The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/cam/cam_iosched.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * CAM IO Scheduler Interface
    3  *
    4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    5  *
    6  * Copyright (c) 2015 Netflix, Inc.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions, and the following disclaimer,
   13  *    without modification, immediately at the beginning of the file.
   14  * 2. The name of the author may not be used to endorse or promote products
   15  *    derived from this software without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
   21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD$
   30  */
   31 
   32 #include "opt_cam.h"
   33 #include "opt_ddb.h"
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include <sys/param.h>
   39 
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/bio.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mutex.h>
   46 #include <sys/sbuf.h>
   47 #include <sys/sysctl.h>
   48 
   49 #include <cam/cam.h>
   50 #include <cam/cam_ccb.h>
   51 #include <cam/cam_periph.h>
   52 #include <cam/cam_xpt_periph.h>
   53 #include <cam/cam_xpt_internal.h>
   54 #include <cam/cam_iosched.h>
   55 
   56 #include <ddb/ddb.h>
   57 
   58 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
   59     "CAM I/O Scheduler buffers");
   60 
   61 /*
   62  * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
   63  * over the bioq_* interface, with notions of separate calls for normal I/O and
   64  * for trims.
   65  *
   66  * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
   67  * steer the rate of one type of traffic to help other types of traffic (eg
   68  * limit writes when read latency deteriorates on SSDs).
   69  */
   70 
   71 #ifdef CAM_IOSCHED_DYNAMIC
   72 
   73 static bool do_dynamic_iosched = 1;
   74 SYSCTL_BOOL(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD | CTLFLAG_TUN,
   75     &do_dynamic_iosched, 1,
   76     "Enable Dynamic I/O scheduler optimizations.");
   77 
   78 /*
   79  * For an EMA, with an alpha of alpha, we know
   80  *      alpha = 2 / (N + 1)
   81  * or
   82  *      N = 1 + (2 / alpha)
   83  * where N is the number of samples that 86% of the current
   84  * EMA is derived from.
   85  *
   86  * So we invent[*] alpha_bits:
   87  *      alpha_bits = -log_2(alpha)
   88  *      alpha = 2^-alpha_bits
   89  * So
   90  *      N = 1 + 2^(alpha_bits + 1)
   91  *
   92  * The default 9 gives a 1025 lookback for 86% of the data.
   93  * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
   94  *
   95  * [*] Steal from the load average code and many other places.
   96  * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
   97  */
   98 static int alpha_bits = 9;
   99 SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW | CTLFLAG_TUN,
  100     &alpha_bits, 1,
  101     "Bits in EMA's alpha.");
  102 
  103 struct iop_stats;
  104 struct cam_iosched_softc;
  105 
  106 int iosched_debug = 0;
  107 
  108 typedef enum {
  109         none = 0,                               /* No limits */
  110         queue_depth,                    /* Limit how many ops we queue to SIM */
  111         iops,                           /* Limit # of IOPS to the drive */
  112         bandwidth,                      /* Limit bandwidth to the drive */
  113         limiter_max
  114 } io_limiter;
  115 
  116 static const char *cam_iosched_limiter_names[] =
  117     { "none", "queue_depth", "iops", "bandwidth" };
  118 
  119 /*
  120  * Called to initialize the bits of the iop_stats structure relevant to the
  121  * limiter. Called just after the limiter is set.
  122  */
  123 typedef int l_init_t(struct iop_stats *);
  124 
  125 /*
  126  * Called every tick.
  127  */
  128 typedef int l_tick_t(struct iop_stats *);
  129 
  130 /*
  131  * Called to see if the limiter thinks this IOP can be allowed to
  132  * proceed. If so, the limiter assumes that the IOP proceeded
  133  * and makes any accounting of it that's needed.
  134  */
  135 typedef int l_iop_t(struct iop_stats *, struct bio *);
  136 
  137 /*
  138  * Called when an I/O completes so the limiter can update its
  139  * accounting. Pending I/Os may complete in any order (even when
  140  * sent to the hardware at the same time), so the limiter may not
  141  * make any assumptions other than this I/O has completed. If it
  142  * returns 1, then xpt_schedule() needs to be called again.
  143  */
  144 typedef int l_iodone_t(struct iop_stats *, struct bio *);
  145 
  146 static l_iop_t cam_iosched_qd_iop;
  147 static l_iop_t cam_iosched_qd_caniop;
  148 static l_iodone_t cam_iosched_qd_iodone;
  149 
  150 static l_init_t cam_iosched_iops_init;
  151 static l_tick_t cam_iosched_iops_tick;
  152 static l_iop_t cam_iosched_iops_caniop;
  153 static l_iop_t cam_iosched_iops_iop;
  154 
  155 static l_init_t cam_iosched_bw_init;
  156 static l_tick_t cam_iosched_bw_tick;
  157 static l_iop_t cam_iosched_bw_caniop;
  158 static l_iop_t cam_iosched_bw_iop;
  159 
  160 struct limswitch {
  161         l_init_t        *l_init;
  162         l_tick_t        *l_tick;
  163         l_iop_t         *l_iop;
  164         l_iop_t         *l_caniop;
  165         l_iodone_t      *l_iodone;
  166 } limsw[] =
  167 {
  168         {       /* none */
  169                 .l_init = NULL,
  170                 .l_tick = NULL,
  171                 .l_iop = NULL,
  172                 .l_iodone= NULL,
  173         },
  174         {       /* queue_depth */
  175                 .l_init = NULL,
  176                 .l_tick = NULL,
  177                 .l_caniop = cam_iosched_qd_caniop,
  178                 .l_iop = cam_iosched_qd_iop,
  179                 .l_iodone= cam_iosched_qd_iodone,
  180         },
  181         {       /* iops */
  182                 .l_init = cam_iosched_iops_init,
  183                 .l_tick = cam_iosched_iops_tick,
  184                 .l_caniop = cam_iosched_iops_caniop,
  185                 .l_iop = cam_iosched_iops_iop,
  186                 .l_iodone= NULL,
  187         },
  188         {       /* bandwidth */
  189                 .l_init = cam_iosched_bw_init,
  190                 .l_tick = cam_iosched_bw_tick,
  191                 .l_caniop = cam_iosched_bw_caniop,
  192                 .l_iop = cam_iosched_bw_iop,
  193                 .l_iodone= NULL,
  194         },
  195 };
  196 
  197 struct iop_stats {
  198         /*
  199          * sysctl state for this subnode.
  200          */
  201         struct sysctl_ctx_list  sysctl_ctx;
  202         struct sysctl_oid       *sysctl_tree;
  203 
  204         /*
  205          * Information about the current rate limiters, if any
  206          */
  207         io_limiter      limiter;        /* How are I/Os being limited */
  208         int             min;            /* Low range of limit */
  209         int             max;            /* High range of limit */
  210         int             current;        /* Current rate limiter */
  211         int             l_value1;       /* per-limiter scratch value 1. */
  212         int             l_value2;       /* per-limiter scratch value 2. */
  213 
  214         /*
  215          * Debug information about counts of I/Os that have gone through the
  216          * scheduler.
  217          */
  218         int             pending;        /* I/Os pending in the hardware */
  219         int             queued;         /* number currently in the queue */
  220         int             total;          /* Total for all time -- wraps */
  221         int             in;             /* number queued all time -- wraps */
  222         int             out;            /* number completed all time -- wraps */
  223         int             errs;           /* Number of I/Os completed with error --  wraps */
  224 
  225         /*
  226          * Statistics on different bits of the process.
  227          */
  228                 /* Exp Moving Average, see alpha_bits for more details */
  229         sbintime_t      ema;
  230         sbintime_t      emvar;
  231         sbintime_t      sd;             /* Last computed sd */
  232 
  233         uint32_t        state_flags;
  234 #define IOP_RATE_LIMITED                1u
  235 
  236 #define LAT_BUCKETS 15                  /* < 1ms < 2ms ... < 2^(n-1)ms >= 2^(n-1)ms*/
  237         uint64_t        latencies[LAT_BUCKETS];
  238 
  239         struct cam_iosched_softc *softc;
  240 };
  241 
  242 
  243 typedef enum {
  244         set_max = 0,                    /* current = max */
  245         read_latency,                   /* Steer read latency by throttling writes */
  246         cl_max                          /* Keep last */
  247 } control_type;
  248 
  249 static const char *cam_iosched_control_type_names[] =
  250     { "set_max", "read_latency" };
  251 
  252 struct control_loop {
  253         /*
  254          * sysctl state for this subnode.
  255          */
  256         struct sysctl_ctx_list  sysctl_ctx;
  257         struct sysctl_oid       *sysctl_tree;
  258 
  259         sbintime_t      next_steer;             /* Time of next steer */
  260         sbintime_t      steer_interval;         /* How often do we steer? */
  261         sbintime_t      lolat;
  262         sbintime_t      hilat;
  263         int             alpha;
  264         control_type    type;                   /* What type of control? */
  265         int             last_count;             /* Last I/O count */
  266 
  267         struct cam_iosched_softc *softc;
  268 };
  269 
  270 #endif
  271 
  272 struct cam_iosched_softc {
  273         struct bio_queue_head bio_queue;
  274         struct bio_queue_head trim_queue;
  275                                 /* scheduler flags < 16, user flags >= 16 */
  276         uint32_t        flags;
  277         int             sort_io_queue;
  278 #ifdef CAM_IOSCHED_DYNAMIC
  279         int             read_bias;              /* Read bias setting */
  280         int             current_read_bias;      /* Current read bias state */
  281         int             total_ticks;
  282         int             load;                   /* EMA of 'load average' of disk / 2^16 */
  283 
  284         struct bio_queue_head write_queue;
  285         struct iop_stats read_stats, write_stats, trim_stats;
  286         struct sysctl_ctx_list  sysctl_ctx;
  287         struct sysctl_oid       *sysctl_tree;
  288 
  289         int             quanta;                 /* Number of quanta per second */
  290         struct callout  ticker;                 /* Callout for our quota system */
  291         struct cam_periph *periph;              /* cam periph associated with this device */
  292         uint32_t        this_frac;              /* Fraction of a second (1024ths) for this tick */
  293         sbintime_t      last_time;              /* Last time we ticked */
  294         struct control_loop cl;
  295 #endif
  296 };
  297 
  298 #ifdef CAM_IOSCHED_DYNAMIC
  299 /*
  300  * helper functions to call the limsw functions.
  301  */
  302 static int
  303 cam_iosched_limiter_init(struct iop_stats *ios)
  304 {
  305         int lim = ios->limiter;
  306 
  307         /* maybe this should be a kassert */
  308         if (lim < none || lim >= limiter_max)
  309                 return EINVAL;
  310 
  311         if (limsw[lim].l_init)
  312                 return limsw[lim].l_init(ios);
  313 
  314         return 0;
  315 }
  316 
  317 static int
  318 cam_iosched_limiter_tick(struct iop_stats *ios)
  319 {
  320         int lim = ios->limiter;
  321 
  322         /* maybe this should be a kassert */
  323         if (lim < none || lim >= limiter_max)
  324                 return EINVAL;
  325 
  326         if (limsw[lim].l_tick)
  327                 return limsw[lim].l_tick(ios);
  328 
  329         return 0;
  330 }
  331 
  332 static int
  333 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
  334 {
  335         int lim = ios->limiter;
  336 
  337         /* maybe this should be a kassert */
  338         if (lim < none || lim >= limiter_max)
  339                 return EINVAL;
  340 
  341         if (limsw[lim].l_iop)
  342                 return limsw[lim].l_iop(ios, bp);
  343 
  344         return 0;
  345 }
  346 
  347 static int
  348 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
  349 {
  350         int lim = ios->limiter;
  351 
  352         /* maybe this should be a kassert */
  353         if (lim < none || lim >= limiter_max)
  354                 return EINVAL;
  355 
  356         if (limsw[lim].l_caniop)
  357                 return limsw[lim].l_caniop(ios, bp);
  358 
  359         return 0;
  360 }
  361 
  362 static int
  363 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
  364 {
  365         int lim = ios->limiter;
  366 
  367         /* maybe this should be a kassert */
  368         if (lim < none || lim >= limiter_max)
  369                 return 0;
  370 
  371         if (limsw[lim].l_iodone)
  372                 return limsw[lim].l_iodone(ios, bp);
  373 
  374         return 0;
  375 }
  376 
  377 /*
  378  * Functions to implement the different kinds of limiters
  379  */
  380 
  381 static int
  382 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
  383 {
  384 
  385         if (ios->current <= 0 || ios->pending < ios->current)
  386                 return 0;
  387 
  388         return EAGAIN;
  389 }
  390 
  391 static int
  392 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
  393 {
  394 
  395         if (ios->current <= 0 || ios->pending < ios->current)
  396                 return 0;
  397 
  398         return EAGAIN;
  399 }
  400 
  401 static int
  402 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
  403 {
  404 
  405         if (ios->current <= 0 || ios->pending != ios->current)
  406                 return 0;
  407 
  408         return 1;
  409 }
  410 
  411 static int
  412 cam_iosched_iops_init(struct iop_stats *ios)
  413 {
  414 
  415         ios->l_value1 = ios->current / ios->softc->quanta;
  416         if (ios->l_value1 <= 0)
  417                 ios->l_value1 = 1;
  418         ios->l_value2 = 0;
  419 
  420         return 0;
  421 }
  422 
  423 static int
  424 cam_iosched_iops_tick(struct iop_stats *ios)
  425 {
  426         int new_ios;
  427 
  428         /*
  429          * Allow at least one IO per tick until all
  430          * the IOs for this interval have been spent.
  431          */
  432         new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
  433         if (new_ios < 1 && ios->l_value2 < ios->current) {
  434                 new_ios = 1;
  435                 ios->l_value2++;
  436         }
  437 
  438         /*
  439          * If this a new accounting interval, discard any "unspent" ios
  440          * granted in the previous interval.  Otherwise add the new ios to
  441          * the previously granted ones that haven't been spent yet.
  442          */
  443         if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
  444                 ios->l_value1 = new_ios;
  445                 ios->l_value2 = 1;
  446         } else {
  447                 ios->l_value1 += new_ios;
  448         }
  449 
  450 
  451         return 0;
  452 }
  453 
  454 static int
  455 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
  456 {
  457 
  458         /*
  459          * So if we have any more IOPs left, allow it,
  460          * otherwise wait. If current iops is 0, treat that
  461          * as unlimited as a failsafe.
  462          */
  463         if (ios->current > 0 && ios->l_value1 <= 0)
  464                 return EAGAIN;
  465         return 0;
  466 }
  467 
  468 static int
  469 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
  470 {
  471         int rv;
  472 
  473         rv = cam_iosched_limiter_caniop(ios, bp);
  474         if (rv == 0)
  475                 ios->l_value1--;
  476 
  477         return rv;
  478 }
  479 
  480 static int
  481 cam_iosched_bw_init(struct iop_stats *ios)
  482 {
  483 
  484         /* ios->current is in kB/s, so scale to bytes */
  485         ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
  486 
  487         return 0;
  488 }
  489 
  490 static int
  491 cam_iosched_bw_tick(struct iop_stats *ios)
  492 {
  493         int bw;
  494 
  495         /*
  496          * If we're in the hole for available quota from
  497          * the last time, then add the quantum for this.
  498          * If we have any left over from last quantum,
  499          * then too bad, that's lost. Also, ios->current
  500          * is in kB/s, so scale.
  501          *
  502          * We also allow up to 4 quanta of credits to
  503          * accumulate to deal with burstiness. 4 is extremely
  504          * arbitrary.
  505          */
  506         bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
  507         if (ios->l_value1 < bw * 4)
  508                 ios->l_value1 += bw;
  509 
  510         return 0;
  511 }
  512 
  513 static int
  514 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
  515 {
  516         /*
  517          * So if we have any more bw quota left, allow it,
  518          * otherwise wait. Note, we'll go negative and that's
  519          * OK. We'll just get a little less next quota.
  520          *
  521          * Note on going negative: that allows us to process
  522          * requests in order better, since we won't allow
  523          * shorter reads to get around the long one that we
  524          * don't have the quota to do just yet. It also prevents
  525          * starvation by being a little more permissive about
  526          * what we let through this quantum (to prevent the
  527          * starvation), at the cost of getting a little less
  528          * next quantum.
  529          *
  530          * Also note that if the current limit is <= 0,
  531          * we treat it as unlimited as a failsafe.
  532          */
  533         if (ios->current > 0 && ios->l_value1 <= 0)
  534                 return EAGAIN;
  535 
  536 
  537         return 0;
  538 }
  539 
  540 static int
  541 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
  542 {
  543         int rv;
  544 
  545         rv = cam_iosched_limiter_caniop(ios, bp);
  546         if (rv == 0)
  547                 ios->l_value1 -= bp->bio_length;
  548 
  549         return rv;
  550 }
  551 
  552 static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
  553 
  554 static void
  555 cam_iosched_ticker(void *arg)
  556 {
  557         struct cam_iosched_softc *isc = arg;
  558         sbintime_t now, delta;
  559         int pending;
  560 
  561         callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
  562 
  563         now = sbinuptime();
  564         delta = now - isc->last_time;
  565         isc->this_frac = (uint32_t)delta >> 16;         /* Note: discards seconds -- should be 0 harmless if not */
  566         isc->last_time = now;
  567 
  568         cam_iosched_cl_maybe_steer(&isc->cl);
  569 
  570         cam_iosched_limiter_tick(&isc->read_stats);
  571         cam_iosched_limiter_tick(&isc->write_stats);
  572         cam_iosched_limiter_tick(&isc->trim_stats);
  573 
  574         cam_iosched_schedule(isc, isc->periph);
  575 
  576         /*
  577          * isc->load is an EMA of the pending I/Os at each tick. The number of
  578          * pending I/Os is the sum of the I/Os queued to the hardware, and those
  579          * in the software queue that could be queued to the hardware if there
  580          * were slots.
  581          *
  582          * ios_stats.pending is a count of requests in the SIM right now for
  583          * each of these types of I/O. So the total pending count is the sum of
  584          * these I/Os and the sum of the queued I/Os still in the software queue
  585          * for those operations that aren't being rate limited at the moment.
  586          *
  587          * The reason for the rate limiting bit is because those I/Os
  588          * aren't part of the software queued load (since we could
  589          * give them to hardware, but choose not to).
  590          *
  591          * Note: due to a bug in counting pending TRIM in the device, we
  592          * don't include them in this count. We count each BIO_DELETE in
  593          * the pending count, but the periph drivers collapse them down
  594          * into one TRIM command. That one trim command gets the completion
  595          * so the counts get off.
  596          */
  597         pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
  598         pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
  599             !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
  600             !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
  601         pending <<= 16;
  602         pending /= isc->periph->path->device->ccbq.total_openings;
  603 
  604         isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
  605 
  606         isc->total_ticks++;
  607 }
  608 
  609 
  610 static void
  611 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
  612 {
  613 
  614         clp->next_steer = sbinuptime();
  615         clp->softc = isc;
  616         clp->steer_interval = SBT_1S * 5;       /* Let's start out steering every 5s */
  617         clp->lolat = 5 * SBT_1MS;
  618         clp->hilat = 15 * SBT_1MS;
  619         clp->alpha = 20;                        /* Alpha == gain. 20 = .2 */
  620         clp->type = set_max;
  621 }
  622 
  623 static void
  624 cam_iosched_cl_maybe_steer(struct control_loop *clp)
  625 {
  626         struct cam_iosched_softc *isc;
  627         sbintime_t now, lat;
  628         int old;
  629 
  630         isc = clp->softc;
  631         now = isc->last_time;
  632         if (now < clp->next_steer)
  633                 return;
  634 
  635         clp->next_steer = now + clp->steer_interval;
  636         switch (clp->type) {
  637         case set_max:
  638                 if (isc->write_stats.current != isc->write_stats.max)
  639                         printf("Steering write from %d kBps to %d kBps\n",
  640                             isc->write_stats.current, isc->write_stats.max);
  641                 isc->read_stats.current = isc->read_stats.max;
  642                 isc->write_stats.current = isc->write_stats.max;
  643                 isc->trim_stats.current = isc->trim_stats.max;
  644                 break;
  645         case read_latency:
  646                 old = isc->write_stats.current;
  647                 lat = isc->read_stats.ema;
  648                 /*
  649                  * Simple PLL-like engine. Since we're steering to a range for
  650                  * the SP (set point) that makes things a little more
  651                  * complicated. In addition, we're not directly controlling our
  652                  * PV (process variable), the read latency, but instead are
  653                  * manipulating the write bandwidth limit for our MV
  654                  * (manipulation variable), analysis of this code gets a bit
  655                  * messy. Also, the MV is a very noisy control surface for read
  656                  * latency since it is affected by many hidden processes inside
  657                  * the device which change how responsive read latency will be
  658                  * in reaction to changes in write bandwidth. Unlike the classic
  659                  * boiler control PLL. this may result in over-steering while
  660                  * the SSD takes its time to react to the new, lower load. This
  661                  * is why we use a relatively low alpha of between .1 and .25 to
  662                  * compensate for this effect. At .1, it takes ~22 steering
  663                  * intervals to back off by a factor of 10. At .2 it only takes
  664                  * ~10. At .25 it only takes ~8. However some preliminary data
  665                  * from the SSD drives suggests a reasponse time in 10's of
  666                  * seconds before latency drops regardless of the new write
  667                  * rate. Careful observation will be required to tune this
  668                  * effectively.
  669                  *
  670                  * Also, when there's no read traffic, we jack up the write
  671                  * limit too regardless of the last read latency.  10 is
  672                  * somewhat arbitrary.
  673                  */
  674                 if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
  675                         isc->write_stats.current = isc->write_stats.current *
  676                             (100 + clp->alpha) / 100;   /* Scale up */
  677                 else if (lat > clp->hilat)
  678                         isc->write_stats.current = isc->write_stats.current *
  679                             (100 - clp->alpha) / 100;   /* Scale down */
  680                 clp->last_count = isc->read_stats.total;
  681 
  682                 /*
  683                  * Even if we don't steer, per se, enforce the min/max limits as
  684                  * those may have changed.
  685                  */
  686                 if (isc->write_stats.current < isc->write_stats.min)
  687                         isc->write_stats.current = isc->write_stats.min;
  688                 if (isc->write_stats.current > isc->write_stats.max)
  689                         isc->write_stats.current = isc->write_stats.max;
  690                 if (old != isc->write_stats.current &&  iosched_debug)
  691                         printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
  692                             old, isc->write_stats.current,
  693                             (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
  694                 break;
  695         case cl_max:
  696                 break;
  697         }
  698 }
  699 #endif
  700 
  701 /*
  702  * Trim or similar currently pending completion. Should only be set for
  703  * those drivers wishing only one Trim active at a time.
  704  */
  705 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE    (1ul << 0)
  706                         /* Callout active, and needs to be torn down */
  707 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
  708 
  709                         /* Periph drivers set these flags to indicate work */
  710 #define CAM_IOSCHED_FLAG_WORK_FLAGS     ((0xffffu) << 16)
  711 
  712 #ifdef CAM_IOSCHED_DYNAMIC
  713 static void
  714 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
  715     sbintime_t sim_latency, int cmd, size_t size);
  716 #endif
  717 
  718 static inline bool
  719 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
  720 {
  721         return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
  722 }
  723 
  724 static inline bool
  725 cam_iosched_has_io(struct cam_iosched_softc *isc)
  726 {
  727 #ifdef CAM_IOSCHED_DYNAMIC
  728         if (do_dynamic_iosched) {
  729                 struct bio *rbp = bioq_first(&isc->bio_queue);
  730                 struct bio *wbp = bioq_first(&isc->write_queue);
  731                 bool can_write = wbp != NULL &&
  732                     cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
  733                 bool can_read = rbp != NULL &&
  734                     cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
  735                 if (iosched_debug > 2) {
  736                         printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
  737                         printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
  738                         printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
  739                 }
  740                 return can_read || can_write;
  741         }
  742 #endif
  743         return bioq_first(&isc->bio_queue) != NULL;
  744 }
  745 
  746 static inline bool
  747 cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
  748 {
  749         return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) &&
  750             bioq_first(&isc->trim_queue);
  751 }
  752 
  753 #define cam_iosched_sort_queue(isc)     ((isc)->sort_io_queue >= 0 ?    \
  754     (isc)->sort_io_queue : cam_sort_io_queues)
  755 
  756 
  757 static inline bool
  758 cam_iosched_has_work(struct cam_iosched_softc *isc)
  759 {
  760 #ifdef CAM_IOSCHED_DYNAMIC
  761         if (iosched_debug > 2)
  762                 printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
  763                     cam_iosched_has_more_trim(isc),
  764                     cam_iosched_has_flagged_work(isc));
  765 #endif
  766 
  767         return cam_iosched_has_io(isc) ||
  768                 cam_iosched_has_more_trim(isc) ||
  769                 cam_iosched_has_flagged_work(isc);
  770 }
  771 
  772 #ifdef CAM_IOSCHED_DYNAMIC
  773 static void
  774 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
  775 {
  776 
  777         ios->limiter = none;
  778         ios->in = 0;
  779         ios->max = ios->current = 300000;
  780         ios->min = 1;
  781         ios->out = 0;
  782         ios->errs = 0;
  783         ios->pending = 0;
  784         ios->queued = 0;
  785         ios->total = 0;
  786         ios->ema = 0;
  787         ios->emvar = 0;
  788         ios->softc = isc;
  789         cam_iosched_limiter_init(ios);
  790 }
  791 
  792 static int
  793 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
  794 {
  795         char buf[16];
  796         struct iop_stats *ios;
  797         struct cam_iosched_softc *isc;
  798         int value, i, error;
  799         const char *p;
  800 
  801         ios = arg1;
  802         isc = ios->softc;
  803         value = ios->limiter;
  804         if (value < none || value >= limiter_max)
  805                 p = "UNKNOWN";
  806         else
  807                 p = cam_iosched_limiter_names[value];
  808 
  809         strlcpy(buf, p, sizeof(buf));
  810         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  811         if (error != 0 || req->newptr == NULL)
  812                 return error;
  813 
  814         cam_periph_lock(isc->periph);
  815 
  816         for (i = none; i < limiter_max; i++) {
  817                 if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
  818                         continue;
  819                 ios->limiter = i;
  820                 error = cam_iosched_limiter_init(ios);
  821                 if (error != 0) {
  822                         ios->limiter = value;
  823                         cam_periph_unlock(isc->periph);
  824                         return error;
  825                 }
  826                 /* Note: disk load averate requires ticker to be always running */
  827                 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
  828                 isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
  829 
  830                 cam_periph_unlock(isc->periph);
  831                 return 0;
  832         }
  833 
  834         cam_periph_unlock(isc->periph);
  835         return EINVAL;
  836 }
  837 
  838 static int
  839 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
  840 {
  841         char buf[16];
  842         struct control_loop *clp;
  843         struct cam_iosched_softc *isc;
  844         int value, i, error;
  845         const char *p;
  846 
  847         clp = arg1;
  848         isc = clp->softc;
  849         value = clp->type;
  850         if (value < none || value >= cl_max)
  851                 p = "UNKNOWN";
  852         else
  853                 p = cam_iosched_control_type_names[value];
  854 
  855         strlcpy(buf, p, sizeof(buf));
  856         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  857         if (error != 0 || req->newptr == NULL)
  858                 return error;
  859 
  860         for (i = set_max; i < cl_max; i++) {
  861                 if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
  862                         continue;
  863                 cam_periph_lock(isc->periph);
  864                 clp->type = i;
  865                 cam_periph_unlock(isc->periph);
  866                 return 0;
  867         }
  868 
  869         return EINVAL;
  870 }
  871 
  872 static int
  873 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
  874 {
  875         char buf[16];
  876         sbintime_t value;
  877         int error;
  878         uint64_t us;
  879 
  880         value = *(sbintime_t *)arg1;
  881         us = (uint64_t)value / SBT_1US;
  882         snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
  883         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  884         if (error != 0 || req->newptr == NULL)
  885                 return error;
  886         us = strtoul(buf, NULL, 10);
  887         if (us == 0)
  888                 return EINVAL;
  889         *(sbintime_t *)arg1 = us * SBT_1US;
  890         return 0;
  891 }
  892 
  893 static int
  894 cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
  895 {
  896         int i, error;
  897         struct sbuf sb;
  898         uint64_t *latencies;
  899 
  900         latencies = arg1;
  901         sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
  902 
  903         for (i = 0; i < LAT_BUCKETS - 1; i++)
  904                 sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
  905         sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
  906         error = sbuf_finish(&sb);
  907         sbuf_delete(&sb);
  908 
  909         return (error);
  910 }
  911 
  912 static int
  913 cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
  914 {
  915         int *quanta;
  916         int error, value;
  917 
  918         quanta = (unsigned *)arg1;
  919         value = *quanta;
  920 
  921         error = sysctl_handle_int(oidp, (int *)&value, 0, req);
  922         if ((error != 0) || (req->newptr == NULL))
  923                 return (error);
  924 
  925         if (value < 1 || value > hz)
  926                 return (EINVAL);
  927 
  928         *quanta = value;
  929 
  930         return (0);
  931 }
  932 
  933 static void
  934 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
  935 {
  936         struct sysctl_oid_list *n;
  937         struct sysctl_ctx_list *ctx;
  938 
  939         ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
  940             SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
  941             CTLFLAG_RD, 0, name);
  942         n = SYSCTL_CHILDREN(ios->sysctl_tree);
  943         ctx = &ios->sysctl_ctx;
  944 
  945         SYSCTL_ADD_UQUAD(ctx, n,
  946             OID_AUTO, "ema", CTLFLAG_RD,
  947             &ios->ema,
  948             "Fast Exponentially Weighted Moving Average");
  949         SYSCTL_ADD_UQUAD(ctx, n,
  950             OID_AUTO, "emvar", CTLFLAG_RD,
  951             &ios->emvar,
  952             "Fast Exponentially Weighted Moving Variance");
  953 
  954         SYSCTL_ADD_INT(ctx, n,
  955             OID_AUTO, "pending", CTLFLAG_RD,
  956             &ios->pending, 0,
  957             "Instantaneous # of pending transactions");
  958         SYSCTL_ADD_INT(ctx, n,
  959             OID_AUTO, "count", CTLFLAG_RD,
  960             &ios->total, 0,
  961             "# of transactions submitted to hardware");
  962         SYSCTL_ADD_INT(ctx, n,
  963             OID_AUTO, "queued", CTLFLAG_RD,
  964             &ios->queued, 0,
  965             "# of transactions in the queue");
  966         SYSCTL_ADD_INT(ctx, n,
  967             OID_AUTO, "in", CTLFLAG_RD,
  968             &ios->in, 0,
  969             "# of transactions queued to driver");
  970         SYSCTL_ADD_INT(ctx, n,
  971             OID_AUTO, "out", CTLFLAG_RD,
  972             &ios->out, 0,
  973             "# of transactions completed (including with error)");
  974         SYSCTL_ADD_INT(ctx, n,
  975             OID_AUTO, "errs", CTLFLAG_RD,
  976             &ios->errs, 0,
  977             "# of transactions completed with an error");
  978 
  979         SYSCTL_ADD_PROC(ctx, n,
  980             OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW,
  981             ios, 0, cam_iosched_limiter_sysctl, "A",
  982             "Current limiting type.");
  983         SYSCTL_ADD_INT(ctx, n,
  984             OID_AUTO, "min", CTLFLAG_RW,
  985             &ios->min, 0,
  986             "min resource");
  987         SYSCTL_ADD_INT(ctx, n,
  988             OID_AUTO, "max", CTLFLAG_RW,
  989             &ios->max, 0,
  990             "max resource");
  991         SYSCTL_ADD_INT(ctx, n,
  992             OID_AUTO, "current", CTLFLAG_RW,
  993             &ios->current, 0,
  994             "current resource");
  995 
  996         SYSCTL_ADD_PROC(ctx, n,
  997             OID_AUTO, "latencies", CTLTYPE_STRING | CTLFLAG_RD,
  998             &ios->latencies, 0,
  999             cam_iosched_sysctl_latencies, "A",
 1000             "Array of power of 2 latency from 1ms to 1.024s");
 1001 }
 1002 
 1003 static void
 1004 cam_iosched_iop_stats_fini(struct iop_stats *ios)
 1005 {
 1006         if (ios->sysctl_tree)
 1007                 if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
 1008                         printf("can't remove iosched sysctl stats context\n");
 1009 }
 1010 
 1011 static void
 1012 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
 1013 {
 1014         struct sysctl_oid_list *n;
 1015         struct sysctl_ctx_list *ctx;
 1016         struct control_loop *clp;
 1017 
 1018         clp = &isc->cl;
 1019         clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
 1020             SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
 1021             CTLFLAG_RD, 0, "Control loop info");
 1022         n = SYSCTL_CHILDREN(clp->sysctl_tree);
 1023         ctx = &clp->sysctl_ctx;
 1024 
 1025         SYSCTL_ADD_PROC(ctx, n,
 1026             OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW,
 1027             clp, 0, cam_iosched_control_type_sysctl, "A",
 1028             "Control loop algorithm");
 1029         SYSCTL_ADD_PROC(ctx, n,
 1030             OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW,
 1031             &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
 1032             "How often to steer (in us)");
 1033         SYSCTL_ADD_PROC(ctx, n,
 1034             OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW,
 1035             &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
 1036             "Low water mark for Latency (in us)");
 1037         SYSCTL_ADD_PROC(ctx, n,
 1038             OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW,
 1039             &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
 1040             "Hi water mark for Latency (in us)");
 1041         SYSCTL_ADD_INT(ctx, n,
 1042             OID_AUTO, "alpha", CTLFLAG_RW,
 1043             &clp->alpha, 0,
 1044             "Alpha for PLL (x100) aka gain");
 1045 }
 1046 
 1047 static void
 1048 cam_iosched_cl_sysctl_fini(struct control_loop *clp)
 1049 {
 1050         if (clp->sysctl_tree)
 1051                 if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
 1052                         printf("can't remove iosched sysctl control loop context\n");
 1053 }
 1054 #endif
 1055 
 1056 /*
 1057  * Allocate the iosched structure. This also insulates callers from knowing
 1058  * sizeof struct cam_iosched_softc.
 1059  */
 1060 int
 1061 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
 1062 {
 1063 
 1064         *iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
 1065         if (*iscp == NULL)
 1066                 return ENOMEM;
 1067 #ifdef CAM_IOSCHED_DYNAMIC
 1068         if (iosched_debug)
 1069                 printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
 1070 #endif
 1071         (*iscp)->sort_io_queue = -1;
 1072         bioq_init(&(*iscp)->bio_queue);
 1073         bioq_init(&(*iscp)->trim_queue);
 1074 #ifdef CAM_IOSCHED_DYNAMIC
 1075         if (do_dynamic_iosched) {
 1076                 bioq_init(&(*iscp)->write_queue);
 1077                 (*iscp)->read_bias = 100;
 1078                 (*iscp)->current_read_bias = 100;
 1079                 (*iscp)->quanta = min(hz, 200);
 1080                 cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
 1081                 cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
 1082                 cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
 1083                 (*iscp)->trim_stats.max = 1;    /* Trims are special: one at a time for now */
 1084                 (*iscp)->last_time = sbinuptime();
 1085                 callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
 1086                 (*iscp)->periph = periph;
 1087                 cam_iosched_cl_init(&(*iscp)->cl, *iscp);
 1088                 callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
 1089                 (*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
 1090         }
 1091 #endif
 1092 
 1093         return 0;
 1094 }
 1095 
 1096 /*
 1097  * Reclaim all used resources. This assumes that other folks have
 1098  * drained the requests in the hardware. Maybe an unwise assumption.
 1099  */
 1100 void
 1101 cam_iosched_fini(struct cam_iosched_softc *isc)
 1102 {
 1103         if (isc) {
 1104                 cam_iosched_flush(isc, NULL, ENXIO);
 1105 #ifdef CAM_IOSCHED_DYNAMIC
 1106                 cam_iosched_iop_stats_fini(&isc->read_stats);
 1107                 cam_iosched_iop_stats_fini(&isc->write_stats);
 1108                 cam_iosched_iop_stats_fini(&isc->trim_stats);
 1109                 cam_iosched_cl_sysctl_fini(&isc->cl);
 1110                 if (isc->sysctl_tree)
 1111                         if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
 1112                                 printf("can't remove iosched sysctl stats context\n");
 1113                 if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
 1114                         callout_drain(&isc->ticker);
 1115                         isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
 1116                 }
 1117 #endif
 1118                 free(isc, M_CAMSCHED);
 1119         }
 1120 }
 1121 
 1122 /*
 1123  * After we're sure we're attaching a device, go ahead and add
 1124  * hooks for any sysctl we may wish to honor.
 1125  */
 1126 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
 1127     struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
 1128 {
 1129 #ifdef CAM_IOSCHED_DYNAMIC
 1130         struct sysctl_oid_list *n;
 1131 #endif
 1132 
 1133         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(node),
 1134                 OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
 1135                 &isc->sort_io_queue, 0,
 1136                 "Sort IO queue to try and optimise disk access patterns");
 1137 
 1138 #ifdef CAM_IOSCHED_DYNAMIC
 1139         if (!do_dynamic_iosched)
 1140                 return;
 1141 
 1142         isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
 1143             SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
 1144             CTLFLAG_RD, 0, "I/O scheduler statistics");
 1145         n = SYSCTL_CHILDREN(isc->sysctl_tree);
 1146         ctx = &isc->sysctl_ctx;
 1147 
 1148         cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
 1149         cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
 1150         cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
 1151         cam_iosched_cl_sysctl_init(isc);
 1152 
 1153         SYSCTL_ADD_INT(ctx, n,
 1154             OID_AUTO, "read_bias", CTLFLAG_RW,
 1155             &isc->read_bias, 100,
 1156             "How biased towards read should we be independent of limits");
 1157 
 1158         SYSCTL_ADD_PROC(ctx, n,
 1159             OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW,
 1160             &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
 1161             "How many quanta per second do we slice the I/O up into");
 1162 
 1163         SYSCTL_ADD_INT(ctx, n,
 1164             OID_AUTO, "total_ticks", CTLFLAG_RD,
 1165             &isc->total_ticks, 0,
 1166             "Total number of ticks we've done");
 1167 
 1168         SYSCTL_ADD_INT(ctx, n,
 1169             OID_AUTO, "load", CTLFLAG_RD,
 1170             &isc->load, 0,
 1171             "scaled load average / 100");
 1172 #endif
 1173 }
 1174 
 1175 /*
 1176  * Flush outstanding I/O. Consumers of this library don't know all the
 1177  * queues we may keep, so this allows all I/O to be flushed in one
 1178  * convenient call.
 1179  */
 1180 void
 1181 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
 1182 {
 1183         bioq_flush(&isc->bio_queue, stp, err);
 1184         bioq_flush(&isc->trim_queue, stp, err);
 1185 #ifdef CAM_IOSCHED_DYNAMIC
 1186         if (do_dynamic_iosched)
 1187                 bioq_flush(&isc->write_queue, stp, err);
 1188 #endif
 1189 }
 1190 
 1191 #ifdef CAM_IOSCHED_DYNAMIC
 1192 static struct bio *
 1193 cam_iosched_get_write(struct cam_iosched_softc *isc)
 1194 {
 1195         struct bio *bp;
 1196 
 1197         /*
 1198          * We control the write rate by controlling how many requests we send
 1199          * down to the drive at any one time. Fewer requests limits the
 1200          * effects of both starvation when the requests take a while and write
 1201          * amplification when each request is causing more than one write to
 1202          * the NAND media. Limiting the queue depth like this will also limit
 1203          * the write throughput and give and reads that want to compete to
 1204          * compete unfairly.
 1205          */
 1206         bp = bioq_first(&isc->write_queue);
 1207         if (bp == NULL) {
 1208                 if (iosched_debug > 3)
 1209                         printf("No writes present in write_queue\n");
 1210                 return NULL;
 1211         }
 1212 
 1213         /*
 1214          * If pending read, prefer that based on current read bias
 1215          * setting.
 1216          */
 1217         if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
 1218                 if (iosched_debug)
 1219                         printf(
 1220                             "Reads present and current_read_bias is %d queued "
 1221                             "writes %d queued reads %d\n",
 1222                             isc->current_read_bias, isc->write_stats.queued,
 1223                             isc->read_stats.queued);
 1224                 isc->current_read_bias--;
 1225                 /* We're not limiting writes, per se, just doing reads first */
 1226                 return NULL;
 1227         }
 1228 
 1229         /*
 1230          * See if our current limiter allows this I/O.
 1231          */
 1232         if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
 1233                 if (iosched_debug)
 1234                         printf("Can't write because limiter says no.\n");
 1235                 isc->write_stats.state_flags |= IOP_RATE_LIMITED;
 1236                 return NULL;
 1237         }
 1238 
 1239         /*
 1240          * Let's do this: We've passed all the gates and we're a go
 1241          * to schedule the I/O in the SIM.
 1242          */
 1243         isc->current_read_bias = isc->read_bias;
 1244         bioq_remove(&isc->write_queue, bp);
 1245         if (bp->bio_cmd == BIO_WRITE) {
 1246                 isc->write_stats.queued--;
 1247                 isc->write_stats.total++;
 1248                 isc->write_stats.pending++;
 1249         }
 1250         if (iosched_debug > 9)
 1251                 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
 1252         isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
 1253         return bp;
 1254 }
 1255 #endif
 1256 
 1257 /*
 1258  * Put back a trim that you weren't able to actually schedule this time.
 1259  */
 1260 void
 1261 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
 1262 {
 1263         bioq_insert_head(&isc->trim_queue, bp);
 1264 #ifdef CAM_IOSCHED_DYNAMIC
 1265         isc->trim_stats.queued++;
 1266         isc->trim_stats.total--;                /* since we put it back, don't double count */
 1267         isc->trim_stats.pending--;
 1268 #endif
 1269 }
 1270 
 1271 /*
 1272  * gets the next trim from the trim queue.
 1273  *
 1274  * Assumes we're called with the periph lock held.  It removes this
 1275  * trim from the queue and the device must explicitly reinsert it
 1276  * should the need arise.
 1277  */
 1278 struct bio *
 1279 cam_iosched_next_trim(struct cam_iosched_softc *isc)
 1280 {
 1281         struct bio *bp;
 1282 
 1283         bp  = bioq_first(&isc->trim_queue);
 1284         if (bp == NULL)
 1285                 return NULL;
 1286         bioq_remove(&isc->trim_queue, bp);
 1287 #ifdef CAM_IOSCHED_DYNAMIC
 1288         isc->trim_stats.queued--;
 1289         isc->trim_stats.total++;
 1290         isc->trim_stats.pending++;
 1291 #endif
 1292         return bp;
 1293 }
 1294 
 1295 /*
 1296  * gets an available trim from the trim queue, if there's no trim
 1297  * already pending. It removes this trim from the queue and the device
 1298  * must explicitly reinsert it should the need arise.
 1299  *
 1300  * Assumes we're called with the periph lock held.
 1301  */
 1302 struct bio *
 1303 cam_iosched_get_trim(struct cam_iosched_softc *isc)
 1304 {
 1305 
 1306         if (!cam_iosched_has_more_trim(isc))
 1307                 return NULL;
 1308 #ifdef CAM_IOSCHED_DYNAMIC
 1309         if (do_dynamic_iosched) {
 1310                 /*
 1311                  * If pending read, prefer that based on current read bias
 1312                  * setting. The read bias is shared for both writes and
 1313                  * TRIMs, but on TRIMs the bias is for a combined TRIM
 1314                  * not a single TRIM request that's come in.
 1315                  */
 1316                 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
 1317                         isc->current_read_bias--;
 1318                         /* We're not limiting TRIMS, per se, just doing reads first */
 1319                         return NULL;
 1320                 }
 1321                 /*
 1322                  * We're going to do a trim, so reset the bias.
 1323                  */
 1324                 isc->current_read_bias = isc->read_bias;
 1325         }
 1326 #endif
 1327         return cam_iosched_next_trim(isc);
 1328 }
 1329 
 1330 /*
 1331  * Determine what the next bit of work to do is for the periph. The
 1332  * default implementation looks to see if we have trims to do, but no
 1333  * trims outstanding. If so, we do that. Otherwise we see if we have
 1334  * other work. If we do, then we do that. Otherwise why were we called?
 1335  */
 1336 struct bio *
 1337 cam_iosched_next_bio(struct cam_iosched_softc *isc)
 1338 {
 1339         struct bio *bp;
 1340 
 1341         /*
 1342          * See if we have a trim that can be scheduled. We can only send one
 1343          * at a time down, so this takes that into account.
 1344          *
 1345          * XXX newer TRIM commands are queueable. Revisit this when we
 1346          * implement them.
 1347          */
 1348         if ((bp = cam_iosched_get_trim(isc)) != NULL)
 1349                 return bp;
 1350 
 1351 #ifdef CAM_IOSCHED_DYNAMIC
 1352         /*
 1353          * See if we have any pending writes, and room in the queue for them,
 1354          * and if so, those are next.
 1355          */
 1356         if (do_dynamic_iosched) {
 1357                 if ((bp = cam_iosched_get_write(isc)) != NULL)
 1358                         return bp;
 1359         }
 1360 #endif
 1361 
 1362         /*
 1363          * next, see if there's other, normal I/O waiting. If so return that.
 1364          */
 1365         if ((bp = bioq_first(&isc->bio_queue)) == NULL)
 1366                 return NULL;
 1367 
 1368 #ifdef CAM_IOSCHED_DYNAMIC
 1369         /*
 1370          * For the dynamic scheduler, bio_queue is only for reads, so enforce
 1371          * the limits here. Enforce only for reads.
 1372          */
 1373         if (do_dynamic_iosched) {
 1374                 if (bp->bio_cmd == BIO_READ &&
 1375                     cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
 1376                         isc->read_stats.state_flags |= IOP_RATE_LIMITED;
 1377                         return NULL;
 1378                 }
 1379         }
 1380         isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
 1381 #endif
 1382         bioq_remove(&isc->bio_queue, bp);
 1383 #ifdef CAM_IOSCHED_DYNAMIC
 1384         if (do_dynamic_iosched) {
 1385                 if (bp->bio_cmd == BIO_READ) {
 1386                         isc->read_stats.queued--;
 1387                         isc->read_stats.total++;
 1388                         isc->read_stats.pending++;
 1389                 } else
 1390                         printf("Found bio_cmd = %#x\n", bp->bio_cmd);
 1391         }
 1392         if (iosched_debug > 9)
 1393                 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
 1394 #endif
 1395         return bp;
 1396 }
 1397 
 1398 /*
 1399  * Driver has been given some work to do by the block layer. Tell the
 1400  * scheduler about it and have it queue the work up. The scheduler module
 1401  * will then return the currently most useful bit of work later, possibly
 1402  * deferring work for various reasons.
 1403  */
 1404 void
 1405 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
 1406 {
 1407 
 1408         /*
 1409          * Put all trims on the trim queue sorted, since we know
 1410          * that the collapsing code requires this. Otherwise put
 1411          * the work on the bio queue.
 1412          */
 1413         if (bp->bio_cmd == BIO_DELETE) {
 1414                 bioq_insert_tail(&isc->trim_queue, bp);
 1415 #ifdef CAM_IOSCHED_DYNAMIC
 1416                 isc->trim_stats.in++;
 1417                 isc->trim_stats.queued++;
 1418 #endif
 1419         }
 1420 #ifdef CAM_IOSCHED_DYNAMIC
 1421         else if (do_dynamic_iosched && (bp->bio_cmd != BIO_READ)) {
 1422                 if (cam_iosched_sort_queue(isc))
 1423                         bioq_disksort(&isc->write_queue, bp);
 1424                 else
 1425                         bioq_insert_tail(&isc->write_queue, bp);
 1426                 if (iosched_debug > 9)
 1427                         printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
 1428                 if (bp->bio_cmd == BIO_WRITE) {
 1429                         isc->write_stats.in++;
 1430                         isc->write_stats.queued++;
 1431                 }
 1432         }
 1433 #endif
 1434         else {
 1435                 if (cam_iosched_sort_queue(isc))
 1436                         bioq_disksort(&isc->bio_queue, bp);
 1437                 else
 1438                         bioq_insert_tail(&isc->bio_queue, bp);
 1439 #ifdef CAM_IOSCHED_DYNAMIC
 1440                 if (iosched_debug > 9)
 1441                         printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
 1442                 if (bp->bio_cmd == BIO_READ) {
 1443                         isc->read_stats.in++;
 1444                         isc->read_stats.queued++;
 1445                 } else if (bp->bio_cmd == BIO_WRITE) {
 1446                         isc->write_stats.in++;
 1447                         isc->write_stats.queued++;
 1448                 }
 1449 #endif
 1450         }
 1451 }
 1452 
 1453 /*
 1454  * If we have work, get it scheduled. Called with the periph lock held.
 1455  */
 1456 void
 1457 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
 1458 {
 1459 
 1460         if (cam_iosched_has_work(isc))
 1461                 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
 1462 }
 1463 
 1464 /*
 1465  * Complete a trim request. Mark that we no longer have one in flight.
 1466  */
 1467 void
 1468 cam_iosched_trim_done(struct cam_iosched_softc *isc)
 1469 {
 1470 
 1471         isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
 1472 }
 1473 
 1474 /*
 1475  * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
 1476  * might use notes in the ccb for statistics.
 1477  */
 1478 int
 1479 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
 1480     union ccb *done_ccb)
 1481 {
 1482         int retval = 0;
 1483 #ifdef CAM_IOSCHED_DYNAMIC
 1484         if (!do_dynamic_iosched)
 1485                 return retval;
 1486 
 1487         if (iosched_debug > 10)
 1488                 printf("done: %p %#x\n", bp, bp->bio_cmd);
 1489         if (bp->bio_cmd == BIO_WRITE) {
 1490                 retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
 1491                 if ((bp->bio_flags & BIO_ERROR) != 0)
 1492                         isc->write_stats.errs++;
 1493                 isc->write_stats.out++;
 1494                 isc->write_stats.pending--;
 1495         } else if (bp->bio_cmd == BIO_READ) {
 1496                 retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
 1497                 if ((bp->bio_flags & BIO_ERROR) != 0)
 1498                         isc->read_stats.errs++;
 1499                 isc->read_stats.out++;
 1500                 isc->read_stats.pending--;
 1501         } else if (bp->bio_cmd == BIO_DELETE) {
 1502                 if ((bp->bio_flags & BIO_ERROR) != 0)
 1503                         isc->trim_stats.errs++;
 1504                 isc->trim_stats.out++;
 1505                 isc->trim_stats.pending--;
 1506         } else if (bp->bio_cmd != BIO_FLUSH) {
 1507                 if (iosched_debug)
 1508                         printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
 1509         }
 1510 
 1511         if (!(bp->bio_flags & BIO_ERROR) && done_ccb != NULL)
 1512                 cam_iosched_io_metric_update(isc,
 1513                     cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data),
 1514                     bp->bio_cmd, bp->bio_bcount);
 1515 #endif
 1516         return retval;
 1517 }
 1518 
 1519 /*
 1520  * Tell the io scheduler that you've pushed a trim down into the sim.
 1521  * This also tells the I/O scheduler not to push any more trims down, so
 1522  * some periphs do not call it if they can cope with multiple trims in flight.
 1523  */
 1524 void
 1525 cam_iosched_submit_trim(struct cam_iosched_softc *isc)
 1526 {
 1527 
 1528         isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
 1529 }
 1530 
 1531 /*
 1532  * Change the sorting policy hint for I/O transactions for this device.
 1533  */
 1534 void
 1535 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
 1536 {
 1537 
 1538         isc->sort_io_queue = val;
 1539 }
 1540 
 1541 int
 1542 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
 1543 {
 1544         return isc->flags & flags;
 1545 }
 1546 
 1547 void
 1548 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
 1549 {
 1550         isc->flags |= flags;
 1551 }
 1552 
 1553 void
 1554 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
 1555 {
 1556         isc->flags &= ~flags;
 1557 }
 1558 
 1559 #ifdef CAM_IOSCHED_DYNAMIC
 1560 /*
 1561  * After the method presented in Jack Crenshaw's 1998 article "Integer
 1562  * Square Roots," reprinted at
 1563  * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
 1564  * and well worth the read. Briefly, we find the power of 4 that's the
 1565  * largest smaller than val. We then check each smaller power of 4 to
 1566  * see if val is still bigger. The right shifts at each step divide
 1567  * the result by 2 which after successive application winds up
 1568  * accumulating the right answer. It could also have been accumulated
 1569  * using a separate root counter, but this code is smaller and faster
 1570  * than that method. This method is also integer size invariant.
 1571  * It returns floor(sqrt((float)val)), or the largest integer less than
 1572  * or equal to the square root.
 1573  */
 1574 static uint64_t
 1575 isqrt64(uint64_t val)
 1576 {
 1577         uint64_t res = 0;
 1578         uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
 1579 
 1580         /*
 1581          * Find the largest power of 4 smaller than val.
 1582          */
 1583         while (bit > val)
 1584                 bit >>= 2;
 1585 
 1586         /*
 1587          * Accumulate the answer, one bit at a time (we keep moving
 1588          * them over since 2 is the square root of 4 and we test
 1589          * powers of 4). We accumulate where we find the bit, but
 1590          * the successive shifts land the bit in the right place
 1591          * by the end.
 1592          */
 1593         while (bit != 0) {
 1594                 if (val >= res + bit) {
 1595                         val -= res + bit;
 1596                         res = (res >> 1) + bit;
 1597                 } else
 1598                         res >>= 1;
 1599                 bit >>= 2;
 1600         }
 1601 
 1602         return res;
 1603 }
 1604 
 1605 static sbintime_t latencies[LAT_BUCKETS - 1] = {
 1606         SBT_1MS <<  0,
 1607         SBT_1MS <<  1,
 1608         SBT_1MS <<  2,
 1609         SBT_1MS <<  3,
 1610         SBT_1MS <<  4,
 1611         SBT_1MS <<  5,
 1612         SBT_1MS <<  6,
 1613         SBT_1MS <<  7,
 1614         SBT_1MS <<  8,
 1615         SBT_1MS <<  9,
 1616         SBT_1MS << 10,
 1617         SBT_1MS << 11,
 1618         SBT_1MS << 12,
 1619         SBT_1MS << 13           /* 8.192s */
 1620 };
 1621 
 1622 static void
 1623 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
 1624 {
 1625         sbintime_t y, deltasq, delta;
 1626         int i;
 1627 
 1628         /*
 1629          * Keep counts for latency. We do it by power of two buckets.
 1630          * This helps us spot outlier behavior obscured by averages.
 1631          */
 1632         for (i = 0; i < LAT_BUCKETS - 1; i++) {
 1633                 if (sim_latency < latencies[i]) {
 1634                         iop->latencies[i]++;
 1635                         break;
 1636                 }
 1637         }
 1638         if (i == LAT_BUCKETS - 1)
 1639                 iop->latencies[i]++;     /* Put all > 1024ms values into the last bucket. */
 1640 
 1641         /*
 1642          * Classic exponentially decaying average with a tiny alpha
 1643          * (2 ^ -alpha_bits). For more info see the NIST statistical
 1644          * handbook.
 1645          *
 1646          * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)          [nist]
 1647          * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
 1648          * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
 1649          * alpha = 1 / (1 << alpha_bits)
 1650          * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
 1651          *      = y_t/b - e/b + be/b
 1652          *      = (y_t - e + be) / b
 1653          *      = (e + d) / b
 1654          *
 1655          * Since alpha is a power of two, we can compute this w/o any mult or
 1656          * division.
 1657          *
 1658          * Variance can also be computed. Usually, it would be expressed as follows:
 1659          *      diff_t = y_t - ema_t-1
 1660          *      emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
 1661          *        = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
 1662          * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
 1663          *        = e - e/b + dd/b + dd/bb
 1664          *        = (bbe - be + bdd + dd) / bb
 1665          *        = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
 1666          */
 1667         /*
 1668          * XXX possible numeric issues
 1669          *      o We assume right shifted integers do the right thing, since that's
 1670          *        implementation defined. You can change the right shifts to / (1LL << alpha).
 1671          *      o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
 1672          *        for emvar. This puts a ceiling of 13 bits on alpha since we need a
 1673          *        few tens of seconds of representation.
 1674          *      o We mitigate alpha issues by never setting it too high.
 1675          */
 1676         y = sim_latency;
 1677         delta = (y - iop->ema);                                 /* d */
 1678         iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
 1679 
 1680         /*
 1681          * Were we to naively plow ahead at this point, we wind up with many numerical
 1682          * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
 1683          * us with microsecond level precision in the input, so the same in the
 1684          * output. It means we can't overflow deltasq unless delta > 4k seconds. It
 1685          * also means that emvar can be up 46 bits 40 of which are fraction, which
 1686          * gives us a way to measure up to ~8s in the SD before the computation goes
 1687          * unstable. Even the worst hard disk rarely has > 1s service time in the
 1688          * drive. It does mean we have to shift left 12 bits after taking the
 1689          * square root to compute the actual standard deviation estimate. This loss of
 1690          * precision is preferable to needing int128 types to work. The above numbers
 1691          * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
 1692          * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
 1693          */
 1694         delta >>= 12;
 1695         deltasq = delta * delta;                                /* dd */
 1696         iop->emvar = ((iop->emvar << (2 * alpha_bits)) +        /* bbe */
 1697             ((deltasq - iop->emvar) << alpha_bits) +            /* b(dd-e) */
 1698             deltasq)                                            /* dd */
 1699             >> (2 * alpha_bits);                                /* div bb */
 1700         iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
 1701 }
 1702 
 1703 static void
 1704 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
 1705     sbintime_t sim_latency, int cmd, size_t size)
 1706 {
 1707         /* xxx Do we need to scale based on the size of the I/O ? */
 1708         switch (cmd) {
 1709         case BIO_READ:
 1710                 cam_iosched_update(&isc->read_stats, sim_latency);
 1711                 break;
 1712         case BIO_WRITE:
 1713                 cam_iosched_update(&isc->write_stats, sim_latency);
 1714                 break;
 1715         case BIO_DELETE:
 1716                 cam_iosched_update(&isc->trim_stats, sim_latency);
 1717                 break;
 1718         default:
 1719                 break;
 1720         }
 1721 }
 1722 
 1723 #ifdef DDB
 1724 static int biolen(struct bio_queue_head *bq)
 1725 {
 1726         int i = 0;
 1727         struct bio *bp;
 1728 
 1729         TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
 1730                 i++;
 1731         }
 1732         return i;
 1733 }
 1734 
 1735 /*
 1736  * Show the internal state of the I/O scheduler.
 1737  */
 1738 DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
 1739 {
 1740         struct cam_iosched_softc *isc;
 1741 
 1742         if (!have_addr) {
 1743                 db_printf("Need addr\n");
 1744                 return;
 1745         }
 1746         isc = (struct cam_iosched_softc *)addr;
 1747         db_printf("pending_reads:     %d\n", isc->read_stats.pending);
 1748         db_printf("min_reads:         %d\n", isc->read_stats.min);
 1749         db_printf("max_reads:         %d\n", isc->read_stats.max);
 1750         db_printf("reads:             %d\n", isc->read_stats.total);
 1751         db_printf("in_reads:          %d\n", isc->read_stats.in);
 1752         db_printf("out_reads:         %d\n", isc->read_stats.out);
 1753         db_printf("queued_reads:      %d\n", isc->read_stats.queued);
 1754         db_printf("Current Q len      %d\n", biolen(&isc->bio_queue));
 1755         db_printf("pending_writes:    %d\n", isc->write_stats.pending);
 1756         db_printf("min_writes:        %d\n", isc->write_stats.min);
 1757         db_printf("max_writes:        %d\n", isc->write_stats.max);
 1758         db_printf("writes:            %d\n", isc->write_stats.total);
 1759         db_printf("in_writes:         %d\n", isc->write_stats.in);
 1760         db_printf("out_writes:        %d\n", isc->write_stats.out);
 1761         db_printf("queued_writes:     %d\n", isc->write_stats.queued);
 1762         db_printf("Current Q len      %d\n", biolen(&isc->write_queue));
 1763         db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
 1764         db_printf("min_trims:         %d\n", isc->trim_stats.min);
 1765         db_printf("max_trims:         %d\n", isc->trim_stats.max);
 1766         db_printf("trims:             %d\n", isc->trim_stats.total);
 1767         db_printf("in_trims:          %d\n", isc->trim_stats.in);
 1768         db_printf("out_trims:         %d\n", isc->trim_stats.out);
 1769         db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
 1770         db_printf("Current Q len      %d\n", biolen(&isc->trim_queue));
 1771         db_printf("read_bias:         %d\n", isc->read_bias);
 1772         db_printf("current_read_bias: %d\n", isc->current_read_bias);
 1773         db_printf("Trim active?       %s\n",
 1774             (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
 1775 }
 1776 #endif
 1777 #endif

Cache object: 4fab059fa66f2cc645efad39d1b59c43


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.