req->special || next->special)
 1528                 return 0;
 1529 
 1530         /*
 1531          * Will it become too large?
 1532          */
 1533         if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
 1534                 return 0;
 1535 
 1536         total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
 1537         if (blk_phys_contig_segment(q, req->biotail, next->bio))
 1538                 total_phys_segments--;
 1539 
 1540         if (total_phys_segments > q->max_phys_segments)
 1541                 return 0;
 1542 
 1543         total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
 1544         if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
 1545                 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
 1546                 /*
 1547                  * propagate the combined length to the end of the requests
 1548                  */
 1549                 if (req->nr_hw_segments == 1)
 1550                         req->bio->bi_hw_front_size = len;
 1551                 if (next->nr_hw_segments == 1)
 1552                         next->biotail->bi_hw_back_size = len;
 1553                 total_hw_segments--;
 1554         }
 1555 
 1556         if (total_hw_segments > q->max_hw_segments)
 1557                 return 0;
 1558 
 1559         /* Merge is OK... */
 1560         req->nr_phys_segments = total_phys_segments;
 1561         req->nr_hw_segments = total_hw_segments;
 1562         return 1;
 1563 }
 1564 
 1565 /*
 1566  * "plug" the device if there are no outstanding requests: this will
 1567  * force the transfer to start only after we have put all the requests
 1568  * on the list.
 1569  *
 1570  * This is called with interrupts off and no requests on the queue and
 1571  * with the queue lock held.
 1572  */
 1573 void blk_plug_device(struct request_queue *q)
 1574 {
 1575         WARN_ON(!irqs_disabled());
 1576 
 1577         /*
 1578          * don't plug a stopped queue, it must be paired with blk_start_queue()
 1579          * which will restart the queueing
 1580          */
 1581         if (blk_queue_stopped(q))
 1582                 return;
 1583 
 1584         if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
 1585                 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
 1586                 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
 1587         }
 1588 }
 1589 
 1590 EXPORT_SYMBOL(blk_plug_device);
 1591 
 1592 /*
 1593  * remove the queue from the plugged list, if present. called with
 1594  * queue lock held and interrupts disabled.
 1595  */
 1596 int blk_remove_plug(struct request_queue *q)
 1597 {
 1598         WARN_ON(!irqs_disabled());
 1599 
 1600         if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
 1601                 return 0;
 1602 
 1603         del_timer(&q->unplug_timer);
 1604         return 1;
 1605 }
 1606 
 1607 EXPORT_SYMBOL(blk_remove_plug);
 1608 
 1609 /*
 1610  * remove the plug and let it rip..
 1611  */
 1612 void __generic_unplug_device(struct request_queue *q)
 1613 {
 1614         if (unlikely(blk_queue_stopped(q)))
 1615                 return;
 1616 
 1617         if (!blk_remove_plug(q))
 1618                 return;
 1619 
 1620         q->request_fn(q);
 1621 }
 1622 EXPORT_SYMBOL(__generic_unplug_device);
 1623 
 1624 /**
 1625  * generic_unplug_device - fire a request queue
 1626  * @q:    The &struct request_queue in question
 1627  *
 1628  * Description:
 1629  *   Linux uses plugging to build bigger requests queues before letting
 1630  *   the device have at them. If a queue is plugged, the I/O scheduler
 1631  *   is still adding and merging requests on the queue. Once the queue
 1632  *   gets unplugged, the request_fn defined for the queue is invoked and
 1633  *   transfers started.
 1634  **/
 1635 void generic_unplug_device(struct request_queue *q)
 1636 {
 1637         spin_lock_irq(q->queue_lock);
 1638         __generic_unplug_device(q);
 1639         spin_unlock_irq(q->queue_lock);
 1640 }
 1641 EXPORT_SYMBOL(generic_unplug_device);
 1642 
 1643 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
 1644                                    struct page *page)
 1645 {
 1646         struct request_queue *q = bdi->unplug_io_data;
 1647 
 1648         blk_unplug(q);
 1649 }
 1650 
 1651 static void blk_unplug_work(struct work_struct *work)
 1652 {
 1653         struct request_queue *q =
 1654                 container_of(work, struct request_queue, unplug_work);
 1655 
 1656         blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
 1657                                 q->rq.count[READ] + q->rq.count[WRITE]);
 1658 
 1659         q->unplug_fn(q);
 1660 }
 1661 
 1662 static void blk_unplug_timeout(unsigned long data)
 1663 {
 1664         struct request_queue *q = (struct request_queue *)data;
 1665 
 1666         blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
 1667                                 q->rq.count[READ] + q->rq.count[WRITE]);
 1668 
 1669         kblockd_schedule_work(&q->unplug_work);
 1670 }
 1671 
 1672 void blk_unplug(struct request_queue *q)
 1673 {
 1674         /*
 1675          * devices don't necessarily have an ->unplug_fn defined
 1676          */
 1677         if (q->unplug_fn) {
 1678                 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
 1679                                         q->rq.count[READ] + q->rq.count[WRITE]);
 1680 
 1681                 q->unplug_fn(q);
 1682         }
 1683 }
 1684 EXPORT_SYMBOL(blk_unplug);
 1685 
 1686 /**
 1687  * blk_start_queue - restart a previously stopped queue
 1688  * @q:    The &struct request_queue in question
 1689  *
 1690  * Description:
 1691  *   blk_start_queue() will clear the stop flag on the queue, and call
 1692  *   the request_fn for the queue if it was in a stopped state when
 1693  *   entered. Also see blk_stop_queue(). Queue lock must be held.
 1694  **/
 1695 void blk_start_queue(struct request_queue *q)
 1696 {
 1697         WARN_ON(!irqs_disabled());
 1698 
 1699         clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
 1700 
 1701         /*
 1702          * one level of recursion is ok and is much faster than kicking
 1703          * the unplug handling
 1704          */
 1705         if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
 1706                 q->request_fn(q);
 1707                 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
 1708         } else {
 1709                 blk_plug_device(q);
 1710                 kblockd_schedule_work(&q->unplug_work);
 1711         }
 1712 }
 1713 
 1714 EXPORT_SYMBOL(blk_start_queue);
 1715 
 1716 /**
 1717  * blk_stop_queue - stop a queue
 1718  * @q:    The &struct request_queue in question
 1719  *
 1720  * Description:
 1721  *   The Linux block layer assumes that a block driver will consume all
 1722  *   entries on the request queue when the request_fn strategy is called.
 1723  *   Often this will not happen, because of hardware limitations (queue
 1724  *   depth settings). If a device driver gets a 'queue full' response,
 1725  *   or if it simply chooses not to queue more I/O at one point, it can
 1726  *   call this function to prevent the request_fn from being called until
 1727  *   the driver has signalled it's ready to go again. This happens by calling
 1728  *   blk_start_queue() to restart queue operations. Queue lock must be held.
 1729  **/
 1730 void blk_stop_queue(struct request_queue *q)
 1731 {
 1732         blk_remove_plug(q);
 1733         set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
 1734 }
 1735 EXPORT_SYMBOL(blk_stop_queue);
 1736 
 1737 /**
 1738  * blk_sync_queue - cancel any pending callbacks on a queue
 1739  * @q: the queue
 1740  *
 1741  * Description:
 1742  *     The block layer may perform asynchronous callback activity
 1743  *     on a queue, such as calling the unplug function after a timeout.
 1744  *     A block device may call blk_sync_queue to ensure that any
 1745  *     such activity is cancelled, thus allowing it to release resources
 1746  *     that the callbacks might use. The caller must already have made sure
 1747  *     that its ->make_request_fn will not re-add plugging prior to calling
 1748  *     this function.
 1749  *
 1750  */
 1751 void blk_sync_queue(struct request_queue *q)
 1752 {
 1753         del_timer_sync(&q->unplug_timer);
 1754         kblockd_flush_work(&q->unplug_work);
 1755 }
 1756 EXPORT_SYMBOL(blk_sync_queue);
 1757 
 1758 /**
 1759  * blk_run_queue - run a single device queue
 1760  * @q:  The queue to run
 1761  */
 1762 void blk_run_queue(struct request_queue *q)
 1763 {
 1764         unsigned long flags;
 1765 
 1766         spin_lock_irqsave(q->queue_lock, flags);
 1767         blk_remove_plug(q);
 1768 
 1769         /*
 1770          * Only recurse once to avoid overrunning the stack, let the unplug
 1771          * handling reinvoke the handler shortly if we already got there.
 1772          */
 1773         if (!elv_queue_empty(q)) {
 1774                 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
 1775                         q->request_fn(q);
 1776                         clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
 1777                 } else {
 1778                         blk_plug_device(q);
 1779                         kblockd_schedule_work(&q->unplug_work);
 1780                 }
 1781         }
 1782 
 1783         spin_unlock_irqrestore(q->queue_lock, flags);
 1784 }
 1785 EXPORT_SYMBOL(blk_run_queue);
 1786 
 1787 /**
 1788  * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
 1789  * @kobj:    the kobj belonging of the request queue to be released
 1790  *
 1791  * Description:
 1792  *     blk_cleanup_queue is the pair to blk_init_queue() or
 1793  *     blk_queue_make_request().  It should be called when a request queue is
 1794  *     being released; typically when a block device is being de-registered.
 1795  *     Currently, its primary task it to free all the &struct request
 1796  *     structures that were allocated to the queue and the queue itself.
 1797  *
 1798  * Caveat:
 1799  *     Hopefully the low level driver will have finished any
 1800  *     outstanding requests first...
 1801  **/
 1802 static void blk_release_queue(struct kobject *kobj)
 1803 {
 1804         struct request_queue *q =
 1805                 container_of(kobj, struct request_queue, kobj);
 1806         struct request_list *rl = &q->rq;
 1807 
 1808         blk_sync_queue(q);
 1809 
 1810         if (rl->rq_pool)
 1811                 mempool_destroy(rl->rq_pool);
 1812 
 1813         if (q->queue_tags)
 1814                 __blk_queue_free_tags(q);
 1815 
 1816         blk_trace_shutdown(q);
 1817 
 1818         bdi_destroy(&q->backing_dev_info);
 1819         kmem_cache_free(requestq_cachep, q);
 1820 }
 1821 
 1822 void blk_put_queue(struct request_queue *q)
 1823 {
 1824         kobject_put(&q->kobj);
 1825 }
 1826 EXPORT_SYMBOL(blk_put_queue);
 1827 
 1828 void blk_cleanup_queue(struct request_queue * q)
 1829 {
 1830         mutex_lock(&q->sysfs_lock);
 1831         set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
 1832         mutex_unlock(&q->sysfs_lock);
 1833 
 1834         if (q->elevator)
 1835                 elevator_exit(q->elevator);
 1836 
 1837         blk_put_queue(q);
 1838 }
 1839 
 1840 EXPORT_SYMBOL(blk_cleanup_queue);
 1841 
 1842 static int blk_init_free_list(struct request_queue *q)
 1843 {
 1844         struct request_list *rl = &q->rq;
 1845 
 1846         rl->count[READ] = rl->count[WRITE] = 0;
 1847         rl->starved[READ] = rl->starved[WRITE] = 0;
 1848         rl->elvpriv = 0;
 1849         init_waitqueue_head(&rl->wait[READ]);
 1850         init_waitqueue_head(&rl->wait[WRITE]);
 1851 
 1852         rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
 1853                                 mempool_free_slab, request_cachep, q->node);
 1854 
 1855         if (!rl->rq_pool)
 1856                 return -ENOMEM;
 1857 
 1858         return 0;
 1859 }
 1860 
 1861 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 1862 {
 1863         return blk_alloc_queue_node(gfp_mask, -1);
 1864 }
 1865 EXPORT_SYMBOL(blk_alloc_queue);
 1866 
 1867 static struct kobj_type queue_ktype;
 1868 
 1869 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 1870 {
 1871         struct request_queue *q;
 1872         int err;
 1873 
 1874         q = kmem_cache_alloc_node(requestq_cachep,
 1875                                 gfp_mask | __GFP_ZERO, node_id);
 1876         if (!q)
 1877                 return NULL;
 1878 
 1879         q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
 1880         q->backing_dev_info.unplug_io_data = q;
 1881         err = bdi_init(&q->backing_dev_info);
 1882         if (err) {
 1883                 kmem_cache_free(requestq_cachep, q);
 1884                 return NULL;
 1885         }
 1886 
 1887         init_timer(&q->unplug_timer);
 1888 
 1889         kobject_init(&q->kobj, &queue_ktype);
 1890 
 1891         mutex_init(&q->sysfs_lock);
 1892 
 1893         return q;
 1894 }
 1895 EXPORT_SYMBOL(blk_alloc_queue_node);
 1896 
 1897 /**
 1898  * blk_init_queue  - prepare a request queue for use with a block device
 1899  * @rfn:  The function to be called to process requests that have been
 1900  *        placed on the queue.
 1901  * @lock: Request queue spin lock
 1902  *
 1903  * Description:
 1904  *    If a block device wishes to use the standard request handling procedures,
 1905  *    which sorts requests and coalesces adjacent requests, then it must
 1906  *    call blk_init_queue().  The function @rfn will be called when there
 1907  *    are requests on the queue that need to be processed.  If the device
 1908  *    supports plugging, then @rfn may not be called immediately when requests
 1909  *    are available on the queue, but may be called at some time later instead.
 1910  *    Plugged queues are generally unplugged when a buffer belonging to one
 1911  *    of the requests on the queue is needed, or due to memory pressure.
 1912  *
 1913  *    @rfn is not required, or even expected, to remove all requests off the
 1914  *    queue, but only as many as it can handle at a time.  If it does leave
 1915  *    requests on the queue, it is responsible for arranging that the requests
 1916  *    get dealt with eventually.
 1917  *
 1918  *    The queue spin lock must be held while manipulating the requests on the
 1919  *    request queue; this lock will be taken also from interrupt context, so irq
 1920  *    disabling is needed for it.
 1921  *
 1922  *    Function returns a pointer to the initialized request queue, or NULL if
 1923  *    it didn't succeed.
 1924  *
 1925  * Note:
 1926  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 1927  *    when the block device is deactivated (such as at module unload).
 1928  **/
 1929 
 1930 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 1931 {
 1932         return blk_init_queue_node(rfn, lock, -1);
 1933 }
 1934 EXPORT_SYMBOL(blk_init_queue);
 1935 
 1936 struct request_queue *
 1937 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 1938 {
 1939         struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 1940 
 1941         if (!q)
 1942                 return NULL;
 1943 
 1944         q->node = node_id;
 1945         if (blk_init_free_list(q)) {
 1946                 kmem_cache_free(requestq_cachep, q);
 1947                 return NULL;
 1948         }
 1949 
 1950         /*
 1951          * if caller didn't supply a lock, they get per-queue locking with
 1952          * our embedded lock
 1953          */
 1954         if (!lock) {
 1955                 spin_lock_init(&q->__queue_lock);
 1956                 lock = &q->__queue_lock;
 1957         }
 1958 
 1959         q->request_fn           = rfn;
 1960         q->prep_rq_fn           = NULL;
 1961         q->unplug_fn            = generic_unplug_device;
 1962         q->queue_flags          = (1 << QUEUE_FLAG_CLUSTER);
 1963         q->queue_lock           = lock;
 1964 
 1965         blk_queue_segment_boundary(q, 0xffffffff);
 1966 
 1967         blk_queue_make_request(q, __make_request);
 1968         blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
 1969 
 1970         blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
 1971         blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
 1972 
 1973         q->sg_reserved_size = INT_MAX;
 1974 
 1975         /*
 1976          * all done
 1977          */
 1978         if (!elevator_init(q, NULL)) {
 1979                 blk_queue_congestion_threshold(q);
 1980                 return q;
 1981         }
 1982 
 1983         blk_put_queue(q);
 1984         return NULL;
 1985 }
 1986 EXPORT_SYMBOL(blk_init_queue_node);
 1987 
 1988 int blk_get_queue(struct request_queue *q)
 1989 {
 1990         if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
 1991                 kobject_get(&q->kobj);
 1992                 return 0;
 1993         }
 1994 
 1995         return 1;
 1996 }
 1997 
 1998 EXPORT_SYMBOL(blk_get_queue);
 1999 
 2000 static inline void blk_free_request(struct request_queue *q, struct request *rq)
 2001 {
 2002         if (rq->cmd_flags & REQ_ELVPRIV)
 2003                 elv_put_request(q, rq);
 2004         mempool_free(rq, q->rq.rq_pool);
 2005 }
 2006 
 2007 static struct request *
 2008 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
 2009 {
 2010         struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
 2011 
 2012         if (!rq)
 2013                 return NULL;
 2014 
 2015         /*
 2016          * first three bits are identical in rq->cmd_flags and bio->bi_rw,
 2017          * see bio.h and blkdev.h
 2018          */
 2019         rq->cmd_flags = rw | REQ_ALLOCED;
 2020 
 2021         if (priv) {
 2022                 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
 2023                         mempool_free(rq, q->rq.rq_pool);
 2024                         return NULL;
 2025                 }
 2026                 rq->cmd_flags |= REQ_ELVPRIV;
 2027         }
 2028 
 2029         return rq;
 2030 }
 2031 
 2032 /*
 2033  * ioc_batching returns true if the ioc is a valid batching request and
 2034  * should be given priority access to a request.
 2035  */
 2036 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 2037 {
 2038         if (!ioc)
 2039                 return 0;
 2040 
 2041         /*
 2042          * Make sure the process is able to allocate at least 1 request
 2043          * even if the batch times out, otherwise we could theoretically
 2044          * lose wakeups.
 2045          */
 2046         return ioc->nr_batch_requests == q->nr_batching ||
 2047                 (ioc->nr_batch_requests > 0
 2048                 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 2049 }
 2050 
 2051 /*
 2052  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 2053  * will cause the process to be a "batcher" on all queues in the system. This
 2054  * is the behaviour we want though - once it gets a wakeup it should be given
 2055  * a nice run.
 2056  */
 2057 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 2058 {
 2059         if (!ioc || ioc_batching(q, ioc))
 2060                 return;
 2061 
 2062         ioc->nr_batch_requests = q->nr_batching;
 2063         ioc->last_waited = jiffies;
 2064 }
 2065 
 2066 static void __freed_request(struct request_queue *q, int rw)
 2067 {
 2068         struct request_list *rl = &q->rq;
 2069 
 2070         if (rl->count[rw] < queue_congestion_off_threshold(q))
 2071                 blk_clear_queue_congested(q, rw);
 2072 
 2073         if (rl->count[rw] + 1 <= q->nr_requests) {
 2074                 if (waitqueue_active(&rl->wait[rw]))
 2075                         wake_up(&rl->wait[rw]);
 2076 
 2077                 blk_clear_queue_full(q, rw);
 2078         }
 2079 }
 2080 
 2081 /*
 2082  * A request has just been released.  Account for it, update the full and
 2083  * congestion status, wake up any waiters.   Called under q->queue_lock.
 2084  */
 2085 static void freed_request(struct request_queue *q, int rw, int priv)
 2086 {
 2087         struct request_list *rl = &q->rq;
 2088 
 2089         rl->count[rw]--;
 2090         if (priv)
 2091                 rl->elvpriv--;
 2092 
 2093         __freed_request(q, rw);
 2094 
 2095         if (unlikely(rl->starved[rw ^ 1]))
 2096                 __freed_request(q, rw ^ 1);
 2097 }
 2098 
 2099 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
 2100 /*
 2101  * Get a free request, queue_lock must be held.
 2102  * Returns NULL on failure, with queue_lock held.
 2103  * Returns !NULL on success, with queue_lock *not held*.
 2104  */
 2105 static struct request *get_request(struct request_queue *q, int rw_flags,
 2106                                    struct bio *bio, gfp_t gfp_mask)
 2107 {
 2108         struct request *rq = NULL;
 2109         struct request_list *rl = &q->rq;
 2110         struct io_context *ioc = NULL;
 2111         const int rw = rw_flags & 0x01;
 2112         int may_queue, priv;
 2113 
 2114         may_queue = elv_may_queue(q, rw_flags);
 2115         if (may_queue == ELV_MQUEUE_NO)
 2116                 goto rq_starved;
 2117 
 2118         if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
 2119                 if (rl->count[rw]+1 >= q->nr_requests) {
 2120                         ioc = current_io_context(GFP_ATOMIC, q->node);
 2121                         /*
 2122                          * The queue will fill after this allocation, so set
 2123                          * it as full, and mark this process as "batching".
 2124                          * This process will be allowed to complete a batch of
 2125                          * requests, others will be blocked.
 2126                          */
 2127                         if (!blk_queue_full(q, rw)) {
 2128                                 ioc_set_batching(q, ioc);
 2129                                 blk_set_queue_full(q, rw);
 2130                         } else {
 2131                                 if (may_queue != ELV_MQUEUE_MUST
 2132                                                 && !ioc_batching(q, ioc)) {
 2133                                         /*
 2134                                          * The queue is full and the allocating
 2135                                          * process is not a "batcher", and not
 2136                                          * exempted by the IO scheduler
 2137                                          */
 2138                                         goto out;
 2139                                 }
 2140                         }
 2141                 }
 2142                 blk_set_queue_congested(q, rw);
 2143         }
 2144 
 2145         /*
 2146          * Only allow batching queuers to allocate up to 50% over the defined
 2147          * limit of requests, otherwise we could have thousands of requests
 2148          * allocated with any setting of ->nr_requests
 2149          */
 2150         if (rl->count[rw] >= (3 * q->nr_requests / 2))
 2151                 goto out;
 2152 
 2153         rl->count[rw]++;
 2154         rl->starved[rw] = 0;
 2155 
 2156         priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
 2157         if (priv)
 2158                 rl->elvpriv++;
 2159 
 2160         spin_unlock_irq(q->queue_lock);
 2161 
 2162         rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
 2163         if (unlikely(!rq)) {
 2164                 /*
 2165                  * Allocation failed presumably due to memory. Undo anything
 2166                  * we might have messed up.
 2167                  *
 2168                  * Allocating task should really be put onto the front of the
 2169                  * wait queue, but this is pretty rare.
 2170                  */
 2171                 spin_lock_irq(q->queue_lock);
 2172                 freed_request(q, rw, priv);
 2173 
 2174                 /*
 2175                  * in the very unlikely event that allocation failed and no
 2176                  * requests for this direction was pending, mark us starved
 2177                  * so that freeing of a request in the other direction will
 2178                  * notice us. another possible fix would be to split the
 2179                  * rq mempool into READ and WRITE
 2180                  */
 2181 rq_starved:
 2182                 if (unlikely(rl->count[rw] == 0))
 2183                         rl->starved[rw] = 1;
 2184 
 2185                 goto out;
 2186         }
 2187 
 2188         /*
 2189          * ioc may be NULL here, and ioc_batching will be false. That's
 2190          * OK, if the queue is under the request limit then requests need
 2191          * not count toward the nr_batch_requests limit. There will always
 2192          * be some limit enforced by BLK_BATCH_TIME.
 2193          */
 2194         if (ioc_batching(q, ioc))
 2195                 ioc->nr_batch_requests--;
 2196         
 2197         rq_init(q, rq);
 2198 
 2199         blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
 2200 out:
 2201         return rq;
 2202 }
 2203 
 2204 /*
 2205  * No available requests for this queue, unplug the device and wait for some
 2206  * requests to become available.
 2207  *
 2208  * Called with q->queue_lock held, and returns with it unlocked.
 2209  */
 2210 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
 2211                                         struct bio *bio)
 2212 {
 2213         const int rw = rw_flags & 0x01;
 2214         struct request *rq;
 2215 
 2216         rq = get_request(q, rw_flags, bio, GFP_NOIO);
 2217         while (!rq) {
 2218                 DEFINE_WAIT(wait);
 2219                 struct request_list *rl = &q->rq;
 2220 
 2221                 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
 2222                                 TASK_UNINTERRUPTIBLE);
 2223 
 2224                 rq = get_request(q, rw_flags, bio, GFP_NOIO);
 2225 
 2226                 if (!rq) {
 2227                         struct io_context *ioc;
 2228 
 2229                         blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
 2230 
 2231                         __generic_unplug_device(q);
 2232                         spin_unlock_irq(q->queue_lock);
 2233                         io_schedule();
 2234 
 2235                         /*
 2236                          * After sleeping, we become a "batching" process and
 2237                          * will be able to allocate at least one request, and
 2238                          * up to a big batch of them for a small period time.
 2239                          * See ioc_batching, ioc_set_batching
 2240                          */
 2241                         ioc = current_io_context(GFP_NOIO, q->node);
 2242                         ioc_set_batching(q, ioc);
 2243 
 2244                         spin_lock_irq(q->queue_lock);
 2245                 }
 2246                 finish_wait(&rl->wait[rw], &wait);
 2247         }
 2248 
 2249         return rq;
 2250 }
 2251 
 2252 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
 2253 {
 2254         struct request *rq;
 2255 
 2256         BUG_ON(rw != READ && rw != WRITE);
 2257 
 2258         spin_lock_irq(q->queue_lock);
 2259         if (gfp_mask & __GFP_WAIT) {
 2260                 rq = get_request_wait(q, rw, NULL);
 2261         } else {
 2262                 rq = get_request(q, rw, NULL, gfp_mask);
 2263                 if (!rq)
 2264                         spin_unlock_irq(q->queue_lock);
 2265         }
 2266         /* q->queue_lock is unlocked at this point */
 2267 
 2268         return rq;
 2269 }
 2270 EXPORT_SYMBOL(blk_get_request);
 2271 
 2272 /**
 2273  * blk_start_queueing - initiate dispatch of requests to device
 2274  * @q:          request queue to kick into gear
 2275  *
 2276  * This is basically a helper to remove the need to know whether a queue
 2277  * is plugged or not if someone just wants to initiate dispatch of requests
 2278  * for this queue.
 2279  *
 2280  * The queue lock must be held with interrupts disabled.
 2281  */
 2282 void blk_start_queueing(struct request_queue *q)
 2283 {
 2284         if (!blk_queue_plugged(q))
 2285                 q->request_fn(q);
 2286         else
 2287                 __generic_unplug_device(q);
 2288 }
 2289 EXPORT_SYMBOL(blk_start_queueing);
 2290 
 2291 /**
 2292  * blk_requeue_request - put a request back on queue
 2293  * @q:          request queue where request should be inserted
 2294  * @rq:         request to be inserted
 2295  *
 2296  * Description:
 2297  *    Drivers often keep queueing requests until the hardware cannot accept
 2298  *    more, when that condition happens we need to put the request back
 2299  *    on the queue. Must be called with queue lock held.
 2300  */
 2301 void blk_requeue_request(struct request_queue *q, struct request *rq)
 2302 {
 2303         blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
 2304 
 2305         if (blk_rq_tagged(rq))
 2306                 blk_queue_end_tag(q, rq);
 2307 
 2308         elv_requeue_request(q, rq);
 2309 }
 2310 
 2311 EXPORT_SYMBOL(blk_requeue_request);
 2312 
 2313 /**
 2314  * blk_insert_request - insert a special request in to a request queue
 2315  * @q:          request queue where request should be inserted
 2316  * @rq:         request to be inserted
 2317  * @at_head:    insert request at head or tail of queue
 2318  * @data:       private data
 2319  *
 2320  * Description:
 2321  *    Many block devices need to execute commands asynchronously, so they don't
 2322  *    block the whole kernel from preemption during request execution.  This is
 2323  *    accomplished normally by inserting aritficial requests tagged as
 2324  *    REQ_SPECIAL in to the corresponding request queue, and letting them be
 2325  *    scheduled for actual execution by the request queue.
 2326  *
 2327  *    We have the option of inserting the head or the tail of the queue.
 2328  *    Typically we use the tail for new ioctls and so forth.  We use the head
 2329  *    of the queue for things like a QUEUE_FULL message from a device, or a
 2330  *    host that is unable to accept a particular command.
 2331  */
 2332 void blk_insert_request(struct request_queue *q, struct request *rq,
 2333                         int at_head, void *data)
 2334 {
 2335         int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
 2336         unsigned long flags;
 2337 
 2338         /*
 2339          * tell I/O scheduler that this isn't a regular read/write (ie it
 2340          * must not attempt merges on this) and that it acts as a soft
 2341          * barrier
 2342          */
 2343         rq->cmd_type = REQ_TYPE_SPECIAL;
 2344         rq->cmd_flags |= REQ_SOFTBARRIER;
 2345 
 2346         rq->special = data;
 2347 
 2348         spin_lock_irqsave(q->queue_lock, flags);
 2349 
 2350         /*
 2351          * If command is tagged, release the tag
 2352          */
 2353         if (blk_rq_tagged(rq))
 2354                 blk_queue_end_tag(q, rq);
 2355 
 2356         drive_stat_acct(rq, 1);
 2357         __elv_add_request(q, rq, where, 0);
 2358         blk_start_queueing(q);
 2359         spin_unlock_irqrestore(q->queue_lock, flags);
 2360 }
 2361 
 2362 EXPORT_SYMBOL(blk_insert_request);
 2363 
 2364 static int __blk_rq_unmap_user(struct bio *bio)
 2365 {
 2366         int ret = 0;
 2367 
 2368         if (bio) {
 2369                 if (bio_flagged(bio, BIO_USER_MAPPED))
 2370                         bio_unmap_user(bio);
 2371                 else
 2372                         ret = bio_uncopy_user(bio);
 2373         }
 2374 
 2375         return ret;
 2376 }
 2377 
 2378 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
 2379                       struct bio *bio)
 2380 {
 2381         if (!rq->bio)
 2382                 blk_rq_bio_prep(q, rq, bio);
 2383         else if (!ll_back_merge_fn(q, rq, bio))
 2384                 return -EINVAL;
 2385         else {
 2386                 rq->biotail->bi_next = bio;
 2387                 rq->biotail = bio;
 2388 
 2389                 rq->data_len += bio->bi_size;
 2390         }
 2391         return 0;
 2392 }
 2393 EXPORT_SYMBOL(blk_rq_append_bio);
 2394 
 2395 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
 2396                              void __user *ubuf, unsigned int len)
 2397 {
 2398         unsigned long uaddr;
 2399         struct bio *bio, *orig_bio;
 2400         int reading, ret;
 2401 
 2402         reading = rq_data_dir(rq) == READ;
 2403 
 2404         /*
 2405          * if alignment requirement is satisfied, map in user pages for
 2406          * direct dma. else, set up kernel bounce buffers
 2407          */
 2408         uaddr = (unsigned long) ubuf;
 2409         if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
 2410                 bio = bio_map_user(q, NULL, uaddr, len, reading);
 2411         else
 2412                 bio = bio_copy_user(q, uaddr, len, reading);
 2413 
 2414         if (IS_ERR(bio))
 2415                 return PTR_ERR(bio);
 2416 
 2417         orig_bio = bio;
 2418         blk_queue_bounce(q, &bio);
 2419 
 2420         /*
 2421          * We link the bounce buffer in and could have to traverse it
 2422          * later so we have to get a ref to prevent it from being freed
 2423          */
 2424         bio_get(bio);
 2425 
 2426         ret = blk_rq_append_bio(q, rq, bio);
 2427         if (!ret)
 2428                 return bio->bi_size;
 2429 
 2430         /* if it was boucned we must call the end io function */
 2431         bio_endio(bio, 0);
 2432         __blk_rq_unmap_user(orig_bio);
 2433         bio_put(bio);
 2434         return ret;
 2435 }
 2436 
 2437 /**
 2438  * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
 2439  * @q:          request queue where request should be inserted
 2440  * @rq:         request structure to fill
 2441  * @ubuf:       the user buffer
 2442  * @len:        length of user data
 2443  *
 2444  * Description:
 2445  *    Data will be mapped directly for zero copy io, if possible. Otherwise
 2446  *    a kernel bounce buffer is used.
 2447  *
 2448  *    A matching blk_rq_unmap_user() must be issued at the end of io, while
 2449  *    still in process context.
 2450  *
 2451  *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
 2452  *    before being submitted to the device, as pages mapped may be out of
 2453  *    reach. It's the callers responsibility to make sure this happens. The
 2454  *    original bio must be passed back in to blk_rq_unmap_user() for proper
 2455  *    unmapping.
 2456  */
 2457 int blk_rq_map_user(struct request_queue *q, struct request *rq,
 2458                     void __user *ubuf, unsigned long len)
 2459 {
 2460         unsigned long bytes_read = 0;
 2461         struct bio *bio = NULL;
 2462         int ret;
 2463 
 2464         if (len > (q->max_hw_sectors << 9))
 2465                 return -EINVAL;
 2466         if (!len || !ubuf)
 2467                 return -EINVAL;
 2468 
 2469         while (bytes_read != len) {
 2470                 unsigned long map_len, end, start;
 2471 
 2472                 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
 2473                 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
 2474                                                                 >> PAGE_SHIFT;
 2475                 start = (unsigned long)ubuf >> PAGE_SHIFT;
 2476 
 2477                 /*
 2478                  * A bad offset could cause us to require BIO_MAX_PAGES + 1
 2479                  * pages. If this happens we just lower the requested
 2480                  * mapping len by a page so that we can fit
 2481                  */
 2482                 if (end - start > BIO_MAX_PAGES)
 2483                         map_len -= PAGE_SIZE;
 2484 
 2485                 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
 2486                 if (ret < 0)
 2487                         goto unmap_rq;
 2488                 if (!bio)
 2489                         bio = rq->bio;
 2490                 bytes_read += ret;
 2491                 ubuf += ret;
 2492         }
 2493 
 2494         rq->buffer = rq->data = NULL;
 2495         return 0;
 2496 unmap_rq:
 2497         blk_rq_unmap_user(bio);
 2498         return ret;
 2499 }
 2500 
 2501 EXPORT_SYMBOL(blk_rq_map_user);
 2502 
 2503 /**
 2504  * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
 2505  * @q:          request queue where request should be inserted
 2506  * @rq:         request to map data to
 2507  * @iov:        pointer to the iovec
 2508  * @iov_count:  number of elements in the iovec
 2509  * @len:        I/O byte count
 2510  *
 2511  * Description:
 2512  *    Data will be mapped directly for zero copy io, if possible. Otherwise
 2513  *    a kernel bounce buffer is used.
 2514  *
 2515  *    A matching blk_rq_unmap_user() must be issued at the end of io, while
 2516  *    still in process context.
 2517  *
 2518  *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
 2519  *    before being submitted to the device, as pages mapped may be out of
 2520  *    reach. It's the callers responsibility to make sure this happens. The
 2521  *    original bio must be passed back in to blk_rq_unmap_user() for proper
 2522  *    unmapping.
 2523  */
 2524 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
 2525                         struct sg_iovec *iov, int iov_count, unsigned int len)
 2526 {
 2527         struct bio *bio;
 2528 
 2529         if (!iov || iov_count <= 0)
 2530                 return -EINVAL;
 2531 
 2532         /* we don't allow misaligned data like bio_map_user() does.  If the
 2533          * user is using sg, they're expected to know the alignment constraints
 2534          * and respect them accordingly */
 2535         bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
 2536         if (IS_ERR(bio))
 2537                 return PTR_ERR(bio);
 2538 
 2539         if (bio->bi_size != len) {
 2540                 bio_endio(bio, 0);
 2541                 bio_unmap_user(bio);
 2542                 return -EINVAL;
 2543         }
 2544 
 2545         bio_get(bio);
 2546         blk_rq_bio_prep(q, rq, bio);
 2547         rq->buffer = rq->data = NULL;
 2548         return 0;
 2549 }
 2550 
 2551 EXPORT_SYMBOL(blk_rq_map_user_iov);
 2552 
 2553 /**
 2554  * blk_rq_unmap_user - unmap a request with user data
 2555  * @bio:               start of bio list
 2556  *
 2557  * Description:
 2558  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
 2559  *    supply the original rq->bio from the blk_rq_map_user() return, since
 2560  *    the io completion may have changed rq->bio.
 2561  */
 2562 int blk_rq_unmap_user(struct bio *bio)
 2563 {
 2564         struct bio *mapped_bio;
 2565         int ret = 0, ret2;
 2566 
 2567         while (bio) {
 2568                 mapped_bio = bio;
 2569                 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
 2570                         mapped_bio = bio->bi_private;
 2571 
 2572                 ret2 = __blk_rq_unmap_user(mapped_bio);
 2573                 if (ret2 && !ret)
 2574                         ret = ret2;
 2575 
 2576                 mapped_bio = bio;
 2577                 bio = bio->bi_next;
 2578                 bio_put(mapped_bio);
 2579         }
 2580 
 2581         return ret;
 2582 }
 2583 
 2584 EXPORT_SYMBOL(blk_rq_unmap_user);
 2585 
 2586 /**
 2587  * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
 2588  * @q:          request queue where request should be inserted
 2589  * @rq:         request to fill
 2590  * @kbuf:       the kernel buffer
 2591  * @len:        length of user data
 2592  * @gfp_mask:   memory allocation flags
 2593  */
 2594 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
 2595                     unsigned int len, gfp_t gfp_mask)
 2596 {
 2597         struct bio *bio;
 2598 
 2599         if (len > (q->max_hw_sectors << 9))
 2600                 return -EINVAL;
 2601         if (!len || !kbuf)
 2602                 return -EINVAL;
 2603 
 2604         bio = bio_map_kern(q, kbuf, len, gfp_mask);
 2605         if (IS_ERR(bio))
 2606                 return PTR_ERR(bio);
 2607 
 2608         if (rq_data_dir(rq) == WRITE)
 2609                 bio->bi_rw |= (1 << BIO_RW);
 2610 
 2611         blk_rq_bio_prep(q, rq, bio);
 2612         blk_queue_bounce(q, &rq->bio);
 2613         rq->buffer = rq->data = NULL;
 2614         return 0;
 2615 }
 2616 
 2617 EXPORT_SYMBOL(blk_rq_map_kern);
 2618 
 2619 /**
 2620  * blk_execute_rq_nowait - insert a request into queue for execution
 2621  * @q:          queue to insert the request in
 2622  * @bd_disk:    matching gendisk
 2623  * @rq:         request to insert
 2624  * @at_head:    insert request at head or tail of queue
 2625  * @done:       I/O completion handler
 2626  *
 2627  * Description:
 2628  *    Insert a fully prepared request at the back of the io scheduler queue
 2629  *    for execution.  Don't wait for completion.
 2630  */
 2631 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
 2632                            struct request *rq, int at_head,
 2633                            rq_end_io_fn *done)
 2634 {
 2635         int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
 2636 
 2637         rq->rq_disk = bd_disk;
 2638         rq->cmd_flags |= REQ_NOMERGE;
 2639         rq->end_io = done;
 2640         WARN_ON(irqs_disabled());
 2641         spin_lock_irq(q->queue_lock);
 2642         __elv_add_request(q, rq, where, 1);
 2643         __generic_unplug_device(q);
 2644         spin_unlock_irq(q->queue_lock);
 2645 }
 2646 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
 2647 
 2648 /**
 2649  * blk_execute_rq - insert a request into queue for execution
 2650  * @q:          queue to insert the request in
 2651  * @bd_disk:    matching gendisk
 2652  * @rq:         request to insert
 2653  * @at_head:    insert request at head or tail of queue
 2654  *
 2655  * Description:
 2656  *    Insert a fully prepared request at the back of the io scheduler queue
 2657  *    for execution and wait for completion.
 2658  */
 2659 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
 2660                    struct request *rq, int at_head)
 2661 {
 2662         DECLARE_COMPLETION_ONSTACK(wait);
 2663         char sense[SCSI_SENSE_BUFFERSIZE];
 2664         int err = 0;
 2665 
 2666         /*
 2667          * we need an extra reference to the request, so we can look at
 2668          * it after io completion
 2669          */
 2670         rq->ref_count++;
 2671 
 2672         if (!rq->sense) {
 2673                 memset(sense, 0, sizeof(sense));
 2674                 rq->sense = sense;
 2675                 rq->sense_len = 0;
 2676         }
 2677 
 2678         rq->end_io_data = &wait;
 2679         blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
 2680         wait_for_completion(&wait);
 2681 
 2682         if (rq->errors)
 2683                 err = -EIO;
 2684 
 2685         return err;
 2686 }
 2687 
 2688 EXPORT_SYMBOL(blk_execute_rq);
 2689 
 2690 static void bio_end_empty_barrier(struct bio *bio, int err)
 2691 {
 2692         if (err)
 2693                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
 2694 
 2695         complete(bio->bi_private);
 2696 }
 2697 
 2698 /**
 2699  * blkdev_issue_flush - queue a flush
 2700  * @bdev:       blockdev to issue flush for
 2701  * @error_sector:       error sector
 2702  *
 2703  * Description:
 2704  *    Issue a flush for the block device in question. Caller can supply
 2705  *    room for storing the error offset in case of a flush error, if they
 2706  *    wish to.  Caller must run wait_for_completion() on its own.
 2707  */
 2708 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
 2709 {
 2710         DECLARE_COMPLETION_ONSTACK(wait);
 2711         struct request_queue *q;
 2712         struct bio *bio;
 2713         int ret;
 2714 
 2715         if (bdev->bd_disk == NULL)
 2716                 return -ENXIO;
 2717 
 2718         q = bdev_get_queue(bdev);
 2719         if (!q)
 2720                 return -ENXIO;
 2721 
 2722         bio = bio_alloc(GFP_KERNEL, 0);
 2723         if (!bio)
 2724                 return -ENOMEM;
 2725 
 2726         bio->bi_end_io = bio_end_empty_barrier;
 2727         bio->bi_private = &wait;
 2728         bio->bi_bdev = bdev;
 2729         submit_bio(1 << BIO_RW_BARRIER, bio);
 2730 
 2731         wait_for_completion(&wait);
 2732 
 2733         /*
 2734          * The driver must store the error location in ->bi_sector, if
 2735          * it supports it. For non-stacked drivers, this should be copied
 2736          * from rq->sector.
 2737          */
 2738         if (error_sector)
 2739                 *error_sector = bio->bi_sector;
 2740 
 2741         ret = 0;
 2742         if (!bio_flagged(bio, BIO_UPTODATE))
 2743                 ret = -EIO;
 2744 
 2745         bio_put(bio);
 2746         return ret;
 2747 }
 2748 
 2749 EXPORT_SYMBOL(blkdev_issue_flush);
 2750 
 2751 static void drive_stat_acct(struct request *rq, int new_io)
 2752 {
 2753         int rw = rq_data_dir(rq);
 2754 
 2755         if (!blk_fs_request(rq) || !rq->rq_disk)
 2756                 return;
 2757 
 2758         if (!new_io) {
 2759                 __disk_stat_inc(rq->rq_disk, merges[rw]);
 2760         } else {
 2761                 disk_round_stats(rq->rq_disk);
 2762                 rq->rq_disk->in_flight++;
 2763         }
 2764 }
 2765 
 2766 /*
 2767  * add-request adds a request to the linked list.
 2768  * queue lock is held and interrupts disabled, as we muck with the
 2769  * request queue list.
 2770  */
 2771 static inline void add_request(struct request_queue * q, struct request * req)
 2772 {
 2773         drive_stat_acct(req, 1);
 2774 
 2775         /*
 2776          * elevator indicated where it wants this request to be
 2777          * inserted at elevator_merge time
 2778          */
 2779         __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
 2780 }
 2781  
 2782 /*
 2783  * disk_round_stats()   - Round off the performance stats on a struct
 2784  * disk_stats.
 2785  *
 2786  * The average IO queue length and utilisation statistics are maintained
 2787  * by observing the current state of the queue length and the amount of
 2788  * time it has been in this state for.
 2789  *
 2790  * Normally, that accounting is done on IO completion, but that can result
 2791  * in more than a second's worth of IO being accounted for within any one
 2792  * second, leading to >100% utilisation.  To deal with that, we call this
 2793  * function to do a round-off before returning the results when reading
 2794  * /proc/diskstats.  This accounts immediately for all queue usage up to
 2795  * the current jiffies and restarts the counters again.
 2796  */
 2797 void disk_round_stats(struct gendisk *disk)
 2798 {
 2799         unsigned long now = jiffies;
 2800 
 2801         if (now == disk->stamp)
 2802                 return;
 2803 
 2804         if (disk->in_flight) {
 2805                 __disk_stat_add(disk, time_in_queue,
 2806                                 disk->in_flight * (now - disk->stamp));
 2807                 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
 2808         }
 2809         disk->stamp = now;
 2810 }
 2811 
 2812 EXPORT_SYMBOL_GPL(disk_round_stats);
 2813 
 2814 /*
 2815  * queue lock must be held
 2816  */
 2817 void __blk_put_request(struct request_queue *q, struct request *req)
 2818 {
 2819         if (unlikely(!q))
 2820                 return;
 2821         if (unlikely(--req->ref_count))
 2822                 return;
 2823 
 2824         elv_completed_request(q, req);
 2825 
 2826         /*
 2827          * Request may not have originated from ll_rw_blk. if not,
 2828          * it didn't come out of our reserved rq pools
 2829          */
 2830         if (req->cmd_flags & REQ_ALLOCED) {
 2831                 int rw = rq_data_dir(req);
 2832                 int priv = req->cmd_flags & REQ_ELVPRIV;
 2833 
 2834                 BUG_ON(!list_empty(&req->queuelist));
 2835                 BUG_ON(!hlist_unhashed(&req->hash));
 2836 
 2837                 blk_free_request(q, req);
 2838                 freed_request(q, rw, priv);
 2839         }
 2840 }
 2841 
 2842 EXPORT_SYMBOL_GPL(__blk_put_request);
 2843 
 2844 void blk_put_request(struct request *req)
 2845 {
 2846         unsigned long flags;
 2847         struct request_queue *q = req->q;
 2848 
 2849         /*
 2850          * Gee, IDE calls in w/ NULL q.  Fix IDE and remove the
 2851          * following if (q) test.
 2852          */
 2853         if (q) {
 2854                 spin_lock_irqsave(q->queue_lock, flags);
 2855                 __blk_put_request(q, req);
 2856                 spin_unlock_irqrestore(q->queue_lock, flags);
 2857         }
 2858 }
 2859 
 2860 EXPORT_SYMBOL(blk_put_request);
 2861 
 2862 /**
 2863  * blk_end_sync_rq - executes a completion event on a request
 2864  * @rq: request to complete
 2865  * @error: end io status of the request
 2866  */
 2867 void blk_end_sync_rq(struct request *rq, int error)
 2868 {
 2869         struct completion *waiting = rq->end_io_data;
 2870 
 2871         rq->end_io_data = NULL;
 2872         __blk_put_request(rq->q, rq);
 2873 
 2874         /*
 2875          * complete last, if this is a stack request the process (and thus
 2876          * the rq pointer) could be invalid right after this complete()
 2877          */
 2878         complete(waiting);
 2879 }
 2880 EXPORT_SYMBOL(blk_end_sync_rq);
 2881 
 2882 /*
 2883  * Has to be called with the request spinlock acquired
 2884  */
 2885 static int attempt_merge(struct request_queue *q, struct request *req,
 2886                           struct request *next)
 2887 {
 2888         if (!rq_mergeable(req) || !rq_mergeable(next))
 2889                 return 0;
 2890 
 2891         /*
 2892          * not contiguous
 2893          */
 2894         if (req->sector + req->nr_sectors != next->sector)
 2895                 return 0;
 2896 
 2897         if (rq_data_dir(req) != rq_data_dir(next)
 2898             || req->rq_disk != next->rq_disk
 2899             || next->special)
 2900                 return 0;
 2901 
 2902         /*
 2903          * If we are allowed to merge, then append bio list
 2904          * from next to rq and release next. merge_requests_fn
 2905          * will have updated segment counts, update sector
 2906          * counts here.
 2907          */
 2908         if (!ll_merge_requests_fn(q, req, next))
 2909                 return 0;
 2910 
 2911         /*
 2912          * At this point we have either done a back merge
 2913          * or front merge. We need the smaller start_time of
 2914          * the merged requests to be the current request
 2915          * for accounting purposes.
 2916          */
 2917         if (time_after(req->start_time, next->start_time))
 2918                 req->start_time = next->start_time;
 2919 
 2920         req->biotail->bi_next = next->bio;
 2921         req->biotail = next->biotail;
 2922 
 2923         req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
 2924 
 2925         elv_merge_requests(q, req, next);
 2926 
 2927         if (req->rq_disk) {
 2928                 disk_round_stats(req->rq_disk);
 2929                 req->rq_disk->in_flight--;
 2930         }
 2931 
 2932         req->ioprio = ioprio_best(req->ioprio, next->ioprio);
 2933 
 2934         __blk_put_request(q, next);
 2935         return 1;
 2936 }
 2937 
 2938 static inline int attempt_back_merge(struct request_queue *q,
 2939                                      struct request *rq)
 2940 {
 2941         struct request *next = elv_latter_request(q, rq);
 2942 
 2943         if (next)
 2944                 return attempt_merge(q, rq, next);
 2945 
 2946         return 0;
 2947 }
 2948 
 2949 static inline int attempt_front_merge(struct request_queue *q,
 2950                                       struct request *rq)
 2951 {
 2952         struct request *prev = elv_former_request(q, rq);
 2953 
 2954         if (prev)
 2955                 return attempt_merge(q, prev, rq);
 2956 
 2957         return 0;
 2958 }
 2959 
 2960 static void init_request_from_bio(struct request *req, struct bio *bio)
 2961 {
 2962         req->cmd_type = REQ_TYPE_FS;
 2963 
 2964         /*
 2965          * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
 2966          */
 2967         if (bio_rw_ahead(bio) || bio_failfast(bio))
 2968                 req->cmd_flags |= REQ_FAILFAST;
 2969 
 2970         /*
 2971          * REQ_BARRIER implies no merging, but lets make it explicit
 2972          */
 2973         if (unlikely(bio_barrier(bio)))
 2974                 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
 2975 
 2976         if (bio_sync(bio))
 2977                 req->cmd_flags |= REQ_RW_SYNC;
 2978         if (bio_rw_meta(bio))
 2979                 req->cmd_flags |= REQ_RW_META;
 2980 
 2981         req->errors = 0;
 2982         req->hard_sector = req->sector = bio->bi_sector;
 2983         req->ioprio = bio_prio(bio);
 2984         req->start_time = jiffies;
 2985         blk_rq_bio_prep(req->q, req, bio);
 2986 }
 2987 
 2988 static int __make_request(struct request_queue *q, struct bio *bio)
 2989 {
 2990         struct request *req;
 2991         int el_ret, nr_sectors, barrier, err;
 2992         const unsigned short prio = bio_prio(bio);
 2993         const int sync = bio_sync(bio);
 2994         int rw_flags;
 2995 
 2996         nr_sectors = bio_sectors(bio);
 2997 
 2998         /*
 2999          * low level driver can indicate that it wants pages above a
 3000          * certain limit bounced to low memory (ie for highmem, or even
 3001          * ISA dma in theory)
 3002          */
 3003         blk_queue_bounce(q, &bio);
 3004 
 3005         barrier = bio_barrier(bio);
 3006         if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
 3007                 err = -EOPNOTSUPP;
 3008                 goto end_io;
 3009         }
 3010 
 3011         spin_lock_irq(q->queue_lock);
 3012 
 3013         if (unlikely(barrier) || elv_queue_empty(q))
 3014                 goto get_rq;
 3015 
 3016         el_ret = elv_merge(q, &req, bio);
 3017         switch (el_ret) {
 3018                 case ELEVATOR_BACK_MERGE:
 3019                         BUG_ON(!rq_mergeable(req));
 3020 
 3021                         if (!ll_back_merge_fn(q, req, bio))
 3022                                 break;
 3023 
 3024                         blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
 3025 
 3026                         req->biotail->bi_next = bio;
 3027                         req->biotail = bio;
 3028                         req->nr_sectors = req->hard_nr_sectors += nr_sectors;
 3029                         req->ioprio = ioprio_best(req->ioprio, prio);
 3030                         drive_stat_acct(req, 0);
 3031                         if (!attempt_back_merge(q, req))
 3032                                 elv_merged_request(q, req, el_ret);
 3033                         goto out;
 3034 
 3035                 case ELEVATOR_FRONT_MERGE:
 3036                         BUG_ON(!rq_mergeable(req));
 3037 
 3038                         if (!ll_front_merge_fn(q, req, bio))
 3039                                 break;
 3040 
 3041                         blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
 3042 
 3043                         bio->bi_next = req->bio;
 3044                         req->bio = bio;
 3045 
 3046                         /*
 3047                          * may not be valid. if the low level driver said
 3048                          * it didn't need a bounce buffer then it better
 3049                          * not touch req->buffer either...
 3050                          */
 3051                         req->buffer = bio_data(bio);
 3052                         req->current_nr_sectors = bio_cur_sectors(bio);
 3053                         req->hard_cur_sectors = req->current_nr_sectors;
 3054                         req->sector = req->hard_sector = bio->bi_sector;
 3055                         req->nr_sectors = req->hard_nr_sectors += nr_sectors;
 3056                         req->ioprio = ioprio_best(req->ioprio, prio);
 3057                         drive_stat_acct(req, 0);
 3058                         if (!attempt_front_merge(q, req))
 3059                                 elv_merged_request(q, req, el_ret);
 3060                         goto out;
 3061 
 3062                 /* ELV_NO_MERGE: elevator says don't/can't merge. */
 3063                 default:
 3064                         ;
 3065         }
 3066 
 3067 get_rq:
 3068         /*
 3069          * This sync check and mask will be re-done in init_request_from_bio(),
 3070          * but we need to set it earlier to expose the sync flag to the
 3071          * rq allocator and io schedulers.
 3072          */
 3073         rw_flags = bio_data_dir(bio);
 3074         if (sync)
 3075                 rw_flags |= REQ_RW_SYNC;
 3076 
 3077         /*
 3078          * Grab a free request. This is might sleep but can not fail.
 3079          * Returns with the queue unlocked.
 3080          */
 3081         req = get_request_wait(q, rw_flags, bio);
 3082 
 3083         /*
 3084          * After dropping the lock and possibly sleeping here, our request
 3085          * may now be mergeable after it had proven unmergeable (above).
 3086          * We don't worry about that case for efficiency. It won't happen
 3087          * often, and the elevators are able to handle it.
 3088          */
 3089         init_request_from_bio(req, bio);
 3090 
 3091         spin_lock_irq(q->queue_lock);
 3092         if (elv_queue_empty(q))
 3093                 blk_plug_device(q);
 3094         add_request(q, req);
 3095 out:
 3096         if (sync)
 3097                 __generic_unplug_device(q);
 3098 
 3099         spin_unlock_irq(q->queue_lock);
 3100         return 0;
 3101 
 3102 end_io:
 3103         bio_endio(bio, err);
 3104         return 0;
 3105 }
 3106 
 3107 /*
 3108  * If bio->bi_dev is a partition, remap the location
 3109  */
 3110 static inline void blk_partition_remap(struct bio *bio)
 3111 {
 3112         struct block_device *bdev = bio->bi_bdev;
 3113 
 3114         if (bio_sectors(bio) && bdev != bdev->bd_contains) {
 3115                 struct hd_struct *p = bdev->bd_part;
 3116                 const int rw = bio_data_dir(bio);
 3117 
 3118                 p->sectors[rw] += bio_sectors(bio);
 3119                 p->ios[rw]++;
 3120 
 3121                 bio->bi_sector += p->start_sect;
 3122                 bio->bi_bdev = bdev->bd_contains;
 3123 
 3124                 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
 3125                                     bdev->bd_dev, bio->bi_sector,
 3126                                     bio->bi_sector - p->start_sect);
 3127         }
 3128 }
 3129 
 3130 static void handle_bad_sector(struct bio *bio)
 3131 {
 3132         char b[BDEVNAME_SIZE];
 3133 
 3134         printk(KERN_INFO "attempt to access beyond end of device\n");
 3135         printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
 3136                         bdevname(bio->bi_bdev, b),
 3137                         bio->bi_rw,
 3138                         (unsigned long long)bio->bi_sector + bio_sectors(bio),
 3139                         (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
 3140 
 3141         set_bit(BIO_EOF, &bio->bi_flags);
 3142 }
 3143 
 3144 #ifdef CONFIG_FAIL_MAKE_REQUEST
 3145 
 3146 static DECLARE_FAULT_ATTR(fail_make_request);
 3147 
 3148 static int __init setup_fail_make_request(char *str)
 3149 {
 3150         return setup_fault_attr(&fail_make_request, str);
 3151 }
 3152 __setup("fail_make_request=", setup_fail_make_request);
 3153 
 3154 static int should_fail_request(struct bio *bio)
 3155 {
 3156         if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
 3157             (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
 3158                 return should_fail(&fail_make_request, bio->bi_size);
 3159 
 3160         return 0;
 3161 }
 3162 
 3163 static int __init fail_make_request_debugfs(void)
 3164 {
 3165         return init_fault_attr_dentries(&fail_make_request,
 3166                                         "fail_make_request");
 3167 }
 3168 
 3169 late_initcall(fail_make_request_debugfs);
 3170 
 3171 #else /* CONFIG_FAIL_MAKE_REQUEST */
 3172 
 3173 static inline int should_fail_request(struct bio *bio)
 3174 {
 3175         return 0;
 3176 }
 3177 
 3178 #endif /* CONFIG_FAIL_MAKE_REQUEST */
 3179 
 3180 /*
 3181  * Check whether this bio extends beyond the end of the device.
 3182  */
 3183 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
 3184 {
 3185         sector_t maxsector;
 3186 
 3187         if (!nr_sectors)
 3188                 return 0;
 3189 
 3190         /* Test device or partition size, when known. */
 3191         maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
 3192         if (maxsector) {
 3193                 sector_t sector = bio->bi_sector;
 3194 
 3195                 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
 3196                         /*
 3197                          * This may well happen - the kernel calls bread()
 3198                          * without checking the size of the device, e.g., when
 3199                          * mounting a device.
 3200                          */
 3201                         handle_bad_sector(bio);
 3202                         return 1;
 3203                 }
 3204         }
 3205 
 3206         return 0;
 3207 }
 3208 
 3209 /**
 3210  * generic_make_request: hand a buffer to its device driver for I/O
 3211  * @bio:  The bio describing the location in memory and on the device.
 3212  *
 3213  * generic_make_request() is used to make I/O requests of block
 3214  * devices. It is passed a &struct bio, which describes the I/O that needs
 3215  * to be done.
 3216  *
 3217  * generic_make_request() does not return any status.  The
 3218  * success/failure status of the request, along with notification of
 3219  * completion, is delivered asynchronously through the bio->bi_end_io
 3220  * function described (one day) else where.
 3221  *
 3222  * The caller of generic_make_request must make sure that bi_io_vec
 3223  * are set to describe the memory buffer, and that bi_dev and bi_sector are
 3224  * set to describe the device address, and the
 3225  * bi_end_io and optionally bi_private are set to describe how
 3226  * completion notification should be signaled.
 3227  *
 3228  * generic_make_request and the drivers it calls may use bi_next if this
 3229  * bio happens to be merged with someone else, and may change bi_dev and
 3230  * bi_sector for remaps as it sees fit.  So the values of these fields
 3231  * should NOT be depended on after the call to generic_make_request.
 3232  */
 3233 static inline void __generic_make_request(struct bio *bio)
 3234 {
 3235         struct request_queue *q;
 3236         sector_t old_sector;
 3237         int ret, nr_sectors = bio_sectors(bio);
 3238         dev_t old_dev;
 3239         int err = -EIO;
 3240 
 3241         might_sleep();
 3242 
 3243         if (bio_check_eod(bio, nr_sectors))
 3244                 goto end_io;
 3245 
 3246         /*
 3247          * Resolve the mapping until finished. (drivers are
 3248          * still free to implement/resolve their own stacking
 3249          * by explicitly returning 0)
 3250          *
 3251          * NOTE: we don't repeat the blk_size check for each new device.
 3252          * Stacking drivers are expected to know what they are doing.
 3253          */
 3254         old_sector = -1;
 3255         old_dev = 0;
 3256         do {
 3257                 char b[BDEVNAME_SIZE];
 3258 
 3259                 q = bdev_get_queue(bio->bi_bdev);
 3260                 if (!q) {
 3261                         printk(KERN_ERR
 3262                                "generic_make_request: Trying to access "
 3263                                 "nonexistent block-device %s (%Lu)\n",
 3264                                 bdevname(bio->bi_bdev, b),
 3265                                 (long long) bio->bi_sector);
 3266 end_io:
 3267                         bio_endio(bio, err);
 3268                         break;
 3269                 }
 3270 
 3271                 if (unlikely(nr_sectors > q->max_hw_sectors)) {
 3272                         printk("bio too big device %s (%u > %u)\n", 
 3273                                 bdevname(bio->bi_bdev, b),
 3274                                 bio_sectors(bio),
 3275                                 q->max_hw_sectors);
 3276                         goto end_io;
 3277                 }
 3278 
 3279                 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
 3280                         goto end_io;
 3281 
 3282                 if (should_fail_request(bio))
 3283                         goto end_io;
 3284 
 3285                 /*
 3286                  * If this device has partitions, remap block n
 3287                  * of partition p to block n+start(p) of the disk.
 3288                  */
 3289                 blk_partition_remap(bio);
 3290 
 3291                 if (old_sector != -1)
 3292                         blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
 3293                                             old_sector);
 3294 
 3295                 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
 3296 
 3297                 old_sector = bio->bi_sector;
 3298                 old_dev = bio->bi_bdev->bd_dev;
 3299 
 3300                 if (bio_check_eod(bio, nr_sectors))
 3301                         goto end_io;
 3302                 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
 3303                         err = -EOPNOTSUPP;
 3304                         goto end_io;
 3305                 }
 3306 
 3307                 ret = q->make_request_fn(q, bio);
 3308         } while (ret);
 3309 }
 3310 
 3311 /*
 3312  * We only want one ->make_request_fn to be active at a time,
 3313  * else stack usage with stacked devices could be a problem.
 3314  * So use current->bio_{list,tail} to keep a list of requests
 3315  * submited by a make_request_fn function.
 3316  * current->bio_tail is also used as a flag to say if
 3317  * generic_make_request is currently active in this task or not.
 3318  * If it is NULL, then no make_request is active.  If it is non-NULL,
 3319  * then a make_request is active, and new requests should be added
 3320  * at the tail
 3321  */
 3322 void generic_make_request(struct bio *bio)
 3323 {
 3324         if (current->bio_tail) {
 3325                 /* make_request is active */
 3326                 *(current->bio_tail) = bio;
 3327                 bio->bi_next = NULL;
 3328                 current->bio_tail = &bio->bi_next;
 3329                 return;
 3330         }
 3331         /* following loop may be a bit non-obvious, and so deserves some
 3332          * explanation.
 3333          * Before entering the loop, bio->bi_next is NULL (as all callers
 3334          * ensure that) so we have a list with a single bio.
 3335          * We pretend that we have just taken it off a longer list, so
 3336          * we assign bio_list to the next (which is NULL) and bio_tail
 3337          * to &bio_list, thus initialising the bio_list of new bios to be
 3338          * added.  __generic_make_request may indeed add some more bios
 3339          * through a recursive call to generic_make_request.  If it
 3340          * did, we find a non-NULL value in bio_list and re-enter the loop
 3341          * from the top.  In this case we really did just take the bio
 3342          * of the top of the list (no pretending) and so fixup bio_list and
 3343          * bio_tail or bi_next, and call into __generic_make_request again.
 3344          *
 3345          * The loop was structured like this to make only one call to
 3346          * __generic_make_request (which is important as it is large and
 3347          * inlined) and to keep the structure simple.
 3348          */
 3349         BUG_ON(bio->bi_next);
 3350         do {
 3351                 current->bio_list = bio->bi_next;
 3352                 if (bio->bi_next == NULL)
 3353                         current->bio_tail = &current->bio_list;
 3354                 else
 3355                         bio->bi_next = NULL;
 3356                 __generic_make_request(bio);
 3357                 bio = current->bio_list;
 3358         } while (bio);
 3359         current->bio_tail = NULL; /* deactivate */
 3360 }
 3361 
 3362 EXPORT_SYMBOL(generic_make_request);
 3363 
 3364 /**
 3365  * submit_bio: submit a bio to the block device layer for I/O
 3366  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
 3367  * @bio: The &struct bio which describes the I/O
 3368  *
 3369  * submit_bio() is very similar in purpose to generic_make_request(), and
 3370  * uses that function to do most of the work. Both are fairly rough
 3371  * interfaces, @bio must be presetup and ready for I/O.
 3372  *
 3373  */
 3374 void submit_bio(int rw, struct bio *bio)
 3375 {
 3376         int count = bio_sectors(bio);
 3377 
 3378         bio->bi_rw |= rw;
 3379 
 3380         /*
 3381          * If it's a regular read/write or a barrier with data attached,
 3382          * go through the normal accounting stuff before submission.
 3383          */
 3384         if (!bio_empty_barrier(bio)) {
 3385 
 3386                 BIO_BUG_ON(!bio->bi_size);
 3387                 BIO_BUG_ON(!bio->bi_io_vec);
 3388 
 3389                 if (rw & WRITE) {
 3390                         count_vm_events(PGPGOUT, count);
 3391                 } else {
 3392                         task_io_account_read(bio->bi_size);
 3393                         count_vm_events(PGPGIN, count);
 3394                 }
 3395 
 3396                 if (unlikely(block_dump)) {
 3397                         char b[BDEVNAME_SIZE];
 3398                         printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
 3399                         current->comm, task_pid_nr(current),
 3400                                 (rw & WRITE) ? "WRITE" : "READ",
 3401                                 (unsigned long long)bio->bi_sector,
 3402                                 bdevname(bio->bi_bdev,b));
 3403                 }
 3404         }
 3405 
 3406         generic_make_request(bio);
 3407 }
 3408 
 3409 EXPORT_SYMBOL(submit_bio);
 3410 
 3411 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
 3412 {
 3413         if (blk_fs_request(rq)) {
 3414                 rq->hard_sector += nsect;
 3415                 rq->hard_nr_sectors -= nsect;
 3416 
 3417                 /*
 3418                  * Move the I/O submission pointers ahead if required.
 3419                  */
 3420                 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
 3421                     (rq->sector <= rq->hard_sector)) {
 3422                         rq->sector = rq->hard_sector;
 3423                         rq->nr_sectors = rq->hard_nr_sectors;
 3424                         rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
 3425                         rq->current_nr_sectors = rq->hard_cur_sectors;
 3426                         rq->buffer = bio_data(rq->bio);
 3427                 }
 3428 
 3429                 /*
 3430                  * if total number of sectors is less than the first segment
 3431                  * size, something has gone terribly wrong
 3432                  */
 3433                 if (rq->nr_sectors < rq->current_nr_sectors) {
 3434                         printk("blk: request botched\n");
 3435                         rq->nr_sectors = rq->current_nr_sectors;
 3436                 }
 3437         }
 3438 }
 3439 
 3440 static int __end_that_request_first(struct request *req, int uptodate,
 3441                                     int nr_bytes)
 3442 {
 3443         int total_bytes, bio_nbytes, error, next_idx = 0;
 3444         struct bio *bio;
 3445 
 3446         blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
 3447 
 3448         /*
 3449          * extend uptodate bool to allow < 0 value to be direct io error
 3450          */
 3451         error = 0;
 3452         if (end_io_error(uptodate))
 3453                 error = !uptodate ? -EIO : uptodate;
 3454 
 3455         /*
 3456          * for a REQ_BLOCK_PC request, we want to carry any eventual
 3457          * sense key with us all the way through
 3458          */
 3459         if (!blk_pc_request(req))
 3460                 req->errors = 0;
 3461 
 3462         if (!uptodate) {
 3463                 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
 3464                         printk("end_request: I/O error, dev %s, sector %llu\n",
 3465                                 req->rq_disk ? req->rq_disk->disk_name : "?",
 3466                                 (unsigned long long)req->sector);
 3467         }
 3468 
 3469         if (blk_fs_request(req) && req->rq_disk) {
 3470                 const int rw = rq_data_dir(req);
 3471 
 3472                 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
 3473         }
 3474 
 3475         total_bytes = bio_nbytes = 0;
 3476         while ((bio = req->bio) != NULL) {
 3477                 int nbytes;
 3478 
 3479                 /*
 3480                  * For an empty barrier request, the low level driver must
 3481                  * store a potential error location in ->sector. We pass
 3482                  * that back up in ->bi_sector.
 3483                  */
 3484                 if (blk_empty_barrier(req))
 3485                         bio->bi_sector = req->sector;
 3486 
 3487                 if (nr_bytes >= bio->bi_size) {
 3488                         req->bio = bio->bi_next;
 3489                         nbytes = bio->bi_size;
 3490                         req_bio_endio(req, bio, nbytes, error);
 3491                         next_idx = 0;
 3492                         bio_nbytes = 0;
 3493                 } else {
 3494                         int idx = bio->bi_idx + next_idx;
 3495 
 3496                         if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
 3497                                 blk_dump_rq_flags(req, "__end_that");
 3498                                 printk("%s: bio idx %d >= vcnt %d\n",
 3499                                                 __FUNCTION__,
 3500                                                 bio->bi_idx, bio->bi_vcnt);
 3501                                 break;
 3502                         }
 3503 
 3504                         nbytes = bio_iovec_idx(bio, idx)->bv_len;
 3505                         BIO_BUG_ON(nbytes > bio->bi_size);
 3506 
 3507                         /*
 3508                          * not a complete bvec done
 3509                          */
 3510                         if (unlikely(nbytes > nr_bytes)) {
 3511                                 bio_nbytes += nr_bytes;
 3512                                 total_bytes += nr_bytes;
 3513                                 break;
 3514                         }
 3515 
 3516                         /*
 3517                          * advance to the next vector
 3518                          */
 3519                         next_idx++;
 3520                         bio_nbytes += nbytes;
 3521                 }
 3522 
 3523                 total_bytes += nbytes;
 3524                 nr_bytes -= nbytes;
 3525 
 3526                 if ((bio = req->bio)) {
 3527                         /*
 3528                          * end more in this run, or just return 'not-done'
 3529                          */
 3530                         if (unlikely(nr_bytes <= 0))
 3531                                 break;
 3532                 }
 3533         }
 3534 
 3535         /*
 3536          * completely done
 3537          */
 3538         if (!req->bio)
 3539                 return 0;
 3540 
 3541         /*
 3542          * if the request wasn't completed, update state
 3543          */
 3544         if (bio_nbytes) {
 3545                 req_bio_endio(req, bio, bio_nbytes, error);
 3546                 bio->bi_idx += next_idx;
 3547                 bio_iovec(bio)->bv_offset += nr_bytes;
 3548                 bio_iovec(bio)->bv_len -= nr_bytes;
 3549         }
 3550 
 3551         blk_recalc_rq_sectors(req, total_bytes >> 9);
 3552         blk_recalc_rq_segments(req);
 3553         return 1;
 3554 }
 3555 
 3556 /**
 3557  * end_that_request_first - end I/O on a request
 3558  * @req:      the request being processed
 3559  * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
 3560  * @nr_sectors: number of sectors to end I/O on
 3561  *
 3562  * Description:
 3563  *     Ends I/O on a number of sectors attached to @req, and sets it up
 3564  *     for the next range of segments (if any) in the cluster.
 3565  *
 3566  * Return:
 3567  *     0 - we are done with this request, call end_that_request_last()
 3568  *     1 - still buffers pending for this request
 3569  **/
 3570 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
 3571 {
 3572         return __end_that_request_first(req, uptodate, nr_sectors << 9);
 3573 }
 3574 
 3575 EXPORT_SYMBOL(end_that_request_first);
 3576 
 3577 /**
 3578  * end_that_request_chunk - end I/O on a request
 3579  * @req:      the request being processed
 3580  * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
 3581  * @nr_bytes: number of bytes to complete
 3582  *
 3583  * Description:
 3584  *     Ends I/O on a number of bytes attached to @req, and sets it up
 3585  *     for the next range of segments (if any). Like end_that_request_first(),
 3586  *     but deals with bytes instead of sectors.
 3587  *
 3588  * Return:
 3589  *     0 - we are done with this request, call end_that_request_last()
 3590  *     1 - still buffers pending for this request
 3591  **/
 3592 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
 3593 {
 3594         return __end_that_request_first(req, uptodate, nr_bytes);
 3595 }
 3596 
 3597 EXPORT_SYMBOL(end_that_request_chunk);
 3598 
 3599 /*
 3600  * splice the completion data to a local structure and hand off to
 3601  * process_completion_queue() to complete the requests
 3602  */
 3603 static void blk_done_softirq(struct softirq_action *h)
 3604 {
 3605         struct list_head *cpu_list, local_list;
 3606 
 3607         local_irq_disable();
 3608         cpu_list = &__get_cpu_var(blk_cpu_done);
 3609         list_replace_init(cpu_list, &local_list);
 3610         local_irq_enable();
 3611 
 3612         while (!list_empty(&local_list)) {
 3613                 struct request *rq = list_entry(local_list.next, struct request, donelist);
 3614 
 3615                 list_del_init(&rq->donelist);
 3616                 rq->q->softirq_done_fn(rq);
 3617         }
 3618 }
 3619 
 3620 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
 3621                           void *hcpu)
 3622 {
 3623         /*
 3624          * If a CPU goes away, splice its entries to the current CPU
 3625          * and trigger a run of the softirq
 3626          */
 3627         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
 3628                 int cpu = (unsigned long) hcpu;
 3629 
 3630                 local_irq_disable();
 3631                 list_splice_init(&per_cpu(blk_cpu_done, cpu),
 3632                                  &__get_cpu_var(blk_cpu_done));
 3633                 raise_softirq_irqoff(BLOCK_SOFTIRQ);
 3634                 local_irq_enable();
 3635         }
 3636 
 3637         return NOTIFY_OK;
 3638 }
 3639 
 3640 
 3641 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
 3642         .notifier_call  = blk_cpu_notify,
 3643 };
 3644 
 3645 /**
 3646  * blk_complete_request - end I/O on a request
 3647  * @req:      the request being processed
 3648  *
 3649  * Description:
 3650  *     Ends all I/O on a request. It does not handle partial completions,
 3651  *     unless the driver actually implements this in its completion callback
 3652  *     through requeueing. The actual completion happens out-of-order,
 3653  *     through a softirq handler. The user must have registered a completion
 3654  *     callback through blk_queue_softirq_done().
 3655  **/
 3656 
 3657 void blk_complete_request(struct request *req)
 3658 {
 3659         struct list_head *cpu_list;
 3660         unsigned long flags;
 3661 
 3662         BUG_ON(!req->q->softirq_done_fn);
 3663                 
 3664         local_irq_save(flags);
 3665 
 3666         cpu_list = &__get_cpu_var(blk_cpu_done);
 3667         list_add_tail(&req->donelist, cpu_list);
 3668         raise_softirq_irqoff(BLOCK_SOFTIRQ);
 3669 
 3670         local_irq_restore(flags);
 3671 }
 3672 
 3673 EXPORT_SYMBOL(blk_complete_request);
 3674         
 3675 /*
 3676  * queue lock must be held
 3677  */
 3678 void end_that_request_last(struct request *req, int uptodate)
 3679 {
 3680         struct gendisk *disk = req->rq_disk;
 3681         int error;
 3682 
 3683         /*
 3684          * extend uptodate bool to allow < 0 value to be direct io error
 3685          */
 3686         error = 0;
 3687         if (end_io_error(uptodate))
 3688                 error = !uptodate ? -EIO : uptodate;
 3689 
 3690         if (unlikely(laptop_mode) && blk_fs_request(req))
 3691                 laptop_io_completion();
 3692 
 3693         /*
 3694          * Account IO completion.  bar_rq isn't accounted as a normal
 3695          * IO on queueing nor completion.  Accounting the containing
 3696          * request is enough.
 3697          */
 3698         if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
 3699                 unsigned long duration = jiffies - req->start_time;
 3700                 const int rw = rq_data_dir(req);
 3701 
 3702                 __disk_stat_inc(disk, ios[rw]);
 3703                 __disk_stat_add(disk, ticks[rw], duration);
 3704                 disk_round_stats(disk);
 3705                 disk->in_flight--;
 3706         }
 3707         if (req->end_io)
 3708                 req->end_io(req, error);
 3709         else
 3710                 __blk_put_request(req->q, req);
 3711 }
 3712 
 3713 EXPORT_SYMBOL(end_that_request_last);
 3714 
 3715 static inline void __end_request(struct request *rq, int uptodate,
 3716                                  unsigned int nr_bytes, int dequeue)
 3717 {
 3718         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
 3719                 if (dequeue)
 3720                         blkdev_dequeue_request(rq);
 3721                 add_disk_randomness(rq->rq_disk);
 3722                 end_that_request_last(rq, uptodate);
 3723         }
 3724 }
 3725 
 3726 static unsigned int rq_byte_size(struct request *rq)
 3727 {
 3728         if (blk_fs_request(rq))
 3729                 return rq->hard_nr_sectors << 9;
 3730 
 3731         return rq->data_len;
 3732 }
 3733 
 3734 /**
 3735  * end_queued_request - end all I/O on a queued request
 3736  * @rq:         the request being processed
 3737  * @uptodate:   error value or 0/1 uptodate flag
 3738  *
 3739  * Description:
 3740  *     Ends all I/O on a request, and removes it from the block layer queues.
 3741  *     Not suitable for normal IO completion, unless the driver still has
 3742  *     the request attached to the block layer.
 3743  *
 3744  **/
 3745 void end_queued_request(struct request *rq, int uptodate)
 3746 {
 3747         __end_request(rq, uptodate, rq_byte_size(rq), 1);
 3748 }
 3749 EXPORT_SYMBOL(end_queued_request);
 3750 
 3751 /**
 3752  * end_dequeued_request - end all I/O on a dequeued request
 3753  * @rq:         the request being processed
 3754  * @uptodate:   error value or 0/1 uptodate flag
 3755  *
 3756  * Description:
 3757  *     Ends all I/O on a request. The request must already have been
 3758  *     dequeued using blkdev_dequeue_request(), as is normally the case
 3759  *     for most drivers.
 3760  *
 3761  **/
 3762 void end_dequeued_request(struct request *rq, int uptodate)
 3763 {
 3764         __end_request(rq, uptodate, rq_byte_size(rq), 0);
 3765 }
 3766 EXPORT_SYMBOL(end_dequeued_request);
 3767 
 3768 
 3769 /**
 3770  * end_request - end I/O on the current segment of the request
 3771  * @req:        the request being processed
 3772  * @uptodate:   error value or 0/1 uptodate flag
 3773  *
 3774  * Description:
 3775  *     Ends I/O on the current segment of a request. If that is the only
 3776  *     remaining segment, the request is also completed and freed.
 3777  *
 3778  *     This is a remnant of how older block drivers handled IO completions.
 3779  *     Modern drivers typically end IO on the full request in one go, unless
 3780  *     they have a residual value to account for. For that case this function
 3781  *     isn't really useful, unless the residual just happens to be the
 3782  *     full current segment. In other words, don't use this function in new
 3783  *     code. Either use end_request_completely(), or the
 3784  *     end_that_request_chunk() (along with end_that_request_last()) for
 3785  *     partial completions.
 3786  *
 3787  **/
 3788 void end_request(struct request *req, int uptodate)
 3789 {
 3790         __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
 3791 }
 3792 EXPORT_SYMBOL(end_request);
 3793 
 3794 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
 3795                             struct bio *bio)
 3796 {
 3797         /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
 3798         rq->cmd_flags |= (bio->bi_rw & 3);
 3799 
 3800         rq->nr_phys_segments = bio_phys_segments(q, bio);
 3801         rq->nr_hw_segments = bio_hw_segments(q, bio);
 3802         rq->current_nr_sectors = bio_cur_sectors(bio);
 3803         rq->hard_cur_sectors = rq->current_nr_sectors;
 3804         rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
 3805         rq->buffer = bio_data(bio);
 3806         rq->data_len = bio->bi_size;
 3807 
 3808         rq->bio = rq->biotail = bio;
 3809 
 3810         if (bio->bi_bdev)
 3811                 rq->rq_disk = bio->bi_bdev->bd_disk;
 3812 }
 3813 
 3814 int kblockd_schedule_work(struct work_struct *work)
 3815 {
 3816         return queue_work(kblockd_workqueue, work);
 3817 }
 3818 
 3819 EXPORT_SYMBOL(kblockd_schedule_work);
 3820 
 3821 void kblockd_flush_work(struct work_struct *work)
 3822 {
 3823         cancel_work_sync(work);
 3824 }
 3825 EXPORT_SYMBOL(kblockd_flush_work);
 3826 
 3827 int __init blk_dev_init(void)
 3828 {
 3829         int i;
 3830 
 3831         kblockd_workqueue = create_workqueue("kblockd");
 3832         if (!kblockd_workqueue)
 3833                 panic("Failed to create kblockd\n");
 3834 
 3835         request_cachep = kmem_cache_create("blkdev_requests",
 3836                         sizeof(struct request), 0, SLAB_PANIC, NULL);
 3837 
 3838         requestq_cachep = kmem_cache_create("blkdev_queue",
 3839                         sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
 3840 
 3841         iocontext_cachep = kmem_cache_create("blkdev_ioc",
 3842                         sizeof(struct io_context), 0, SLAB_PANIC, NULL);
 3843 
 3844         for_each_possible_cpu(i)
 3845                 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
 3846 
 3847         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
 3848         register_hotcpu_notifier(&blk_cpu_notifier);
 3849 
 3850         blk_max_low_pfn = max_low_pfn - 1;
 3851         blk_max_pfn = max_pfn - 1;
 3852 
 3853         return 0;
 3854 }
 3855 
 3856 /*
 3857  * IO Context helper functions
 3858  */
 3859 void put_io_context(struct io_context *ioc)
 3860 {
 3861         if (ioc == NULL)
 3862                 return;
 3863 
 3864         BUG_ON(atomic_read(&ioc->refcount) == 0);
 3865 
 3866         if (atomic_dec_and_test(&ioc->refcount)) {
 3867                 struct cfq_io_context *cic;
 3868 
 3869                 rcu_read_lock();
 3870                 if (ioc->aic && ioc->aic->dtor)
 3871                         ioc->aic->dtor(ioc->aic);
 3872                 if (ioc->cic_root.rb_node != NULL) {
 3873                         struct rb_node *n = rb_first(&ioc->cic_root);
 3874 
 3875                         cic = rb_entry(n, struct cfq_io_context, rb_node);
 3876                         cic->dtor(ioc);
 3877                 }
 3878                 rcu_read_unlock();
 3879 
 3880                 kmem_cache_free(iocontext_cachep, ioc);
 3881         }
 3882 }
 3883 EXPORT_SYMBOL(put_io_context);
 3884 
 3885 /* Called by the exitting task */
 3886 void exit_io_context(void)
 3887 {
 3888         struct io_context *ioc;
 3889         struct cfq_io_context *cic;
 3890 
 3891         task_lock(current);
 3892         ioc = current->io_context;
 3893         current->io_context = NULL;
 3894         task_unlock(current);
 3895 
 3896         ioc->task = NULL;
 3897         if (ioc->aic && ioc->aic->exit)
 3898                 ioc->aic->exit(ioc->aic);
 3899         if (ioc->cic_root.rb_node != NULL) {
 3900                 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
 3901                 cic->exit(ioc);
 3902         }
 3903 
 3904         put_io_context(ioc);
 3905 }
 3906 
 3907 /*
 3908  * If the current task has no IO context then create one and initialise it.
 3909  * Otherwise, return its existing IO context.
 3910  *
 3911  * This returned IO context doesn't have a specifically elevated refcount,
 3912  * but since the current task itself holds a reference, the context can be
 3913  * used in general code, so long as it stays within `current` context.
 3914  */
 3915 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
 3916 {
 3917         struct task_struct *tsk = current;
 3918         struct io_context *ret;
 3919 
 3920         ret = tsk->io_context;
 3921         if (likely(ret))
 3922                 return ret;
 3923 
 3924         ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
 3925         if (ret) {
 3926                 atomic_set(&ret->refcount, 1);
 3927                 ret->task = current;
 3928                 ret->ioprio_changed = 0;
 3929                 ret->last_waited = jiffies; /* doesn't matter... */
 3930                 ret->nr_batch_requests = 0; /* because this is 0 */
 3931                 ret->aic = NULL;
 3932                 ret->cic_root.rb_node = NULL;
 3933                 ret->ioc_data = NULL;
 3934                 /* make sure set_task_ioprio() sees the settings above */
 3935                 smp_wmb();
 3936                 tsk->io_context = ret;
 3937         }
 3938 
 3939         return ret;
 3940 }
 3941 
 3942 /*
 3943  * If the current task has no IO context then create one and initialise it.
 3944  * If it does have a context, take a ref on it.
 3945  *
 3946  * This is always called in the context of the task which submitted the I/O.
 3947  */
 3948 struct io_context *get_io_context(gfp_t gfp_flags, int node)
 3949 {
 3950         struct io_context *ret;
 3951         ret = current_io_context(gfp_flags, node);
 3952         if (likely(ret))
 3953                 atomic_inc(&ret->refcount);
 3954         return ret;
 3955 }
 3956 EXPORT_SYMBOL(get_io_context);
 3957 
 3958 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
 3959 {
 3960         struct io_context *src = *psrc;
 3961         struct io_context *dst = *pdst;
 3962 
 3963         if (src) {
 3964                 BUG_ON(atomic_read(&src->refcount) == 0);
 3965                 atomic_inc(&src->refcount);
 3966                 put_io_context(dst);
 3967                 *pdst = src;
 3968         }
 3969 }
 3970 EXPORT_SYMBOL(copy_io_context);
 3971 
 3972 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
 3973 {
 3974         struct io_context *temp;
 3975         temp = *ioc1;
 3976         *ioc1 = *ioc2;
 3977         *ioc2 = temp;
 3978 }
 3979 EXPORT_SYMBOL(swap_io_context);
 3980 
 3981 /*
 3982  * sysfs parts below
 3983  */
 3984 struct queue_sysfs_entry {
 3985         struct attribute attr;
 3986         ssize_t (*show)(struct request_queue *, char *);
 3987         ssize_t (*store)(struct request_queue *, const char *, size_t);
 3988 };
 3989 
 3990 static ssize_t
 3991 queue_var_show(unsigned int var, char *page)
 3992 {
 3993         return sprintf(page, "%d\n", var);
 3994 }
 3995 
 3996 static ssize_t
 3997 queue_var_store(unsigned long *var, const char *page, size_t count)
 3998 {
 3999         char *p = (char *) page;
 4000 
 4001         *var = simple_strtoul(p, &p, 10);
 4002         return count;
 4003 }
 4004 
 4005 static ssize_t queue_requests_show(struct request_queue *q, char *page)
 4006 {
 4007         return queue_var_show(q->nr_requests, (page));
 4008 }
 4009 
 4010 static ssize_t
 4011 queue_requests_store(struct request_queue *q, const char *page, size_t count)
 4012 {
 4013         struct request_list *rl = &q->rq;
 4014         unsigned long nr;
 4015         int ret = queue_var_store(&nr, page, count);
 4016         if (nr < BLKDEV_MIN_RQ)
 4017                 nr = BLKDEV_MIN_RQ;
 4018 
 4019         spin_lock_irq(q->queue_lock);
 4020         q->nr_requests = nr;
 4021         blk_queue_congestion_threshold(q);
 4022 
 4023         if (rl->count[READ] >= queue_congestion_on_threshold(q))
 4024                 blk_set_queue_congested(q, READ);
 4025         else if (rl->count[READ] < queue_congestion_off_threshold(q))
 4026                 blk_clear_queue_congested(q, READ);
 4027 
 4028         if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
 4029                 blk_set_queue_congested(q, WRITE);
 4030         else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
 4031                 blk_clear_queue_congested(q, WRITE);
 4032 
 4033         if (rl->count[READ] >= q->nr_requests) {
 4034                 blk_set_queue_full(q, READ);
 4035         } else if (rl->count[READ]+1 <= q->nr_requests) {
 4036                 blk_clear_queue_full(q, READ);
 4037                 wake_up(&rl->wait[READ]);
 4038         }
 4039 
 4040         if (rl->count[WRITE] >= q->nr_requests) {
 4041                 blk_set_queue_full(q, WRITE);
 4042         } else if (rl->count[WRITE]+1 <= q->nr_requests) {
 4043                 blk_clear_queue_full(q, WRITE);
 4044                 wake_up(&rl->wait[WRITE]);
 4045         }
 4046         spin_unlock_irq(q->queue_lock);
 4047         return ret;
 4048 }
 4049 
 4050 static ssize_t queue_ra_show(struct request_queue *q, char *page)
 4051 {
 4052         int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
 4053 
 4054         return queue_var_show(ra_kb, (page));
 4055 }
 4056 
 4057 static ssize_t
 4058 queue_ra_store(struct request_queue *q, const char *page, size_t count)
 4059 {
 4060         unsigned long ra_kb;
 4061         ssize_t ret = queue_var_store(&ra_kb, page, count);
 4062 
 4063         spin_lock_irq(q->queue_lock);
 4064         q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
 4065         spin_unlock_irq(q->queue_lock);
 4066 
 4067         return ret;
 4068 }
 4069 
 4070 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
 4071 {
 4072         int max_sectors_kb = q->max_sectors >> 1;
 4073 
 4074         return queue_var_show(max_sectors_kb, (page));
 4075 }
 4076 
 4077 static ssize_t
 4078 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
 4079 {
 4080         unsigned long max_sectors_kb,
 4081                         max_hw_sectors_kb = q->max_hw_sectors >> 1,
 4082                         page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
 4083         ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
 4084 
 4085         if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
 4086                 return -EINVAL;
 4087         /*
 4088          * Take the queue lock to update the readahead and max_sectors
 4089          * values synchronously:
 4090          */
 4091         spin_lock_irq(q->queue_lock);
 4092         q->max_sectors = max_sectors_kb << 1;
 4093         spin_unlock_irq(q->queue_lock);
 4094 
 4095         return ret;
 4096 }
 4097 
 4098 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
 4099 {
 4100         int max_hw_sectors_kb = q->max_hw_sectors >> 1;
 4101 
 4102         return queue_var_show(max_hw_sectors_kb, (page));
 4103 }
 4104 
 4105 
 4106 static struct queue_sysfs_entry queue_requests_entry = {
 4107         .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
 4108         .show = queue_requests_show,
 4109         .store = queue_requests_store,
 4110 };
 4111 
 4112 static struct queue_sysfs_entry queue_ra_entry = {
 4113         .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
 4114         .show = queue_ra_show,
 4115         .store = queue_ra_store,
 4116 };
 4117 
 4118 static struct queue_sysfs_entry queue_max_sectors_entry = {
 4119         .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
 4120         .show = queue_max_sectors_show,
 4121         .store = queue_max_sectors_store,
 4122 };
 4123 
 4124 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
 4125         .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
 4126         .show = queue_max_hw_sectors_show,
 4127 };
 4128 
 4129 static struct queue_sysfs_entry queue_iosched_entry = {
 4130         .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
 4131         .show = elv_iosched_show,
 4132         .store = elv_iosched_store,
 4133 };
 4134 
 4135 static struct attribute *default_attrs[] = {
 4136         &queue_requests_entry.attr,
 4137         &queue_ra_entry.attr,
 4138         &queue_max_hw_sectors_entry.attr,
 4139         &queue_max_sectors_entry.attr,
 4140         &queue_iosched_entry.attr,
 4141         NULL,
 4142 };
 4143 
 4144 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
 4145 
 4146 static ssize_t
 4147 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
 4148 {
 4149         struct queue_sysfs_entry *entry = to_queue(attr);
 4150         struct request_queue *q =
 4151                 container_of(kobj, struct request_queue, kobj);
 4152         ssize_t res;
 4153 
 4154         if (!entry->show)
 4155                 return -EIO;
 4156         mutex_lock(&q->sysfs_lock);
 4157         if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
 4158                 mutex_unlock(&q->sysfs_lock);
 4159                 return -ENOENT;
 4160         }
 4161         res = entry->show(q, page);
 4162         mutex_unlock(&q->sysfs_lock);
 4163         return res;
 4164 }
 4165 
 4166 static ssize_t
 4167 queue_attr_store(struct kobject *kobj, struct attribute *attr,
 4168                     const char *page, size_t length)
 4169 {
 4170         struct queue_sysfs_entry *entry = to_queue(attr);
 4171         struct request_queue *q = container_of(kobj, struct request_queue, kobj);
 4172 
 4173         ssize_t res;
 4174 
 4175         if (!entry->store)
 4176                 return -EIO;
 4177         mutex_lock(&q->sysfs_lock);
 4178         if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
 4179                 mutex_unlock(&q->sysfs_lock);
 4180                 return -ENOENT;
 4181         }
 4182         res = entry->store(q, page, length);
 4183         mutex_unlock(&q->sysfs_lock);
 4184         return res;
 4185 }
 4186 
 4187 static struct sysfs_ops queue_sysfs_ops = {
 4188         .show   = queue_attr_show,
 4189         .store  = queue_attr_store,
 4190 };
 4191 
 4192 static struct kobj_type queue_ktype = {
 4193         .sysfs_ops      = &queue_sysfs_ops,
 4194         .default_attrs  = default_attrs,
 4195         .release        = blk_release_queue,
 4196 };
 4197 
 4198 int blk_register_queue(struct gendisk *disk)
 4199 {
 4200         int ret;
 4201 
 4202         struct request_queue *q = disk->queue;
 4203 
 4204         if (!q || !q->request_fn)
 4205                 return -ENXIO;
 4206 
 4207         ret = kobject_add(&q->kobj, kobject_get(&disk->dev.kobj),
 4208                           "%s", "queue");
 4209         if (ret < 0)
 4210                 return ret;
 4211 
 4212         kobject_uevent(&q->kobj, KOBJ_ADD);
 4213 
 4214         ret = elv_register_queue(q);
 4215         if (ret) {
 4216                 kobject_uevent(&q->kobj, KOBJ_REMOVE);
 4217                 kobject_del(&q->kobj);
 4218                 return ret;
 4219         }
 4220 
 4221         return 0;
 4222 }
 4223 
 4224 void blk_unregister_queue(struct gendisk *disk)
 4225 {
 4226         struct request_queue *q = disk->queue;
 4227 
 4228         if (q && q->request_fn) {
 4229                 elv_unregister_queue(q);
 4230 
 4231                 kobject_uevent(&q->kobj, KOBJ_REMOVE);
 4232                 kobject_del(&q->kobj);
 4233                 kobject_put(&disk->dev.kobj);
 4234         }
 4235 }

Cache object: 3e739f6926cd56daabb2c9ad2ef6cdab


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.