The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/cam/cam_iosched.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * CAM IO Scheduler Interface
    3  *
    4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    5  *
    6  * Copyright (c) 2015 Netflix, Inc.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions, and the following disclaimer,
   13  *    without modification, immediately at the beginning of the file.
   14  * 2. The name of the author may not be used to endorse or promote products
   15  *    derived from this software without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
   21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD$
   30  */
   31 
   32 #include "opt_cam.h"
   33 #include "opt_ddb.h"
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 #include <sys/param.h>
   39 
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/bio.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mutex.h>
   46 #include <sys/sbuf.h>
   47 #include <sys/sysctl.h>
   48 
   49 #include <cam/cam.h>
   50 #include <cam/cam_ccb.h>
   51 #include <cam/cam_periph.h>
   52 #include <cam/cam_xpt_periph.h>
   53 #include <cam/cam_xpt_internal.h>
   54 #include <cam/cam_iosched.h>
   55 
   56 #include <ddb/ddb.h>
   57 
   58 static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
   59     "CAM I/O Scheduler buffers");
   60 
   61 /*
   62  * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
   63  * over the bioq_* interface, with notions of separate calls for normal I/O and
   64  * for trims.
   65  *
   66  * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
   67  * steer the rate of one type of traffic to help other types of traffic (eg
   68  * limit writes when read latency deteriorates on SSDs).
   69  */
   70 
   71 #ifdef CAM_IOSCHED_DYNAMIC
   72 
   73 static int do_dynamic_iosched = 1;
   74 TUNABLE_INT("kern.cam.do_dynamic_iosched", &do_dynamic_iosched);
   75 SYSCTL_INT(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD,
   76     &do_dynamic_iosched, 1,
   77     "Enable Dynamic I/O scheduler optimizations.");
   78 
   79 /*
   80  * For an EMA, with an alpha of alpha, we know
   81  *      alpha = 2 / (N + 1)
   82  * or
   83  *      N = 1 + (2 / alpha)
   84  * where N is the number of samples that 86% of the current
   85  * EMA is derived from.
   86  *
   87  * So we invent[*] alpha_bits:
   88  *      alpha_bits = -log_2(alpha)
   89  *      alpha = 2^-alpha_bits
   90  * So
   91  *      N = 1 + 2^(alpha_bits + 1)
   92  *
   93  * The default 9 gives a 1025 lookback for 86% of the data.
   94  * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
   95  *
   96  * [*] Steal from the load average code and many other places.
   97  * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
   98  */
   99 static int alpha_bits = 9;
  100 TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
  101 SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
  102     &alpha_bits, 1,
  103     "Bits in EMA's alpha.");
  104 
  105 struct iop_stats;
  106 struct cam_iosched_softc;
  107 
  108 int iosched_debug = 0;
  109 
  110 typedef enum {
  111         none = 0,                               /* No limits */
  112         queue_depth,                    /* Limit how many ops we queue to SIM */
  113         iops,                           /* Limit # of IOPS to the drive */
  114         bandwidth,                      /* Limit bandwidth to the drive */
  115         limiter_max
  116 } io_limiter;
  117 
  118 static const char *cam_iosched_limiter_names[] =
  119     { "none", "queue_depth", "iops", "bandwidth" };
  120 
  121 /*
  122  * Called to initialize the bits of the iop_stats structure relevant to the
  123  * limiter. Called just after the limiter is set.
  124  */
  125 typedef int l_init_t(struct iop_stats *);
  126 
  127 /*
  128  * Called every tick.
  129  */
  130 typedef int l_tick_t(struct iop_stats *);
  131 
  132 /*
  133  * Called to see if the limiter thinks this IOP can be allowed to
  134  * proceed. If so, the limiter assumes that the IOP proceeded
  135  * and makes any accounting of it that's needed.
  136  */
  137 typedef int l_iop_t(struct iop_stats *, struct bio *);
  138 
  139 /*
  140  * Called when an I/O completes so the limiter can update its
  141  * accounting. Pending I/Os may complete in any order (even when
  142  * sent to the hardware at the same time), so the limiter may not
  143  * make any assumptions other than this I/O has completed. If it
  144  * returns 1, then xpt_schedule() needs to be called again.
  145  */
  146 typedef int l_iodone_t(struct iop_stats *, struct bio *);
  147 
  148 static l_iop_t cam_iosched_qd_iop;
  149 static l_iop_t cam_iosched_qd_caniop;
  150 static l_iodone_t cam_iosched_qd_iodone;
  151 
  152 static l_init_t cam_iosched_iops_init;
  153 static l_tick_t cam_iosched_iops_tick;
  154 static l_iop_t cam_iosched_iops_caniop;
  155 static l_iop_t cam_iosched_iops_iop;
  156 
  157 static l_init_t cam_iosched_bw_init;
  158 static l_tick_t cam_iosched_bw_tick;
  159 static l_iop_t cam_iosched_bw_caniop;
  160 static l_iop_t cam_iosched_bw_iop;
  161 
  162 struct limswitch {
  163         l_init_t        *l_init;
  164         l_tick_t        *l_tick;
  165         l_iop_t         *l_iop;
  166         l_iop_t         *l_caniop;
  167         l_iodone_t      *l_iodone;
  168 } limsw[] =
  169 {
  170         {       /* none */
  171                 .l_init = NULL,
  172                 .l_tick = NULL,
  173                 .l_iop = NULL,
  174                 .l_iodone= NULL,
  175         },
  176         {       /* queue_depth */
  177                 .l_init = NULL,
  178                 .l_tick = NULL,
  179                 .l_caniop = cam_iosched_qd_caniop,
  180                 .l_iop = cam_iosched_qd_iop,
  181                 .l_iodone= cam_iosched_qd_iodone,
  182         },
  183         {       /* iops */
  184                 .l_init = cam_iosched_iops_init,
  185                 .l_tick = cam_iosched_iops_tick,
  186                 .l_caniop = cam_iosched_iops_caniop,
  187                 .l_iop = cam_iosched_iops_iop,
  188                 .l_iodone= NULL,
  189         },
  190         {       /* bandwidth */
  191                 .l_init = cam_iosched_bw_init,
  192                 .l_tick = cam_iosched_bw_tick,
  193                 .l_caniop = cam_iosched_bw_caniop,
  194                 .l_iop = cam_iosched_bw_iop,
  195                 .l_iodone= NULL,
  196         },
  197 };
  198 
  199 struct iop_stats {
  200         /*
  201          * sysctl state for this subnode.
  202          */
  203         struct sysctl_ctx_list  sysctl_ctx;
  204         struct sysctl_oid       *sysctl_tree;
  205 
  206         /*
  207          * Information about the current rate limiters, if any
  208          */
  209         io_limiter      limiter;        /* How are I/Os being limited */
  210         int             min;            /* Low range of limit */
  211         int             max;            /* High range of limit */
  212         int             current;        /* Current rate limiter */
  213         int             l_value1;       /* per-limiter scratch value 1. */
  214         int             l_value2;       /* per-limiter scratch value 2. */
  215 
  216         /*
  217          * Debug information about counts of I/Os that have gone through the
  218          * scheduler.
  219          */
  220         int             pending;        /* I/Os pending in the hardware */
  221         int             queued;         /* number currently in the queue */
  222         int             total;          /* Total for all time -- wraps */
  223         int             in;             /* number queued all time -- wraps */
  224         int             out;            /* number completed all time -- wraps */
  225         int             errs;           /* Number of I/Os completed with error --  wraps */
  226 
  227         /*
  228          * Statistics on different bits of the process.
  229          */
  230                 /* Exp Moving Average, see alpha_bits for more details */
  231         sbintime_t      ema;
  232         sbintime_t      emvar;
  233         sbintime_t      sd;             /* Last computed sd */
  234 
  235         uint32_t        state_flags;
  236 #define IOP_RATE_LIMITED                1u
  237 
  238 #define LAT_BUCKETS 15                  /* < 1ms < 2ms ... < 2^(n-1)ms >= 2^(n-1)ms*/
  239         uint64_t        latencies[LAT_BUCKETS];
  240 
  241         struct cam_iosched_softc *softc;
  242 };
  243 
  244 typedef enum {
  245         set_max = 0,                    /* current = max */
  246         read_latency,                   /* Steer read latency by throttling writes */
  247         cl_max                          /* Keep last */
  248 } control_type;
  249 
  250 static const char *cam_iosched_control_type_names[] =
  251     { "set_max", "read_latency" };
  252 
  253 struct control_loop {
  254         /*
  255          * sysctl state for this subnode.
  256          */
  257         struct sysctl_ctx_list  sysctl_ctx;
  258         struct sysctl_oid       *sysctl_tree;
  259 
  260         sbintime_t      next_steer;             /* Time of next steer */
  261         sbintime_t      steer_interval;         /* How often do we steer? */
  262         sbintime_t      lolat;
  263         sbintime_t      hilat;
  264         int             alpha;
  265         control_type    type;                   /* What type of control? */
  266         int             last_count;             /* Last I/O count */
  267 
  268         struct cam_iosched_softc *softc;
  269 };
  270 
  271 #endif
  272 
  273 struct cam_iosched_softc {
  274         struct bio_queue_head bio_queue;
  275         struct bio_queue_head trim_queue;
  276                                 /* scheduler flags < 16, user flags >= 16 */
  277         uint32_t        flags;
  278         int             sort_io_queue;
  279         int             trim_goal;              /* # of trims to queue before sending */
  280         int             trim_ticks;             /* Max ticks to hold trims */
  281         int             last_trim_tick;         /* Last 'tick' time ld a trim */
  282         int             queued_trims;           /* Number of trims in the queue */
  283 #ifdef CAM_IOSCHED_DYNAMIC
  284         int             read_bias;              /* Read bias setting */
  285         int             current_read_bias;      /* Current read bias state */
  286         int             total_ticks;
  287         int             load;                   /* EMA of 'load average' of disk / 2^16 */
  288 
  289         struct bio_queue_head write_queue;
  290         struct iop_stats read_stats, write_stats, trim_stats;
  291         struct sysctl_ctx_list  sysctl_ctx;
  292         struct sysctl_oid       *sysctl_tree;
  293 
  294         int             quanta;                 /* Number of quanta per second */
  295         struct callout  ticker;                 /* Callout for our quota system */
  296         struct cam_periph *periph;              /* cam periph associated with this device */
  297         uint32_t        this_frac;              /* Fraction of a second (1024ths) for this tick */
  298         sbintime_t      last_time;              /* Last time we ticked */
  299         struct control_loop cl;
  300         sbintime_t      max_lat;                /* when != 0, if iop latency > max_lat, call max_lat_fcn */
  301         cam_iosched_latfcn_t    latfcn;
  302         void            *latarg;
  303 #endif
  304 };
  305 
  306 #ifdef CAM_IOSCHED_DYNAMIC
  307 /*
  308  * helper functions to call the limsw functions.
  309  */
  310 static int
  311 cam_iosched_limiter_init(struct iop_stats *ios)
  312 {
  313         int lim = ios->limiter;
  314 
  315         /* maybe this should be a kassert */
  316         if (lim < none || lim >= limiter_max)
  317                 return EINVAL;
  318 
  319         if (limsw[lim].l_init)
  320                 return limsw[lim].l_init(ios);
  321 
  322         return 0;
  323 }
  324 
  325 static int
  326 cam_iosched_limiter_tick(struct iop_stats *ios)
  327 {
  328         int lim = ios->limiter;
  329 
  330         /* maybe this should be a kassert */
  331         if (lim < none || lim >= limiter_max)
  332                 return EINVAL;
  333 
  334         if (limsw[lim].l_tick)
  335                 return limsw[lim].l_tick(ios);
  336 
  337         return 0;
  338 }
  339 
  340 static int
  341 cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
  342 {
  343         int lim = ios->limiter;
  344 
  345         /* maybe this should be a kassert */
  346         if (lim < none || lim >= limiter_max)
  347                 return EINVAL;
  348 
  349         if (limsw[lim].l_iop)
  350                 return limsw[lim].l_iop(ios, bp);
  351 
  352         return 0;
  353 }
  354 
  355 static int
  356 cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
  357 {
  358         int lim = ios->limiter;
  359 
  360         /* maybe this should be a kassert */
  361         if (lim < none || lim >= limiter_max)
  362                 return EINVAL;
  363 
  364         if (limsw[lim].l_caniop)
  365                 return limsw[lim].l_caniop(ios, bp);
  366 
  367         return 0;
  368 }
  369 
  370 static int
  371 cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
  372 {
  373         int lim = ios->limiter;
  374 
  375         /* maybe this should be a kassert */
  376         if (lim < none || lim >= limiter_max)
  377                 return 0;
  378 
  379         if (limsw[lim].l_iodone)
  380                 return limsw[lim].l_iodone(ios, bp);
  381 
  382         return 0;
  383 }
  384 
  385 /*
  386  * Functions to implement the different kinds of limiters
  387  */
  388 
  389 static int
  390 cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
  391 {
  392 
  393         if (ios->current <= 0 || ios->pending < ios->current)
  394                 return 0;
  395 
  396         return EAGAIN;
  397 }
  398 
  399 static int
  400 cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
  401 {
  402 
  403         if (ios->current <= 0 || ios->pending < ios->current)
  404                 return 0;
  405 
  406         return EAGAIN;
  407 }
  408 
  409 static int
  410 cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
  411 {
  412 
  413         if (ios->current <= 0 || ios->pending != ios->current)
  414                 return 0;
  415 
  416         return 1;
  417 }
  418 
  419 static int
  420 cam_iosched_iops_init(struct iop_stats *ios)
  421 {
  422 
  423         ios->l_value1 = ios->current / ios->softc->quanta;
  424         if (ios->l_value1 <= 0)
  425                 ios->l_value1 = 1;
  426         ios->l_value2 = 0;
  427 
  428         return 0;
  429 }
  430 
  431 static int
  432 cam_iosched_iops_tick(struct iop_stats *ios)
  433 {
  434         int new_ios;
  435 
  436         /*
  437          * Allow at least one IO per tick until all
  438          * the IOs for this interval have been spent.
  439          */
  440         new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
  441         if (new_ios < 1 && ios->l_value2 < ios->current) {
  442                 new_ios = 1;
  443                 ios->l_value2++;
  444         }
  445 
  446         /*
  447          * If this a new accounting interval, discard any "unspent" ios
  448          * granted in the previous interval.  Otherwise add the new ios to
  449          * the previously granted ones that haven't been spent yet.
  450          */
  451         if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
  452                 ios->l_value1 = new_ios;
  453                 ios->l_value2 = 1;
  454         } else {
  455                 ios->l_value1 += new_ios;
  456         }
  457 
  458         return 0;
  459 }
  460 
  461 static int
  462 cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
  463 {
  464 
  465         /*
  466          * So if we have any more IOPs left, allow it,
  467          * otherwise wait. If current iops is 0, treat that
  468          * as unlimited as a failsafe.
  469          */
  470         if (ios->current > 0 && ios->l_value1 <= 0)
  471                 return EAGAIN;
  472         return 0;
  473 }
  474 
  475 static int
  476 cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
  477 {
  478         int rv;
  479 
  480         rv = cam_iosched_limiter_caniop(ios, bp);
  481         if (rv == 0)
  482                 ios->l_value1--;
  483 
  484         return rv;
  485 }
  486 
  487 static int
  488 cam_iosched_bw_init(struct iop_stats *ios)
  489 {
  490 
  491         /* ios->current is in kB/s, so scale to bytes */
  492         ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
  493 
  494         return 0;
  495 }
  496 
  497 static int
  498 cam_iosched_bw_tick(struct iop_stats *ios)
  499 {
  500         int bw;
  501 
  502         /*
  503          * If we're in the hole for available quota from
  504          * the last time, then add the quantum for this.
  505          * If we have any left over from last quantum,
  506          * then too bad, that's lost. Also, ios->current
  507          * is in kB/s, so scale.
  508          *
  509          * We also allow up to 4 quanta of credits to
  510          * accumulate to deal with burstiness. 4 is extremely
  511          * arbitrary.
  512          */
  513         bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
  514         if (ios->l_value1 < bw * 4)
  515                 ios->l_value1 += bw;
  516 
  517         return 0;
  518 }
  519 
  520 static int
  521 cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
  522 {
  523         /*
  524          * So if we have any more bw quota left, allow it,
  525          * otherwise wait. Note, we'll go negative and that's
  526          * OK. We'll just get a little less next quota.
  527          *
  528          * Note on going negative: that allows us to process
  529          * requests in order better, since we won't allow
  530          * shorter reads to get around the long one that we
  531          * don't have the quota to do just yet. It also prevents
  532          * starvation by being a little more permissive about
  533          * what we let through this quantum (to prevent the
  534          * starvation), at the cost of getting a little less
  535          * next quantum.
  536          *
  537          * Also note that if the current limit is <= 0,
  538          * we treat it as unlimited as a failsafe.
  539          */
  540         if (ios->current > 0 && ios->l_value1 <= 0)
  541                 return EAGAIN;
  542 
  543         return 0;
  544 }
  545 
  546 static int
  547 cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
  548 {
  549         int rv;
  550 
  551         rv = cam_iosched_limiter_caniop(ios, bp);
  552         if (rv == 0)
  553                 ios->l_value1 -= bp->bio_length;
  554 
  555         return rv;
  556 }
  557 
  558 static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
  559 
  560 static void
  561 cam_iosched_ticker(void *arg)
  562 {
  563         struct cam_iosched_softc *isc = arg;
  564         sbintime_t now, delta;
  565         int pending;
  566 
  567         callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
  568 
  569         now = sbinuptime();
  570         delta = now - isc->last_time;
  571         isc->this_frac = (uint32_t)delta >> 16;         /* Note: discards seconds -- should be 0 harmless if not */
  572         isc->last_time = now;
  573 
  574         cam_iosched_cl_maybe_steer(&isc->cl);
  575 
  576         cam_iosched_limiter_tick(&isc->read_stats);
  577         cam_iosched_limiter_tick(&isc->write_stats);
  578         cam_iosched_limiter_tick(&isc->trim_stats);
  579 
  580         cam_iosched_schedule(isc, isc->periph);
  581 
  582         /*
  583          * isc->load is an EMA of the pending I/Os at each tick. The number of
  584          * pending I/Os is the sum of the I/Os queued to the hardware, and those
  585          * in the software queue that could be queued to the hardware if there
  586          * were slots.
  587          *
  588          * ios_stats.pending is a count of requests in the SIM right now for
  589          * each of these types of I/O. So the total pending count is the sum of
  590          * these I/Os and the sum of the queued I/Os still in the software queue
  591          * for those operations that aren't being rate limited at the moment.
  592          *
  593          * The reason for the rate limiting bit is because those I/Os
  594          * aren't part of the software queued load (since we could
  595          * give them to hardware, but choose not to).
  596          *
  597          * Note: due to a bug in counting pending TRIM in the device, we
  598          * don't include them in this count. We count each BIO_DELETE in
  599          * the pending count, but the periph drivers collapse them down
  600          * into one TRIM command. That one trim command gets the completion
  601          * so the counts get off.
  602          */
  603         pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
  604         pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
  605             !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
  606             !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
  607         pending <<= 16;
  608         pending /= isc->periph->path->device->ccbq.total_openings;
  609 
  610         isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
  611 
  612         isc->total_ticks++;
  613 }
  614 
  615 static void
  616 cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
  617 {
  618 
  619         clp->next_steer = sbinuptime();
  620         clp->softc = isc;
  621         clp->steer_interval = SBT_1S * 5;       /* Let's start out steering every 5s */
  622         clp->lolat = 5 * SBT_1MS;
  623         clp->hilat = 15 * SBT_1MS;
  624         clp->alpha = 20;                        /* Alpha == gain. 20 = .2 */
  625         clp->type = set_max;
  626 }
  627 
  628 static void
  629 cam_iosched_cl_maybe_steer(struct control_loop *clp)
  630 {
  631         struct cam_iosched_softc *isc;
  632         sbintime_t now, lat;
  633         int old;
  634 
  635         isc = clp->softc;
  636         now = isc->last_time;
  637         if (now < clp->next_steer)
  638                 return;
  639 
  640         clp->next_steer = now + clp->steer_interval;
  641         switch (clp->type) {
  642         case set_max:
  643                 if (isc->write_stats.current != isc->write_stats.max)
  644                         printf("Steering write from %d kBps to %d kBps\n",
  645                             isc->write_stats.current, isc->write_stats.max);
  646                 isc->read_stats.current = isc->read_stats.max;
  647                 isc->write_stats.current = isc->write_stats.max;
  648                 isc->trim_stats.current = isc->trim_stats.max;
  649                 break;
  650         case read_latency:
  651                 old = isc->write_stats.current;
  652                 lat = isc->read_stats.ema;
  653                 /*
  654                  * Simple PLL-like engine. Since we're steering to a range for
  655                  * the SP (set point) that makes things a little more
  656                  * complicated. In addition, we're not directly controlling our
  657                  * PV (process variable), the read latency, but instead are
  658                  * manipulating the write bandwidth limit for our MV
  659                  * (manipulation variable), analysis of this code gets a bit
  660                  * messy. Also, the MV is a very noisy control surface for read
  661                  * latency since it is affected by many hidden processes inside
  662                  * the device which change how responsive read latency will be
  663                  * in reaction to changes in write bandwidth. Unlike the classic
  664                  * boiler control PLL. this may result in over-steering while
  665                  * the SSD takes its time to react to the new, lower load. This
  666                  * is why we use a relatively low alpha of between .1 and .25 to
  667                  * compensate for this effect. At .1, it takes ~22 steering
  668                  * intervals to back off by a factor of 10. At .2 it only takes
  669                  * ~10. At .25 it only takes ~8. However some preliminary data
  670                  * from the SSD drives suggests a reasponse time in 10's of
  671                  * seconds before latency drops regardless of the new write
  672                  * rate. Careful observation will be required to tune this
  673                  * effectively.
  674                  *
  675                  * Also, when there's no read traffic, we jack up the write
  676                  * limit too regardless of the last read latency.  10 is
  677                  * somewhat arbitrary.
  678                  */
  679                 if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
  680                         isc->write_stats.current = isc->write_stats.current *
  681                             (100 + clp->alpha) / 100;   /* Scale up */
  682                 else if (lat > clp->hilat)
  683                         isc->write_stats.current = isc->write_stats.current *
  684                             (100 - clp->alpha) / 100;   /* Scale down */
  685                 clp->last_count = isc->read_stats.total;
  686 
  687                 /*
  688                  * Even if we don't steer, per se, enforce the min/max limits as
  689                  * those may have changed.
  690                  */
  691                 if (isc->write_stats.current < isc->write_stats.min)
  692                         isc->write_stats.current = isc->write_stats.min;
  693                 if (isc->write_stats.current > isc->write_stats.max)
  694                         isc->write_stats.current = isc->write_stats.max;
  695                 if (old != isc->write_stats.current &&  iosched_debug)
  696                         printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
  697                             old, isc->write_stats.current,
  698                             (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
  699                 break;
  700         case cl_max:
  701                 break;
  702         }
  703 }
  704 #endif
  705 
  706 /*
  707  * Trim or similar currently pending completion. Should only be set for
  708  * those drivers wishing only one Trim active at a time.
  709  */
  710 #define CAM_IOSCHED_FLAG_TRIM_ACTIVE    (1ul << 0)
  711                         /* Callout active, and needs to be torn down */
  712 #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
  713 
  714                         /* Periph drivers set these flags to indicate work */
  715 #define CAM_IOSCHED_FLAG_WORK_FLAGS     ((0xffffu) << 16)
  716 
  717 #ifdef CAM_IOSCHED_DYNAMIC
  718 static void
  719 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
  720     sbintime_t sim_latency, int cmd, size_t size);
  721 #endif
  722 
  723 static inline bool
  724 cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
  725 {
  726         return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
  727 }
  728 
  729 static inline bool
  730 cam_iosched_has_io(struct cam_iosched_softc *isc)
  731 {
  732 #ifdef CAM_IOSCHED_DYNAMIC
  733         if (do_dynamic_iosched) {
  734                 struct bio *rbp = bioq_first(&isc->bio_queue);
  735                 struct bio *wbp = bioq_first(&isc->write_queue);
  736                 bool can_write = wbp != NULL &&
  737                     cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
  738                 bool can_read = rbp != NULL &&
  739                     cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
  740                 if (iosched_debug > 2) {
  741                         printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
  742                         printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
  743                         printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
  744                 }
  745                 return can_read || can_write;
  746         }
  747 #endif
  748         return bioq_first(&isc->bio_queue) != NULL;
  749 }
  750 
  751 static inline bool
  752 cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
  753 {
  754         struct bio *bp;
  755 
  756         bp = bioq_first(&isc->trim_queue);
  757 #ifdef CAM_IOSCHED_DYNAMIC
  758         if (do_dynamic_iosched) {
  759                 /*
  760                  * If we're limiting trims, then defer action on trims
  761                  * for a bit.
  762                  */
  763                 if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0)
  764                         return false;
  765         }
  766 #endif
  767 
  768         /*
  769          * If we've set a trim_goal, then if we exceed that allow trims
  770          * to be passed back to the driver. If we've also set a tick timeout
  771          * allow trims back to the driver. Otherwise, don't allow trims yet.
  772          */
  773         if (isc->trim_goal > 0) {
  774                 if (isc->queued_trims >= isc->trim_goal)
  775                         return true;
  776                 if (isc->queued_trims > 0 &&
  777                     isc->trim_ticks > 0 &&
  778                     ticks - isc->last_trim_tick > isc->trim_ticks)
  779                         return true;
  780                 return false;
  781         }
  782 
  783         /* NB: Should perhaps have a max trim active independent of I/O limiters */
  784         return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL;
  785 }
  786 
  787 #define cam_iosched_sort_queue(isc)     ((isc)->sort_io_queue >= 0 ?    \
  788     (isc)->sort_io_queue : cam_sort_io_queues)
  789 
  790 static inline bool
  791 cam_iosched_has_work(struct cam_iosched_softc *isc)
  792 {
  793 #ifdef CAM_IOSCHED_DYNAMIC
  794         if (iosched_debug > 2)
  795                 printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
  796                     cam_iosched_has_more_trim(isc),
  797                     cam_iosched_has_flagged_work(isc));
  798 #endif
  799 
  800         return cam_iosched_has_io(isc) ||
  801                 cam_iosched_has_more_trim(isc) ||
  802                 cam_iosched_has_flagged_work(isc);
  803 }
  804 
  805 #ifdef CAM_IOSCHED_DYNAMIC
  806 static void
  807 cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
  808 {
  809 
  810         ios->limiter = none;
  811         ios->in = 0;
  812         ios->max = ios->current = 300000;
  813         ios->min = 1;
  814         ios->out = 0;
  815         ios->errs = 0;
  816         ios->pending = 0;
  817         ios->queued = 0;
  818         ios->total = 0;
  819         ios->ema = 0;
  820         ios->emvar = 0;
  821         ios->softc = isc;
  822         cam_iosched_limiter_init(ios);
  823 }
  824 
  825 static int
  826 cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
  827 {
  828         char buf[16];
  829         struct iop_stats *ios;
  830         struct cam_iosched_softc *isc;
  831         int value, i, error;
  832         const char *p;
  833 
  834         ios = arg1;
  835         isc = ios->softc;
  836         value = ios->limiter;
  837         if (value < none || value >= limiter_max)
  838                 p = "UNKNOWN";
  839         else
  840                 p = cam_iosched_limiter_names[value];
  841 
  842         strlcpy(buf, p, sizeof(buf));
  843         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  844         if (error != 0 || req->newptr == NULL)
  845                 return error;
  846 
  847         cam_periph_lock(isc->periph);
  848 
  849         for (i = none; i < limiter_max; i++) {
  850                 if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
  851                         continue;
  852                 ios->limiter = i;
  853                 error = cam_iosched_limiter_init(ios);
  854                 if (error != 0) {
  855                         ios->limiter = value;
  856                         cam_periph_unlock(isc->periph);
  857                         return error;
  858                 }
  859                 /* Note: disk load averate requires ticker to be always running */
  860                 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
  861                 isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
  862 
  863                 cam_periph_unlock(isc->periph);
  864                 return 0;
  865         }
  866 
  867         cam_periph_unlock(isc->periph);
  868         return EINVAL;
  869 }
  870 
  871 static int
  872 cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
  873 {
  874         char buf[16];
  875         struct control_loop *clp;
  876         struct cam_iosched_softc *isc;
  877         int value, i, error;
  878         const char *p;
  879 
  880         clp = arg1;
  881         isc = clp->softc;
  882         value = clp->type;
  883         if (value < none || value >= cl_max)
  884                 p = "UNKNOWN";
  885         else
  886                 p = cam_iosched_control_type_names[value];
  887 
  888         strlcpy(buf, p, sizeof(buf));
  889         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  890         if (error != 0 || req->newptr == NULL)
  891                 return error;
  892 
  893         for (i = set_max; i < cl_max; i++) {
  894                 if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
  895                         continue;
  896                 cam_periph_lock(isc->periph);
  897                 clp->type = i;
  898                 cam_periph_unlock(isc->periph);
  899                 return 0;
  900         }
  901 
  902         return EINVAL;
  903 }
  904 
  905 static int
  906 cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
  907 {
  908         char buf[16];
  909         sbintime_t value;
  910         int error;
  911         uint64_t us;
  912 
  913         value = *(sbintime_t *)arg1;
  914         us = (uint64_t)value / SBT_1US;
  915         snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
  916         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
  917         if (error != 0 || req->newptr == NULL)
  918                 return error;
  919         us = strtoul(buf, NULL, 10);
  920         if (us == 0)
  921                 return EINVAL;
  922         *(sbintime_t *)arg1 = us * SBT_1US;
  923         return 0;
  924 }
  925 
  926 static int
  927 cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
  928 {
  929         int i, error;
  930         struct sbuf sb;
  931         uint64_t *latencies;
  932 
  933         latencies = arg1;
  934         sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
  935 
  936         for (i = 0; i < LAT_BUCKETS - 1; i++)
  937                 sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
  938         sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
  939         error = sbuf_finish(&sb);
  940         sbuf_delete(&sb);
  941 
  942         return (error);
  943 }
  944 
  945 static int
  946 cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
  947 {
  948         int *quanta;
  949         int error, value;
  950 
  951         quanta = (unsigned *)arg1;
  952         value = *quanta;
  953 
  954         error = sysctl_handle_int(oidp, (int *)&value, 0, req);
  955         if ((error != 0) || (req->newptr == NULL))
  956                 return (error);
  957 
  958         if (value < 1 || value > hz)
  959                 return (EINVAL);
  960 
  961         *quanta = value;
  962 
  963         return (0);
  964 }
  965 
  966 static void
  967 cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
  968 {
  969         struct sysctl_oid_list *n;
  970         struct sysctl_ctx_list *ctx;
  971 
  972         ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
  973             SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
  974             CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name);
  975         n = SYSCTL_CHILDREN(ios->sysctl_tree);
  976         ctx = &ios->sysctl_ctx;
  977 
  978         SYSCTL_ADD_UQUAD(ctx, n,
  979             OID_AUTO, "ema", CTLFLAG_RD,
  980             &ios->ema,
  981             "Fast Exponentially Weighted Moving Average");
  982         SYSCTL_ADD_UQUAD(ctx, n,
  983             OID_AUTO, "emvar", CTLFLAG_RD,
  984             &ios->emvar,
  985             "Fast Exponentially Weighted Moving Variance");
  986 
  987         SYSCTL_ADD_INT(ctx, n,
  988             OID_AUTO, "pending", CTLFLAG_RD,
  989             &ios->pending, 0,
  990             "Instantaneous # of pending transactions");
  991         SYSCTL_ADD_INT(ctx, n,
  992             OID_AUTO, "count", CTLFLAG_RD,
  993             &ios->total, 0,
  994             "# of transactions submitted to hardware");
  995         SYSCTL_ADD_INT(ctx, n,
  996             OID_AUTO, "queued", CTLFLAG_RD,
  997             &ios->queued, 0,
  998             "# of transactions in the queue");
  999         SYSCTL_ADD_INT(ctx, n,
 1000             OID_AUTO, "in", CTLFLAG_RD,
 1001             &ios->in, 0,
 1002             "# of transactions queued to driver");
 1003         SYSCTL_ADD_INT(ctx, n,
 1004             OID_AUTO, "out", CTLFLAG_RD,
 1005             &ios->out, 0,
 1006             "# of transactions completed (including with error)");
 1007         SYSCTL_ADD_INT(ctx, n,
 1008             OID_AUTO, "errs", CTLFLAG_RD,
 1009             &ios->errs, 0,
 1010             "# of transactions completed with an error");
 1011 
 1012         SYSCTL_ADD_PROC(ctx, n,
 1013             OID_AUTO, "limiter",
 1014             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 1015             ios, 0, cam_iosched_limiter_sysctl, "A",
 1016             "Current limiting type.");
 1017         SYSCTL_ADD_INT(ctx, n,
 1018             OID_AUTO, "min", CTLFLAG_RW,
 1019             &ios->min, 0,
 1020             "min resource");
 1021         SYSCTL_ADD_INT(ctx, n,
 1022             OID_AUTO, "max", CTLFLAG_RW,
 1023             &ios->max, 0,
 1024             "max resource");
 1025         SYSCTL_ADD_INT(ctx, n,
 1026             OID_AUTO, "current", CTLFLAG_RW,
 1027             &ios->current, 0,
 1028             "current resource");
 1029 
 1030         SYSCTL_ADD_PROC(ctx, n,
 1031             OID_AUTO, "latencies",
 1032             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 1033             &ios->latencies, 0,
 1034             cam_iosched_sysctl_latencies, "A",
 1035             "Array of power of 2 latency from 1ms to 1.024s");
 1036 }
 1037 
 1038 static void
 1039 cam_iosched_iop_stats_fini(struct iop_stats *ios)
 1040 {
 1041         if (ios->sysctl_tree)
 1042                 if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
 1043                         printf("can't remove iosched sysctl stats context\n");
 1044 }
 1045 
 1046 static void
 1047 cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
 1048 {
 1049         struct sysctl_oid_list *n;
 1050         struct sysctl_ctx_list *ctx;
 1051         struct control_loop *clp;
 1052 
 1053         clp = &isc->cl;
 1054         clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
 1055             SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
 1056             CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info");
 1057         n = SYSCTL_CHILDREN(clp->sysctl_tree);
 1058         ctx = &clp->sysctl_ctx;
 1059 
 1060         SYSCTL_ADD_PROC(ctx, n,
 1061             OID_AUTO, "type",
 1062             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 1063             clp, 0, cam_iosched_control_type_sysctl, "A",
 1064             "Control loop algorithm");
 1065         SYSCTL_ADD_PROC(ctx, n,
 1066             OID_AUTO, "steer_interval",
 1067             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 1068             &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
 1069             "How often to steer (in us)");
 1070         SYSCTL_ADD_PROC(ctx, n,
 1071             OID_AUTO, "lolat",
 1072             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 1073             &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
 1074             "Low water mark for Latency (in us)");
 1075         SYSCTL_ADD_PROC(ctx, n,
 1076             OID_AUTO, "hilat",
 1077             CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 1078             &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
 1079             "Hi water mark for Latency (in us)");
 1080         SYSCTL_ADD_INT(ctx, n,
 1081             OID_AUTO, "alpha", CTLFLAG_RW,
 1082             &clp->alpha, 0,
 1083             "Alpha for PLL (x100) aka gain");
 1084 }
 1085 
 1086 static void
 1087 cam_iosched_cl_sysctl_fini(struct control_loop *clp)
 1088 {
 1089         if (clp->sysctl_tree)
 1090                 if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
 1091                         printf("can't remove iosched sysctl control loop context\n");
 1092 }
 1093 #endif
 1094 
 1095 /*
 1096  * Allocate the iosched structure. This also insulates callers from knowing
 1097  * sizeof struct cam_iosched_softc.
 1098  */
 1099 int
 1100 cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
 1101 {
 1102 
 1103         *iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
 1104         if (*iscp == NULL)
 1105                 return ENOMEM;
 1106 #ifdef CAM_IOSCHED_DYNAMIC
 1107         if (iosched_debug)
 1108                 printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
 1109 #endif
 1110         (*iscp)->sort_io_queue = -1;
 1111         bioq_init(&(*iscp)->bio_queue);
 1112         bioq_init(&(*iscp)->trim_queue);
 1113 #ifdef CAM_IOSCHED_DYNAMIC
 1114         if (do_dynamic_iosched) {
 1115                 bioq_init(&(*iscp)->write_queue);
 1116                 (*iscp)->read_bias = 100;
 1117                 (*iscp)->current_read_bias = 100;
 1118                 (*iscp)->quanta = min(hz, 200);
 1119                 cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
 1120                 cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
 1121                 cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
 1122                 (*iscp)->trim_stats.max = 1;    /* Trims are special: one at a time for now */
 1123                 (*iscp)->last_time = sbinuptime();
 1124                 callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
 1125                 (*iscp)->periph = periph;
 1126                 cam_iosched_cl_init(&(*iscp)->cl, *iscp);
 1127                 callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
 1128                 (*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
 1129         }
 1130 #endif
 1131 
 1132         return 0;
 1133 }
 1134 
 1135 /*
 1136  * Reclaim all used resources. This assumes that other folks have
 1137  * drained the requests in the hardware. Maybe an unwise assumption.
 1138  */
 1139 void
 1140 cam_iosched_fini(struct cam_iosched_softc *isc)
 1141 {
 1142         if (isc) {
 1143                 cam_iosched_flush(isc, NULL, ENXIO);
 1144 #ifdef CAM_IOSCHED_DYNAMIC
 1145                 cam_iosched_iop_stats_fini(&isc->read_stats);
 1146                 cam_iosched_iop_stats_fini(&isc->write_stats);
 1147                 cam_iosched_iop_stats_fini(&isc->trim_stats);
 1148                 cam_iosched_cl_sysctl_fini(&isc->cl);
 1149                 if (isc->sysctl_tree)
 1150                         if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
 1151                                 printf("can't remove iosched sysctl stats context\n");
 1152                 if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
 1153                         callout_drain(&isc->ticker);
 1154                         isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
 1155                 }
 1156 #endif
 1157                 free(isc, M_CAMSCHED);
 1158         }
 1159 }
 1160 
 1161 /*
 1162  * After we're sure we're attaching a device, go ahead and add
 1163  * hooks for any sysctl we may wish to honor.
 1164  */
 1165 void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
 1166     struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
 1167 {
 1168         struct sysctl_oid_list *n;
 1169 
 1170         n = SYSCTL_CHILDREN(node);
 1171         SYSCTL_ADD_INT(ctx, n,
 1172                 OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
 1173                 &isc->sort_io_queue, 0,
 1174                 "Sort IO queue to try and optimise disk access patterns");
 1175         SYSCTL_ADD_INT(ctx, n,
 1176             OID_AUTO, "trim_goal", CTLFLAG_RW,
 1177             &isc->trim_goal, 0,
 1178             "Number of trims to try to accumulate before sending to hardware");
 1179         SYSCTL_ADD_INT(ctx, n,
 1180             OID_AUTO, "trim_ticks", CTLFLAG_RW,
 1181             &isc->trim_goal, 0,
 1182             "IO Schedul qaunta to hold back trims for when accumulating");
 1183 
 1184 #ifdef CAM_IOSCHED_DYNAMIC
 1185         if (!do_dynamic_iosched)
 1186                 return;
 1187 
 1188         isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
 1189             SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
 1190             CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics");
 1191         n = SYSCTL_CHILDREN(isc->sysctl_tree);
 1192         ctx = &isc->sysctl_ctx;
 1193 
 1194         cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
 1195         cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
 1196         cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
 1197         cam_iosched_cl_sysctl_init(isc);
 1198 
 1199         SYSCTL_ADD_INT(ctx, n,
 1200             OID_AUTO, "read_bias", CTLFLAG_RW,
 1201             &isc->read_bias, 100,
 1202             "How biased towards read should we be independent of limits");
 1203 
 1204         SYSCTL_ADD_PROC(ctx, n,
 1205             OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 1206             &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
 1207             "How many quanta per second do we slice the I/O up into");
 1208 
 1209         SYSCTL_ADD_INT(ctx, n,
 1210             OID_AUTO, "total_ticks", CTLFLAG_RD,
 1211             &isc->total_ticks, 0,
 1212             "Total number of ticks we've done");
 1213 
 1214         SYSCTL_ADD_INT(ctx, n,
 1215             OID_AUTO, "load", CTLFLAG_RD,
 1216             &isc->load, 0,
 1217             "scaled load average / 100");
 1218 
 1219         SYSCTL_ADD_U64(ctx, n,
 1220             OID_AUTO, "latency_trigger", CTLFLAG_RW,
 1221             &isc->max_lat, 0,
 1222             "Latency treshold to trigger callbacks");
 1223 #endif
 1224 }
 1225 
 1226 void
 1227 cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
 1228     cam_iosched_latfcn_t fnp, void *argp)
 1229 {
 1230 #ifdef CAM_IOSCHED_DYNAMIC
 1231         isc->latfcn = fnp;
 1232         isc->latarg = argp;
 1233 #endif
 1234 }
 1235 
 1236 /*
 1237  * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
 1238  * that will be queued up before iosched will "release" the trims to the client
 1239  * driver to wo with what they will (usually combine as many as possible). If we
 1240  * don't get this many, after trim_ticks we'll submit the I/O anyway with
 1241  * whatever we have.  We do need an I/O of some kind of to clock the deferred
 1242  * trims out to disk. Since we will eventually get a write for the super block
 1243  * or something before we shutdown, the trims will complete. To be safe, when a
 1244  * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
 1245  * enough in the past so we'll present the BIO_DELETEs to the client driver.
 1246  * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
 1247  * and then a BIO_DELETE is sent down. No know client does this, and there's
 1248  * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
 1249  * but no client depends on the ordering being honored.
 1250  *
 1251  * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
 1252  * flushing on shutdown. I think there's bufs that would be dependent on the BIO
 1253  * finishing to write out at least metadata, so we'll be fine. To be safe, keep
 1254  * the number of ticks low (less than maybe 10s) to avoid shutdown races.
 1255  */
 1256 
 1257 void
 1258 cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
 1259 {
 1260 
 1261         isc->trim_goal = goal;
 1262 }
 1263 
 1264 void
 1265 cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
 1266 {
 1267 
 1268         isc->trim_ticks = trim_ticks;
 1269 }
 1270 
 1271 /*
 1272  * Flush outstanding I/O. Consumers of this library don't know all the
 1273  * queues we may keep, so this allows all I/O to be flushed in one
 1274  * convenient call.
 1275  */
 1276 void
 1277 cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
 1278 {
 1279         bioq_flush(&isc->bio_queue, stp, err);
 1280         bioq_flush(&isc->trim_queue, stp, err);
 1281 #ifdef CAM_IOSCHED_DYNAMIC
 1282         if (do_dynamic_iosched)
 1283                 bioq_flush(&isc->write_queue, stp, err);
 1284 #endif
 1285 }
 1286 
 1287 #ifdef CAM_IOSCHED_DYNAMIC
 1288 static struct bio *
 1289 cam_iosched_get_write(struct cam_iosched_softc *isc)
 1290 {
 1291         struct bio *bp;
 1292 
 1293         /*
 1294          * We control the write rate by controlling how many requests we send
 1295          * down to the drive at any one time. Fewer requests limits the
 1296          * effects of both starvation when the requests take a while and write
 1297          * amplification when each request is causing more than one write to
 1298          * the NAND media. Limiting the queue depth like this will also limit
 1299          * the write throughput and give and reads that want to compete to
 1300          * compete unfairly.
 1301          */
 1302         bp = bioq_first(&isc->write_queue);
 1303         if (bp == NULL) {
 1304                 if (iosched_debug > 3)
 1305                         printf("No writes present in write_queue\n");
 1306                 return NULL;
 1307         }
 1308 
 1309         /*
 1310          * If pending read, prefer that based on current read bias
 1311          * setting.
 1312          */
 1313         if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
 1314                 if (iosched_debug)
 1315                         printf(
 1316                             "Reads present and current_read_bias is %d queued "
 1317                             "writes %d queued reads %d\n",
 1318                             isc->current_read_bias, isc->write_stats.queued,
 1319                             isc->read_stats.queued);
 1320                 isc->current_read_bias--;
 1321                 /* We're not limiting writes, per se, just doing reads first */
 1322                 return NULL;
 1323         }
 1324 
 1325         /*
 1326          * See if our current limiter allows this I/O.
 1327          */
 1328         if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
 1329                 if (iosched_debug)
 1330                         printf("Can't write because limiter says no.\n");
 1331                 isc->write_stats.state_flags |= IOP_RATE_LIMITED;
 1332                 return NULL;
 1333         }
 1334 
 1335         /*
 1336          * Let's do this: We've passed all the gates and we're a go
 1337          * to schedule the I/O in the SIM.
 1338          */
 1339         isc->current_read_bias = isc->read_bias;
 1340         bioq_remove(&isc->write_queue, bp);
 1341         if (bp->bio_cmd == BIO_WRITE) {
 1342                 isc->write_stats.queued--;
 1343                 isc->write_stats.total++;
 1344                 isc->write_stats.pending++;
 1345         }
 1346         if (iosched_debug > 9)
 1347                 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
 1348         isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
 1349         return bp;
 1350 }
 1351 #endif
 1352 
 1353 /*
 1354  * Put back a trim that you weren't able to actually schedule this time.
 1355  */
 1356 void
 1357 cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
 1358 {
 1359         bioq_insert_head(&isc->trim_queue, bp);
 1360         if (isc->queued_trims == 0)
 1361                 isc->last_trim_tick = ticks;
 1362         isc->queued_trims++;
 1363 #ifdef CAM_IOSCHED_DYNAMIC
 1364         isc->trim_stats.queued++;
 1365         isc->trim_stats.total--;                /* since we put it back, don't double count */
 1366         isc->trim_stats.pending--;
 1367 #endif
 1368 }
 1369 
 1370 /*
 1371  * gets the next trim from the trim queue.
 1372  *
 1373  * Assumes we're called with the periph lock held.  It removes this
 1374  * trim from the queue and the device must explicitly reinsert it
 1375  * should the need arise.
 1376  */
 1377 struct bio *
 1378 cam_iosched_next_trim(struct cam_iosched_softc *isc)
 1379 {
 1380         struct bio *bp;
 1381 
 1382         bp  = bioq_first(&isc->trim_queue);
 1383         if (bp == NULL)
 1384                 return NULL;
 1385         bioq_remove(&isc->trim_queue, bp);
 1386         isc->queued_trims--;
 1387         isc->last_trim_tick = ticks;    /* Reset the tick timer when we take trims */
 1388 #ifdef CAM_IOSCHED_DYNAMIC
 1389         isc->trim_stats.queued--;
 1390         isc->trim_stats.total++;
 1391         isc->trim_stats.pending++;
 1392 #endif
 1393         return bp;
 1394 }
 1395 
 1396 /*
 1397  * gets an available trim from the trim queue, if there's no trim
 1398  * already pending. It removes this trim from the queue and the device
 1399  * must explicitly reinsert it should the need arise.
 1400  *
 1401  * Assumes we're called with the periph lock held.
 1402  */
 1403 struct bio *
 1404 cam_iosched_get_trim(struct cam_iosched_softc *isc)
 1405 {
 1406 #ifdef CAM_IOSCHED_DYNAMIC
 1407         struct bio *bp;
 1408 #endif
 1409 
 1410         if (!cam_iosched_has_more_trim(isc))
 1411                 return NULL;
 1412 #ifdef CAM_IOSCHED_DYNAMIC
 1413         bp  = bioq_first(&isc->trim_queue);
 1414         if (bp == NULL)
 1415                 return NULL;
 1416 
 1417         /*
 1418          * If pending read, prefer that based on current read bias setting. The
 1419          * read bias is shared for both writes and TRIMs, but on TRIMs the bias
 1420          * is for a combined TRIM not a single TRIM request that's come in.
 1421          */
 1422         if (do_dynamic_iosched) {
 1423                 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
 1424                         if (iosched_debug)
 1425                                 printf("Reads present and current_read_bias is %d"
 1426                                     " queued trims %d queued reads %d\n",
 1427                                     isc->current_read_bias, isc->trim_stats.queued,
 1428                                     isc->read_stats.queued);
 1429                         isc->current_read_bias--;
 1430                         /* We're not limiting TRIMS, per se, just doing reads first */
 1431                         return NULL;
 1432                 }
 1433                 /*
 1434                  * We're going to do a trim, so reset the bias.
 1435                  */
 1436                 isc->current_read_bias = isc->read_bias;
 1437         }
 1438 
 1439         /*
 1440          * See if our current limiter allows this I/O. Because we only call this
 1441          * here, and not in next_trim, the 'bandwidth' limits for trims won't
 1442          * work, while the iops or max queued limits will work. It's tricky
 1443          * because we want the limits to be from the perspective of the
 1444          * "commands sent to the device." To make iops work, we need to check
 1445          * only here (since we want all the ops we combine to count as one). To
 1446          * make bw limits work, we'd need to check in next_trim, but that would
 1447          * have the effect of limiting the iops as seen from the upper layers.
 1448          */
 1449         if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) {
 1450                 if (iosched_debug)
 1451                         printf("Can't trim because limiter says no.\n");
 1452                 isc->trim_stats.state_flags |= IOP_RATE_LIMITED;
 1453                 return NULL;
 1454         }
 1455         isc->current_read_bias = isc->read_bias;
 1456         isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED;
 1457         /* cam_iosched_next_trim below keeps proper book */
 1458 #endif
 1459         return cam_iosched_next_trim(isc);
 1460 }
 1461 
 1462 /*
 1463  * Determine what the next bit of work to do is for the periph. The
 1464  * default implementation looks to see if we have trims to do, but no
 1465  * trims outstanding. If so, we do that. Otherwise we see if we have
 1466  * other work. If we do, then we do that. Otherwise why were we called?
 1467  */
 1468 struct bio *
 1469 cam_iosched_next_bio(struct cam_iosched_softc *isc)
 1470 {
 1471         struct bio *bp;
 1472 
 1473         /*
 1474          * See if we have a trim that can be scheduled. We can only send one
 1475          * at a time down, so this takes that into account.
 1476          *
 1477          * XXX newer TRIM commands are queueable. Revisit this when we
 1478          * implement them.
 1479          */
 1480         if ((bp = cam_iosched_get_trim(isc)) != NULL)
 1481                 return bp;
 1482 
 1483 #ifdef CAM_IOSCHED_DYNAMIC
 1484         /*
 1485          * See if we have any pending writes, and room in the queue for them,
 1486          * and if so, those are next.
 1487          */
 1488         if (do_dynamic_iosched) {
 1489                 if ((bp = cam_iosched_get_write(isc)) != NULL)
 1490                         return bp;
 1491         }
 1492 #endif
 1493 
 1494         /*
 1495          * next, see if there's other, normal I/O waiting. If so return that.
 1496          */
 1497         if ((bp = bioq_first(&isc->bio_queue)) == NULL)
 1498                 return NULL;
 1499 
 1500 #ifdef CAM_IOSCHED_DYNAMIC
 1501         /*
 1502          * For the dynamic scheduler, bio_queue is only for reads, so enforce
 1503          * the limits here. Enforce only for reads.
 1504          */
 1505         if (do_dynamic_iosched) {
 1506                 if (bp->bio_cmd == BIO_READ &&
 1507                     cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
 1508                         isc->read_stats.state_flags |= IOP_RATE_LIMITED;
 1509                         return NULL;
 1510                 }
 1511         }
 1512         isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
 1513 #endif
 1514         bioq_remove(&isc->bio_queue, bp);
 1515 #ifdef CAM_IOSCHED_DYNAMIC
 1516         if (do_dynamic_iosched) {
 1517                 if (bp->bio_cmd == BIO_READ) {
 1518                         isc->read_stats.queued--;
 1519                         isc->read_stats.total++;
 1520                         isc->read_stats.pending++;
 1521                 } else
 1522                         printf("Found bio_cmd = %#x\n", bp->bio_cmd);
 1523         }
 1524         if (iosched_debug > 9)
 1525                 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
 1526 #endif
 1527         return bp;
 1528 }
 1529 
 1530 /*
 1531  * Driver has been given some work to do by the block layer. Tell the
 1532  * scheduler about it and have it queue the work up. The scheduler module
 1533  * will then return the currently most useful bit of work later, possibly
 1534  * deferring work for various reasons.
 1535  */
 1536 void
 1537 cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
 1538 {
 1539 
 1540         /*
 1541          * A BIO_SPEEDUP from the uppper layers means that they have a block
 1542          * shortage. At the present, this is only sent when we're trying to
 1543          * allocate blocks, but have a shortage before giving up. bio_length is
 1544          * the size of their shortage. We will complete just enough BIO_DELETEs
 1545          * in the queue to satisfy the need. If bio_length is 0, we'll complete
 1546          * them all. This allows the scheduler to delay BIO_DELETEs to improve
 1547          * read/write performance without worrying about the upper layers. When
 1548          * it's possibly a problem, we respond by pretending the BIO_DELETEs
 1549          * just worked. We can't do anything about the BIO_DELETEs in the
 1550          * hardware, though. We have to wait for them to complete.
 1551          */
 1552         if (bp->bio_cmd == BIO_SPEEDUP) {
 1553                 off_t len;
 1554                 struct bio *nbp;
 1555 
 1556                 len = 0;
 1557                 while (bioq_first(&isc->trim_queue) &&
 1558                     (bp->bio_length == 0 || len < bp->bio_length)) {
 1559                         nbp = bioq_takefirst(&isc->trim_queue);
 1560                         len += nbp->bio_length;
 1561                         nbp->bio_error = 0;
 1562                         biodone(nbp);
 1563                 }
 1564                 if (bp->bio_length > 0) {
 1565                         if (bp->bio_length > len)
 1566                                 bp->bio_resid = bp->bio_length - len;
 1567                         else
 1568                                 bp->bio_resid = 0;
 1569                 }
 1570                 bp->bio_error = 0;
 1571                 biodone(bp);
 1572                 return;
 1573         }
 1574 
 1575         /*
 1576          * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
 1577          * set the last tick time to one less than the current ticks minus the
 1578          * delay to force the BIO_DELETEs to be presented to the client driver.
 1579          */
 1580         if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
 1581                 isc->last_trim_tick = ticks - isc->trim_ticks - 1;
 1582 
 1583         /*
 1584          * Put all trims on the trim queue. Otherwise put the work on the bio
 1585          * queue.
 1586          */
 1587         if (bp->bio_cmd == BIO_DELETE) {
 1588                 bioq_insert_tail(&isc->trim_queue, bp);
 1589                 if (isc->queued_trims == 0)
 1590                         isc->last_trim_tick = ticks;
 1591                 isc->queued_trims++;
 1592 #ifdef CAM_IOSCHED_DYNAMIC
 1593                 isc->trim_stats.in++;
 1594                 isc->trim_stats.queued++;
 1595 #endif
 1596         }
 1597 #ifdef CAM_IOSCHED_DYNAMIC
 1598         else if (do_dynamic_iosched && (bp->bio_cmd != BIO_READ)) {
 1599                 if (cam_iosched_sort_queue(isc))
 1600                         bioq_disksort(&isc->write_queue, bp);
 1601                 else
 1602                         bioq_insert_tail(&isc->write_queue, bp);
 1603                 if (iosched_debug > 9)
 1604                         printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
 1605                 if (bp->bio_cmd == BIO_WRITE) {
 1606                         isc->write_stats.in++;
 1607                         isc->write_stats.queued++;
 1608                 }
 1609         }
 1610 #endif
 1611         else {
 1612                 if (cam_iosched_sort_queue(isc))
 1613                         bioq_disksort(&isc->bio_queue, bp);
 1614                 else
 1615                         bioq_insert_tail(&isc->bio_queue, bp);
 1616 #ifdef CAM_IOSCHED_DYNAMIC
 1617                 if (iosched_debug > 9)
 1618                         printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
 1619                 if (bp->bio_cmd == BIO_READ) {
 1620                         isc->read_stats.in++;
 1621                         isc->read_stats.queued++;
 1622                 } else if (bp->bio_cmd == BIO_WRITE) {
 1623                         isc->write_stats.in++;
 1624                         isc->write_stats.queued++;
 1625                 }
 1626 #endif
 1627         }
 1628 }
 1629 
 1630 /*
 1631  * If we have work, get it scheduled. Called with the periph lock held.
 1632  */
 1633 void
 1634 cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
 1635 {
 1636 
 1637         if (cam_iosched_has_work(isc))
 1638                 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
 1639 }
 1640 
 1641 /*
 1642  * Complete a trim request. Mark that we no longer have one in flight.
 1643  */
 1644 void
 1645 cam_iosched_trim_done(struct cam_iosched_softc *isc)
 1646 {
 1647 
 1648         isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
 1649 }
 1650 
 1651 /*
 1652  * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
 1653  * might use notes in the ccb for statistics.
 1654  */
 1655 int
 1656 cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
 1657     union ccb *done_ccb)
 1658 {
 1659         int retval = 0;
 1660 #ifdef CAM_IOSCHED_DYNAMIC
 1661         if (!do_dynamic_iosched)
 1662                 return retval;
 1663 
 1664         if (iosched_debug > 10)
 1665                 printf("done: %p %#x\n", bp, bp->bio_cmd);
 1666         if (bp->bio_cmd == BIO_WRITE) {
 1667                 retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
 1668                 if ((bp->bio_flags & BIO_ERROR) != 0)
 1669                         isc->write_stats.errs++;
 1670                 isc->write_stats.out++;
 1671                 isc->write_stats.pending--;
 1672         } else if (bp->bio_cmd == BIO_READ) {
 1673                 retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
 1674                 if ((bp->bio_flags & BIO_ERROR) != 0)
 1675                         isc->read_stats.errs++;
 1676                 isc->read_stats.out++;
 1677                 isc->read_stats.pending--;
 1678         } else if (bp->bio_cmd == BIO_DELETE) {
 1679                 if ((bp->bio_flags & BIO_ERROR) != 0)
 1680                         isc->trim_stats.errs++;
 1681                 isc->trim_stats.out++;
 1682                 isc->trim_stats.pending--;
 1683         } else if (bp->bio_cmd != BIO_FLUSH) {
 1684                 if (iosched_debug)
 1685                         printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
 1686         }
 1687 
 1688         if (!(bp->bio_flags & BIO_ERROR) && done_ccb != NULL) {
 1689                 sbintime_t sim_latency;
 1690                 
 1691                 sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
 1692                 
 1693                 cam_iosched_io_metric_update(isc, sim_latency,
 1694                     bp->bio_cmd, bp->bio_bcount);
 1695                 /*
 1696                  * Debugging code: allow callbacks to the periph driver when latency max
 1697                  * is exceeded. This can be useful for triggering external debugging actions.
 1698                  */
 1699                 if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
 1700                         isc->latfcn(isc->latarg, sim_latency, bp);
 1701         }
 1702                 
 1703 #endif
 1704         return retval;
 1705 }
 1706 
 1707 /*
 1708  * Tell the io scheduler that you've pushed a trim down into the sim.
 1709  * This also tells the I/O scheduler not to push any more trims down, so
 1710  * some periphs do not call it if they can cope with multiple trims in flight.
 1711  */
 1712 void
 1713 cam_iosched_submit_trim(struct cam_iosched_softc *isc)
 1714 {
 1715 
 1716         isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
 1717 }
 1718 
 1719 /*
 1720  * Change the sorting policy hint for I/O transactions for this device.
 1721  */
 1722 void
 1723 cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
 1724 {
 1725 
 1726         isc->sort_io_queue = val;
 1727 }
 1728 
 1729 int
 1730 cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
 1731 {
 1732         return isc->flags & flags;
 1733 }
 1734 
 1735 void
 1736 cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
 1737 {
 1738         isc->flags |= flags;
 1739 }
 1740 
 1741 void
 1742 cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
 1743 {
 1744         isc->flags &= ~flags;
 1745 }
 1746 
 1747 #ifdef CAM_IOSCHED_DYNAMIC
 1748 /*
 1749  * After the method presented in Jack Crenshaw's 1998 article "Integer
 1750  * Square Roots," reprinted at
 1751  * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
 1752  * and well worth the read. Briefly, we find the power of 4 that's the
 1753  * largest smaller than val. We then check each smaller power of 4 to
 1754  * see if val is still bigger. The right shifts at each step divide
 1755  * the result by 2 which after successive application winds up
 1756  * accumulating the right answer. It could also have been accumulated
 1757  * using a separate root counter, but this code is smaller and faster
 1758  * than that method. This method is also integer size invariant.
 1759  * It returns floor(sqrt((float)val)), or the largest integer less than
 1760  * or equal to the square root.
 1761  */
 1762 static uint64_t
 1763 isqrt64(uint64_t val)
 1764 {
 1765         uint64_t res = 0;
 1766         uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
 1767 
 1768         /*
 1769          * Find the largest power of 4 smaller than val.
 1770          */
 1771         while (bit > val)
 1772                 bit >>= 2;
 1773 
 1774         /*
 1775          * Accumulate the answer, one bit at a time (we keep moving
 1776          * them over since 2 is the square root of 4 and we test
 1777          * powers of 4). We accumulate where we find the bit, but
 1778          * the successive shifts land the bit in the right place
 1779          * by the end.
 1780          */
 1781         while (bit != 0) {
 1782                 if (val >= res + bit) {
 1783                         val -= res + bit;
 1784                         res = (res >> 1) + bit;
 1785                 } else
 1786                         res >>= 1;
 1787                 bit >>= 2;
 1788         }
 1789 
 1790         return res;
 1791 }
 1792 
 1793 static sbintime_t latencies[LAT_BUCKETS - 1] = {
 1794         SBT_1MS <<  0,
 1795         SBT_1MS <<  1,
 1796         SBT_1MS <<  2,
 1797         SBT_1MS <<  3,
 1798         SBT_1MS <<  4,
 1799         SBT_1MS <<  5,
 1800         SBT_1MS <<  6,
 1801         SBT_1MS <<  7,
 1802         SBT_1MS <<  8,
 1803         SBT_1MS <<  9,
 1804         SBT_1MS << 10,
 1805         SBT_1MS << 11,
 1806         SBT_1MS << 12,
 1807         SBT_1MS << 13           /* 8.192s */
 1808 };
 1809 
 1810 static void
 1811 cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
 1812 {
 1813         sbintime_t y, deltasq, delta;
 1814         int i;
 1815 
 1816         /*
 1817          * Keep counts for latency. We do it by power of two buckets.
 1818          * This helps us spot outlier behavior obscured by averages.
 1819          */
 1820         for (i = 0; i < LAT_BUCKETS - 1; i++) {
 1821                 if (sim_latency < latencies[i]) {
 1822                         iop->latencies[i]++;
 1823                         break;
 1824                 }
 1825         }
 1826         if (i == LAT_BUCKETS - 1)
 1827                 iop->latencies[i]++;     /* Put all > 1024ms values into the last bucket. */
 1828 
 1829         /*
 1830          * Classic exponentially decaying average with a tiny alpha
 1831          * (2 ^ -alpha_bits). For more info see the NIST statistical
 1832          * handbook.
 1833          *
 1834          * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)          [nist]
 1835          * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
 1836          * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
 1837          * alpha = 1 / (1 << alpha_bits)
 1838          * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
 1839          *      = y_t/b - e/b + be/b
 1840          *      = (y_t - e + be) / b
 1841          *      = (e + d) / b
 1842          *
 1843          * Since alpha is a power of two, we can compute this w/o any mult or
 1844          * division.
 1845          *
 1846          * Variance can also be computed. Usually, it would be expressed as follows:
 1847          *      diff_t = y_t - ema_t-1
 1848          *      emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
 1849          *        = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
 1850          * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
 1851          *        = e - e/b + dd/b + dd/bb
 1852          *        = (bbe - be + bdd + dd) / bb
 1853          *        = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
 1854          */
 1855         /*
 1856          * XXX possible numeric issues
 1857          *      o We assume right shifted integers do the right thing, since that's
 1858          *        implementation defined. You can change the right shifts to / (1LL << alpha).
 1859          *      o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
 1860          *        for emvar. This puts a ceiling of 13 bits on alpha since we need a
 1861          *        few tens of seconds of representation.
 1862          *      o We mitigate alpha issues by never setting it too high.
 1863          */
 1864         y = sim_latency;
 1865         delta = (y - iop->ema);                                 /* d */
 1866         iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
 1867 
 1868         /*
 1869          * Were we to naively plow ahead at this point, we wind up with many numerical
 1870          * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
 1871          * us with microsecond level precision in the input, so the same in the
 1872          * output. It means we can't overflow deltasq unless delta > 4k seconds. It
 1873          * also means that emvar can be up 46 bits 40 of which are fraction, which
 1874          * gives us a way to measure up to ~8s in the SD before the computation goes
 1875          * unstable. Even the worst hard disk rarely has > 1s service time in the
 1876          * drive. It does mean we have to shift left 12 bits after taking the
 1877          * square root to compute the actual standard deviation estimate. This loss of
 1878          * precision is preferable to needing int128 types to work. The above numbers
 1879          * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
 1880          * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
 1881          */
 1882         delta >>= 12;
 1883         deltasq = delta * delta;                                /* dd */
 1884         iop->emvar = ((iop->emvar << (2 * alpha_bits)) +        /* bbe */
 1885             ((deltasq - iop->emvar) << alpha_bits) +            /* b(dd-e) */
 1886             deltasq)                                            /* dd */
 1887             >> (2 * alpha_bits);                                /* div bb */
 1888         iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
 1889 }
 1890 
 1891 static void
 1892 cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
 1893     sbintime_t sim_latency, int cmd, size_t size)
 1894 {
 1895         /* xxx Do we need to scale based on the size of the I/O ? */
 1896         switch (cmd) {
 1897         case BIO_READ:
 1898                 cam_iosched_update(&isc->read_stats, sim_latency);
 1899                 break;
 1900         case BIO_WRITE:
 1901                 cam_iosched_update(&isc->write_stats, sim_latency);
 1902                 break;
 1903         case BIO_DELETE:
 1904                 cam_iosched_update(&isc->trim_stats, sim_latency);
 1905                 break;
 1906         default:
 1907                 break;
 1908         }
 1909 }
 1910 
 1911 #ifdef DDB
 1912 static int biolen(struct bio_queue_head *bq)
 1913 {
 1914         int i = 0;
 1915         struct bio *bp;
 1916 
 1917         TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
 1918                 i++;
 1919         }
 1920         return i;
 1921 }
 1922 
 1923 /*
 1924  * Show the internal state of the I/O scheduler.
 1925  */
 1926 DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
 1927 {
 1928         struct cam_iosched_softc *isc;
 1929 
 1930         if (!have_addr) {
 1931                 db_printf("Need addr\n");
 1932                 return;
 1933         }
 1934         isc = (struct cam_iosched_softc *)addr;
 1935         db_printf("pending_reads:     %d\n", isc->read_stats.pending);
 1936         db_printf("min_reads:         %d\n", isc->read_stats.min);
 1937         db_printf("max_reads:         %d\n", isc->read_stats.max);
 1938         db_printf("reads:             %d\n", isc->read_stats.total);
 1939         db_printf("in_reads:          %d\n", isc->read_stats.in);
 1940         db_printf("out_reads:         %d\n", isc->read_stats.out);
 1941         db_printf("queued_reads:      %d\n", isc->read_stats.queued);
 1942         db_printf("Read Q len         %d\n", biolen(&isc->bio_queue));
 1943         db_printf("pending_writes:    %d\n", isc->write_stats.pending);
 1944         db_printf("min_writes:        %d\n", isc->write_stats.min);
 1945         db_printf("max_writes:        %d\n", isc->write_stats.max);
 1946         db_printf("writes:            %d\n", isc->write_stats.total);
 1947         db_printf("in_writes:         %d\n", isc->write_stats.in);
 1948         db_printf("out_writes:        %d\n", isc->write_stats.out);
 1949         db_printf("queued_writes:     %d\n", isc->write_stats.queued);
 1950         db_printf("Write Q len        %d\n", biolen(&isc->write_queue));
 1951         db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
 1952         db_printf("min_trims:         %d\n", isc->trim_stats.min);
 1953         db_printf("max_trims:         %d\n", isc->trim_stats.max);
 1954         db_printf("trims:             %d\n", isc->trim_stats.total);
 1955         db_printf("in_trims:          %d\n", isc->trim_stats.in);
 1956         db_printf("out_trims:         %d\n", isc->trim_stats.out);
 1957         db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
 1958         db_printf("Trim Q len         %d\n", biolen(&isc->trim_queue));
 1959         db_printf("read_bias:         %d\n", isc->read_bias);
 1960         db_printf("current_read_bias: %d\n", isc->current_read_bias);
 1961         db_printf("Trim active?       %s\n",
 1962             (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
 1963 }
 1964 #endif
 1965 #endif

Cache object: 3ae114982b2781972771a8f4a5b84290


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.