The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/cam/cam_iosched.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * CAM IO Scheduler Interface
    3  *
    4  * SPDX-License-Identifier: BSD-2-Clause
    5  *
    6  * Copyright (c) 2015 Netflix, Inc.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD$
   30  */
   31 
   32 #include "opt_cam.h"
   33 #include "opt_ddb.h"
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include <sys/param.h>
   39 
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/bio.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mutex.h>
   46 #include <sys/sbuf.h>
   47 #include <sys/sysctl.h>
   48 
   49 #include <cam/cam.h>
   50 #include <cam/cam_ccb.h>
   51 #include <cam/cam_periph.h>
   52 #include <cam/cam_xpt_periph.h>
   53 #include <cam/cam_xpt_internal.h>
   54 #include <cam/cam_iosched.h>
   55 
   56 #include <ddb/ddb.h>
   57 
   58 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
   59     "CAM I/O Scheduler buffers");
   60 
   61 static SYSCTL_NODE(_kern_cam, OID_AUTO, iosched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
   62     "CAM I/O Scheduler parameters");
   63 
   64 /*
   65  * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
   66  * over the bioq_* interface, with notions of separate calls for normal I/O and
   67  * for trims.
   68  *
   69  * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
   70  * steer the rate of one type of traffic to help other types of traffic (eg
   71  * limit writes when read latency deteriorates on SSDs).
   72  */
   73 
   74 #ifdef CAM_IOSCHED_DYNAMIC
   75 
   76 static bool do_dynamic_iosched = true;
   77 SYSCTL_BOOL(_kern_cam_iosched, OID_AUTO, dynamic, CTLFLAG_RD | CTLFLAG_TUN,
   78     &do_dynamic_iosched, 1,
   79     "Enable Dynamic I/O scheduler optimizations.");
   80 
   81 /*
   82  * For an EMA, with an alpha of alpha, we know
   83  *      alpha = 2 / (N + 1)
   84  * or
   85  *      N = 1 + (2 / alpha)
   86  * where N is the number of samples that 86% of the current
   87  * EMA is derived from.
   88  *
   89  * So we invent[*] alpha_bits:
   90  *      alpha_bits = -log_2(alpha)
   91  *      alpha = 2^-alpha_bits
   92  * So
   93  *      N = 1 + 2^(alpha_bits + 1)
   94  *
   95  * The default 9 gives a 1025 lookback for 86% of the data.
   96  * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
   97  *
   98  * [*] Steal from the load average code and many other places.
   99  * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
  100  */
  101 static int alpha_bits = 9;
  102 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, alpha_bits, CTLFLAG_RW | CTLFLAG_TUN,
  103     &alpha_bits, 1,
  104     "Bits in EMA's alpha.");
  105 
  106 /*
  107  * Different parameters for the buckets of latency we keep track of. These are all
  108  * published read-only since at present they are compile time constants.
  109  *
  110  * Bucket base is the upper bounds of the first latency bucket. It's currently 20us.
  111  * With 20 buckets (see below), that leads to a geometric progression with a max size
  112  * of 5.2s which is safeily larger than 1s to help diagnose extreme outliers better.
  113  */
  114 #ifndef BUCKET_BASE
  115 #define BUCKET_BASE ((SBT_1S / 50000) + 1)      /* 20us */
  116 #endif
  117 static sbintime_t bucket_base = BUCKET_BASE;
  118 SYSCTL_SBINTIME_USEC(_kern_cam_iosched, OID_AUTO, bucket_base_us, CTLFLAG_RD,
  119     &bucket_base,
  120     "Size of the smallest latency bucket");
  121 
  122 /*
  123  * Bucket ratio is the geometric progression for the bucket. For a bucket b_n
  124  * the size of bucket b_n+1 is b_n * bucket_ratio / 100.
  125  */
  126 static int bucket_ratio = 200;  /* Rather hard coded at the moment */
  127 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, bucket_ratio, CTLFLAG_RD,
  128     &bucket_ratio, 200,
  129     "Latency Bucket Ratio for geometric progression.");
  130 
  131 /*
  132  * Number of total buckets. Starting at BUCKET_BASE, each one is a power of 2.
  133  */
  134 #ifndef LAT_BUCKETS
  135 #define LAT_BUCKETS 20  /* < 20us < 40us ... < 2^(n-1)*20us >= 2^(n-1)*20us */
  136 #endif
  137 static int lat_buckets = LAT_BUCKETS;
  138 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, buckets, CTLFLAG_RD,
  139     &lat_buckets, LAT_BUCKETS,
  140     "Total number of latency buckets published");
  141 
  142 /*
  143  * Read bias: how many reads do we favor before scheduling a write
  144  * when we have a choice.
  145  */
  146 static int default_read_bias = 0;
  147 SYSCTL_INT(_kern_cam_iosched, OID_AUTO, read_bias, CTLFLAG_RWTUN,
  148     &default_read_bias, 0,
  149     "Default read bias for new devices.");
  150 
  151 struct iop_stats;
  152 struct cam_iosched_softc;
  153 
  154 int iosched_debug = 0;
  155 
  156 typedef enum {
  157         none = 0,                               /* No limits */
  158         queue_depth,                    /* Limit how many ops we queue to SIM */
  159         iops,                           /* Limit # of IOPS to the drive */
  160         bandwidth,                      /* Limit bandwidth to the drive */
  161         limiter_max
  162 } io_limiter;
  163 
  164 static const char *cam_iosched_limiter_names[] =
  165     { "none", "queue_depth", "iops", "bandwidth" };
  166 
  167 /*
  168  * Called to initialize the bits of the iop_stats structure relevant to the
  169  * limiter. Called just after the limiter is set.
  170  */
  171 typedef int l_init_t(struct iop_stats *);
  172 
  173 /*
  174  * Called every tick.
  175  */
  176 typedef int l_tick_t(struct iop_stats *);
  177 
  178 /*
  179  * Called to see if the limiter thinks this IOP can be allowed to
  180  * proceed. If so, the limiter assumes that the IOP proceeded
  181  * and makes any accounting of it that's needed.
  182  */
  183 typedef int l_iop_t(struct iop_stats *, struct bio *);
  184 
  185 /*
  186  * Called when an I/O completes so the limiter can update its
  187  * accounting. Pending I/Os may complete in any order (even when
  188  * sent to the hardware at the same time), so the limiter may not
  189  * make any assumptions other than this I/O has completed. If it
  190  * returns 1, then xpt_schedule() needs to be called again.
  191  */
  192 typedef int l_iodone_t(struct iop_stats *, struct bio *);
  193 
  194 static l_iop_t cam_iosched_qd_iop;
  195 static l_iop_t cam_iosched_qd_caniop;
  196 static l_iodone_t cam_iosched_qd_iodone;
  197 
  198 static l_init_t cam_iosched_iops_init;
  199 static l_tick_t cam_iosched_iops_tick;
  200 static l_iop_t cam_iosched_iops_caniop;
  201 static l_iop_t cam_iosched_iops_iop;
  202 
  203 static l_init_t cam_iosched_bw_init;
  204 static l_tick_t cam_iosched_bw_tick;
  205 static l_iop_t cam_iosched_bw_caniop;
  206 static l_iop_t cam_iosched_bw_iop;
  207 
  208 struct limswitch {
  209         l_init_t        *l_init;
  210         l_tick_t        *l_tick;
  211         l_iop_t         *l_iop;
  212         l_iop_t         *l_caniop;
  213         l_iodone_t      *l_iodone;
  214 } limsw[] =
  215 {
  216         {       /* none */
  217                 .l_init = NULL,
  218                 .l_tick = NULL,
  219                 .l_iop = NULL,
  220                 .l_iodone= NULL,
  221         },
  222         {       /* queue_depth */
  223                 .l_init = NULL,
  224                 .l_tick = NULL,
  225                 .l_caniop = cam_iosched_qd_caniop,
  226                 .l_iop = cam_iosched_qd_iop,
  227                 .l_iodone= cam_iosched_qd_iodone,
  228         },
  229         {       /* iops */
  230                 .l_init = cam_iosched_iops_init,
  231                 .l_tick = cam_iosched_iops_tick,
  232                 .l_caniop = cam_iosched_iops_caniop,
  233                 .l_iop = cam_iosched_iops_iop,
  234                 .l_iodone= NULL,
  235         },
  236         {       /* bandwidth */
  237                 .l_init = cam_iosched_bw_init,
  238                 .l_tick = cam_iosched_bw_tick,
  239                 .l_caniop = cam_iosched_bw_caniop,
  240                 .l_iop = cam_iosched_bw_iop,
  241                 .l_iodone= NULL,
  242         },
  243 };
  244 
  245 struct iop_stats {
  246         /*
  247          * sysctl state for this subnode.
  248          */
  249         struct sysctl_ctx_list  sysctl_ctx;
  250         struct sysctl_oid       *sysctl_tree;
  251 
  252         /*
  253          * Information about the current rate limiters, if any
  254          */
  255         io_limiter      limiter;        /* How are I/Os being limited */
  256         int             min;            /* Low range of limit */
  257         int             max;            /* High range of limit */
  258         int             current;        /* Current rate limiter */
  259         int             l_value1;       /* per-limiter scratch value 1. */
  260         int             l_value2;       /* per-limiter scratch value 2. */
  261 
  262         /*
  263          * Debug information about counts of I/Os that have gone through the
  264          * scheduler.
  265          */
  266         int             pending;        /* I/Os pending in the hardware */
  267         int             queued;         /* number currently in the queue */
  268         int             total;          /* Total for all time -- wraps */
  269         int             in;             /* number queued all time -- wraps */
  270         int             out;            /* number completed all time -- wraps */
  271         int             errs;           /* Number of I/Os completed with error --  wraps */
  272 
  273         /*
  274          * Statistics on different bits of the process.
  275          */
  276                 /* Exp Moving Average, see alpha_bits for more details */
  277         sbintime_t      ema;
  278         sbintime_t      emvar;
  279         sbintime_t      sd;             /* Last computed sd */
  280 
  281         uint32_t        state_flags;
  282 #define IOP_RATE_LIMITED                1u
  283 
  284         uint64_t        latencies[LAT_BUCKETS];
  285 
  286         struct cam_iosched_softc *softc;
  287 };
  288 
  289 typedef enum {
  290         set_max = 0,                    /* current = max */
  291         read_latency,                   /* Steer read latency by throttling writes */
  292         cl_max                          /* Keep last */
  293 } control_type;
  294 
  295 static const char *cam_iosched_control_type_names[] =
  296     { "set_max", "read_latency" };
  297 
  298 struct control_loop {
  299         /*
  300          * sysctl state for this subnode.
  301          */
  302         struct sysctl_ctx_list  sysctl_ctx;
  303         struct sysctl_oid       *sysctl_tree;
  304 
  305         sbintime_t      next_steer;             /* Time of next steer */
  306         sbintime_t      steer_interval;         /* How often do we steer? */
  307         sbintime_t      lolat;
  308         sbintime_t      hilat;
  309         int             alpha;
  310         control_type    type;                   /* What type of control? */
  311         int             last_count;             /* Last I/O count */
  312 
  313         struct cam_iosched_softc *softc;
  314 };
  315 
  316 #endif
  317 
  318 struct cam_iosched_softc {
  319         struct bio_queue_head bio_queue;
  320         struct bio_queue_head trim_queue;
  321                                 /* scheduler flags < 16, user flags >= 16 */
  322         uint32_t        flags;
  323         int             sort_io_queue;
  324         int             trim_goal;              /* # of trims to queue before sending */
  325         int             trim_ticks;             /* Max ticks to hold trims */
  326         int             last_trim_tick;         /* Last 'tick' time ld a trim */
  327         int             queued_trims;           /* Number of trims in the queue */
  328 #ifdef CAM_IOSCHED_DYNAMIC
  329         int             read_bias;              /* Read bias setting */
  330         int             current_read_bias;      /* Current read bias state */
  331         int             total_ticks;
  332         int             load;                   /* EMA of 'load average' of disk / 2^16 */
  333 
  334         struct bio_queue_head write_queue;
  335         struct iop_stats read_stats, write_stats, trim_stats;
  336         struct sysctl_ctx_list  sysctl_ctx;
  337         struct sysctl_oid       *sysctl_tree;
  338 
  339         int             quanta;                 /* Number of quanta per second */
  340         struct callout  ticker;                 /* Callout for our quota system */
  341         struct cam_periph *periph;              /* cam periph associated with this device */
  342         uint32_t        this_frac;              /* Fraction of a second (1024ths) for this tick */
  343         sbintime_t      last_time;              /* Last time we ticked */
  344         struct control_loop cl;
  345         sbintime_t      max_lat;                /* when != 0, if iop latency > max_lat, call max_lat_fcn */
  346         cam_iosched_latfcn_t    latfcn;
  347         void            *latarg;
  348 #endif
  349 };
  350 
  351 #ifdef CAM_IOSCHED_DYNAMIC
  352 /*
  353  * helper functions to call the limsw functions.
  354  */
  355 static int
  356 cam_iosched_limiter_init(struct iop_stats *ios)
  357 {
  358         int lim = ios->limiter;
  359 
  360         /* maybe this should be a kassert */
  361         if (lim < none || lim >= limiter_max)
  362                 return EINVAL;
  363 
  364         if (limsw[lim].l_init)
  365                 return limsw[lim].l_init(ios);
  366 
  367         return 0;
  368 }
  369 
  370 static int
  371 cam_iosched_limiter_tick(struct iop_stats *ios)
  372 {
  373         int lim = ios->limiter;
  374 
  375         /* maybe this should be a kassert */
  376         if (lim < none || lim >= limiter_max)
  377                 return EINVAL;
  378 
  379         if (limsw[lim].l_tick)
  380                 return limsw[lim].l_tick(ios);
  381 
  382         return 0;
  383 }
  384 
  385 static int
  386 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
  387 {
  388         int lim = ios->limiter;
  389 
  390         /* maybe this should be a kassert */
  391         if (lim < none || lim >= limiter_max)
  392                 return EINVAL;
  393 
  394         if (limsw[lim].l_iop)
  395                 return limsw[lim].l_iop(ios, bp);
  396 
  397         return 0;
  398 }
  399 
  400 static int
  401 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
  402 {
  403         int lim = ios->limiter;
  404 
  405         /* maybe this should be a kassert */
  406         if (lim < none || lim >= limiter_max)
  407                 return EINVAL;
  408 
  409         if (limsw[lim].l_caniop)
  410                 return limsw[lim].l_caniop(ios, bp);
  411 
  412         return 0;
  413 }
  414 
  415 static int
  416 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
  417 {
  418         int lim = ios->limiter;
  419 
  420         /* maybe this should be a kassert */
  421         if (lim < none || lim >= limiter_max)
  422                 return 0;
  423 
  424         if (limsw[lim].l_iodone)
  425                 return limsw[lim].l_iodone(ios, bp);
  426 
  427         return 0;
  428 }
  429 
  430 /*
  431  * Functions to implement the different kinds of limiters
  432  */
  433 
  434 static int
  435 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
  436 {
  437 
  438         if (ios->current <= 0 || ios->pending < ios->current)
  439                 return 0;
  440 
  441         return EAGAIN;
  442 }
  443 
  444 static int
  445 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
  446 {
  447 
  448         if (ios->current <= 0 || ios->pending < ios->current)
  449                 return 0;
  450 
  451         return EAGAIN;
  452 }
  453 
  454 static int
  455 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
  456 {
  457 
  458         if (ios->current <= 0 || ios->pending != ios->current)
  459                 return 0;
  460 
  461         return 1;
  462 }
  463 
  464 static int
  465 cam_iosched_iops_init(struct iop_stats *ios)
  466 {
  467 
  468         ios->l_value1 = ios->current / ios->softc->quanta;
  469         if (ios->l_value1 <= 0)
  470                 ios->l_value1 = 1;
  471         ios->l_value2 = 0;
  472 
  473         return 0;
  474 }
  475 
  476 static int
  477 cam_iosched_iops_tick(struct iop_stats *ios)
  478 {
  479         int new_ios;
  480 
  481         /*
  482          * Allow at least one IO per tick until all
  483          * the IOs for this interval have been spent.
  484          */
  485         new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
  486         if (new_ios < 1 && ios->l_value2 < ios->current) {
  487                 new_ios = 1;
  488                 ios->l_value2++;
  489         }
  490 
  491         /*
  492          * If this a new accounting interval, discard any "unspent" ios
  493          * granted in the previous interval.  Otherwise add the new ios to
  494          * the previously granted ones that haven't been spent yet.
  495          */
  496         if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
  497                 ios->l_value1 = new_ios;
  498                 ios->l_value2 = 1;
  499         } else {
  500                 ios->l_value1 += new_ios;
  501         }
  502 
  503         return 0;
  504 }
  505 
  506 static int
  507 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
  508 {
  509 
  510         /*
  511          * So if we have any more IOPs left, allow it,
  512          * otherwise wait. If current iops is 0, treat that
  513          * as unlimited as a failsafe.
  514          */
  515         if (ios->current > 0 && ios->l_value1 <= 0)
  516                 return EAGAIN;
  517         return 0;
  518 }
  519 
  520 static int
  521 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
  522 {
  523         int rv;
  524 
  525         rv = cam_iosched_limiter_caniop(ios, bp);
  526         if (rv == 0)
  527                 ios->l_value1--;
  528 
  529         return rv;
  530 }
  531 
  532 static int
  533 cam_iosched_bw_init(struct iop_stats *ios)
  534 {
  535 
  536         /* ios->current is in kB/s, so scale to bytes */
  537         ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
  538 
  539         return 0;
  540 }
  541 
  542 static int
  543 cam_iosched_bw_tick(struct iop_stats *ios)
  544 {
  545         int bw;
  546 
  547         /*
  548          * If we're in the hole for available quota from
  549          * the last time, then add the quantum for this.
  550          * If we have any left over from last quantum,
  551          * then too bad, that's lost. Also, ios->current
  552          * is in kB/s, so scale.
  553          *
  554          * We also allow up to 4 quanta of credits to
  555          * accumulate to deal with burstiness. 4 is extremely
  556          * arbitrary.
  557          */
  558         bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
  559         if (ios->l_value1 < bw * 4)
  560                 ios->l_value1 += bw;
  561 
  562         return 0;
  563 }
  564 
  565 static int
  566 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
  567 {
  568         /*
  569          * So if we have any more bw quota left, allow it,
  570          * otherwise wait. Note, we'll go negative and that's
  571          * OK. We'll just get a little less next quota.
  572          *
  573          * Note on going negative: that allows us to process
  574          * requests in order better, since we won't allow
  575          * shorter reads to get around the long one that we
  576          * don't have the quota to do just yet. It also prevents
  577          * starvation by being a little more permissive about
  578          * what we let through this quantum (to prevent the
  579          * starvation), at the cost of getting a little less
  580          * next quantum.
  581          *
  582          * Also note that if the current limit is <= 0,
  583          * we treat it as unlimited as a failsafe.
  584          */
  585         if (ios->current > 0 && ios->l_value1 <= 0)
  586                 return EAGAIN;
  587 
  588         return 0;
  589 }
  590 
  591 static int
  592 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
  593 {
  594         int rv;
  595 
  596         rv = cam_iosched_limiter_caniop(ios, bp);
  597         if (rv == 0)
  598                 ios->l_value1 -= bp->bio_length;
  599 
  600         return rv;
  601 }
  602 
  603 static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
  604 
  605 static void
  606 cam_iosched_ticker(void *arg)
  607 {
  608         struct cam_iosched_softc *isc = arg;
  609         sbintime_t now, delta;
  610         int pending;
  611 
  612         callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
  613 
  614         now = sbinuptime();
  615         delta = now - isc->last_time;
  616         isc->this_frac = (uint32_t)delta >> 16;         /* Note: discards seconds -- should be 0 harmless if not */
  617         isc->last_time = now;
  618 
  619         cam_iosched_cl_maybe_steer(&isc->cl);
  620 
  621         cam_iosched_limiter_tick(&isc->read_stats);
  622         cam_iosched_limiter_tick(&isc->write_stats);
  623         cam_iosched_limiter_tick(&isc->trim_stats);
  624 
  625         cam_iosched_schedule(isc, isc->periph);
  626 
  627         /*
  628          * isc->load is an EMA of the pending I/Os at each tick. The number of
  629          * pending I/Os is the sum of the I/Os queued to the hardware, and those
  630          * in the software queue that could be queued to the hardware if there
  631          * were slots.
  632          *
  633          * ios_stats.pending is a count of requests in the SIM right now for
  634          * each of these types of I/O. So the total pending count is the sum of
  635          * these I/Os and the sum of the queued I/Os still in the software queue
  636          * for those operations that aren't being rate limited at the moment.
  637          *
  638          * The reason for the rate limiting bit is because those I/Os
  639          * aren't part of the software queued load (since we could
  640          * give them to hardware, but choose not to).
  641          *
  642          * Note: due to a bug in counting pending TRIM in the device, we
  643          * don't include them in this count. We count each BIO_DELETE in
  644          * the pending count, but the periph drivers collapse them down
  645          * into one TRIM command. That one trim command gets the completion
  646          * so the counts get off.
  647          */
  648         pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
  649         pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
  650             !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
  651             !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
  652         pending <<= 16;
  653         pending /= isc->periph->path->device->ccbq.total_openings;
  654 
  655         isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
  656 
  657         isc->total_ticks++;
  658 }
  659 
  660 static void
  661 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
  662 {
  663 
  664         clp->next_steer = sbinuptime();
  665         clp->softc = isc;
  666         clp->steer_interval = SBT_1S * 5;       /* Let's start out steering every 5s */
  667         clp->lolat = 5 * SBT_1MS;
  668         clp->hilat = 15 * SBT_1MS;
  669         clp->alpha = 20;                        /* Alpha == gain. 20 = .2 */
  670         clp->type = set_max;
  671 }
  672 
  673 static void
  674 cam_iosched_cl_maybe_steer(struct control_loop *clp)
  675 {
  676         struct cam_iosched_softc *isc;
  677         sbintime_t now, lat;
  678         int old;
  679 
  680         isc = clp->softc;
  681         now = isc->last_time;
  682         if (now < clp->next_steer)
  683                 return;
  684 
  685         clp->next_steer = now + clp->steer_interval;
  686         switch (clp->type) {
  687         case set_max:
  688                 if (isc->write_stats.current != isc->write_stats.max)
  689                         printf("Steering write from %d kBps to %d kBps\n",
  690                             isc->write_stats.current, isc->write_stats.max);
  691                 isc->read_stats.current = isc->read_stats.max;
  692                 isc->write_stats.current = isc->write_stats.max;
  693                 isc->trim_stats.current = isc->trim_stats.max;
  694                 break;
  695         case read_latency:
  696                 old = isc->write_stats.current;
  697                 lat = isc->read_stats.ema;
  698                 /*
  699                  * Simple PLL-like engine. Since we're steering to a range for
  700                  * the SP (set point) that makes things a little more
  701                  * complicated. In addition, we're not directly controlling our
  702                  * PV (process variable), the read latency, but instead are
  703                  * manipulating the write bandwidth limit for our MV
  704                  * (manipulation variable), analysis of this code gets a bit
  705                  * messy. Also, the MV is a very noisy control surface for read
  706                  * latency since it is affected by many hidden processes inside
  707                  * the device which change how responsive read latency will be
  708                  * in reaction to changes in write bandwidth. Unlike the classic
  709                  * boiler control PLL. this may result in over-steering while
  710                  * the SSD takes its time to react to the new, lower load. This
  711                  * is why we use a relatively low alpha of between .1 and .25 to
  712                  * compensate for this effect. At .1, it takes ~22 steering
  713                  * intervals to back off by a factor of 10. At .2 it only takes
  714                  * ~10. At .25 it only takes ~8. However some preliminary data
  715                  * from the SSD drives suggests a reasponse time in 10's of
  716                  * seconds before latency drops regardless of the new write
  717                  * rate. Careful observation will be required to tune this
  718                  * effectively.
  719                  *
  720                  * Also, when there's no read traffic, we jack up the write
  721                  * limit too regardless of the last read latency.  10 is
  722                  * somewhat arbitrary.
  723                  */
  724                 if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
  725                         isc->write_stats.current = isc->write_stats.current *
  726                             (100 + clp->alpha) / 100;   /* Scale up */
  727                 else if (lat > clp->hilat)
  728                         isc->write_stats.current = isc->write_stats.current *
  729                             (100 - clp->alpha) / 100;   /* Scale down */
  730                 clp->last_count = isc->read_stats.total;
  731 
  732                 /*
  733                  * Even if we don't steer, per se, enforce the min/max limits as
  734                  * those may have changed.
  735                  */
  736                 if (isc->write_stats.current < isc->write_stats.min)
  737                         isc->write_stats.current = isc->write_stats.min;
  738                 if (isc->write_stats.current > isc->write_stats.max)
  739                         isc->write_stats.current = isc->write_stats.max;
  740                 if (old != isc->write_stats.current &&  iosched_debug)
  741                         printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
  742                             old, isc->write_stats.current,
  743                             (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
  744                 break;
  745         case cl_max:
  746                 break;
  747         }
  748 }
  749 #endif
  750 
  751 /*
  752  * Trim or similar currently pending completion. Should only be set for
  753  * those drivers wishing only one Trim active at a time.
  754  */
  755 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE    (1ul << 0)
  756                         /* Callout active, and needs to be torn down */
  757 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
  758 
  759                         /* Periph drivers set these flags to indicate work */
  760 #define CAM_IOSCHED_FLAG_WORK_FLAGS     ((0xffffu) << 16)
  761 
  762 #ifdef CAM_IOSCHED_DYNAMIC
  763 static void
  764 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
  765     sbintime_t sim_latency, int cmd, size_t size);
  766 #endif
  767 
  768 static inline bool
  769 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
  770 {
  771         return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
  772 }
  773 
  774 static inline bool
  775 cam_iosched_has_io(struct cam_iosched_softc *isc)
  776 {
  777 #ifdef CAM_IOSCHED_DYNAMIC
  778         if (do_dynamic_iosched) {
  779                 struct bio *rbp = bioq_first(&isc->bio_queue);
  780                 struct bio *wbp = bioq_first(&isc->write_queue);
  781                 bool can_write = wbp != NULL &&
  782                     cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
  783                 bool can_read = rbp != NULL &&
  784                     cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
  785                 if (iosched_debug > 2) {
  786                         printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
  787                         printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
  788                         printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
  789                 }
  790                 return can_read || can_write;
  791         }
  792 #endif
  793         return bioq_first(&isc->bio_queue) != NULL;
  794 }
  795 
  796 static inline bool
  797 cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
  798 {
  799         struct bio *bp;
  800 
  801         bp = bioq_first(&isc->trim_queue);
  802 #ifdef CAM_IOSCHED_DYNAMIC
  803         if (do_dynamic_iosched) {
  804                 /*
  805                  * If we're limiting trims, then defer action on trims
  806                  * for a bit.
  807                  */
  808                 if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0)
  809                         return false;
  810         }
  811 #endif
  812 
  813         /*
  814          * If we've set a trim_goal, then if we exceed that allow trims
  815          * to be passed back to the driver. If we've also set a tick timeout
  816          * allow trims back to the driver. Otherwise, don't allow trims yet.
  817          */
  818         if (isc->trim_goal > 0) {
  819                 if (isc->queued_trims >= isc->trim_goal)
  820                         return true;
  821                 if (isc->queued_trims > 0 &&
  822                     isc->trim_ticks > 0 &&
  823                     ticks - isc->last_trim_tick > isc->trim_ticks)
  824                         return true;
  825                 return false;
  826         }
  827 
  828         /* NB: Should perhaps have a max trim active independent of I/O limiters */
  829         return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL;
  830 }
  831 
  832 #define cam_iosched_sort_queue(isc)     ((isc)->sort_io_queue >= 0 ?    \
  833     (isc)->sort_io_queue : cam_sort_io_queues)
  834 
  835 static inline bool
  836 cam_iosched_has_work(struct cam_iosched_softc *isc)
  837 {
  838 #ifdef CAM_IOSCHED_DYNAMIC
  839         if (iosched_debug > 2)
  840                 printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
  841                     cam_iosched_has_more_trim(isc),
  842                     cam_iosched_has_flagged_work(isc));
  843 #endif
  844 
  845         return cam_iosched_has_io(isc) ||
  846                 cam_iosched_has_more_trim(isc) ||
  847                 cam_iosched_has_flagged_work(isc);
  848 }
  849 
  850 #ifdef CAM_IOSCHED_DYNAMIC
  851 static void
  852 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
  853 {
  854 
  855         ios->limiter = none;
  856         ios->in = 0;
  857         ios->max = ios->current = 300000;
  858         ios->min = 1;
  859         ios->out = 0;
  860         ios->errs = 0;
  861         ios->pending = 0;
  862         ios->queued = 0;
  863         ios->total = 0;
  864         ios->ema = 0;
  865         ios->emvar = 0;
  866         ios->softc = isc;
  867         cam_iosched_limiter_init(ios);
  868 }
  869 
  870 static int
  871 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
  872 {
  873         char buf[16];
  874         struct iop_stats *ios;
  875         struct cam_iosched_softc *isc;
  876         int value, i, error;
  877         const char *p;
  878 
  879         ios = arg1;
  880         isc = ios->softc;
  881         value = ios->limiter;
  882         if (value < none || value >= limiter_max)
  883                 p = "UNKNOWN";
  884         else
  885                 p = cam_iosched_limiter_names[value];
  886 
  887         strlcpy(buf, p, sizeof(buf));
  888         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  889         if (error != 0 || req->newptr == NULL)
  890                 return error;
  891 
  892         cam_periph_lock(isc->periph);
  893 
  894         for (i = none; i < limiter_max; i++) {
  895                 if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
  896                         continue;
  897                 ios->limiter = i;
  898                 error = cam_iosched_limiter_init(ios);
  899                 if (error != 0) {
  900                         ios->limiter = value;
  901                         cam_periph_unlock(isc->periph);
  902                         return error;
  903                 }
  904                 /* Note: disk load averate requires ticker to be always running */
  905                 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
  906                 isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
  907 
  908                 cam_periph_unlock(isc->periph);
  909                 return 0;
  910         }
  911 
  912         cam_periph_unlock(isc->periph);
  913         return EINVAL;
  914 }
  915 
  916 static int
  917 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
  918 {
  919         char buf[16];
  920         struct control_loop *clp;
  921         struct cam_iosched_softc *isc;
  922         int value, i, error;
  923         const char *p;
  924 
  925         clp = arg1;
  926         isc = clp->softc;
  927         value = clp->type;
  928         if (value < none || value >= cl_max)
  929                 p = "UNKNOWN";
  930         else
  931                 p = cam_iosched_control_type_names[value];
  932 
  933         strlcpy(buf, p, sizeof(buf));
  934         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  935         if (error != 0 || req->newptr == NULL)
  936                 return error;
  937 
  938         for (i = set_max; i < cl_max; i++) {
  939                 if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
  940                         continue;
  941                 cam_periph_lock(isc->periph);
  942                 clp->type = i;
  943                 cam_periph_unlock(isc->periph);
  944                 return 0;
  945         }
  946 
  947         return EINVAL;
  948 }
  949 
  950 static int
  951 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
  952 {
  953         char buf[16];
  954         sbintime_t value;
  955         int error;
  956         uint64_t us;
  957 
  958         value = *(sbintime_t *)arg1;
  959         us = (uint64_t)value / SBT_1US;
  960         snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
  961         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  962         if (error != 0 || req->newptr == NULL)
  963                 return error;
  964         us = strtoul(buf, NULL, 10);
  965         if (us == 0)
  966                 return EINVAL;
  967         *(sbintime_t *)arg1 = us * SBT_1US;
  968         return 0;
  969 }
  970 
  971 static int
  972 cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
  973 {
  974         int i, error;
  975         struct sbuf sb;
  976         uint64_t *latencies;
  977 
  978         latencies = arg1;
  979         sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
  980 
  981         for (i = 0; i < LAT_BUCKETS - 1; i++)
  982                 sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
  983         sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
  984         error = sbuf_finish(&sb);
  985         sbuf_delete(&sb);
  986 
  987         return (error);
  988 }
  989 
  990 static int
  991 cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
  992 {
  993         int *quanta;
  994         int error, value;
  995 
  996         quanta = (unsigned *)arg1;
  997         value = *quanta;
  998 
  999         error = sysctl_handle_int(oidp, (int *)&value, 0, req);
 1000         if ((error != 0) || (req->newptr == NULL))
 1001                 return (error);
 1002 
 1003         if (value < 1 || value > hz)
 1004                 return (EINVAL);
 1005 
 1006         *quanta = value;
 1007 
 1008         return (0);
 1009 }
 1010 
 1011 static void
 1012 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
 1013 {
 1014         struct sysctl_oid_list *n;
 1015         struct sysctl_ctx_list *ctx;
 1016 
 1017         ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
 1018             SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
 1019             CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name);
 1020         n = SYSCTL_CHILDREN(ios->sysctl_tree);
 1021         ctx = &ios->sysctl_ctx;
 1022 
 1023         SYSCTL_ADD_UQUAD(ctx, n,
 1024             OID_AUTO, "ema", CTLFLAG_RD,
 1025             &ios->ema,
 1026             "Fast Exponentially Weighted Moving Average");
 1027         SYSCTL_ADD_UQUAD(ctx, n,
 1028             OID_AUTO, "emvar", CTLFLAG_RD,
 1029             &ios->emvar,
 1030             "Fast Exponentially Weighted Moving Variance");
 1031 
 1032         SYSCTL_ADD_INT(ctx, n,
 1033             OID_AUTO, "pending", CTLFLAG_RD,
 1034             &ios->pending, 0,
 1035             "Instantaneous # of pending transactions");
 1036         SYSCTL_ADD_INT(ctx, n,
 1037             OID_AUTO, "count", CTLFLAG_RD,
 1038             &ios->total, 0,
 1039             "# of transactions submitted to hardware");
 1040         SYSCTL_ADD_INT(ctx, n,
 1041             OID_AUTO, "queued", CTLFLAG_RD,
 1042             &ios->queued, 0,
 1043             "# of transactions in the queue");
 1044         SYSCTL_ADD_INT(ctx, n,
 1045             OID_AUTO, "in", CTLFLAG_RD,
 1046             &ios->in, 0,
 1047             "# of transactions queued to driver");
 1048         SYSCTL_ADD_INT(ctx, n,
 1049             OID_AUTO, "out", CTLFLAG_RD,
 1050             &ios->out, 0,
 1051             "# of transactions completed (including with error)");
 1052         SYSCTL_ADD_INT(ctx, n,
 1053             OID_AUTO, "errs", CTLFLAG_RD,
 1054             &ios->errs, 0,
 1055             "# of transactions completed with an error");
 1056 
 1057         SYSCTL_ADD_PROC(ctx, n,
 1058             OID_AUTO, "limiter",
 1059             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
 1060             ios, 0, cam_iosched_limiter_sysctl, "A",
 1061             "Current limiting type.");
 1062         SYSCTL_ADD_INT(ctx, n,
 1063             OID_AUTO, "min", CTLFLAG_RW,
 1064             &ios->min, 0,
 1065             "min resource");
 1066         SYSCTL_ADD_INT(ctx, n,
 1067             OID_AUTO, "max", CTLFLAG_RW,
 1068             &ios->max, 0,
 1069             "max resource");
 1070         SYSCTL_ADD_INT(ctx, n,
 1071             OID_AUTO, "current", CTLFLAG_RW,
 1072             &ios->current, 0,
 1073             "current resource");
 1074 
 1075         SYSCTL_ADD_PROC(ctx, n,
 1076             OID_AUTO, "latencies",
 1077             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
 1078             &ios->latencies, 0,
 1079             cam_iosched_sysctl_latencies, "A",
 1080             "Array of power of 2 latency from 1ms to 1.024s");
 1081 }
 1082 
 1083 static void
 1084 cam_iosched_iop_stats_fini(struct iop_stats *ios)
 1085 {
 1086         if (ios->sysctl_tree)
 1087                 if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
 1088                         printf("can't remove iosched sysctl stats context\n");
 1089 }
 1090 
 1091 static void
 1092 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
 1093 {
 1094         struct sysctl_oid_list *n;
 1095         struct sysctl_ctx_list *ctx;
 1096         struct control_loop *clp;
 1097 
 1098         clp = &isc->cl;
 1099         clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
 1100             SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
 1101             CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info");
 1102         n = SYSCTL_CHILDREN(clp->sysctl_tree);
 1103         ctx = &clp->sysctl_ctx;
 1104 
 1105         SYSCTL_ADD_PROC(ctx, n,
 1106             OID_AUTO, "type",
 1107             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
 1108             clp, 0, cam_iosched_control_type_sysctl, "A",
 1109             "Control loop algorithm");
 1110         SYSCTL_ADD_PROC(ctx, n,
 1111             OID_AUTO, "steer_interval",
 1112             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
 1113             &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
 1114             "How often to steer (in us)");
 1115         SYSCTL_ADD_PROC(ctx, n,
 1116             OID_AUTO, "lolat",
 1117             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
 1118             &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
 1119             "Low water mark for Latency (in us)");
 1120         SYSCTL_ADD_PROC(ctx, n,
 1121             OID_AUTO, "hilat",
 1122             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
 1123             &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
 1124             "Hi water mark for Latency (in us)");
 1125         SYSCTL_ADD_INT(ctx, n,
 1126             OID_AUTO, "alpha", CTLFLAG_RW,
 1127             &clp->alpha, 0,
 1128             "Alpha for PLL (x100) aka gain");
 1129 }
 1130 
 1131 static void
 1132 cam_iosched_cl_sysctl_fini(struct control_loop *clp)
 1133 {
 1134         if (clp->sysctl_tree)
 1135                 if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
 1136                         printf("can't remove iosched sysctl control loop context\n");
 1137 }
 1138 #endif
 1139 
 1140 /*
 1141  * Allocate the iosched structure. This also insulates callers from knowing
 1142  * sizeof struct cam_iosched_softc.
 1143  */
 1144 int
 1145 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
 1146 {
 1147 
 1148         *iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
 1149         if (*iscp == NULL)
 1150                 return ENOMEM;
 1151 #ifdef CAM_IOSCHED_DYNAMIC
 1152         if (iosched_debug)
 1153                 printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
 1154 #endif
 1155         (*iscp)->sort_io_queue = -1;
 1156         bioq_init(&(*iscp)->bio_queue);
 1157         bioq_init(&(*iscp)->trim_queue);
 1158 #ifdef CAM_IOSCHED_DYNAMIC
 1159         if (do_dynamic_iosched) {
 1160                 bioq_init(&(*iscp)->write_queue);
 1161                 (*iscp)->read_bias = default_read_bias;
 1162                 (*iscp)->current_read_bias = 0;
 1163                 (*iscp)->quanta = min(hz, 200);
 1164                 cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
 1165                 cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
 1166                 cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
 1167                 (*iscp)->trim_stats.max = 1;    /* Trims are special: one at a time for now */
 1168                 (*iscp)->last_time = sbinuptime();
 1169                 callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
 1170                 (*iscp)->periph = periph;
 1171                 cam_iosched_cl_init(&(*iscp)->cl, *iscp);
 1172                 callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
 1173                 (*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
 1174         }
 1175 #endif
 1176 
 1177         return 0;
 1178 }
 1179 
 1180 /*
 1181  * Reclaim all used resources. This assumes that other folks have
 1182  * drained the requests in the hardware. Maybe an unwise assumption.
 1183  */
 1184 void
 1185 cam_iosched_fini(struct cam_iosched_softc *isc)
 1186 {
 1187         if (isc) {
 1188                 cam_iosched_flush(isc, NULL, ENXIO);
 1189 #ifdef CAM_IOSCHED_DYNAMIC
 1190                 cam_iosched_iop_stats_fini(&isc->read_stats);
 1191                 cam_iosched_iop_stats_fini(&isc->write_stats);
 1192                 cam_iosched_iop_stats_fini(&isc->trim_stats);
 1193                 cam_iosched_cl_sysctl_fini(&isc->cl);
 1194                 if (isc->sysctl_tree)
 1195                         if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
 1196                                 printf("can't remove iosched sysctl stats context\n");
 1197                 if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
 1198                         callout_drain(&isc->ticker);
 1199                         isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
 1200                 }
 1201 #endif
 1202                 free(isc, M_CAMSCHED);
 1203         }
 1204 }
 1205 
 1206 /*
 1207  * After we're sure we're attaching a device, go ahead and add
 1208  * hooks for any sysctl we may wish to honor.
 1209  */
 1210 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
 1211     struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
 1212 {
 1213         struct sysctl_oid_list *n;
 1214 
 1215         n = SYSCTL_CHILDREN(node);
 1216         SYSCTL_ADD_INT(ctx, n,
 1217                 OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
 1218                 &isc->sort_io_queue, 0,
 1219                 "Sort IO queue to try and optimise disk access patterns");
 1220         SYSCTL_ADD_INT(ctx, n,
 1221             OID_AUTO, "trim_goal", CTLFLAG_RW,
 1222             &isc->trim_goal, 0,
 1223             "Number of trims to try to accumulate before sending to hardware");
 1224         SYSCTL_ADD_INT(ctx, n,
 1225             OID_AUTO, "trim_ticks", CTLFLAG_RW,
 1226             &isc->trim_goal, 0,
 1227             "IO Schedul qaunta to hold back trims for when accumulating");
 1228 
 1229 #ifdef CAM_IOSCHED_DYNAMIC
 1230         if (!do_dynamic_iosched)
 1231                 return;
 1232 
 1233         isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
 1234             SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
 1235             CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics");
 1236         n = SYSCTL_CHILDREN(isc->sysctl_tree);
 1237         ctx = &isc->sysctl_ctx;
 1238 
 1239         cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
 1240         cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
 1241         cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
 1242         cam_iosched_cl_sysctl_init(isc);
 1243 
 1244         SYSCTL_ADD_INT(ctx, n,
 1245             OID_AUTO, "read_bias", CTLFLAG_RW,
 1246             &isc->read_bias, default_read_bias,
 1247             "How biased towards read should we be independent of limits");
 1248 
 1249         SYSCTL_ADD_PROC(ctx, n,
 1250             OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
 1251             &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
 1252             "How many quanta per second do we slice the I/O up into");
 1253 
 1254         SYSCTL_ADD_INT(ctx, n,
 1255             OID_AUTO, "total_ticks", CTLFLAG_RD,
 1256             &isc->total_ticks, 0,
 1257             "Total number of ticks we've done");
 1258 
 1259         SYSCTL_ADD_INT(ctx, n,
 1260             OID_AUTO, "load", CTLFLAG_RD,
 1261             &isc->load, 0,
 1262             "scaled load average / 100");
 1263 
 1264         SYSCTL_ADD_U64(ctx, n,
 1265             OID_AUTO, "latency_trigger", CTLFLAG_RW,
 1266             &isc->max_lat, 0,
 1267             "Latency treshold to trigger callbacks");
 1268 #endif
 1269 }
 1270 
 1271 void
 1272 cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
 1273     cam_iosched_latfcn_t fnp, void *argp)
 1274 {
 1275 #ifdef CAM_IOSCHED_DYNAMIC
 1276         isc->latfcn = fnp;
 1277         isc->latarg = argp;
 1278 #endif
 1279 }
 1280 
 1281 /*
 1282  * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
 1283  * that will be queued up before iosched will "release" the trims to the client
 1284  * driver to wo with what they will (usually combine as many as possible). If we
 1285  * don't get this many, after trim_ticks we'll submit the I/O anyway with
 1286  * whatever we have.  We do need an I/O of some kind of to clock the deferred
 1287  * trims out to disk. Since we will eventually get a write for the super block
 1288  * or something before we shutdown, the trims will complete. To be safe, when a
 1289  * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
 1290  * enough in the past so we'll present the BIO_DELETEs to the client driver.
 1291  * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
 1292  * and then a BIO_DELETE is sent down. No know client does this, and there's
 1293  * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
 1294  * but no client depends on the ordering being honored.
 1295  *
 1296  * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
 1297  * flushing on shutdown. I think there's bufs that would be dependent on the BIO
 1298  * finishing to write out at least metadata, so we'll be fine. To be safe, keep
 1299  * the number of ticks low (less than maybe 10s) to avoid shutdown races.
 1300  */
 1301 
 1302 void
 1303 cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
 1304 {
 1305 
 1306         isc->trim_goal = goal;
 1307 }
 1308 
 1309 void
 1310 cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
 1311 {
 1312 
 1313         isc->trim_ticks = trim_ticks;
 1314 }
 1315 
 1316 /*
 1317  * Flush outstanding I/O. Consumers of this library don't know all the
 1318  * queues we may keep, so this allows all I/O to be flushed in one
 1319  * convenient call.
 1320  */
 1321 void
 1322 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
 1323 {
 1324         bioq_flush(&isc->bio_queue, stp, err);
 1325         bioq_flush(&isc->trim_queue, stp, err);
 1326 #ifdef CAM_IOSCHED_DYNAMIC
 1327         if (do_dynamic_iosched)
 1328                 bioq_flush(&isc->write_queue, stp, err);
 1329 #endif
 1330 }
 1331 
 1332 #ifdef CAM_IOSCHED_DYNAMIC
 1333 static struct bio *
 1334 cam_iosched_get_write(struct cam_iosched_softc *isc)
 1335 {
 1336         struct bio *bp;
 1337 
 1338         /*
 1339          * We control the write rate by controlling how many requests we send
 1340          * down to the drive at any one time. Fewer requests limits the
 1341          * effects of both starvation when the requests take a while and write
 1342          * amplification when each request is causing more than one write to
 1343          * the NAND media. Limiting the queue depth like this will also limit
 1344          * the write throughput and give and reads that want to compete to
 1345          * compete unfairly.
 1346          */
 1347         bp = bioq_first(&isc->write_queue);
 1348         if (bp == NULL) {
 1349                 if (iosched_debug > 3)
 1350                         printf("No writes present in write_queue\n");
 1351                 return NULL;
 1352         }
 1353 
 1354         /*
 1355          * If pending read, prefer that based on current read bias
 1356          * setting.
 1357          */
 1358         if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
 1359                 if (iosched_debug)
 1360                         printf(
 1361                             "Reads present and current_read_bias is %d queued "
 1362                             "writes %d queued reads %d\n",
 1363                             isc->current_read_bias, isc->write_stats.queued,
 1364                             isc->read_stats.queued);
 1365                 isc->current_read_bias--;
 1366                 /* We're not limiting writes, per se, just doing reads first */
 1367                 return NULL;
 1368         }
 1369 
 1370         /*
 1371          * See if our current limiter allows this I/O.
 1372          */
 1373         if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
 1374                 if (iosched_debug)
 1375                         printf("Can't write because limiter says no.\n");
 1376                 isc->write_stats.state_flags |= IOP_RATE_LIMITED;
 1377                 return NULL;
 1378         }
 1379 
 1380         /*
 1381          * Let's do this: We've passed all the gates and we're a go
 1382          * to schedule the I/O in the SIM.
 1383          */
 1384         isc->current_read_bias = isc->read_bias;
 1385         bioq_remove(&isc->write_queue, bp);
 1386         if (bp->bio_cmd == BIO_WRITE) {
 1387                 isc->write_stats.queued--;
 1388                 isc->write_stats.total++;
 1389                 isc->write_stats.pending++;
 1390         }
 1391         if (iosched_debug > 9)
 1392                 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
 1393         isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
 1394         return bp;
 1395 }
 1396 #endif
 1397 
 1398 /*
 1399  * Put back a trim that you weren't able to actually schedule this time.
 1400  */
 1401 void
 1402 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
 1403 {
 1404         bioq_insert_head(&isc->trim_queue, bp);
 1405         if (isc->queued_trims == 0)
 1406                 isc->last_trim_tick = ticks;
 1407         isc->queued_trims++;
 1408 #ifdef CAM_IOSCHED_DYNAMIC
 1409         isc->trim_stats.queued++;
 1410         isc->trim_stats.total--;                /* since we put it back, don't double count */
 1411         isc->trim_stats.pending--;
 1412 #endif
 1413 }
 1414 
 1415 /*
 1416  * gets the next trim from the trim queue.
 1417  *
 1418  * Assumes we're called with the periph lock held.  It removes this
 1419  * trim from the queue and the device must explicitly reinsert it
 1420  * should the need arise.
 1421  */
 1422 struct bio *
 1423 cam_iosched_next_trim(struct cam_iosched_softc *isc)
 1424 {
 1425         struct bio *bp;
 1426 
 1427         bp  = bioq_first(&isc->trim_queue);
 1428         if (bp == NULL)
 1429                 return NULL;
 1430         bioq_remove(&isc->trim_queue, bp);
 1431         isc->queued_trims--;
 1432         isc->last_trim_tick = ticks;    /* Reset the tick timer when we take trims */
 1433 #ifdef CAM_IOSCHED_DYNAMIC
 1434         isc->trim_stats.queued--;
 1435         isc->trim_stats.total++;
 1436         isc->trim_stats.pending++;
 1437 #endif
 1438         return bp;
 1439 }
 1440 
 1441 /*
 1442  * gets an available trim from the trim queue, if there's no trim
 1443  * already pending. It removes this trim from the queue and the device
 1444  * must explicitly reinsert it should the need arise.
 1445  *
 1446  * Assumes we're called with the periph lock held.
 1447  */
 1448 struct bio *
 1449 cam_iosched_get_trim(struct cam_iosched_softc *isc)
 1450 {
 1451 #ifdef CAM_IOSCHED_DYNAMIC
 1452         struct bio *bp;
 1453 #endif
 1454 
 1455         if (!cam_iosched_has_more_trim(isc))
 1456                 return NULL;
 1457 #ifdef CAM_IOSCHED_DYNAMIC
 1458         bp  = bioq_first(&isc->trim_queue);
 1459         if (bp == NULL)
 1460                 return NULL;
 1461 
 1462         /*
 1463          * If pending read, prefer that based on current read bias setting. The
 1464          * read bias is shared for both writes and TRIMs, but on TRIMs the bias
 1465          * is for a combined TRIM not a single TRIM request that's come in.
 1466          */
 1467         if (do_dynamic_iosched) {
 1468                 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
 1469                         if (iosched_debug)
 1470                                 printf("Reads present and current_read_bias is %d"
 1471                                     " queued trims %d queued reads %d\n",
 1472                                     isc->current_read_bias, isc->trim_stats.queued,
 1473                                     isc->read_stats.queued);
 1474                         isc->current_read_bias--;
 1475                         /* We're not limiting TRIMS, per se, just doing reads first */
 1476                         return NULL;
 1477                 }
 1478                 /*
 1479                  * We're going to do a trim, so reset the bias.
 1480                  */
 1481                 isc->current_read_bias = isc->read_bias;
 1482         }
 1483 
 1484         /*
 1485          * See if our current limiter allows this I/O. Because we only call this
 1486          * here, and not in next_trim, the 'bandwidth' limits for trims won't
 1487          * work, while the iops or max queued limits will work. It's tricky
 1488          * because we want the limits to be from the perspective of the
 1489          * "commands sent to the device." To make iops work, we need to check
 1490          * only here (since we want all the ops we combine to count as one). To
 1491          * make bw limits work, we'd need to check in next_trim, but that would
 1492          * have the effect of limiting the iops as seen from the upper layers.
 1493          */
 1494         if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) {
 1495                 if (iosched_debug)
 1496                         printf("Can't trim because limiter says no.\n");
 1497                 isc->trim_stats.state_flags |= IOP_RATE_LIMITED;
 1498                 return NULL;
 1499         }
 1500         isc->current_read_bias = isc->read_bias;
 1501         isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED;
 1502         /* cam_iosched_next_trim below keeps proper book */
 1503 #endif
 1504         return cam_iosched_next_trim(isc);
 1505 }
 1506 
 1507 
 1508 #ifdef CAM_IOSCHED_DYNAMIC
 1509 static struct bio *
 1510 bio_next(struct bio *bp)
 1511 {
 1512         bp = TAILQ_NEXT(bp, bio_queue);
 1513         /*
 1514          * After the first commands, the ordered bit terminates
 1515          * our search because BIO_ORDERED acts like a barrier.
 1516          */
 1517         if (bp == NULL || bp->bio_flags & BIO_ORDERED)
 1518                 return NULL;
 1519         return bp;
 1520 }
 1521 
 1522 static bool
 1523 cam_iosched_rate_limited(struct iop_stats *ios)
 1524 {
 1525         return ios->state_flags & IOP_RATE_LIMITED;
 1526 }
 1527 #endif
 1528 
 1529 /*
 1530  * Determine what the next bit of work to do is for the periph. The
 1531  * default implementation looks to see if we have trims to do, but no
 1532  * trims outstanding. If so, we do that. Otherwise we see if we have
 1533  * other work. If we do, then we do that. Otherwise why were we called?
 1534  */
 1535 struct bio *
 1536 cam_iosched_next_bio(struct cam_iosched_softc *isc)
 1537 {
 1538         struct bio *bp;
 1539 
 1540         /*
 1541          * See if we have a trim that can be scheduled. We can only send one
 1542          * at a time down, so this takes that into account.
 1543          *
 1544          * XXX newer TRIM commands are queueable. Revisit this when we
 1545          * implement them.
 1546          */
 1547         if ((bp = cam_iosched_get_trim(isc)) != NULL)
 1548                 return bp;
 1549 
 1550 #ifdef CAM_IOSCHED_DYNAMIC
 1551         /*
 1552          * See if we have any pending writes, room in the queue for them,
 1553          * and no pending reads (unless we've scheduled too many).
 1554          * if so, those are next.
 1555          */
 1556         if (do_dynamic_iosched) {
 1557                 if ((bp = cam_iosched_get_write(isc)) != NULL)
 1558                         return bp;
 1559         }
 1560 #endif
 1561         /*
 1562          * next, see if there's other, normal I/O waiting. If so return that.
 1563          */
 1564 #ifdef CAM_IOSCHED_DYNAMIC
 1565         if (do_dynamic_iosched) {
 1566                 for (bp = bioq_first(&isc->bio_queue); bp != NULL;
 1567                      bp = bio_next(bp)) {
 1568                         /*
 1569                          * For the dynamic scheduler with a read bias, bio_queue
 1570                          * is only for reads. However, without one, all
 1571                          * operations are queued. Enforce limits here for any
 1572                          * operation we find here.
 1573                          */
 1574                         if (bp->bio_cmd == BIO_READ) {
 1575                                 if (cam_iosched_rate_limited(&isc->read_stats) ||
 1576                                     cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
 1577                                         isc->read_stats.state_flags |= IOP_RATE_LIMITED;
 1578                                         continue;
 1579                                 }
 1580                                 isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
 1581                         }
 1582                         /*
 1583                          * There can only be write requests on the queue when
 1584                          * the read bias is 0, but we need to process them
 1585                          * here. We do not assert for read bias == 0, however,
 1586                          * since it is dynamic and we can have WRITE operations
 1587                          * in the queue after we transition from 0 to non-zero.
 1588                          */
 1589                         if (bp->bio_cmd == BIO_WRITE) {
 1590                                 if (cam_iosched_rate_limited(&isc->write_stats) ||
 1591                                     cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
 1592                                         isc->write_stats.state_flags |= IOP_RATE_LIMITED;
 1593                                         continue;
 1594                                 }
 1595                                 isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
 1596                         }
 1597                         /*
 1598                          * here we know we have a bp that's != NULL, that's not rate limited
 1599                          * and can be the next I/O.
 1600                          */
 1601                         break;
 1602                 }
 1603         } else
 1604 #endif
 1605                 bp = bioq_first(&isc->bio_queue);
 1606 
 1607         if (bp == NULL)
 1608                 return (NULL);
 1609         bioq_remove(&isc->bio_queue, bp);
 1610 #ifdef CAM_IOSCHED_DYNAMIC
 1611         if (do_dynamic_iosched) {
 1612                 if (bp->bio_cmd == BIO_READ) {
 1613                         isc->read_stats.queued--;
 1614                         isc->read_stats.total++;
 1615                         isc->read_stats.pending++;
 1616                 } else if (bp->bio_cmd == BIO_WRITE) {
 1617                         isc->write_stats.queued--;
 1618                         isc->write_stats.total++;
 1619                         isc->write_stats.pending++;
 1620                 }
 1621         }
 1622         if (iosched_debug > 9)
 1623                 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
 1624 #endif
 1625         return bp;
 1626 }
 1627 
 1628 /*
 1629  * Driver has been given some work to do by the block layer. Tell the
 1630  * scheduler about it and have it queue the work up. The scheduler module
 1631  * will then return the currently most useful bit of work later, possibly
 1632  * deferring work for various reasons.
 1633  */
 1634 void
 1635 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
 1636 {
 1637 
 1638         /*
 1639          * A BIO_SPEEDUP from the uppper layers means that they have a block
 1640          * shortage. At the present, this is only sent when we're trying to
 1641          * allocate blocks, but have a shortage before giving up. bio_length is
 1642          * the size of their shortage. We will complete just enough BIO_DELETEs
 1643          * in the queue to satisfy the need. If bio_length is 0, we'll complete
 1644          * them all. This allows the scheduler to delay BIO_DELETEs to improve
 1645          * read/write performance without worrying about the upper layers. When
 1646          * it's possibly a problem, we respond by pretending the BIO_DELETEs
 1647          * just worked. We can't do anything about the BIO_DELETEs in the
 1648          * hardware, though. We have to wait for them to complete.
 1649          */
 1650         if (bp->bio_cmd == BIO_SPEEDUP) {
 1651                 off_t len;
 1652                 struct bio *nbp;
 1653 
 1654                 len = 0;
 1655                 while (bioq_first(&isc->trim_queue) &&
 1656                     (bp->bio_length == 0 || len < bp->bio_length)) {
 1657                         nbp = bioq_takefirst(&isc->trim_queue);
 1658                         len += nbp->bio_length;
 1659                         nbp->bio_error = 0;
 1660                         biodone(nbp);
 1661                 }
 1662                 if (bp->bio_length > 0) {
 1663                         if (bp->bio_length > len)
 1664                                 bp->bio_resid = bp->bio_length - len;
 1665                         else
 1666                                 bp->bio_resid = 0;
 1667                 }
 1668                 bp->bio_error = 0;
 1669                 biodone(bp);
 1670                 return;
 1671         }
 1672 
 1673         /*
 1674          * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
 1675          * set the last tick time to one less than the current ticks minus the
 1676          * delay to force the BIO_DELETEs to be presented to the client driver.
 1677          */
 1678         if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
 1679                 isc->last_trim_tick = ticks - isc->trim_ticks - 1;
 1680 
 1681         /*
 1682          * Put all trims on the trim queue. Otherwise put the work on the bio
 1683          * queue.
 1684          */
 1685         if (bp->bio_cmd == BIO_DELETE) {
 1686                 bioq_insert_tail(&isc->trim_queue, bp);
 1687                 if (isc->queued_trims == 0)
 1688                         isc->last_trim_tick = ticks;
 1689                 isc->queued_trims++;
 1690 #ifdef CAM_IOSCHED_DYNAMIC
 1691                 isc->trim_stats.in++;
 1692                 isc->trim_stats.queued++;
 1693 #endif
 1694         }
 1695 #ifdef CAM_IOSCHED_DYNAMIC
 1696         else if (do_dynamic_iosched && isc->read_bias != 0 &&
 1697             (bp->bio_cmd != BIO_READ)) {
 1698                 if (cam_iosched_sort_queue(isc))
 1699                         bioq_disksort(&isc->write_queue, bp);
 1700                 else
 1701                         bioq_insert_tail(&isc->write_queue, bp);
 1702                 if (iosched_debug > 9)
 1703                         printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
 1704                 if (bp->bio_cmd == BIO_WRITE) {
 1705                         isc->write_stats.in++;
 1706                         isc->write_stats.queued++;
 1707                 }
 1708         }
 1709 #endif
 1710         else {
 1711                 if (cam_iosched_sort_queue(isc))
 1712                         bioq_disksort(&isc->bio_queue, bp);
 1713                 else
 1714                         bioq_insert_tail(&isc->bio_queue, bp);
 1715 #ifdef CAM_IOSCHED_DYNAMIC
 1716                 if (iosched_debug > 9)
 1717                         printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
 1718                 if (bp->bio_cmd == BIO_READ) {
 1719                         isc->read_stats.in++;
 1720                         isc->read_stats.queued++;
 1721                 } else if (bp->bio_cmd == BIO_WRITE) {
 1722                         isc->write_stats.in++;
 1723                         isc->write_stats.queued++;
 1724                 }
 1725 #endif
 1726         }
 1727 }
 1728 
 1729 /*
 1730  * If we have work, get it scheduled. Called with the periph lock held.
 1731  */
 1732 void
 1733 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
 1734 {
 1735 
 1736         if (cam_iosched_has_work(isc))
 1737                 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
 1738 }
 1739 
 1740 /*
 1741  * Complete a trim request. Mark that we no longer have one in flight.
 1742  */
 1743 void
 1744 cam_iosched_trim_done(struct cam_iosched_softc *isc)
 1745 {
 1746 
 1747         isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
 1748 }
 1749 
 1750 /*
 1751  * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
 1752  * might use notes in the ccb for statistics.
 1753  */
 1754 int
 1755 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
 1756     union ccb *done_ccb)
 1757 {
 1758         int retval = 0;
 1759 #ifdef CAM_IOSCHED_DYNAMIC
 1760         if (!do_dynamic_iosched)
 1761                 return retval;
 1762 
 1763         if (iosched_debug > 10)
 1764                 printf("done: %p %#x\n", bp, bp->bio_cmd);
 1765         if (bp->bio_cmd == BIO_WRITE) {
 1766                 retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
 1767                 if ((bp->bio_flags & BIO_ERROR) != 0)
 1768                         isc->write_stats.errs++;
 1769                 isc->write_stats.out++;
 1770                 isc->write_stats.pending--;
 1771         } else if (bp->bio_cmd == BIO_READ) {
 1772                 retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
 1773                 if ((bp->bio_flags & BIO_ERROR) != 0)
 1774                         isc->read_stats.errs++;
 1775                 isc->read_stats.out++;
 1776                 isc->read_stats.pending--;
 1777         } else if (bp->bio_cmd == BIO_DELETE) {
 1778                 if ((bp->bio_flags & BIO_ERROR) != 0)
 1779                         isc->trim_stats.errs++;
 1780                 isc->trim_stats.out++;
 1781                 isc->trim_stats.pending--;
 1782         } else if (bp->bio_cmd != BIO_FLUSH) {
 1783                 if (iosched_debug)
 1784                         printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
 1785         }
 1786 
 1787         if ((bp->bio_flags & BIO_ERROR) == 0 && done_ccb != NULL &&
 1788             (done_ccb->ccb_h.status & CAM_QOS_VALID) != 0) {
 1789                 sbintime_t sim_latency;
 1790                 
 1791                 sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
 1792                 
 1793                 cam_iosched_io_metric_update(isc, sim_latency,
 1794                     bp->bio_cmd, bp->bio_bcount);
 1795                 /*
 1796                  * Debugging code: allow callbacks to the periph driver when latency max
 1797                  * is exceeded. This can be useful for triggering external debugging actions.
 1798                  */
 1799                 if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
 1800                         isc->latfcn(isc->latarg, sim_latency, bp);
 1801         }
 1802                 
 1803 #endif
 1804         return retval;
 1805 }
 1806 
 1807 /*
 1808  * Tell the io scheduler that you've pushed a trim down into the sim.
 1809  * This also tells the I/O scheduler not to push any more trims down, so
 1810  * some periphs do not call it if they can cope with multiple trims in flight.
 1811  */
 1812 void
 1813 cam_iosched_submit_trim(struct cam_iosched_softc *isc)
 1814 {
 1815 
 1816         isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
 1817 }
 1818 
 1819 /*
 1820  * Change the sorting policy hint for I/O transactions for this device.
 1821  */
 1822 void
 1823 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
 1824 {
 1825 
 1826         isc->sort_io_queue = val;
 1827 }
 1828 
 1829 int
 1830 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
 1831 {
 1832         return isc->flags & flags;
 1833 }
 1834 
 1835 void
 1836 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
 1837 {
 1838         isc->flags |= flags;
 1839 }
 1840 
 1841 void
 1842 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
 1843 {
 1844         isc->flags &= ~flags;
 1845 }
 1846 
 1847 #ifdef CAM_IOSCHED_DYNAMIC
 1848 /*
 1849  * After the method presented in Jack Crenshaw's 1998 article "Integer
 1850  * Square Roots," reprinted at
 1851  * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
 1852  * and well worth the read. Briefly, we find the power of 4 that's the
 1853  * largest smaller than val. We then check each smaller power of 4 to
 1854  * see if val is still bigger. The right shifts at each step divide
 1855  * the result by 2 which after successive application winds up
 1856  * accumulating the right answer. It could also have been accumulated
 1857  * using a separate root counter, but this code is smaller and faster
 1858  * than that method. This method is also integer size invariant.
 1859  * It returns floor(sqrt((float)val)), or the largest integer less than
 1860  * or equal to the square root.
 1861  */
 1862 static uint64_t
 1863 isqrt64(uint64_t val)
 1864 {
 1865         uint64_t res = 0;
 1866         uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
 1867 
 1868         /*
 1869          * Find the largest power of 4 smaller than val.
 1870          */
 1871         while (bit > val)
 1872                 bit >>= 2;
 1873 
 1874         /*
 1875          * Accumulate the answer, one bit at a time (we keep moving
 1876          * them over since 2 is the square root of 4 and we test
 1877          * powers of 4). We accumulate where we find the bit, but
 1878          * the successive shifts land the bit in the right place
 1879          * by the end.
 1880          */
 1881         while (bit != 0) {
 1882                 if (val >= res + bit) {
 1883                         val -= res + bit;
 1884                         res = (res >> 1) + bit;
 1885                 } else
 1886                         res >>= 1;
 1887                 bit >>= 2;
 1888         }
 1889 
 1890         return res;
 1891 }
 1892 
 1893 static sbintime_t latencies[LAT_BUCKETS - 1] = {
 1894         BUCKET_BASE <<  0,      /* 20us */
 1895         BUCKET_BASE <<  1,
 1896         BUCKET_BASE <<  2,
 1897         BUCKET_BASE <<  3,
 1898         BUCKET_BASE <<  4,
 1899         BUCKET_BASE <<  5,
 1900         BUCKET_BASE <<  6,
 1901         BUCKET_BASE <<  7,
 1902         BUCKET_BASE <<  8,
 1903         BUCKET_BASE <<  9,
 1904         BUCKET_BASE << 10,
 1905         BUCKET_BASE << 11,
 1906         BUCKET_BASE << 12,
 1907         BUCKET_BASE << 13,
 1908         BUCKET_BASE << 14,
 1909         BUCKET_BASE << 15,
 1910         BUCKET_BASE << 16,
 1911         BUCKET_BASE << 17,
 1912         BUCKET_BASE << 18       /* 5,242,880us */
 1913 };
 1914 
 1915 static void
 1916 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
 1917 {
 1918         sbintime_t y, deltasq, delta;
 1919         int i;
 1920 
 1921         /*
 1922          * Keep counts for latency. We do it by power of two buckets.
 1923          * This helps us spot outlier behavior obscured by averages.
 1924          */
 1925         for (i = 0; i < LAT_BUCKETS - 1; i++) {
 1926                 if (sim_latency < latencies[i]) {
 1927                         iop->latencies[i]++;
 1928                         break;
 1929                 }
 1930         }
 1931         if (i == LAT_BUCKETS - 1)
 1932                 iop->latencies[i]++;     /* Put all > 8192ms values into the last bucket. */
 1933 
 1934         /*
 1935          * Classic exponentially decaying average with a tiny alpha
 1936          * (2 ^ -alpha_bits). For more info see the NIST statistical
 1937          * handbook.
 1938          *
 1939          * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)          [nist]
 1940          * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
 1941          * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
 1942          * alpha = 1 / (1 << alpha_bits)
 1943          * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
 1944          *      = y_t/b - e/b + be/b
 1945          *      = (y_t - e + be) / b
 1946          *      = (e + d) / b
 1947          *
 1948          * Since alpha is a power of two, we can compute this w/o any mult or
 1949          * division.
 1950          *
 1951          * Variance can also be computed. Usually, it would be expressed as follows:
 1952          *      diff_t = y_t - ema_t-1
 1953          *      emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
 1954          *        = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
 1955          * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
 1956          *        = e - e/b + dd/b + dd/bb
 1957          *        = (bbe - be + bdd + dd) / bb
 1958          *        = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
 1959          */
 1960         /*
 1961          * XXX possible numeric issues
 1962          *      o We assume right shifted integers do the right thing, since that's
 1963          *        implementation defined. You can change the right shifts to / (1LL << alpha).
 1964          *      o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
 1965          *        for emvar. This puts a ceiling of 13 bits on alpha since we need a
 1966          *        few tens of seconds of representation.
 1967          *      o We mitigate alpha issues by never setting it too high.
 1968          */
 1969         y = sim_latency;
 1970         delta = (y - iop->ema);                                 /* d */
 1971         iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
 1972 
 1973         /*
 1974          * Were we to naively plow ahead at this point, we wind up with many numerical
 1975          * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
 1976          * us with microsecond level precision in the input, so the same in the
 1977          * output. It means we can't overflow deltasq unless delta > 4k seconds. It
 1978          * also means that emvar can be up 46 bits 40 of which are fraction, which
 1979          * gives us a way to measure up to ~8s in the SD before the computation goes
 1980          * unstable. Even the worst hard disk rarely has > 1s service time in the
 1981          * drive. It does mean we have to shift left 12 bits after taking the
 1982          * square root to compute the actual standard deviation estimate. This loss of
 1983          * precision is preferable to needing int128 types to work. The above numbers
 1984          * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
 1985          * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
 1986          */
 1987         delta >>= 12;
 1988         deltasq = delta * delta;                                /* dd */
 1989         iop->emvar = ((iop->emvar << (2 * alpha_bits)) +        /* bbe */
 1990             ((deltasq - iop->emvar) << alpha_bits) +            /* b(dd-e) */
 1991             deltasq)                                            /* dd */
 1992             >> (2 * alpha_bits);                                /* div bb */
 1993         iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
 1994 }
 1995 
 1996 static void
 1997 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
 1998     sbintime_t sim_latency, int cmd, size_t size)
 1999 {
 2000         /* xxx Do we need to scale based on the size of the I/O ? */
 2001         switch (cmd) {
 2002         case BIO_READ:
 2003                 cam_iosched_update(&isc->read_stats, sim_latency);
 2004                 break;
 2005         case BIO_WRITE:
 2006                 cam_iosched_update(&isc->write_stats, sim_latency);
 2007                 break;
 2008         case BIO_DELETE:
 2009                 cam_iosched_update(&isc->trim_stats, sim_latency);
 2010                 break;
 2011         default:
 2012                 break;
 2013         }
 2014 }
 2015 
 2016 #ifdef DDB
 2017 static int biolen(struct bio_queue_head *bq)
 2018 {
 2019         int i = 0;
 2020         struct bio *bp;
 2021 
 2022         TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
 2023                 i++;
 2024         }
 2025         return i;
 2026 }
 2027 
 2028 /*
 2029  * Show the internal state of the I/O scheduler.
 2030  */
 2031 DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
 2032 {
 2033         struct cam_iosched_softc *isc;
 2034 
 2035         if (!have_addr) {
 2036                 db_printf("Need addr\n");
 2037                 return;
 2038         }
 2039         isc = (struct cam_iosched_softc *)addr;
 2040         db_printf("pending_reads:     %d\n", isc->read_stats.pending);
 2041         db_printf("min_reads:         %d\n", isc->read_stats.min);
 2042         db_printf("max_reads:         %d\n", isc->read_stats.max);
 2043         db_printf("reads:             %d\n", isc->read_stats.total);
 2044         db_printf("in_reads:          %d\n", isc->read_stats.in);
 2045         db_printf("out_reads:         %d\n", isc->read_stats.out);
 2046         db_printf("queued_reads:      %d\n", isc->read_stats.queued);
 2047         db_printf("Read Q len         %d\n", biolen(&isc->bio_queue));
 2048         db_printf("pending_writes:    %d\n", isc->write_stats.pending);
 2049         db_printf("min_writes:        %d\n", isc->write_stats.min);
 2050         db_printf("max_writes:        %d\n", isc->write_stats.max);
 2051         db_printf("writes:            %d\n", isc->write_stats.total);
 2052         db_printf("in_writes:         %d\n", isc->write_stats.in);
 2053         db_printf("out_writes:        %d\n", isc->write_stats.out);
 2054         db_printf("queued_writes:     %d\n", isc->write_stats.queued);
 2055         db_printf("Write Q len        %d\n", biolen(&isc->write_queue));
 2056         db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
 2057         db_printf("min_trims:         %d\n", isc->trim_stats.min);
 2058         db_printf("max_trims:         %d\n", isc->trim_stats.max);
 2059         db_printf("trims:             %d\n", isc->trim_stats.total);
 2060         db_printf("in_trims:          %d\n", isc->trim_stats.in);
 2061         db_printf("out_trims:         %d\n", isc->trim_stats.out);
 2062         db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
 2063         db_printf("Trim Q len         %d\n", biolen(&isc->trim_queue));
 2064         db_printf("read_bias:         %d\n", isc->read_bias);
 2065         db_printf("current_read_bias: %d\n", isc->current_read_bias);
 2066         db_printf("Trim active?       %s\n",
 2067             (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
 2068 }
 2069 #endif
 2070 #endif

Cache object: d1ede4455331547a8542508211e35f74


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.