FreeBSD/Linux Kernel Cross Reference
sys/cam/cam_iosched.c
1 /*-
2 * CAM IO Scheduler Interface
3 *
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 2015 Netflix, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: releng/12.0/sys/cam/cam_iosched.c 337824 2018-08-15 00:15:40Z imp $
30 */
31
32 #include "opt_cam.h"
33 #include "opt_ddb.h"
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD: releng/12.0/sys/cam/cam_iosched.c 337824 2018-08-15 00:15:40Z imp $");
37
38 #include <sys/param.h>
39
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/bio.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/sbuf.h>
47 #include <sys/sysctl.h>
48
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_periph.h>
52 #include <cam/cam_xpt_periph.h>
53 #include <cam/cam_xpt_internal.h>
54 #include <cam/cam_iosched.h>
55
56 #include <ddb/ddb.h>
57
58 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
59 "CAM I/O Scheduler buffers");
60
61 /*
62 * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
63 * over the bioq_* interface, with notions of separate calls for normal I/O and
64 * for trims.
65 *
66 * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
67 * steer the rate of one type of traffic to help other types of traffic (eg
68 * limit writes when read latency deteriorates on SSDs).
69 */
70
71 #ifdef CAM_IOSCHED_DYNAMIC
72
73 static int do_dynamic_iosched = 1;
74 TUNABLE_INT("kern.cam.do_dynamic_iosched", &do_dynamic_iosched);
75 SYSCTL_INT(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD,
76 &do_dynamic_iosched, 1,
77 "Enable Dynamic I/O scheduler optimizations.");
78
79 /*
80 * For an EMA, with an alpha of alpha, we know
81 * alpha = 2 / (N + 1)
82 * or
83 * N = 1 + (2 / alpha)
84 * where N is the number of samples that 86% of the current
85 * EMA is derived from.
86 *
87 * So we invent[*] alpha_bits:
88 * alpha_bits = -log_2(alpha)
89 * alpha = 2^-alpha_bits
90 * So
91 * N = 1 + 2^(alpha_bits + 1)
92 *
93 * The default 9 gives a 1025 lookback for 86% of the data.
94 * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
95 *
96 * [*] Steal from the load average code and many other places.
97 * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
98 */
99 static int alpha_bits = 9;
100 TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
101 SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
102 &alpha_bits, 1,
103 "Bits in EMA's alpha.");
104
105 struct iop_stats;
106 struct cam_iosched_softc;
107
108 int iosched_debug = 0;
109
110 typedef enum {
111 none = 0, /* No limits */
112 queue_depth, /* Limit how many ops we queue to SIM */
113 iops, /* Limit # of IOPS to the drive */
114 bandwidth, /* Limit bandwidth to the drive */
115 limiter_max
116 } io_limiter;
117
118 static const char *cam_iosched_limiter_names[] =
119 { "none", "queue_depth", "iops", "bandwidth" };
120
121 /*
122 * Called to initialize the bits of the iop_stats structure relevant to the
123 * limiter. Called just after the limiter is set.
124 */
125 typedef int l_init_t(struct iop_stats *);
126
127 /*
128 * Called every tick.
129 */
130 typedef int l_tick_t(struct iop_stats *);
131
132 /*
133 * Called to see if the limiter thinks this IOP can be allowed to
134 * proceed. If so, the limiter assumes that the IOP proceeded
135 * and makes any accounting of it that's needed.
136 */
137 typedef int l_iop_t(struct iop_stats *, struct bio *);
138
139 /*
140 * Called when an I/O completes so the limiter can update its
141 * accounting. Pending I/Os may complete in any order (even when
142 * sent to the hardware at the same time), so the limiter may not
143 * make any assumptions other than this I/O has completed. If it
144 * returns 1, then xpt_schedule() needs to be called again.
145 */
146 typedef int l_iodone_t(struct iop_stats *, struct bio *);
147
148 static l_iop_t cam_iosched_qd_iop;
149 static l_iop_t cam_iosched_qd_caniop;
150 static l_iodone_t cam_iosched_qd_iodone;
151
152 static l_init_t cam_iosched_iops_init;
153 static l_tick_t cam_iosched_iops_tick;
154 static l_iop_t cam_iosched_iops_caniop;
155 static l_iop_t cam_iosched_iops_iop;
156
157 static l_init_t cam_iosched_bw_init;
158 static l_tick_t cam_iosched_bw_tick;
159 static l_iop_t cam_iosched_bw_caniop;
160 static l_iop_t cam_iosched_bw_iop;
161
162 struct limswitch {
163 l_init_t *l_init;
164 l_tick_t *l_tick;
165 l_iop_t *l_iop;
166 l_iop_t *l_caniop;
167 l_iodone_t *l_iodone;
168 } limsw[] =
169 {
170 { /* none */
171 .l_init = NULL,
172 .l_tick = NULL,
173 .l_iop = NULL,
174 .l_iodone= NULL,
175 },
176 { /* queue_depth */
177 .l_init = NULL,
178 .l_tick = NULL,
179 .l_caniop = cam_iosched_qd_caniop,
180 .l_iop = cam_iosched_qd_iop,
181 .l_iodone= cam_iosched_qd_iodone,
182 },
183 { /* iops */
184 .l_init = cam_iosched_iops_init,
185 .l_tick = cam_iosched_iops_tick,
186 .l_caniop = cam_iosched_iops_caniop,
187 .l_iop = cam_iosched_iops_iop,
188 .l_iodone= NULL,
189 },
190 { /* bandwidth */
191 .l_init = cam_iosched_bw_init,
192 .l_tick = cam_iosched_bw_tick,
193 .l_caniop = cam_iosched_bw_caniop,
194 .l_iop = cam_iosched_bw_iop,
195 .l_iodone= NULL,
196 },
197 };
198
199 struct iop_stats {
200 /*
201 * sysctl state for this subnode.
202 */
203 struct sysctl_ctx_list sysctl_ctx;
204 struct sysctl_oid *sysctl_tree;
205
206 /*
207 * Information about the current rate limiters, if any
208 */
209 io_limiter limiter; /* How are I/Os being limited */
210 int min; /* Low range of limit */
211 int max; /* High range of limit */
212 int current; /* Current rate limiter */
213 int l_value1; /* per-limiter scratch value 1. */
214 int l_value2; /* per-limiter scratch value 2. */
215
216 /*
217 * Debug information about counts of I/Os that have gone through the
218 * scheduler.
219 */
220 int pending; /* I/Os pending in the hardware */
221 int queued; /* number currently in the queue */
222 int total; /* Total for all time -- wraps */
223 int in; /* number queued all time -- wraps */
224 int out; /* number completed all time -- wraps */
225 int errs; /* Number of I/Os completed with error -- wraps */
226
227 /*
228 * Statistics on different bits of the process.
229 */
230 /* Exp Moving Average, see alpha_bits for more details */
231 sbintime_t ema;
232 sbintime_t emvar;
233 sbintime_t sd; /* Last computed sd */
234
235 uint32_t state_flags;
236 #define IOP_RATE_LIMITED 1u
237
238 #define LAT_BUCKETS 15 /* < 1ms < 2ms ... < 2^(n-1)ms >= 2^(n-1)ms*/
239 uint64_t latencies[LAT_BUCKETS];
240
241 struct cam_iosched_softc *softc;
242 };
243
244
245 typedef enum {
246 set_max = 0, /* current = max */
247 read_latency, /* Steer read latency by throttling writes */
248 cl_max /* Keep last */
249 } control_type;
250
251 static const char *cam_iosched_control_type_names[] =
252 { "set_max", "read_latency" };
253
254 struct control_loop {
255 /*
256 * sysctl state for this subnode.
257 */
258 struct sysctl_ctx_list sysctl_ctx;
259 struct sysctl_oid *sysctl_tree;
260
261 sbintime_t next_steer; /* Time of next steer */
262 sbintime_t steer_interval; /* How often do we steer? */
263 sbintime_t lolat;
264 sbintime_t hilat;
265 int alpha;
266 control_type type; /* What type of control? */
267 int last_count; /* Last I/O count */
268
269 struct cam_iosched_softc *softc;
270 };
271
272 #endif
273
274 struct cam_iosched_softc {
275 struct bio_queue_head bio_queue;
276 struct bio_queue_head trim_queue;
277 /* scheduler flags < 16, user flags >= 16 */
278 uint32_t flags;
279 int sort_io_queue;
280 #ifdef CAM_IOSCHED_DYNAMIC
281 int read_bias; /* Read bias setting */
282 int current_read_bias; /* Current read bias state */
283 int total_ticks;
284 int load; /* EMA of 'load average' of disk / 2^16 */
285
286 struct bio_queue_head write_queue;
287 struct iop_stats read_stats, write_stats, trim_stats;
288 struct sysctl_ctx_list sysctl_ctx;
289 struct sysctl_oid *sysctl_tree;
290
291 int quanta; /* Number of quanta per second */
292 struct callout ticker; /* Callout for our quota system */
293 struct cam_periph *periph; /* cam periph associated with this device */
294 uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */
295 sbintime_t last_time; /* Last time we ticked */
296 struct control_loop cl;
297 #endif
298 };
299
300 #ifdef CAM_IOSCHED_DYNAMIC
301 /*
302 * helper functions to call the limsw functions.
303 */
304 static int
305 cam_iosched_limiter_init(struct iop_stats *ios)
306 {
307 int lim = ios->limiter;
308
309 /* maybe this should be a kassert */
310 if (lim < none || lim >= limiter_max)
311 return EINVAL;
312
313 if (limsw[lim].l_init)
314 return limsw[lim].l_init(ios);
315
316 return 0;
317 }
318
319 static int
320 cam_iosched_limiter_tick(struct iop_stats *ios)
321 {
322 int lim = ios->limiter;
323
324 /* maybe this should be a kassert */
325 if (lim < none || lim >= limiter_max)
326 return EINVAL;
327
328 if (limsw[lim].l_tick)
329 return limsw[lim].l_tick(ios);
330
331 return 0;
332 }
333
334 static int
335 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
336 {
337 int lim = ios->limiter;
338
339 /* maybe this should be a kassert */
340 if (lim < none || lim >= limiter_max)
341 return EINVAL;
342
343 if (limsw[lim].l_iop)
344 return limsw[lim].l_iop(ios, bp);
345
346 return 0;
347 }
348
349 static int
350 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
351 {
352 int lim = ios->limiter;
353
354 /* maybe this should be a kassert */
355 if (lim < none || lim >= limiter_max)
356 return EINVAL;
357
358 if (limsw[lim].l_caniop)
359 return limsw[lim].l_caniop(ios, bp);
360
361 return 0;
362 }
363
364 static int
365 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
366 {
367 int lim = ios->limiter;
368
369 /* maybe this should be a kassert */
370 if (lim < none || lim >= limiter_max)
371 return 0;
372
373 if (limsw[lim].l_iodone)
374 return limsw[lim].l_iodone(ios, bp);
375
376 return 0;
377 }
378
379 /*
380 * Functions to implement the different kinds of limiters
381 */
382
383 static int
384 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
385 {
386
387 if (ios->current <= 0 || ios->pending < ios->current)
388 return 0;
389
390 return EAGAIN;
391 }
392
393 static int
394 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
395 {
396
397 if (ios->current <= 0 || ios->pending < ios->current)
398 return 0;
399
400 return EAGAIN;
401 }
402
403 static int
404 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
405 {
406
407 if (ios->current <= 0 || ios->pending != ios->current)
408 return 0;
409
410 return 1;
411 }
412
413 static int
414 cam_iosched_iops_init(struct iop_stats *ios)
415 {
416
417 ios->l_value1 = ios->current / ios->softc->quanta;
418 if (ios->l_value1 <= 0)
419 ios->l_value1 = 1;
420 ios->l_value2 = 0;
421
422 return 0;
423 }
424
425 static int
426 cam_iosched_iops_tick(struct iop_stats *ios)
427 {
428 int new_ios;
429
430 /*
431 * Allow at least one IO per tick until all
432 * the IOs for this interval have been spent.
433 */
434 new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
435 if (new_ios < 1 && ios->l_value2 < ios->current) {
436 new_ios = 1;
437 ios->l_value2++;
438 }
439
440 /*
441 * If this a new accounting interval, discard any "unspent" ios
442 * granted in the previous interval. Otherwise add the new ios to
443 * the previously granted ones that haven't been spent yet.
444 */
445 if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
446 ios->l_value1 = new_ios;
447 ios->l_value2 = 1;
448 } else {
449 ios->l_value1 += new_ios;
450 }
451
452
453 return 0;
454 }
455
456 static int
457 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
458 {
459
460 /*
461 * So if we have any more IOPs left, allow it,
462 * otherwise wait. If current iops is 0, treat that
463 * as unlimited as a failsafe.
464 */
465 if (ios->current > 0 && ios->l_value1 <= 0)
466 return EAGAIN;
467 return 0;
468 }
469
470 static int
471 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
472 {
473 int rv;
474
475 rv = cam_iosched_limiter_caniop(ios, bp);
476 if (rv == 0)
477 ios->l_value1--;
478
479 return rv;
480 }
481
482 static int
483 cam_iosched_bw_init(struct iop_stats *ios)
484 {
485
486 /* ios->current is in kB/s, so scale to bytes */
487 ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
488
489 return 0;
490 }
491
492 static int
493 cam_iosched_bw_tick(struct iop_stats *ios)
494 {
495 int bw;
496
497 /*
498 * If we're in the hole for available quota from
499 * the last time, then add the quantum for this.
500 * If we have any left over from last quantum,
501 * then too bad, that's lost. Also, ios->current
502 * is in kB/s, so scale.
503 *
504 * We also allow up to 4 quanta of credits to
505 * accumulate to deal with burstiness. 4 is extremely
506 * arbitrary.
507 */
508 bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
509 if (ios->l_value1 < bw * 4)
510 ios->l_value1 += bw;
511
512 return 0;
513 }
514
515 static int
516 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
517 {
518 /*
519 * So if we have any more bw quota left, allow it,
520 * otherwise wait. Note, we'll go negative and that's
521 * OK. We'll just get a little less next quota.
522 *
523 * Note on going negative: that allows us to process
524 * requests in order better, since we won't allow
525 * shorter reads to get around the long one that we
526 * don't have the quota to do just yet. It also prevents
527 * starvation by being a little more permissive about
528 * what we let through this quantum (to prevent the
529 * starvation), at the cost of getting a little less
530 * next quantum.
531 *
532 * Also note that if the current limit is <= 0,
533 * we treat it as unlimited as a failsafe.
534 */
535 if (ios->current > 0 && ios->l_value1 <= 0)
536 return EAGAIN;
537
538
539 return 0;
540 }
541
542 static int
543 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
544 {
545 int rv;
546
547 rv = cam_iosched_limiter_caniop(ios, bp);
548 if (rv == 0)
549 ios->l_value1 -= bp->bio_length;
550
551 return rv;
552 }
553
554 static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
555
556 static void
557 cam_iosched_ticker(void *arg)
558 {
559 struct cam_iosched_softc *isc = arg;
560 sbintime_t now, delta;
561 int pending;
562
563 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
564
565 now = sbinuptime();
566 delta = now - isc->last_time;
567 isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */
568 isc->last_time = now;
569
570 cam_iosched_cl_maybe_steer(&isc->cl);
571
572 cam_iosched_limiter_tick(&isc->read_stats);
573 cam_iosched_limiter_tick(&isc->write_stats);
574 cam_iosched_limiter_tick(&isc->trim_stats);
575
576 cam_iosched_schedule(isc, isc->periph);
577
578 /*
579 * isc->load is an EMA of the pending I/Os at each tick. The number of
580 * pending I/Os is the sum of the I/Os queued to the hardware, and those
581 * in the software queue that could be queued to the hardware if there
582 * were slots.
583 *
584 * ios_stats.pending is a count of requests in the SIM right now for
585 * each of these types of I/O. So the total pending count is the sum of
586 * these I/Os and the sum of the queued I/Os still in the software queue
587 * for those operations that aren't being rate limited at the moment.
588 *
589 * The reason for the rate limiting bit is because those I/Os
590 * aren't part of the software queued load (since we could
591 * give them to hardware, but choose not to).
592 *
593 * Note: due to a bug in counting pending TRIM in the device, we
594 * don't include them in this count. We count each BIO_DELETE in
595 * the pending count, but the periph drivers collapse them down
596 * into one TRIM command. That one trim command gets the completion
597 * so the counts get off.
598 */
599 pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
600 pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
601 !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
602 !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
603 pending <<= 16;
604 pending /= isc->periph->path->device->ccbq.total_openings;
605
606 isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
607
608 isc->total_ticks++;
609 }
610
611
612 static void
613 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
614 {
615
616 clp->next_steer = sbinuptime();
617 clp->softc = isc;
618 clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */
619 clp->lolat = 5 * SBT_1MS;
620 clp->hilat = 15 * SBT_1MS;
621 clp->alpha = 20; /* Alpha == gain. 20 = .2 */
622 clp->type = set_max;
623 }
624
625 static void
626 cam_iosched_cl_maybe_steer(struct control_loop *clp)
627 {
628 struct cam_iosched_softc *isc;
629 sbintime_t now, lat;
630 int old;
631
632 isc = clp->softc;
633 now = isc->last_time;
634 if (now < clp->next_steer)
635 return;
636
637 clp->next_steer = now + clp->steer_interval;
638 switch (clp->type) {
639 case set_max:
640 if (isc->write_stats.current != isc->write_stats.max)
641 printf("Steering write from %d kBps to %d kBps\n",
642 isc->write_stats.current, isc->write_stats.max);
643 isc->read_stats.current = isc->read_stats.max;
644 isc->write_stats.current = isc->write_stats.max;
645 isc->trim_stats.current = isc->trim_stats.max;
646 break;
647 case read_latency:
648 old = isc->write_stats.current;
649 lat = isc->read_stats.ema;
650 /*
651 * Simple PLL-like engine. Since we're steering to a range for
652 * the SP (set point) that makes things a little more
653 * complicated. In addition, we're not directly controlling our
654 * PV (process variable), the read latency, but instead are
655 * manipulating the write bandwidth limit for our MV
656 * (manipulation variable), analysis of this code gets a bit
657 * messy. Also, the MV is a very noisy control surface for read
658 * latency since it is affected by many hidden processes inside
659 * the device which change how responsive read latency will be
660 * in reaction to changes in write bandwidth. Unlike the classic
661 * boiler control PLL. this may result in over-steering while
662 * the SSD takes its time to react to the new, lower load. This
663 * is why we use a relatively low alpha of between .1 and .25 to
664 * compensate for this effect. At .1, it takes ~22 steering
665 * intervals to back off by a factor of 10. At .2 it only takes
666 * ~10. At .25 it only takes ~8. However some preliminary data
667 * from the SSD drives suggests a reasponse time in 10's of
668 * seconds before latency drops regardless of the new write
669 * rate. Careful observation will be required to tune this
670 * effectively.
671 *
672 * Also, when there's no read traffic, we jack up the write
673 * limit too regardless of the last read latency. 10 is
674 * somewhat arbitrary.
675 */
676 if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
677 isc->write_stats.current = isc->write_stats.current *
678 (100 + clp->alpha) / 100; /* Scale up */
679 else if (lat > clp->hilat)
680 isc->write_stats.current = isc->write_stats.current *
681 (100 - clp->alpha) / 100; /* Scale down */
682 clp->last_count = isc->read_stats.total;
683
684 /*
685 * Even if we don't steer, per se, enforce the min/max limits as
686 * those may have changed.
687 */
688 if (isc->write_stats.current < isc->write_stats.min)
689 isc->write_stats.current = isc->write_stats.min;
690 if (isc->write_stats.current > isc->write_stats.max)
691 isc->write_stats.current = isc->write_stats.max;
692 if (old != isc->write_stats.current && iosched_debug)
693 printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
694 old, isc->write_stats.current,
695 (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
696 break;
697 case cl_max:
698 break;
699 }
700 }
701 #endif
702
703 /*
704 * Trim or similar currently pending completion. Should only be set for
705 * those drivers wishing only one Trim active at a time.
706 */
707 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0)
708 /* Callout active, and needs to be torn down */
709 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
710
711 /* Periph drivers set these flags to indicate work */
712 #define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16)
713
714 #ifdef CAM_IOSCHED_DYNAMIC
715 static void
716 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
717 sbintime_t sim_latency, int cmd, size_t size);
718 #endif
719
720 static inline bool
721 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
722 {
723 return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
724 }
725
726 static inline bool
727 cam_iosched_has_io(struct cam_iosched_softc *isc)
728 {
729 #ifdef CAM_IOSCHED_DYNAMIC
730 if (do_dynamic_iosched) {
731 struct bio *rbp = bioq_first(&isc->bio_queue);
732 struct bio *wbp = bioq_first(&isc->write_queue);
733 bool can_write = wbp != NULL &&
734 cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
735 bool can_read = rbp != NULL &&
736 cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
737 if (iosched_debug > 2) {
738 printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
739 printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
740 printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
741 }
742 return can_read || can_write;
743 }
744 #endif
745 return bioq_first(&isc->bio_queue) != NULL;
746 }
747
748 static inline bool
749 cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
750 {
751 return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) &&
752 bioq_first(&isc->trim_queue);
753 }
754
755 #define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \
756 (isc)->sort_io_queue : cam_sort_io_queues)
757
758
759 static inline bool
760 cam_iosched_has_work(struct cam_iosched_softc *isc)
761 {
762 #ifdef CAM_IOSCHED_DYNAMIC
763 if (iosched_debug > 2)
764 printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
765 cam_iosched_has_more_trim(isc),
766 cam_iosched_has_flagged_work(isc));
767 #endif
768
769 return cam_iosched_has_io(isc) ||
770 cam_iosched_has_more_trim(isc) ||
771 cam_iosched_has_flagged_work(isc);
772 }
773
774 #ifdef CAM_IOSCHED_DYNAMIC
775 static void
776 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
777 {
778
779 ios->limiter = none;
780 ios->in = 0;
781 ios->max = ios->current = 300000;
782 ios->min = 1;
783 ios->out = 0;
784 ios->errs = 0;
785 ios->pending = 0;
786 ios->queued = 0;
787 ios->total = 0;
788 ios->ema = 0;
789 ios->emvar = 0;
790 ios->softc = isc;
791 cam_iosched_limiter_init(ios);
792 }
793
794 static int
795 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
796 {
797 char buf[16];
798 struct iop_stats *ios;
799 struct cam_iosched_softc *isc;
800 int value, i, error;
801 const char *p;
802
803 ios = arg1;
804 isc = ios->softc;
805 value = ios->limiter;
806 if (value < none || value >= limiter_max)
807 p = "UNKNOWN";
808 else
809 p = cam_iosched_limiter_names[value];
810
811 strlcpy(buf, p, sizeof(buf));
812 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
813 if (error != 0 || req->newptr == NULL)
814 return error;
815
816 cam_periph_lock(isc->periph);
817
818 for (i = none; i < limiter_max; i++) {
819 if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
820 continue;
821 ios->limiter = i;
822 error = cam_iosched_limiter_init(ios);
823 if (error != 0) {
824 ios->limiter = value;
825 cam_periph_unlock(isc->periph);
826 return error;
827 }
828 /* Note: disk load averate requires ticker to be always running */
829 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
830 isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
831
832 cam_periph_unlock(isc->periph);
833 return 0;
834 }
835
836 cam_periph_unlock(isc->periph);
837 return EINVAL;
838 }
839
840 static int
841 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
842 {
843 char buf[16];
844 struct control_loop *clp;
845 struct cam_iosched_softc *isc;
846 int value, i, error;
847 const char *p;
848
849 clp = arg1;
850 isc = clp->softc;
851 value = clp->type;
852 if (value < none || value >= cl_max)
853 p = "UNKNOWN";
854 else
855 p = cam_iosched_control_type_names[value];
856
857 strlcpy(buf, p, sizeof(buf));
858 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
859 if (error != 0 || req->newptr == NULL)
860 return error;
861
862 for (i = set_max; i < cl_max; i++) {
863 if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
864 continue;
865 cam_periph_lock(isc->periph);
866 clp->type = i;
867 cam_periph_unlock(isc->periph);
868 return 0;
869 }
870
871 return EINVAL;
872 }
873
874 static int
875 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
876 {
877 char buf[16];
878 sbintime_t value;
879 int error;
880 uint64_t us;
881
882 value = *(sbintime_t *)arg1;
883 us = (uint64_t)value / SBT_1US;
884 snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
885 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
886 if (error != 0 || req->newptr == NULL)
887 return error;
888 us = strtoul(buf, NULL, 10);
889 if (us == 0)
890 return EINVAL;
891 *(sbintime_t *)arg1 = us * SBT_1US;
892 return 0;
893 }
894
895 static int
896 cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
897 {
898 int i, error;
899 struct sbuf sb;
900 uint64_t *latencies;
901
902 latencies = arg1;
903 sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
904
905 for (i = 0; i < LAT_BUCKETS - 1; i++)
906 sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
907 sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
908 error = sbuf_finish(&sb);
909 sbuf_delete(&sb);
910
911 return (error);
912 }
913
914 static int
915 cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
916 {
917 int *quanta;
918 int error, value;
919
920 quanta = (unsigned *)arg1;
921 value = *quanta;
922
923 error = sysctl_handle_int(oidp, (int *)&value, 0, req);
924 if ((error != 0) || (req->newptr == NULL))
925 return (error);
926
927 if (value < 1 || value > hz)
928 return (EINVAL);
929
930 *quanta = value;
931
932 return (0);
933 }
934
935 static void
936 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
937 {
938 struct sysctl_oid_list *n;
939 struct sysctl_ctx_list *ctx;
940
941 ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
942 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
943 CTLFLAG_RD, 0, name);
944 n = SYSCTL_CHILDREN(ios->sysctl_tree);
945 ctx = &ios->sysctl_ctx;
946
947 SYSCTL_ADD_UQUAD(ctx, n,
948 OID_AUTO, "ema", CTLFLAG_RD,
949 &ios->ema,
950 "Fast Exponentially Weighted Moving Average");
951 SYSCTL_ADD_UQUAD(ctx, n,
952 OID_AUTO, "emvar", CTLFLAG_RD,
953 &ios->emvar,
954 "Fast Exponentially Weighted Moving Variance");
955
956 SYSCTL_ADD_INT(ctx, n,
957 OID_AUTO, "pending", CTLFLAG_RD,
958 &ios->pending, 0,
959 "Instantaneous # of pending transactions");
960 SYSCTL_ADD_INT(ctx, n,
961 OID_AUTO, "count", CTLFLAG_RD,
962 &ios->total, 0,
963 "# of transactions submitted to hardware");
964 SYSCTL_ADD_INT(ctx, n,
965 OID_AUTO, "queued", CTLFLAG_RD,
966 &ios->queued, 0,
967 "# of transactions in the queue");
968 SYSCTL_ADD_INT(ctx, n,
969 OID_AUTO, "in", CTLFLAG_RD,
970 &ios->in, 0,
971 "# of transactions queued to driver");
972 SYSCTL_ADD_INT(ctx, n,
973 OID_AUTO, "out", CTLFLAG_RD,
974 &ios->out, 0,
975 "# of transactions completed (including with error)");
976 SYSCTL_ADD_INT(ctx, n,
977 OID_AUTO, "errs", CTLFLAG_RD,
978 &ios->errs, 0,
979 "# of transactions completed with an error");
980
981 SYSCTL_ADD_PROC(ctx, n,
982 OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW,
983 ios, 0, cam_iosched_limiter_sysctl, "A",
984 "Current limiting type.");
985 SYSCTL_ADD_INT(ctx, n,
986 OID_AUTO, "min", CTLFLAG_RW,
987 &ios->min, 0,
988 "min resource");
989 SYSCTL_ADD_INT(ctx, n,
990 OID_AUTO, "max", CTLFLAG_RW,
991 &ios->max, 0,
992 "max resource");
993 SYSCTL_ADD_INT(ctx, n,
994 OID_AUTO, "current", CTLFLAG_RW,
995 &ios->current, 0,
996 "current resource");
997
998 SYSCTL_ADD_PROC(ctx, n,
999 OID_AUTO, "latencies", CTLTYPE_STRING | CTLFLAG_RD,
1000 &ios->latencies, 0,
1001 cam_iosched_sysctl_latencies, "A",
1002 "Array of power of 2 latency from 1ms to 1.024s");
1003 }
1004
1005 static void
1006 cam_iosched_iop_stats_fini(struct iop_stats *ios)
1007 {
1008 if (ios->sysctl_tree)
1009 if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
1010 printf("can't remove iosched sysctl stats context\n");
1011 }
1012
1013 static void
1014 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
1015 {
1016 struct sysctl_oid_list *n;
1017 struct sysctl_ctx_list *ctx;
1018 struct control_loop *clp;
1019
1020 clp = &isc->cl;
1021 clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1022 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
1023 CTLFLAG_RD, 0, "Control loop info");
1024 n = SYSCTL_CHILDREN(clp->sysctl_tree);
1025 ctx = &clp->sysctl_ctx;
1026
1027 SYSCTL_ADD_PROC(ctx, n,
1028 OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW,
1029 clp, 0, cam_iosched_control_type_sysctl, "A",
1030 "Control loop algorithm");
1031 SYSCTL_ADD_PROC(ctx, n,
1032 OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW,
1033 &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
1034 "How often to steer (in us)");
1035 SYSCTL_ADD_PROC(ctx, n,
1036 OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW,
1037 &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
1038 "Low water mark for Latency (in us)");
1039 SYSCTL_ADD_PROC(ctx, n,
1040 OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW,
1041 &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
1042 "Hi water mark for Latency (in us)");
1043 SYSCTL_ADD_INT(ctx, n,
1044 OID_AUTO, "alpha", CTLFLAG_RW,
1045 &clp->alpha, 0,
1046 "Alpha for PLL (x100) aka gain");
1047 }
1048
1049 static void
1050 cam_iosched_cl_sysctl_fini(struct control_loop *clp)
1051 {
1052 if (clp->sysctl_tree)
1053 if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
1054 printf("can't remove iosched sysctl control loop context\n");
1055 }
1056 #endif
1057
1058 /*
1059 * Allocate the iosched structure. This also insulates callers from knowing
1060 * sizeof struct cam_iosched_softc.
1061 */
1062 int
1063 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
1064 {
1065
1066 *iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
1067 if (*iscp == NULL)
1068 return ENOMEM;
1069 #ifdef CAM_IOSCHED_DYNAMIC
1070 if (iosched_debug)
1071 printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
1072 #endif
1073 (*iscp)->sort_io_queue = -1;
1074 bioq_init(&(*iscp)->bio_queue);
1075 bioq_init(&(*iscp)->trim_queue);
1076 #ifdef CAM_IOSCHED_DYNAMIC
1077 if (do_dynamic_iosched) {
1078 bioq_init(&(*iscp)->write_queue);
1079 (*iscp)->read_bias = 100;
1080 (*iscp)->current_read_bias = 100;
1081 (*iscp)->quanta = min(hz, 200);
1082 cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
1083 cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
1084 cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
1085 (*iscp)->trim_stats.max = 1; /* Trims are special: one at a time for now */
1086 (*iscp)->last_time = sbinuptime();
1087 callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
1088 (*iscp)->periph = periph;
1089 cam_iosched_cl_init(&(*iscp)->cl, *iscp);
1090 callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
1091 (*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1092 }
1093 #endif
1094
1095 return 0;
1096 }
1097
1098 /*
1099 * Reclaim all used resources. This assumes that other folks have
1100 * drained the requests in the hardware. Maybe an unwise assumption.
1101 */
1102 void
1103 cam_iosched_fini(struct cam_iosched_softc *isc)
1104 {
1105 if (isc) {
1106 cam_iosched_flush(isc, NULL, ENXIO);
1107 #ifdef CAM_IOSCHED_DYNAMIC
1108 cam_iosched_iop_stats_fini(&isc->read_stats);
1109 cam_iosched_iop_stats_fini(&isc->write_stats);
1110 cam_iosched_iop_stats_fini(&isc->trim_stats);
1111 cam_iosched_cl_sysctl_fini(&isc->cl);
1112 if (isc->sysctl_tree)
1113 if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1114 printf("can't remove iosched sysctl stats context\n");
1115 if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
1116 callout_drain(&isc->ticker);
1117 isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1118 }
1119 #endif
1120 free(isc, M_CAMSCHED);
1121 }
1122 }
1123
1124 /*
1125 * After we're sure we're attaching a device, go ahead and add
1126 * hooks for any sysctl we may wish to honor.
1127 */
1128 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1129 struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1130 {
1131 #ifdef CAM_IOSCHED_DYNAMIC
1132 struct sysctl_oid_list *n;
1133 #endif
1134
1135 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(node),
1136 OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1137 &isc->sort_io_queue, 0,
1138 "Sort IO queue to try and optimise disk access patterns");
1139
1140 #ifdef CAM_IOSCHED_DYNAMIC
1141 if (!do_dynamic_iosched)
1142 return;
1143
1144 isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1145 SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1146 CTLFLAG_RD, 0, "I/O scheduler statistics");
1147 n = SYSCTL_CHILDREN(isc->sysctl_tree);
1148 ctx = &isc->sysctl_ctx;
1149
1150 cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1151 cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1152 cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1153 cam_iosched_cl_sysctl_init(isc);
1154
1155 SYSCTL_ADD_INT(ctx, n,
1156 OID_AUTO, "read_bias", CTLFLAG_RW,
1157 &isc->read_bias, 100,
1158 "How biased towards read should we be independent of limits");
1159
1160 SYSCTL_ADD_PROC(ctx, n,
1161 OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW,
1162 &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
1163 "How many quanta per second do we slice the I/O up into");
1164
1165 SYSCTL_ADD_INT(ctx, n,
1166 OID_AUTO, "total_ticks", CTLFLAG_RD,
1167 &isc->total_ticks, 0,
1168 "Total number of ticks we've done");
1169
1170 SYSCTL_ADD_INT(ctx, n,
1171 OID_AUTO, "load", CTLFLAG_RD,
1172 &isc->load, 0,
1173 "scaled load average / 100");
1174 #endif
1175 }
1176
1177 /*
1178 * Flush outstanding I/O. Consumers of this library don't know all the
1179 * queues we may keep, so this allows all I/O to be flushed in one
1180 * convenient call.
1181 */
1182 void
1183 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1184 {
1185 bioq_flush(&isc->bio_queue, stp, err);
1186 bioq_flush(&isc->trim_queue, stp, err);
1187 #ifdef CAM_IOSCHED_DYNAMIC
1188 if (do_dynamic_iosched)
1189 bioq_flush(&isc->write_queue, stp, err);
1190 #endif
1191 }
1192
1193 #ifdef CAM_IOSCHED_DYNAMIC
1194 static struct bio *
1195 cam_iosched_get_write(struct cam_iosched_softc *isc)
1196 {
1197 struct bio *bp;
1198
1199 /*
1200 * We control the write rate by controlling how many requests we send
1201 * down to the drive at any one time. Fewer requests limits the
1202 * effects of both starvation when the requests take a while and write
1203 * amplification when each request is causing more than one write to
1204 * the NAND media. Limiting the queue depth like this will also limit
1205 * the write throughput and give and reads that want to compete to
1206 * compete unfairly.
1207 */
1208 bp = bioq_first(&isc->write_queue);
1209 if (bp == NULL) {
1210 if (iosched_debug > 3)
1211 printf("No writes present in write_queue\n");
1212 return NULL;
1213 }
1214
1215 /*
1216 * If pending read, prefer that based on current read bias
1217 * setting.
1218 */
1219 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1220 if (iosched_debug)
1221 printf(
1222 "Reads present and current_read_bias is %d queued "
1223 "writes %d queued reads %d\n",
1224 isc->current_read_bias, isc->write_stats.queued,
1225 isc->read_stats.queued);
1226 isc->current_read_bias--;
1227 /* We're not limiting writes, per se, just doing reads first */
1228 return NULL;
1229 }
1230
1231 /*
1232 * See if our current limiter allows this I/O.
1233 */
1234 if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1235 if (iosched_debug)
1236 printf("Can't write because limiter says no.\n");
1237 isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1238 return NULL;
1239 }
1240
1241 /*
1242 * Let's do this: We've passed all the gates and we're a go
1243 * to schedule the I/O in the SIM.
1244 */
1245 isc->current_read_bias = isc->read_bias;
1246 bioq_remove(&isc->write_queue, bp);
1247 if (bp->bio_cmd == BIO_WRITE) {
1248 isc->write_stats.queued--;
1249 isc->write_stats.total++;
1250 isc->write_stats.pending++;
1251 }
1252 if (iosched_debug > 9)
1253 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1254 isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1255 return bp;
1256 }
1257 #endif
1258
1259 /*
1260 * Put back a trim that you weren't able to actually schedule this time.
1261 */
1262 void
1263 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1264 {
1265 bioq_insert_head(&isc->trim_queue, bp);
1266 #ifdef CAM_IOSCHED_DYNAMIC
1267 isc->trim_stats.queued++;
1268 isc->trim_stats.total--; /* since we put it back, don't double count */
1269 isc->trim_stats.pending--;
1270 #endif
1271 }
1272
1273 /*
1274 * gets the next trim from the trim queue.
1275 *
1276 * Assumes we're called with the periph lock held. It removes this
1277 * trim from the queue and the device must explicitly reinsert it
1278 * should the need arise.
1279 */
1280 struct bio *
1281 cam_iosched_next_trim(struct cam_iosched_softc *isc)
1282 {
1283 struct bio *bp;
1284
1285 bp = bioq_first(&isc->trim_queue);
1286 if (bp == NULL)
1287 return NULL;
1288 bioq_remove(&isc->trim_queue, bp);
1289 #ifdef CAM_IOSCHED_DYNAMIC
1290 isc->trim_stats.queued--;
1291 isc->trim_stats.total++;
1292 isc->trim_stats.pending++;
1293 #endif
1294 return bp;
1295 }
1296
1297 /*
1298 * gets an available trim from the trim queue, if there's no trim
1299 * already pending. It removes this trim from the queue and the device
1300 * must explicitly reinsert it should the need arise.
1301 *
1302 * Assumes we're called with the periph lock held.
1303 */
1304 struct bio *
1305 cam_iosched_get_trim(struct cam_iosched_softc *isc)
1306 {
1307
1308 if (!cam_iosched_has_more_trim(isc))
1309 return NULL;
1310 #ifdef CAM_IOSCHED_DYNAMIC
1311 if (do_dynamic_iosched) {
1312 /*
1313 * If pending read, prefer that based on current read bias
1314 * setting. The read bias is shared for both writes and
1315 * TRIMs, but on TRIMs the bias is for a combined TRIM
1316 * not a single TRIM request that's come in.
1317 */
1318 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1319 isc->current_read_bias--;
1320 /* We're not limiting TRIMS, per se, just doing reads first */
1321 return NULL;
1322 }
1323 /*
1324 * We're going to do a trim, so reset the bias.
1325 */
1326 isc->current_read_bias = isc->read_bias;
1327 }
1328 #endif
1329 return cam_iosched_next_trim(isc);
1330 }
1331
1332 /*
1333 * Determine what the next bit of work to do is for the periph. The
1334 * default implementation looks to see if we have trims to do, but no
1335 * trims outstanding. If so, we do that. Otherwise we see if we have
1336 * other work. If we do, then we do that. Otherwise why were we called?
1337 */
1338 struct bio *
1339 cam_iosched_next_bio(struct cam_iosched_softc *isc)
1340 {
1341 struct bio *bp;
1342
1343 /*
1344 * See if we have a trim that can be scheduled. We can only send one
1345 * at a time down, so this takes that into account.
1346 *
1347 * XXX newer TRIM commands are queueable. Revisit this when we
1348 * implement them.
1349 */
1350 if ((bp = cam_iosched_get_trim(isc)) != NULL)
1351 return bp;
1352
1353 #ifdef CAM_IOSCHED_DYNAMIC
1354 /*
1355 * See if we have any pending writes, and room in the queue for them,
1356 * and if so, those are next.
1357 */
1358 if (do_dynamic_iosched) {
1359 if ((bp = cam_iosched_get_write(isc)) != NULL)
1360 return bp;
1361 }
1362 #endif
1363
1364 /*
1365 * next, see if there's other, normal I/O waiting. If so return that.
1366 */
1367 if ((bp = bioq_first(&isc->bio_queue)) == NULL)
1368 return NULL;
1369
1370 #ifdef CAM_IOSCHED_DYNAMIC
1371 /*
1372 * For the dynamic scheduler, bio_queue is only for reads, so enforce
1373 * the limits here. Enforce only for reads.
1374 */
1375 if (do_dynamic_iosched) {
1376 if (bp->bio_cmd == BIO_READ &&
1377 cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
1378 isc->read_stats.state_flags |= IOP_RATE_LIMITED;
1379 return NULL;
1380 }
1381 }
1382 isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
1383 #endif
1384 bioq_remove(&isc->bio_queue, bp);
1385 #ifdef CAM_IOSCHED_DYNAMIC
1386 if (do_dynamic_iosched) {
1387 if (bp->bio_cmd == BIO_READ) {
1388 isc->read_stats.queued--;
1389 isc->read_stats.total++;
1390 isc->read_stats.pending++;
1391 } else
1392 printf("Found bio_cmd = %#x\n", bp->bio_cmd);
1393 }
1394 if (iosched_debug > 9)
1395 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1396 #endif
1397 return bp;
1398 }
1399
1400 /*
1401 * Driver has been given some work to do by the block layer. Tell the
1402 * scheduler about it and have it queue the work up. The scheduler module
1403 * will then return the currently most useful bit of work later, possibly
1404 * deferring work for various reasons.
1405 */
1406 void
1407 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1408 {
1409
1410 /*
1411 * Put all trims on the trim queue sorted, since we know
1412 * that the collapsing code requires this. Otherwise put
1413 * the work on the bio queue.
1414 */
1415 if (bp->bio_cmd == BIO_DELETE) {
1416 bioq_insert_tail(&isc->trim_queue, bp);
1417 #ifdef CAM_IOSCHED_DYNAMIC
1418 isc->trim_stats.in++;
1419 isc->trim_stats.queued++;
1420 #endif
1421 }
1422 #ifdef CAM_IOSCHED_DYNAMIC
1423 else if (do_dynamic_iosched && (bp->bio_cmd != BIO_READ)) {
1424 if (cam_iosched_sort_queue(isc))
1425 bioq_disksort(&isc->write_queue, bp);
1426 else
1427 bioq_insert_tail(&isc->write_queue, bp);
1428 if (iosched_debug > 9)
1429 printf("Qw : %p %#x\n", bp, bp->bio_cmd);
1430 if (bp->bio_cmd == BIO_WRITE) {
1431 isc->write_stats.in++;
1432 isc->write_stats.queued++;
1433 }
1434 }
1435 #endif
1436 else {
1437 if (cam_iosched_sort_queue(isc))
1438 bioq_disksort(&isc->bio_queue, bp);
1439 else
1440 bioq_insert_tail(&isc->bio_queue, bp);
1441 #ifdef CAM_IOSCHED_DYNAMIC
1442 if (iosched_debug > 9)
1443 printf("Qr : %p %#x\n", bp, bp->bio_cmd);
1444 if (bp->bio_cmd == BIO_READ) {
1445 isc->read_stats.in++;
1446 isc->read_stats.queued++;
1447 } else if (bp->bio_cmd == BIO_WRITE) {
1448 isc->write_stats.in++;
1449 isc->write_stats.queued++;
1450 }
1451 #endif
1452 }
1453 }
1454
1455 /*
1456 * If we have work, get it scheduled. Called with the periph lock held.
1457 */
1458 void
1459 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1460 {
1461
1462 if (cam_iosched_has_work(isc))
1463 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1464 }
1465
1466 /*
1467 * Complete a trim request. Mark that we no longer have one in flight.
1468 */
1469 void
1470 cam_iosched_trim_done(struct cam_iosched_softc *isc)
1471 {
1472
1473 isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1474 }
1475
1476 /*
1477 * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1478 * might use notes in the ccb for statistics.
1479 */
1480 int
1481 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1482 union ccb *done_ccb)
1483 {
1484 int retval = 0;
1485 #ifdef CAM_IOSCHED_DYNAMIC
1486 if (!do_dynamic_iosched)
1487 return retval;
1488
1489 if (iosched_debug > 10)
1490 printf("done: %p %#x\n", bp, bp->bio_cmd);
1491 if (bp->bio_cmd == BIO_WRITE) {
1492 retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1493 if ((bp->bio_flags & BIO_ERROR) != 0)
1494 isc->write_stats.errs++;
1495 isc->write_stats.out++;
1496 isc->write_stats.pending--;
1497 } else if (bp->bio_cmd == BIO_READ) {
1498 retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1499 if ((bp->bio_flags & BIO_ERROR) != 0)
1500 isc->read_stats.errs++;
1501 isc->read_stats.out++;
1502 isc->read_stats.pending--;
1503 } else if (bp->bio_cmd == BIO_DELETE) {
1504 if ((bp->bio_flags & BIO_ERROR) != 0)
1505 isc->trim_stats.errs++;
1506 isc->trim_stats.out++;
1507 isc->trim_stats.pending--;
1508 } else if (bp->bio_cmd != BIO_FLUSH) {
1509 if (iosched_debug)
1510 printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1511 }
1512
1513 if (!(bp->bio_flags & BIO_ERROR) && done_ccb != NULL)
1514 cam_iosched_io_metric_update(isc,
1515 cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data),
1516 bp->bio_cmd, bp->bio_bcount);
1517 #endif
1518 return retval;
1519 }
1520
1521 /*
1522 * Tell the io scheduler that you've pushed a trim down into the sim.
1523 * This also tells the I/O scheduler not to push any more trims down, so
1524 * some periphs do not call it if they can cope with multiple trims in flight.
1525 */
1526 void
1527 cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1528 {
1529
1530 isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1531 }
1532
1533 /*
1534 * Change the sorting policy hint for I/O transactions for this device.
1535 */
1536 void
1537 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1538 {
1539
1540 isc->sort_io_queue = val;
1541 }
1542
1543 int
1544 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1545 {
1546 return isc->flags & flags;
1547 }
1548
1549 void
1550 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1551 {
1552 isc->flags |= flags;
1553 }
1554
1555 void
1556 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1557 {
1558 isc->flags &= ~flags;
1559 }
1560
1561 #ifdef CAM_IOSCHED_DYNAMIC
1562 /*
1563 * After the method presented in Jack Crenshaw's 1998 article "Integer
1564 * Square Roots," reprinted at
1565 * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1566 * and well worth the read. Briefly, we find the power of 4 that's the
1567 * largest smaller than val. We then check each smaller power of 4 to
1568 * see if val is still bigger. The right shifts at each step divide
1569 * the result by 2 which after successive application winds up
1570 * accumulating the right answer. It could also have been accumulated
1571 * using a separate root counter, but this code is smaller and faster
1572 * than that method. This method is also integer size invariant.
1573 * It returns floor(sqrt((float)val)), or the largest integer less than
1574 * or equal to the square root.
1575 */
1576 static uint64_t
1577 isqrt64(uint64_t val)
1578 {
1579 uint64_t res = 0;
1580 uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1581
1582 /*
1583 * Find the largest power of 4 smaller than val.
1584 */
1585 while (bit > val)
1586 bit >>= 2;
1587
1588 /*
1589 * Accumulate the answer, one bit at a time (we keep moving
1590 * them over since 2 is the square root of 4 and we test
1591 * powers of 4). We accumulate where we find the bit, but
1592 * the successive shifts land the bit in the right place
1593 * by the end.
1594 */
1595 while (bit != 0) {
1596 if (val >= res + bit) {
1597 val -= res + bit;
1598 res = (res >> 1) + bit;
1599 } else
1600 res >>= 1;
1601 bit >>= 2;
1602 }
1603
1604 return res;
1605 }
1606
1607 static sbintime_t latencies[LAT_BUCKETS - 1] = {
1608 SBT_1MS << 0,
1609 SBT_1MS << 1,
1610 SBT_1MS << 2,
1611 SBT_1MS << 3,
1612 SBT_1MS << 4,
1613 SBT_1MS << 5,
1614 SBT_1MS << 6,
1615 SBT_1MS << 7,
1616 SBT_1MS << 8,
1617 SBT_1MS << 9,
1618 SBT_1MS << 10,
1619 SBT_1MS << 11,
1620 SBT_1MS << 12,
1621 SBT_1MS << 13 /* 8.192s */
1622 };
1623
1624 static void
1625 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
1626 {
1627 sbintime_t y, deltasq, delta;
1628 int i;
1629
1630 /*
1631 * Keep counts for latency. We do it by power of two buckets.
1632 * This helps us spot outlier behavior obscured by averages.
1633 */
1634 for (i = 0; i < LAT_BUCKETS - 1; i++) {
1635 if (sim_latency < latencies[i]) {
1636 iop->latencies[i]++;
1637 break;
1638 }
1639 }
1640 if (i == LAT_BUCKETS - 1)
1641 iop->latencies[i]++; /* Put all > 1024ms values into the last bucket. */
1642
1643 /*
1644 * Classic exponentially decaying average with a tiny alpha
1645 * (2 ^ -alpha_bits). For more info see the NIST statistical
1646 * handbook.
1647 *
1648 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist]
1649 * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
1650 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
1651 * alpha = 1 / (1 << alpha_bits)
1652 * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
1653 * = y_t/b - e/b + be/b
1654 * = (y_t - e + be) / b
1655 * = (e + d) / b
1656 *
1657 * Since alpha is a power of two, we can compute this w/o any mult or
1658 * division.
1659 *
1660 * Variance can also be computed. Usually, it would be expressed as follows:
1661 * diff_t = y_t - ema_t-1
1662 * emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
1663 * = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
1664 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
1665 * = e - e/b + dd/b + dd/bb
1666 * = (bbe - be + bdd + dd) / bb
1667 * = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
1668 */
1669 /*
1670 * XXX possible numeric issues
1671 * o We assume right shifted integers do the right thing, since that's
1672 * implementation defined. You can change the right shifts to / (1LL << alpha).
1673 * o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
1674 * for emvar. This puts a ceiling of 13 bits on alpha since we need a
1675 * few tens of seconds of representation.
1676 * o We mitigate alpha issues by never setting it too high.
1677 */
1678 y = sim_latency;
1679 delta = (y - iop->ema); /* d */
1680 iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
1681
1682 /*
1683 * Were we to naively plow ahead at this point, we wind up with many numerical
1684 * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
1685 * us with microsecond level precision in the input, so the same in the
1686 * output. It means we can't overflow deltasq unless delta > 4k seconds. It
1687 * also means that emvar can be up 46 bits 40 of which are fraction, which
1688 * gives us a way to measure up to ~8s in the SD before the computation goes
1689 * unstable. Even the worst hard disk rarely has > 1s service time in the
1690 * drive. It does mean we have to shift left 12 bits after taking the
1691 * square root to compute the actual standard deviation estimate. This loss of
1692 * precision is preferable to needing int128 types to work. The above numbers
1693 * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
1694 * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
1695 */
1696 delta >>= 12;
1697 deltasq = delta * delta; /* dd */
1698 iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */
1699 ((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */
1700 deltasq) /* dd */
1701 >> (2 * alpha_bits); /* div bb */
1702 iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
1703 }
1704
1705 static void
1706 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
1707 sbintime_t sim_latency, int cmd, size_t size)
1708 {
1709 /* xxx Do we need to scale based on the size of the I/O ? */
1710 switch (cmd) {
1711 case BIO_READ:
1712 cam_iosched_update(&isc->read_stats, sim_latency);
1713 break;
1714 case BIO_WRITE:
1715 cam_iosched_update(&isc->write_stats, sim_latency);
1716 break;
1717 case BIO_DELETE:
1718 cam_iosched_update(&isc->trim_stats, sim_latency);
1719 break;
1720 default:
1721 break;
1722 }
1723 }
1724
1725 #ifdef DDB
1726 static int biolen(struct bio_queue_head *bq)
1727 {
1728 int i = 0;
1729 struct bio *bp;
1730
1731 TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
1732 i++;
1733 }
1734 return i;
1735 }
1736
1737 /*
1738 * Show the internal state of the I/O scheduler.
1739 */
1740 DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
1741 {
1742 struct cam_iosched_softc *isc;
1743
1744 if (!have_addr) {
1745 db_printf("Need addr\n");
1746 return;
1747 }
1748 isc = (struct cam_iosched_softc *)addr;
1749 db_printf("pending_reads: %d\n", isc->read_stats.pending);
1750 db_printf("min_reads: %d\n", isc->read_stats.min);
1751 db_printf("max_reads: %d\n", isc->read_stats.max);
1752 db_printf("reads: %d\n", isc->read_stats.total);
1753 db_printf("in_reads: %d\n", isc->read_stats.in);
1754 db_printf("out_reads: %d\n", isc->read_stats.out);
1755 db_printf("queued_reads: %d\n", isc->read_stats.queued);
1756 db_printf("Current Q len %d\n", biolen(&isc->bio_queue));
1757 db_printf("pending_writes: %d\n", isc->write_stats.pending);
1758 db_printf("min_writes: %d\n", isc->write_stats.min);
1759 db_printf("max_writes: %d\n", isc->write_stats.max);
1760 db_printf("writes: %d\n", isc->write_stats.total);
1761 db_printf("in_writes: %d\n", isc->write_stats.in);
1762 db_printf("out_writes: %d\n", isc->write_stats.out);
1763 db_printf("queued_writes: %d\n", isc->write_stats.queued);
1764 db_printf("Current Q len %d\n", biolen(&isc->write_queue));
1765 db_printf("pending_trims: %d\n", isc->trim_stats.pending);
1766 db_printf("min_trims: %d\n", isc->trim_stats.min);
1767 db_printf("max_trims: %d\n", isc->trim_stats.max);
1768 db_printf("trims: %d\n", isc->trim_stats.total);
1769 db_printf("in_trims: %d\n", isc->trim_stats.in);
1770 db_printf("out_trims: %d\n", isc->trim_stats.out);
1771 db_printf("queued_trims: %d\n", isc->trim_stats.queued);
1772 db_printf("Current Q len %d\n", biolen(&isc->trim_queue));
1773 db_printf("read_bias: %d\n", isc->read_bias);
1774 db_printf("current_read_bias: %d\n", isc->current_read_bias);
1775 db_printf("Trim active? %s\n",
1776 (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
1777 }
1778 #endif
1779 #endif
Cache object: c9873f36f7b0a7c50173c7c1ad707dfa
|