FreeBSD/Linux Kernel Cross Reference
sys/cam/cam_xpt.c
1 /*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include "opt_printf.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD: releng/12.0/sys/cam/cam_xpt.c 337723 2018-08-13 19:59:32Z imp $");
36
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73
74 #include <machine/md_var.h> /* geometry translation */
75 #include <machine/stdarg.h> /* for xpt_print below */
76
77 #include "opt_cam.h"
78
79 /* Wild guess based on not wanting to grow the stack too much */
80 #define XPT_PRINT_MAXLEN 512
81 #ifdef PRINTF_BUFR_SIZE
82 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE
83 #else
84 #define XPT_PRINT_LEN 128
85 #endif
86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
87
88 /*
89 * This is the maximum number of high powered commands (e.g. start unit)
90 * that can be outstanding at a particular time.
91 */
92 #ifndef CAM_MAX_HIGHPOWER
93 #define CAM_MAX_HIGHPOWER 4
94 #endif
95
96 /* Datastructures internal to the xpt layer */
97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
101
102 /* Object for defering XPT actions to a taskqueue */
103 struct xpt_task {
104 struct task task;
105 void *data1;
106 uintptr_t data2;
107 };
108
109 struct xpt_softc {
110 uint32_t xpt_generation;
111
112 /* number of high powered commands that can go through right now */
113 struct mtx xpt_highpower_lock;
114 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq;
115 int num_highpower;
116
117 /* queue for handling async rescan requests. */
118 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
119 int buses_to_config;
120 int buses_config_done;
121 int announce_nosbuf;
122
123 /*
124 * Registered buses
125 *
126 * N.B., "busses" is an archaic spelling of "buses". In new code
127 * "buses" is preferred.
128 */
129 TAILQ_HEAD(,cam_eb) xpt_busses;
130 u_int bus_generation;
131
132 struct intr_config_hook *xpt_config_hook;
133
134 int boot_delay;
135 struct callout boot_callout;
136
137 struct mtx xpt_topo_lock;
138 struct mtx xpt_lock;
139 struct taskqueue *xpt_taskq;
140 };
141
142 typedef enum {
143 DM_RET_COPY = 0x01,
144 DM_RET_FLAG_MASK = 0x0f,
145 DM_RET_NONE = 0x00,
146 DM_RET_STOP = 0x10,
147 DM_RET_DESCEND = 0x20,
148 DM_RET_ERROR = 0x30,
149 DM_RET_ACTION_MASK = 0xf0
150 } dev_match_ret;
151
152 typedef enum {
153 XPT_DEPTH_BUS,
154 XPT_DEPTH_TARGET,
155 XPT_DEPTH_DEVICE,
156 XPT_DEPTH_PERIPH
157 } xpt_traverse_depth;
158
159 struct xpt_traverse_config {
160 xpt_traverse_depth depth;
161 void *tr_func;
162 void *tr_arg;
163 };
164
165 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
166 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
167 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
168 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
169 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
170
171 /* Transport layer configuration information */
172 static struct xpt_softc xsoftc;
173
174 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
175
176 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
177 &xsoftc.boot_delay, 0, "Bus registration wait time");
178 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
179 &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
180 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
181 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
182
183 struct cam_doneq {
184 struct mtx_padalign cam_doneq_mtx;
185 STAILQ_HEAD(, ccb_hdr) cam_doneq;
186 int cam_doneq_sleep;
187 };
188
189 static struct cam_doneq cam_doneqs[MAXCPU];
190 static int cam_num_doneqs;
191 static struct proc *cam_proc;
192
193 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
194 &cam_num_doneqs, 0, "Number of completion queues/threads");
195
196 struct cam_periph *xpt_periph;
197
198 static periph_init_t xpt_periph_init;
199
200 static struct periph_driver xpt_driver =
201 {
202 xpt_periph_init, "xpt",
203 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
204 CAM_PERIPH_DRV_EARLY
205 };
206
207 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
208
209 static d_open_t xptopen;
210 static d_close_t xptclose;
211 static d_ioctl_t xptioctl;
212 static d_ioctl_t xptdoioctl;
213
214 static struct cdevsw xpt_cdevsw = {
215 .d_version = D_VERSION,
216 .d_flags = 0,
217 .d_open = xptopen,
218 .d_close = xptclose,
219 .d_ioctl = xptioctl,
220 .d_name = "xpt",
221 };
222
223 /* Storage for debugging datastructures */
224 struct cam_path *cam_dpath;
225 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
226 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
227 &cam_dflags, 0, "Enabled debug flags");
228 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
229 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
230 &cam_debug_delay, 0, "Delay in us after each debug message");
231
232 /* Our boot-time initialization hook */
233 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
234
235 static moduledata_t cam_moduledata = {
236 "cam",
237 cam_module_event_handler,
238 NULL
239 };
240
241 static int xpt_init(void *);
242
243 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
244 MODULE_VERSION(cam, 1);
245
246
247 static void xpt_async_bcast(struct async_list *async_head,
248 u_int32_t async_code,
249 struct cam_path *path,
250 void *async_arg);
251 static path_id_t xptnextfreepathid(void);
252 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
253 static union ccb *xpt_get_ccb(struct cam_periph *periph);
254 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
255 static void xpt_run_allocq(struct cam_periph *periph, int sleep);
256 static void xpt_run_allocq_task(void *context, int pending);
257 static void xpt_run_devq(struct cam_devq *devq);
258 static timeout_t xpt_release_devq_timeout;
259 static void xpt_release_simq_timeout(void *arg) __unused;
260 static void xpt_acquire_bus(struct cam_eb *bus);
261 static void xpt_release_bus(struct cam_eb *bus);
262 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
263 static int xpt_release_devq_device(struct cam_ed *dev, u_int count,
264 int run_queue);
265 static struct cam_et*
266 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
267 static void xpt_acquire_target(struct cam_et *target);
268 static void xpt_release_target(struct cam_et *target);
269 static struct cam_eb*
270 xpt_find_bus(path_id_t path_id);
271 static struct cam_et*
272 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
273 static struct cam_ed*
274 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
275 static void xpt_config(void *arg);
276 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
277 u_int32_t new_priority);
278 static xpt_devicefunc_t xptpassannouncefunc;
279 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
280 static void xptpoll(struct cam_sim *sim);
281 static void camisr_runqueue(void);
282 static void xpt_done_process(struct ccb_hdr *ccb_h);
283 static void xpt_done_td(void *);
284 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
285 u_int num_patterns, struct cam_eb *bus);
286 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
287 u_int num_patterns,
288 struct cam_ed *device);
289 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
290 u_int num_patterns,
291 struct cam_periph *periph);
292 static xpt_busfunc_t xptedtbusfunc;
293 static xpt_targetfunc_t xptedttargetfunc;
294 static xpt_devicefunc_t xptedtdevicefunc;
295 static xpt_periphfunc_t xptedtperiphfunc;
296 static xpt_pdrvfunc_t xptplistpdrvfunc;
297 static xpt_periphfunc_t xptplistperiphfunc;
298 static int xptedtmatch(struct ccb_dev_match *cdm);
299 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
300 static int xptbustraverse(struct cam_eb *start_bus,
301 xpt_busfunc_t *tr_func, void *arg);
302 static int xpttargettraverse(struct cam_eb *bus,
303 struct cam_et *start_target,
304 xpt_targetfunc_t *tr_func, void *arg);
305 static int xptdevicetraverse(struct cam_et *target,
306 struct cam_ed *start_device,
307 xpt_devicefunc_t *tr_func, void *arg);
308 static int xptperiphtraverse(struct cam_ed *device,
309 struct cam_periph *start_periph,
310 xpt_periphfunc_t *tr_func, void *arg);
311 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
312 xpt_pdrvfunc_t *tr_func, void *arg);
313 static int xptpdperiphtraverse(struct periph_driver **pdrv,
314 struct cam_periph *start_periph,
315 xpt_periphfunc_t *tr_func,
316 void *arg);
317 static xpt_busfunc_t xptdefbusfunc;
318 static xpt_targetfunc_t xptdeftargetfunc;
319 static xpt_devicefunc_t xptdefdevicefunc;
320 static xpt_periphfunc_t xptdefperiphfunc;
321 static void xpt_finishconfig_task(void *context, int pending);
322 static void xpt_dev_async_default(u_int32_t async_code,
323 struct cam_eb *bus,
324 struct cam_et *target,
325 struct cam_ed *device,
326 void *async_arg);
327 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
328 struct cam_et *target,
329 lun_id_t lun_id);
330 static xpt_devicefunc_t xptsetasyncfunc;
331 static xpt_busfunc_t xptsetasyncbusfunc;
332 static cam_status xptregister(struct cam_periph *periph,
333 void *arg);
334 static __inline int device_is_queued(struct cam_ed *device);
335
336 static __inline int
337 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
338 {
339 int retval;
340
341 mtx_assert(&devq->send_mtx, MA_OWNED);
342 if ((dev->ccbq.queue.entries > 0) &&
343 (dev->ccbq.dev_openings > 0) &&
344 (dev->ccbq.queue.qfrozen_cnt == 0)) {
345 /*
346 * The priority of a device waiting for controller
347 * resources is that of the highest priority CCB
348 * enqueued.
349 */
350 retval =
351 xpt_schedule_dev(&devq->send_queue,
352 &dev->devq_entry,
353 CAMQ_GET_PRIO(&dev->ccbq.queue));
354 } else {
355 retval = 0;
356 }
357 return (retval);
358 }
359
360 static __inline int
361 device_is_queued(struct cam_ed *device)
362 {
363 return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
364 }
365
366 static void
367 xpt_periph_init()
368 {
369 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
370 }
371
372 static int
373 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
374 {
375
376 /*
377 * Only allow read-write access.
378 */
379 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
380 return(EPERM);
381
382 /*
383 * We don't allow nonblocking access.
384 */
385 if ((flags & O_NONBLOCK) != 0) {
386 printf("%s: can't do nonblocking access\n", devtoname(dev));
387 return(ENODEV);
388 }
389
390 return(0);
391 }
392
393 static int
394 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
395 {
396
397 return(0);
398 }
399
400 /*
401 * Don't automatically grab the xpt softc lock here even though this is going
402 * through the xpt device. The xpt device is really just a back door for
403 * accessing other devices and SIMs, so the right thing to do is to grab
404 * the appropriate SIM lock once the bus/SIM is located.
405 */
406 static int
407 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
408 {
409 int error;
410
411 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
412 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
413 }
414 return (error);
415 }
416
417 static int
418 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
419 {
420 int error;
421
422 error = 0;
423
424 switch(cmd) {
425 /*
426 * For the transport layer CAMIOCOMMAND ioctl, we really only want
427 * to accept CCB types that don't quite make sense to send through a
428 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
429 * in the CAM spec.
430 */
431 case CAMIOCOMMAND: {
432 union ccb *ccb;
433 union ccb *inccb;
434 struct cam_eb *bus;
435
436 inccb = (union ccb *)addr;
437 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
438 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
439 inccb->csio.bio = NULL;
440 #endif
441
442 if (inccb->ccb_h.flags & CAM_UNLOCKED)
443 return (EINVAL);
444
445 bus = xpt_find_bus(inccb->ccb_h.path_id);
446 if (bus == NULL)
447 return (EINVAL);
448
449 switch (inccb->ccb_h.func_code) {
450 case XPT_SCAN_BUS:
451 case XPT_RESET_BUS:
452 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
453 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
454 xpt_release_bus(bus);
455 return (EINVAL);
456 }
457 break;
458 case XPT_SCAN_TGT:
459 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461 xpt_release_bus(bus);
462 return (EINVAL);
463 }
464 break;
465 default:
466 break;
467 }
468
469 switch(inccb->ccb_h.func_code) {
470 case XPT_SCAN_BUS:
471 case XPT_RESET_BUS:
472 case XPT_PATH_INQ:
473 case XPT_ENG_INQ:
474 case XPT_SCAN_LUN:
475 case XPT_SCAN_TGT:
476
477 ccb = xpt_alloc_ccb();
478
479 /*
480 * Create a path using the bus, target, and lun the
481 * user passed in.
482 */
483 if (xpt_create_path(&ccb->ccb_h.path, NULL,
484 inccb->ccb_h.path_id,
485 inccb->ccb_h.target_id,
486 inccb->ccb_h.target_lun) !=
487 CAM_REQ_CMP){
488 error = EINVAL;
489 xpt_free_ccb(ccb);
490 break;
491 }
492 /* Ensure all of our fields are correct */
493 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
494 inccb->ccb_h.pinfo.priority);
495 xpt_merge_ccb(ccb, inccb);
496 xpt_path_lock(ccb->ccb_h.path);
497 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
498 xpt_path_unlock(ccb->ccb_h.path);
499 bcopy(ccb, inccb, sizeof(union ccb));
500 xpt_free_path(ccb->ccb_h.path);
501 xpt_free_ccb(ccb);
502 break;
503
504 case XPT_DEBUG: {
505 union ccb ccb;
506
507 /*
508 * This is an immediate CCB, so it's okay to
509 * allocate it on the stack.
510 */
511
512 /*
513 * Create a path using the bus, target, and lun the
514 * user passed in.
515 */
516 if (xpt_create_path(&ccb.ccb_h.path, NULL,
517 inccb->ccb_h.path_id,
518 inccb->ccb_h.target_id,
519 inccb->ccb_h.target_lun) !=
520 CAM_REQ_CMP){
521 error = EINVAL;
522 break;
523 }
524 /* Ensure all of our fields are correct */
525 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
526 inccb->ccb_h.pinfo.priority);
527 xpt_merge_ccb(&ccb, inccb);
528 xpt_action(&ccb);
529 bcopy(&ccb, inccb, sizeof(union ccb));
530 xpt_free_path(ccb.ccb_h.path);
531 break;
532
533 }
534 case XPT_DEV_MATCH: {
535 struct cam_periph_map_info mapinfo;
536 struct cam_path *old_path;
537
538 /*
539 * We can't deal with physical addresses for this
540 * type of transaction.
541 */
542 if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
543 CAM_DATA_VADDR) {
544 error = EINVAL;
545 break;
546 }
547
548 /*
549 * Save this in case the caller had it set to
550 * something in particular.
551 */
552 old_path = inccb->ccb_h.path;
553
554 /*
555 * We really don't need a path for the matching
556 * code. The path is needed because of the
557 * debugging statements in xpt_action(). They
558 * assume that the CCB has a valid path.
559 */
560 inccb->ccb_h.path = xpt_periph->path;
561
562 bzero(&mapinfo, sizeof(mapinfo));
563
564 /*
565 * Map the pattern and match buffers into kernel
566 * virtual address space.
567 */
568 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
569
570 if (error) {
571 inccb->ccb_h.path = old_path;
572 break;
573 }
574
575 /*
576 * This is an immediate CCB, we can send it on directly.
577 */
578 xpt_action(inccb);
579
580 /*
581 * Map the buffers back into user space.
582 */
583 cam_periph_unmapmem(inccb, &mapinfo);
584
585 inccb->ccb_h.path = old_path;
586
587 error = 0;
588 break;
589 }
590 default:
591 error = ENOTSUP;
592 break;
593 }
594 xpt_release_bus(bus);
595 break;
596 }
597 /*
598 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
599 * with the periphal driver name and unit name filled in. The other
600 * fields don't really matter as input. The passthrough driver name
601 * ("pass"), and unit number are passed back in the ccb. The current
602 * device generation number, and the index into the device peripheral
603 * driver list, and the status are also passed back. Note that
604 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
605 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
606 * (or rather should be) impossible for the device peripheral driver
607 * list to change since we look at the whole thing in one pass, and
608 * we do it with lock protection.
609 *
610 */
611 case CAMGETPASSTHRU: {
612 union ccb *ccb;
613 struct cam_periph *periph;
614 struct periph_driver **p_drv;
615 char *name;
616 u_int unit;
617 int base_periph_found;
618
619 ccb = (union ccb *)addr;
620 unit = ccb->cgdl.unit_number;
621 name = ccb->cgdl.periph_name;
622 base_periph_found = 0;
623 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
624 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
625 ccb->csio.bio = NULL;
626 #endif
627
628 /*
629 * Sanity check -- make sure we don't get a null peripheral
630 * driver name.
631 */
632 if (*ccb->cgdl.periph_name == '\0') {
633 error = EINVAL;
634 break;
635 }
636
637 /* Keep the list from changing while we traverse it */
638 xpt_lock_buses();
639
640 /* first find our driver in the list of drivers */
641 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
642 if (strcmp((*p_drv)->driver_name, name) == 0)
643 break;
644
645 if (*p_drv == NULL) {
646 xpt_unlock_buses();
647 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
648 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
649 *ccb->cgdl.periph_name = '\0';
650 ccb->cgdl.unit_number = 0;
651 error = ENOENT;
652 break;
653 }
654
655 /*
656 * Run through every peripheral instance of this driver
657 * and check to see whether it matches the unit passed
658 * in by the user. If it does, get out of the loops and
659 * find the passthrough driver associated with that
660 * peripheral driver.
661 */
662 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
663 periph = TAILQ_NEXT(periph, unit_links)) {
664
665 if (periph->unit_number == unit)
666 break;
667 }
668 /*
669 * If we found the peripheral driver that the user passed
670 * in, go through all of the peripheral drivers for that
671 * particular device and look for a passthrough driver.
672 */
673 if (periph != NULL) {
674 struct cam_ed *device;
675 int i;
676
677 base_periph_found = 1;
678 device = periph->path->device;
679 for (i = 0, periph = SLIST_FIRST(&device->periphs);
680 periph != NULL;
681 periph = SLIST_NEXT(periph, periph_links), i++) {
682 /*
683 * Check to see whether we have a
684 * passthrough device or not.
685 */
686 if (strcmp(periph->periph_name, "pass") == 0) {
687 /*
688 * Fill in the getdevlist fields.
689 */
690 strlcpy(ccb->cgdl.periph_name,
691 periph->periph_name,
692 sizeof(ccb->cgdl.periph_name));
693 ccb->cgdl.unit_number =
694 periph->unit_number;
695 if (SLIST_NEXT(periph, periph_links))
696 ccb->cgdl.status =
697 CAM_GDEVLIST_MORE_DEVS;
698 else
699 ccb->cgdl.status =
700 CAM_GDEVLIST_LAST_DEVICE;
701 ccb->cgdl.generation =
702 device->generation;
703 ccb->cgdl.index = i;
704 /*
705 * Fill in some CCB header fields
706 * that the user may want.
707 */
708 ccb->ccb_h.path_id =
709 periph->path->bus->path_id;
710 ccb->ccb_h.target_id =
711 periph->path->target->target_id;
712 ccb->ccb_h.target_lun =
713 periph->path->device->lun_id;
714 ccb->ccb_h.status = CAM_REQ_CMP;
715 break;
716 }
717 }
718 }
719
720 /*
721 * If the periph is null here, one of two things has
722 * happened. The first possibility is that we couldn't
723 * find the unit number of the particular peripheral driver
724 * that the user is asking about. e.g. the user asks for
725 * the passthrough driver for "da11". We find the list of
726 * "da" peripherals all right, but there is no unit 11.
727 * The other possibility is that we went through the list
728 * of peripheral drivers attached to the device structure,
729 * but didn't find one with the name "pass". Either way,
730 * we return ENOENT, since we couldn't find something.
731 */
732 if (periph == NULL) {
733 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
734 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
735 *ccb->cgdl.periph_name = '\0';
736 ccb->cgdl.unit_number = 0;
737 error = ENOENT;
738 /*
739 * It is unfortunate that this is even necessary,
740 * but there are many, many clueless users out there.
741 * If this is true, the user is looking for the
742 * passthrough driver, but doesn't have one in his
743 * kernel.
744 */
745 if (base_periph_found == 1) {
746 printf("xptioctl: pass driver is not in the "
747 "kernel\n");
748 printf("xptioctl: put \"device pass\" in "
749 "your kernel config file\n");
750 }
751 }
752 xpt_unlock_buses();
753 break;
754 }
755 default:
756 error = ENOTTY;
757 break;
758 }
759
760 return(error);
761 }
762
763 static int
764 cam_module_event_handler(module_t mod, int what, void *arg)
765 {
766 int error;
767
768 switch (what) {
769 case MOD_LOAD:
770 if ((error = xpt_init(NULL)) != 0)
771 return (error);
772 break;
773 case MOD_UNLOAD:
774 return EBUSY;
775 default:
776 return EOPNOTSUPP;
777 }
778
779 return 0;
780 }
781
782 static struct xpt_proto *
783 xpt_proto_find(cam_proto proto)
784 {
785 struct xpt_proto **pp;
786
787 SET_FOREACH(pp, cam_xpt_proto_set) {
788 if ((*pp)->proto == proto)
789 return *pp;
790 }
791
792 return NULL;
793 }
794
795 static void
796 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
797 {
798
799 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
800 xpt_free_path(done_ccb->ccb_h.path);
801 xpt_free_ccb(done_ccb);
802 } else {
803 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
804 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
805 }
806 xpt_release_boot();
807 }
808
809 /* thread to handle bus rescans */
810 static void
811 xpt_scanner_thread(void *dummy)
812 {
813 union ccb *ccb;
814 struct cam_path path;
815
816 xpt_lock_buses();
817 for (;;) {
818 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
819 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
820 "-", 0);
821 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
822 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
823 xpt_unlock_buses();
824
825 /*
826 * Since lock can be dropped inside and path freed
827 * by completion callback even before return here,
828 * take our own path copy for reference.
829 */
830 xpt_copy_path(&path, ccb->ccb_h.path);
831 xpt_path_lock(&path);
832 xpt_action(ccb);
833 xpt_path_unlock(&path);
834 xpt_release_path(&path);
835
836 xpt_lock_buses();
837 }
838 }
839 }
840
841 void
842 xpt_rescan(union ccb *ccb)
843 {
844 struct ccb_hdr *hdr;
845
846 /* Prepare request */
847 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
848 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
849 ccb->ccb_h.func_code = XPT_SCAN_BUS;
850 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
851 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
852 ccb->ccb_h.func_code = XPT_SCAN_TGT;
853 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
854 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
855 ccb->ccb_h.func_code = XPT_SCAN_LUN;
856 else {
857 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
858 xpt_free_path(ccb->ccb_h.path);
859 xpt_free_ccb(ccb);
860 return;
861 }
862 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
863 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
864 xpt_action_name(ccb->ccb_h.func_code)));
865
866 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
867 ccb->ccb_h.cbfcnp = xpt_rescan_done;
868 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
869 /* Don't make duplicate entries for the same paths. */
870 xpt_lock_buses();
871 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
872 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
873 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
874 wakeup(&xsoftc.ccb_scanq);
875 xpt_unlock_buses();
876 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
877 xpt_free_path(ccb->ccb_h.path);
878 xpt_free_ccb(ccb);
879 return;
880 }
881 }
882 }
883 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
884 xsoftc.buses_to_config++;
885 wakeup(&xsoftc.ccb_scanq);
886 xpt_unlock_buses();
887 }
888
889 /* Functions accessed by the peripheral drivers */
890 static int
891 xpt_init(void *dummy)
892 {
893 struct cam_sim *xpt_sim;
894 struct cam_path *path;
895 struct cam_devq *devq;
896 cam_status status;
897 int error, i;
898
899 TAILQ_INIT(&xsoftc.xpt_busses);
900 TAILQ_INIT(&xsoftc.ccb_scanq);
901 STAILQ_INIT(&xsoftc.highpowerq);
902 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
903
904 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
905 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
906 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
907 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
908
909 #ifdef CAM_BOOT_DELAY
910 /*
911 * Override this value at compile time to assist our users
912 * who don't use loader to boot a kernel.
913 */
914 xsoftc.boot_delay = CAM_BOOT_DELAY;
915 #endif
916 /*
917 * The xpt layer is, itself, the equivalent of a SIM.
918 * Allow 16 ccbs in the ccb pool for it. This should
919 * give decent parallelism when we probe buses and
920 * perform other XPT functions.
921 */
922 devq = cam_simq_alloc(16);
923 xpt_sim = cam_sim_alloc(xptaction,
924 xptpoll,
925 "xpt",
926 /*softc*/NULL,
927 /*unit*/0,
928 /*mtx*/&xsoftc.xpt_lock,
929 /*max_dev_transactions*/0,
930 /*max_tagged_dev_transactions*/0,
931 devq);
932 if (xpt_sim == NULL)
933 return (ENOMEM);
934
935 mtx_lock(&xsoftc.xpt_lock);
936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
937 mtx_unlock(&xsoftc.xpt_lock);
938 printf("xpt_init: xpt_bus_register failed with status %#x,"
939 " failing attach\n", status);
940 return (EINVAL);
941 }
942 mtx_unlock(&xsoftc.xpt_lock);
943
944 /*
945 * Looking at the XPT from the SIM layer, the XPT is
946 * the equivalent of a peripheral driver. Allocate
947 * a peripheral driver entry for us.
948 */
949 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
950 CAM_TARGET_WILDCARD,
951 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
952 printf("xpt_init: xpt_create_path failed with status %#x,"
953 " failing attach\n", status);
954 return (EINVAL);
955 }
956 xpt_path_lock(path);
957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
958 path, NULL, 0, xpt_sim);
959 xpt_path_unlock(path);
960 xpt_free_path(path);
961
962 if (cam_num_doneqs < 1)
963 cam_num_doneqs = 1 + mp_ncpus / 6;
964 else if (cam_num_doneqs > MAXCPU)
965 cam_num_doneqs = MAXCPU;
966 for (i = 0; i < cam_num_doneqs; i++) {
967 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
968 MTX_DEF);
969 STAILQ_INIT(&cam_doneqs[i].cam_doneq);
970 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
971 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
972 if (error != 0) {
973 cam_num_doneqs = i;
974 break;
975 }
976 }
977 if (cam_num_doneqs < 1) {
978 printf("xpt_init: Cannot init completion queues "
979 "- failing attach\n");
980 return (ENOMEM);
981 }
982 /*
983 * Register a callback for when interrupts are enabled.
984 */
985 xsoftc.xpt_config_hook =
986 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
987 M_CAMXPT, M_NOWAIT | M_ZERO);
988 if (xsoftc.xpt_config_hook == NULL) {
989 printf("xpt_init: Cannot malloc config hook "
990 "- failing attach\n");
991 return (ENOMEM);
992 }
993 xsoftc.xpt_config_hook->ich_func = xpt_config;
994 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
995 free (xsoftc.xpt_config_hook, M_CAMXPT);
996 printf("xpt_init: config_intrhook_establish failed "
997 "- failing attach\n");
998 }
999
1000 return (0);
1001 }
1002
1003 static cam_status
1004 xptregister(struct cam_periph *periph, void *arg)
1005 {
1006 struct cam_sim *xpt_sim;
1007
1008 if (periph == NULL) {
1009 printf("xptregister: periph was NULL!!\n");
1010 return(CAM_REQ_CMP_ERR);
1011 }
1012
1013 xpt_sim = (struct cam_sim *)arg;
1014 xpt_sim->softc = periph;
1015 xpt_periph = periph;
1016 periph->softc = NULL;
1017
1018 return(CAM_REQ_CMP);
1019 }
1020
1021 int32_t
1022 xpt_add_periph(struct cam_periph *periph)
1023 {
1024 struct cam_ed *device;
1025 int32_t status;
1026
1027 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1028 device = periph->path->device;
1029 status = CAM_REQ_CMP;
1030 if (device != NULL) {
1031 mtx_lock(&device->target->bus->eb_mtx);
1032 device->generation++;
1033 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1034 mtx_unlock(&device->target->bus->eb_mtx);
1035 atomic_add_32(&xsoftc.xpt_generation, 1);
1036 }
1037
1038 return (status);
1039 }
1040
1041 void
1042 xpt_remove_periph(struct cam_periph *periph)
1043 {
1044 struct cam_ed *device;
1045
1046 device = periph->path->device;
1047 if (device != NULL) {
1048 mtx_lock(&device->target->bus->eb_mtx);
1049 device->generation++;
1050 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1051 mtx_unlock(&device->target->bus->eb_mtx);
1052 atomic_add_32(&xsoftc.xpt_generation, 1);
1053 }
1054 }
1055
1056
1057 void
1058 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1059 {
1060 struct cam_path *path = periph->path;
1061 struct xpt_proto *proto;
1062
1063 cam_periph_assert(periph, MA_OWNED);
1064 periph->flags |= CAM_PERIPH_ANNOUNCED;
1065
1066 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1067 periph->periph_name, periph->unit_number,
1068 path->bus->sim->sim_name,
1069 path->bus->sim->unit_number,
1070 path->bus->sim->bus_id,
1071 path->bus->path_id,
1072 path->target->target_id,
1073 (uintmax_t)path->device->lun_id);
1074 printf("%s%d: ", periph->periph_name, periph->unit_number);
1075 proto = xpt_proto_find(path->device->protocol);
1076 if (proto)
1077 proto->ops->announce(path->device);
1078 else
1079 printf("%s%d: Unknown protocol device %d\n",
1080 periph->periph_name, periph->unit_number,
1081 path->device->protocol);
1082 if (path->device->serial_num_len > 0) {
1083 /* Don't wrap the screen - print only the first 60 chars */
1084 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1085 periph->unit_number, path->device->serial_num);
1086 }
1087 /* Announce transport details. */
1088 path->bus->xport->ops->announce(periph);
1089 /* Announce command queueing. */
1090 if (path->device->inq_flags & SID_CmdQue
1091 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1092 printf("%s%d: Command Queueing enabled\n",
1093 periph->periph_name, periph->unit_number);
1094 }
1095 /* Announce caller's details if they've passed in. */
1096 if (announce_string != NULL)
1097 printf("%s%d: %s\n", periph->periph_name,
1098 periph->unit_number, announce_string);
1099 }
1100
1101 void
1102 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1103 char *announce_string)
1104 {
1105 struct cam_path *path = periph->path;
1106 struct xpt_proto *proto;
1107
1108 cam_periph_assert(periph, MA_OWNED);
1109 periph->flags |= CAM_PERIPH_ANNOUNCED;
1110
1111 /* Fall back to the non-sbuf method if necessary */
1112 if (xsoftc.announce_nosbuf != 0) {
1113 xpt_announce_periph(periph, announce_string);
1114 return;
1115 }
1116 proto = xpt_proto_find(path->device->protocol);
1117 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1118 (path->bus->xport->ops->announce_sbuf == NULL)) {
1119 xpt_announce_periph(periph, announce_string);
1120 return;
1121 }
1122
1123 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1124 periph->periph_name, periph->unit_number,
1125 path->bus->sim->sim_name,
1126 path->bus->sim->unit_number,
1127 path->bus->sim->bus_id,
1128 path->bus->path_id,
1129 path->target->target_id,
1130 (uintmax_t)path->device->lun_id);
1131 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1132
1133 if (proto)
1134 proto->ops->announce_sbuf(path->device, sb);
1135 else
1136 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1137 periph->periph_name, periph->unit_number,
1138 path->device->protocol);
1139 if (path->device->serial_num_len > 0) {
1140 /* Don't wrap the screen - print only the first 60 chars */
1141 sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1142 periph->periph_name, periph->unit_number,
1143 path->device->serial_num);
1144 }
1145 /* Announce transport details. */
1146 path->bus->xport->ops->announce_sbuf(periph, sb);
1147 /* Announce command queueing. */
1148 if (path->device->inq_flags & SID_CmdQue
1149 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1150 sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1151 periph->periph_name, periph->unit_number);
1152 }
1153 /* Announce caller's details if they've passed in. */
1154 if (announce_string != NULL)
1155 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1156 periph->unit_number, announce_string);
1157 }
1158
1159 void
1160 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1161 {
1162 if (quirks != 0) {
1163 printf("%s%d: quirks=0x%b\n", periph->periph_name,
1164 periph->unit_number, quirks, bit_string);
1165 }
1166 }
1167
1168 void
1169 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1170 int quirks, char *bit_string)
1171 {
1172 if (xsoftc.announce_nosbuf != 0) {
1173 xpt_announce_quirks(periph, quirks, bit_string);
1174 return;
1175 }
1176
1177 if (quirks != 0) {
1178 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1179 periph->unit_number, quirks, bit_string);
1180 }
1181 }
1182
1183 void
1184 xpt_denounce_periph(struct cam_periph *periph)
1185 {
1186 struct cam_path *path = periph->path;
1187 struct xpt_proto *proto;
1188
1189 cam_periph_assert(periph, MA_OWNED);
1190 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1191 periph->periph_name, periph->unit_number,
1192 path->bus->sim->sim_name,
1193 path->bus->sim->unit_number,
1194 path->bus->sim->bus_id,
1195 path->bus->path_id,
1196 path->target->target_id,
1197 (uintmax_t)path->device->lun_id);
1198 printf("%s%d: ", periph->periph_name, periph->unit_number);
1199 proto = xpt_proto_find(path->device->protocol);
1200 if (proto)
1201 proto->ops->denounce(path->device);
1202 else
1203 printf("%s%d: Unknown protocol device %d\n",
1204 periph->periph_name, periph->unit_number,
1205 path->device->protocol);
1206 if (path->device->serial_num_len > 0)
1207 printf(" s/n %.60s", path->device->serial_num);
1208 printf(" detached\n");
1209 }
1210
1211 void
1212 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1213 {
1214 struct cam_path *path = periph->path;
1215 struct xpt_proto *proto;
1216
1217 cam_periph_assert(periph, MA_OWNED);
1218
1219 /* Fall back to the non-sbuf method if necessary */
1220 if (xsoftc.announce_nosbuf != 0) {
1221 xpt_denounce_periph(periph);
1222 return;
1223 }
1224 proto = xpt_proto_find(path->device->protocol);
1225 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1226 xpt_denounce_periph(periph);
1227 return;
1228 }
1229
1230 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1231 periph->periph_name, periph->unit_number,
1232 path->bus->sim->sim_name,
1233 path->bus->sim->unit_number,
1234 path->bus->sim->bus_id,
1235 path->bus->path_id,
1236 path->target->target_id,
1237 (uintmax_t)path->device->lun_id);
1238 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1239
1240 if (proto)
1241 proto->ops->denounce_sbuf(path->device, sb);
1242 else
1243 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1244 periph->periph_name, periph->unit_number,
1245 path->device->protocol);
1246 if (path->device->serial_num_len > 0)
1247 sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1248 sbuf_printf(sb, " detached\n");
1249 }
1250
1251 int
1252 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1253 {
1254 int ret = -1, l, o;
1255 struct ccb_dev_advinfo cdai;
1256 struct scsi_vpd_id_descriptor *idd;
1257
1258 xpt_path_assert(path, MA_OWNED);
1259
1260 memset(&cdai, 0, sizeof(cdai));
1261 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1262 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1263 cdai.flags = CDAI_FLAG_NONE;
1264 cdai.bufsiz = len;
1265
1266 if (!strcmp(attr, "GEOM::ident"))
1267 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1268 else if (!strcmp(attr, "GEOM::physpath"))
1269 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1270 else if (strcmp(attr, "GEOM::lunid") == 0 ||
1271 strcmp(attr, "GEOM::lunname") == 0) {
1272 cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1273 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1274 } else
1275 goto out;
1276
1277 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1278 if (cdai.buf == NULL) {
1279 ret = ENOMEM;
1280 goto out;
1281 }
1282 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1283 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1284 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1285 if (cdai.provsiz == 0)
1286 goto out;
1287 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1288 if (strcmp(attr, "GEOM::lunid") == 0) {
1289 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1290 cdai.provsiz, scsi_devid_is_lun_naa);
1291 if (idd == NULL)
1292 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1293 cdai.provsiz, scsi_devid_is_lun_eui64);
1294 if (idd == NULL)
1295 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1296 cdai.provsiz, scsi_devid_is_lun_uuid);
1297 if (idd == NULL)
1298 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1299 cdai.provsiz, scsi_devid_is_lun_md5);
1300 } else
1301 idd = NULL;
1302 if (idd == NULL)
1303 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1304 cdai.provsiz, scsi_devid_is_lun_t10);
1305 if (idd == NULL)
1306 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1307 cdai.provsiz, scsi_devid_is_lun_name);
1308 if (idd == NULL)
1309 goto out;
1310 ret = 0;
1311 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1312 if (idd->length < len) {
1313 for (l = 0; l < idd->length; l++)
1314 buf[l] = idd->identifier[l] ?
1315 idd->identifier[l] : ' ';
1316 buf[l] = 0;
1317 } else
1318 ret = EFAULT;
1319 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1320 l = strnlen(idd->identifier, idd->length);
1321 if (l < len) {
1322 bcopy(idd->identifier, buf, l);
1323 buf[l] = 0;
1324 } else
1325 ret = EFAULT;
1326 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID
1327 && idd->identifier[0] == 0x10) {
1328 if ((idd->length - 2) * 2 + 4 < len) {
1329 for (l = 2, o = 0; l < idd->length; l++) {
1330 if (l == 6 || l == 8 || l == 10 || l == 12)
1331 o += sprintf(buf + o, "-");
1332 o += sprintf(buf + o, "%02x",
1333 idd->identifier[l]);
1334 }
1335 } else
1336 ret = EFAULT;
1337 } else {
1338 if (idd->length * 2 < len) {
1339 for (l = 0; l < idd->length; l++)
1340 sprintf(buf + l * 2, "%02x",
1341 idd->identifier[l]);
1342 } else
1343 ret = EFAULT;
1344 }
1345 } else {
1346 ret = 0;
1347 if (strlcpy(buf, cdai.buf, len) >= len)
1348 ret = EFAULT;
1349 }
1350
1351 out:
1352 if (cdai.buf != NULL)
1353 free(cdai.buf, M_CAMXPT);
1354 return ret;
1355 }
1356
1357 static dev_match_ret
1358 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1359 struct cam_eb *bus)
1360 {
1361 dev_match_ret retval;
1362 u_int i;
1363
1364 retval = DM_RET_NONE;
1365
1366 /*
1367 * If we aren't given something to match against, that's an error.
1368 */
1369 if (bus == NULL)
1370 return(DM_RET_ERROR);
1371
1372 /*
1373 * If there are no match entries, then this bus matches no
1374 * matter what.
1375 */
1376 if ((patterns == NULL) || (num_patterns == 0))
1377 return(DM_RET_DESCEND | DM_RET_COPY);
1378
1379 for (i = 0; i < num_patterns; i++) {
1380 struct bus_match_pattern *cur_pattern;
1381
1382 /*
1383 * If the pattern in question isn't for a bus node, we
1384 * aren't interested. However, we do indicate to the
1385 * calling routine that we should continue descending the
1386 * tree, since the user wants to match against lower-level
1387 * EDT elements.
1388 */
1389 if (patterns[i].type != DEV_MATCH_BUS) {
1390 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1391 retval |= DM_RET_DESCEND;
1392 continue;
1393 }
1394
1395 cur_pattern = &patterns[i].pattern.bus_pattern;
1396
1397 /*
1398 * If they want to match any bus node, we give them any
1399 * device node.
1400 */
1401 if (cur_pattern->flags == BUS_MATCH_ANY) {
1402 /* set the copy flag */
1403 retval |= DM_RET_COPY;
1404
1405 /*
1406 * If we've already decided on an action, go ahead
1407 * and return.
1408 */
1409 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1410 return(retval);
1411 }
1412
1413 /*
1414 * Not sure why someone would do this...
1415 */
1416 if (cur_pattern->flags == BUS_MATCH_NONE)
1417 continue;
1418
1419 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1420 && (cur_pattern->path_id != bus->path_id))
1421 continue;
1422
1423 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1424 && (cur_pattern->bus_id != bus->sim->bus_id))
1425 continue;
1426
1427 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1428 && (cur_pattern->unit_number != bus->sim->unit_number))
1429 continue;
1430
1431 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1432 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1433 DEV_IDLEN) != 0))
1434 continue;
1435
1436 /*
1437 * If we get to this point, the user definitely wants
1438 * information on this bus. So tell the caller to copy the
1439 * data out.
1440 */
1441 retval |= DM_RET_COPY;
1442
1443 /*
1444 * If the return action has been set to descend, then we
1445 * know that we've already seen a non-bus matching
1446 * expression, therefore we need to further descend the tree.
1447 * This won't change by continuing around the loop, so we
1448 * go ahead and return. If we haven't seen a non-bus
1449 * matching expression, we keep going around the loop until
1450 * we exhaust the matching expressions. We'll set the stop
1451 * flag once we fall out of the loop.
1452 */
1453 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1454 return(retval);
1455 }
1456
1457 /*
1458 * If the return action hasn't been set to descend yet, that means
1459 * we haven't seen anything other than bus matching patterns. So
1460 * tell the caller to stop descending the tree -- the user doesn't
1461 * want to match against lower level tree elements.
1462 */
1463 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1464 retval |= DM_RET_STOP;
1465
1466 return(retval);
1467 }
1468
1469 static dev_match_ret
1470 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1471 struct cam_ed *device)
1472 {
1473 dev_match_ret retval;
1474 u_int i;
1475
1476 retval = DM_RET_NONE;
1477
1478 /*
1479 * If we aren't given something to match against, that's an error.
1480 */
1481 if (device == NULL)
1482 return(DM_RET_ERROR);
1483
1484 /*
1485 * If there are no match entries, then this device matches no
1486 * matter what.
1487 */
1488 if ((patterns == NULL) || (num_patterns == 0))
1489 return(DM_RET_DESCEND | DM_RET_COPY);
1490
1491 for (i = 0; i < num_patterns; i++) {
1492 struct device_match_pattern *cur_pattern;
1493 struct scsi_vpd_device_id *device_id_page;
1494
1495 /*
1496 * If the pattern in question isn't for a device node, we
1497 * aren't interested.
1498 */
1499 if (patterns[i].type != DEV_MATCH_DEVICE) {
1500 if ((patterns[i].type == DEV_MATCH_PERIPH)
1501 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1502 retval |= DM_RET_DESCEND;
1503 continue;
1504 }
1505
1506 cur_pattern = &patterns[i].pattern.device_pattern;
1507
1508 /* Error out if mutually exclusive options are specified. */
1509 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1510 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1511 return(DM_RET_ERROR);
1512
1513 /*
1514 * If they want to match any device node, we give them any
1515 * device node.
1516 */
1517 if (cur_pattern->flags == DEV_MATCH_ANY)
1518 goto copy_dev_node;
1519
1520 /*
1521 * Not sure why someone would do this...
1522 */
1523 if (cur_pattern->flags == DEV_MATCH_NONE)
1524 continue;
1525
1526 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1527 && (cur_pattern->path_id != device->target->bus->path_id))
1528 continue;
1529
1530 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1531 && (cur_pattern->target_id != device->target->target_id))
1532 continue;
1533
1534 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1535 && (cur_pattern->target_lun != device->lun_id))
1536 continue;
1537
1538 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1539 && (cam_quirkmatch((caddr_t)&device->inq_data,
1540 (caddr_t)&cur_pattern->data.inq_pat,
1541 1, sizeof(cur_pattern->data.inq_pat),
1542 scsi_static_inquiry_match) == NULL))
1543 continue;
1544
1545 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1546 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1547 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1548 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1549 device->device_id_len
1550 - SVPD_DEVICE_ID_HDR_LEN,
1551 cur_pattern->data.devid_pat.id,
1552 cur_pattern->data.devid_pat.id_len) != 0))
1553 continue;
1554
1555 copy_dev_node:
1556 /*
1557 * If we get to this point, the user definitely wants
1558 * information on this device. So tell the caller to copy
1559 * the data out.
1560 */
1561 retval |= DM_RET_COPY;
1562
1563 /*
1564 * If the return action has been set to descend, then we
1565 * know that we've already seen a peripheral matching
1566 * expression, therefore we need to further descend the tree.
1567 * This won't change by continuing around the loop, so we
1568 * go ahead and return. If we haven't seen a peripheral
1569 * matching expression, we keep going around the loop until
1570 * we exhaust the matching expressions. We'll set the stop
1571 * flag once we fall out of the loop.
1572 */
1573 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1574 return(retval);
1575 }
1576
1577 /*
1578 * If the return action hasn't been set to descend yet, that means
1579 * we haven't seen any peripheral matching patterns. So tell the
1580 * caller to stop descending the tree -- the user doesn't want to
1581 * match against lower level tree elements.
1582 */
1583 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1584 retval |= DM_RET_STOP;
1585
1586 return(retval);
1587 }
1588
1589 /*
1590 * Match a single peripheral against any number of match patterns.
1591 */
1592 static dev_match_ret
1593 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1594 struct cam_periph *periph)
1595 {
1596 dev_match_ret retval;
1597 u_int i;
1598
1599 /*
1600 * If we aren't given something to match against, that's an error.
1601 */
1602 if (periph == NULL)
1603 return(DM_RET_ERROR);
1604
1605 /*
1606 * If there are no match entries, then this peripheral matches no
1607 * matter what.
1608 */
1609 if ((patterns == NULL) || (num_patterns == 0))
1610 return(DM_RET_STOP | DM_RET_COPY);
1611
1612 /*
1613 * There aren't any nodes below a peripheral node, so there's no
1614 * reason to descend the tree any further.
1615 */
1616 retval = DM_RET_STOP;
1617
1618 for (i = 0; i < num_patterns; i++) {
1619 struct periph_match_pattern *cur_pattern;
1620
1621 /*
1622 * If the pattern in question isn't for a peripheral, we
1623 * aren't interested.
1624 */
1625 if (patterns[i].type != DEV_MATCH_PERIPH)
1626 continue;
1627
1628 cur_pattern = &patterns[i].pattern.periph_pattern;
1629
1630 /*
1631 * If they want to match on anything, then we will do so.
1632 */
1633 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1634 /* set the copy flag */
1635 retval |= DM_RET_COPY;
1636
1637 /*
1638 * We've already set the return action to stop,
1639 * since there are no nodes below peripherals in
1640 * the tree.
1641 */
1642 return(retval);
1643 }
1644
1645 /*
1646 * Not sure why someone would do this...
1647 */
1648 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1649 continue;
1650
1651 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1652 && (cur_pattern->path_id != periph->path->bus->path_id))
1653 continue;
1654
1655 /*
1656 * For the target and lun id's, we have to make sure the
1657 * target and lun pointers aren't NULL. The xpt peripheral
1658 * has a wildcard target and device.
1659 */
1660 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1661 && ((periph->path->target == NULL)
1662 ||(cur_pattern->target_id != periph->path->target->target_id)))
1663 continue;
1664
1665 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1666 && ((periph->path->device == NULL)
1667 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1668 continue;
1669
1670 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1671 && (cur_pattern->unit_number != periph->unit_number))
1672 continue;
1673
1674 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1675 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1676 DEV_IDLEN) != 0))
1677 continue;
1678
1679 /*
1680 * If we get to this point, the user definitely wants
1681 * information on this peripheral. So tell the caller to
1682 * copy the data out.
1683 */
1684 retval |= DM_RET_COPY;
1685
1686 /*
1687 * The return action has already been set to stop, since
1688 * peripherals don't have any nodes below them in the EDT.
1689 */
1690 return(retval);
1691 }
1692
1693 /*
1694 * If we get to this point, the peripheral that was passed in
1695 * doesn't match any of the patterns.
1696 */
1697 return(retval);
1698 }
1699
1700 static int
1701 xptedtbusfunc(struct cam_eb *bus, void *arg)
1702 {
1703 struct ccb_dev_match *cdm;
1704 struct cam_et *target;
1705 dev_match_ret retval;
1706
1707 cdm = (struct ccb_dev_match *)arg;
1708
1709 /*
1710 * If our position is for something deeper in the tree, that means
1711 * that we've already seen this node. So, we keep going down.
1712 */
1713 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1714 && (cdm->pos.cookie.bus == bus)
1715 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1716 && (cdm->pos.cookie.target != NULL))
1717 retval = DM_RET_DESCEND;
1718 else
1719 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1720
1721 /*
1722 * If we got an error, bail out of the search.
1723 */
1724 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1725 cdm->status = CAM_DEV_MATCH_ERROR;
1726 return(0);
1727 }
1728
1729 /*
1730 * If the copy flag is set, copy this bus out.
1731 */
1732 if (retval & DM_RET_COPY) {
1733 int spaceleft, j;
1734
1735 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1736 sizeof(struct dev_match_result));
1737
1738 /*
1739 * If we don't have enough space to put in another
1740 * match result, save our position and tell the
1741 * user there are more devices to check.
1742 */
1743 if (spaceleft < sizeof(struct dev_match_result)) {
1744 bzero(&cdm->pos, sizeof(cdm->pos));
1745 cdm->pos.position_type =
1746 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1747
1748 cdm->pos.cookie.bus = bus;
1749 cdm->pos.generations[CAM_BUS_GENERATION]=
1750 xsoftc.bus_generation;
1751 cdm->status = CAM_DEV_MATCH_MORE;
1752 return(0);
1753 }
1754 j = cdm->num_matches;
1755 cdm->num_matches++;
1756 cdm->matches[j].type = DEV_MATCH_BUS;
1757 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1758 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1759 cdm->matches[j].result.bus_result.unit_number =
1760 bus->sim->unit_number;
1761 strlcpy(cdm->matches[j].result.bus_result.dev_name,
1762 bus->sim->sim_name,
1763 sizeof(cdm->matches[j].result.bus_result.dev_name));
1764 }
1765
1766 /*
1767 * If the user is only interested in buses, there's no
1768 * reason to descend to the next level in the tree.
1769 */
1770 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1771 return(1);
1772
1773 /*
1774 * If there is a target generation recorded, check it to
1775 * make sure the target list hasn't changed.
1776 */
1777 mtx_lock(&bus->eb_mtx);
1778 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1779 && (cdm->pos.cookie.bus == bus)
1780 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1781 && (cdm->pos.cookie.target != NULL)) {
1782 if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1783 bus->generation)) {
1784 mtx_unlock(&bus->eb_mtx);
1785 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1786 return (0);
1787 }
1788 target = (struct cam_et *)cdm->pos.cookie.target;
1789 target->refcount++;
1790 } else
1791 target = NULL;
1792 mtx_unlock(&bus->eb_mtx);
1793
1794 return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1795 }
1796
1797 static int
1798 xptedttargetfunc(struct cam_et *target, void *arg)
1799 {
1800 struct ccb_dev_match *cdm;
1801 struct cam_eb *bus;
1802 struct cam_ed *device;
1803
1804 cdm = (struct ccb_dev_match *)arg;
1805 bus = target->bus;
1806
1807 /*
1808 * If there is a device list generation recorded, check it to
1809 * make sure the device list hasn't changed.
1810 */
1811 mtx_lock(&bus->eb_mtx);
1812 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1813 && (cdm->pos.cookie.bus == bus)
1814 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1815 && (cdm->pos.cookie.target == target)
1816 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1817 && (cdm->pos.cookie.device != NULL)) {
1818 if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1819 target->generation) {
1820 mtx_unlock(&bus->eb_mtx);
1821 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1822 return(0);
1823 }
1824 device = (struct cam_ed *)cdm->pos.cookie.device;
1825 device->refcount++;
1826 } else
1827 device = NULL;
1828 mtx_unlock(&bus->eb_mtx);
1829
1830 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1831 }
1832
1833 static int
1834 xptedtdevicefunc(struct cam_ed *device, void *arg)
1835 {
1836 struct cam_eb *bus;
1837 struct cam_periph *periph;
1838 struct ccb_dev_match *cdm;
1839 dev_match_ret retval;
1840
1841 cdm = (struct ccb_dev_match *)arg;
1842 bus = device->target->bus;
1843
1844 /*
1845 * If our position is for something deeper in the tree, that means
1846 * that we've already seen this node. So, we keep going down.
1847 */
1848 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1849 && (cdm->pos.cookie.device == device)
1850 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1851 && (cdm->pos.cookie.periph != NULL))
1852 retval = DM_RET_DESCEND;
1853 else
1854 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1855 device);
1856
1857 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1858 cdm->status = CAM_DEV_MATCH_ERROR;
1859 return(0);
1860 }
1861
1862 /*
1863 * If the copy flag is set, copy this device out.
1864 */
1865 if (retval & DM_RET_COPY) {
1866 int spaceleft, j;
1867
1868 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1869 sizeof(struct dev_match_result));
1870
1871 /*
1872 * If we don't have enough space to put in another
1873 * match result, save our position and tell the
1874 * user there are more devices to check.
1875 */
1876 if (spaceleft < sizeof(struct dev_match_result)) {
1877 bzero(&cdm->pos, sizeof(cdm->pos));
1878 cdm->pos.position_type =
1879 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1880 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1881
1882 cdm->pos.cookie.bus = device->target->bus;
1883 cdm->pos.generations[CAM_BUS_GENERATION]=
1884 xsoftc.bus_generation;
1885 cdm->pos.cookie.target = device->target;
1886 cdm->pos.generations[CAM_TARGET_GENERATION] =
1887 device->target->bus->generation;
1888 cdm->pos.cookie.device = device;
1889 cdm->pos.generations[CAM_DEV_GENERATION] =
1890 device->target->generation;
1891 cdm->status = CAM_DEV_MATCH_MORE;
1892 return(0);
1893 }
1894 j = cdm->num_matches;
1895 cdm->num_matches++;
1896 cdm->matches[j].type = DEV_MATCH_DEVICE;
1897 cdm->matches[j].result.device_result.path_id =
1898 device->target->bus->path_id;
1899 cdm->matches[j].result.device_result.target_id =
1900 device->target->target_id;
1901 cdm->matches[j].result.device_result.target_lun =
1902 device->lun_id;
1903 cdm->matches[j].result.device_result.protocol =
1904 device->protocol;
1905 bcopy(&device->inq_data,
1906 &cdm->matches[j].result.device_result.inq_data,
1907 sizeof(struct scsi_inquiry_data));
1908 bcopy(&device->ident_data,
1909 &cdm->matches[j].result.device_result.ident_data,
1910 sizeof(struct ata_params));
1911
1912 /* Let the user know whether this device is unconfigured */
1913 if (device->flags & CAM_DEV_UNCONFIGURED)
1914 cdm->matches[j].result.device_result.flags =
1915 DEV_RESULT_UNCONFIGURED;
1916 else
1917 cdm->matches[j].result.device_result.flags =
1918 DEV_RESULT_NOFLAG;
1919 }
1920
1921 /*
1922 * If the user isn't interested in peripherals, don't descend
1923 * the tree any further.
1924 */
1925 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1926 return(1);
1927
1928 /*
1929 * If there is a peripheral list generation recorded, make sure
1930 * it hasn't changed.
1931 */
1932 xpt_lock_buses();
1933 mtx_lock(&bus->eb_mtx);
1934 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1935 && (cdm->pos.cookie.bus == bus)
1936 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1937 && (cdm->pos.cookie.target == device->target)
1938 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1939 && (cdm->pos.cookie.device == device)
1940 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1941 && (cdm->pos.cookie.periph != NULL)) {
1942 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1943 device->generation) {
1944 mtx_unlock(&bus->eb_mtx);
1945 xpt_unlock_buses();
1946 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1947 return(0);
1948 }
1949 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1950 periph->refcount++;
1951 } else
1952 periph = NULL;
1953 mtx_unlock(&bus->eb_mtx);
1954 xpt_unlock_buses();
1955
1956 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1957 }
1958
1959 static int
1960 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1961 {
1962 struct ccb_dev_match *cdm;
1963 dev_match_ret retval;
1964
1965 cdm = (struct ccb_dev_match *)arg;
1966
1967 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1968
1969 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1970 cdm->status = CAM_DEV_MATCH_ERROR;
1971 return(0);
1972 }
1973
1974 /*
1975 * If the copy flag is set, copy this peripheral out.
1976 */
1977 if (retval & DM_RET_COPY) {
1978 int spaceleft, j;
1979 size_t l;
1980
1981 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1982 sizeof(struct dev_match_result));
1983
1984 /*
1985 * If we don't have enough space to put in another
1986 * match result, save our position and tell the
1987 * user there are more devices to check.
1988 */
1989 if (spaceleft < sizeof(struct dev_match_result)) {
1990 bzero(&cdm->pos, sizeof(cdm->pos));
1991 cdm->pos.position_type =
1992 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1993 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1994 CAM_DEV_POS_PERIPH;
1995
1996 cdm->pos.cookie.bus = periph->path->bus;
1997 cdm->pos.generations[CAM_BUS_GENERATION]=
1998 xsoftc.bus_generation;
1999 cdm->pos.cookie.target = periph->path->target;
2000 cdm->pos.generations[CAM_TARGET_GENERATION] =
2001 periph->path->bus->generation;
2002 cdm->pos.cookie.device = periph->path->device;
2003 cdm->pos.generations[CAM_DEV_GENERATION] =
2004 periph->path->target->generation;
2005 cdm->pos.cookie.periph = periph;
2006 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2007 periph->path->device->generation;
2008 cdm->status = CAM_DEV_MATCH_MORE;
2009 return(0);
2010 }
2011
2012 j = cdm->num_matches;
2013 cdm->num_matches++;
2014 cdm->matches[j].type = DEV_MATCH_PERIPH;
2015 cdm->matches[j].result.periph_result.path_id =
2016 periph->path->bus->path_id;
2017 cdm->matches[j].result.periph_result.target_id =
2018 periph->path->target->target_id;
2019 cdm->matches[j].result.periph_result.target_lun =
2020 periph->path->device->lun_id;
2021 cdm->matches[j].result.periph_result.unit_number =
2022 periph->unit_number;
2023 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2024 strlcpy(cdm->matches[j].result.periph_result.periph_name,
2025 periph->periph_name, l);
2026 }
2027
2028 return(1);
2029 }
2030
2031 static int
2032 xptedtmatch(struct ccb_dev_match *cdm)
2033 {
2034 struct cam_eb *bus;
2035 int ret;
2036
2037 cdm->num_matches = 0;
2038
2039 /*
2040 * Check the bus list generation. If it has changed, the user
2041 * needs to reset everything and start over.
2042 */
2043 xpt_lock_buses();
2044 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2045 && (cdm->pos.cookie.bus != NULL)) {
2046 if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2047 xsoftc.bus_generation) {
2048 xpt_unlock_buses();
2049 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2050 return(0);
2051 }
2052 bus = (struct cam_eb *)cdm->pos.cookie.bus;
2053 bus->refcount++;
2054 } else
2055 bus = NULL;
2056 xpt_unlock_buses();
2057
2058 ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2059
2060 /*
2061 * If we get back 0, that means that we had to stop before fully
2062 * traversing the EDT. It also means that one of the subroutines
2063 * has set the status field to the proper value. If we get back 1,
2064 * we've fully traversed the EDT and copied out any matching entries.
2065 */
2066 if (ret == 1)
2067 cdm->status = CAM_DEV_MATCH_LAST;
2068
2069 return(ret);
2070 }
2071
2072 static int
2073 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2074 {
2075 struct cam_periph *periph;
2076 struct ccb_dev_match *cdm;
2077
2078 cdm = (struct ccb_dev_match *)arg;
2079
2080 xpt_lock_buses();
2081 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2082 && (cdm->pos.cookie.pdrv == pdrv)
2083 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2084 && (cdm->pos.cookie.periph != NULL)) {
2085 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2086 (*pdrv)->generation) {
2087 xpt_unlock_buses();
2088 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2089 return(0);
2090 }
2091 periph = (struct cam_periph *)cdm->pos.cookie.periph;
2092 periph->refcount++;
2093 } else
2094 periph = NULL;
2095 xpt_unlock_buses();
2096
2097 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2098 }
2099
2100 static int
2101 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2102 {
2103 struct ccb_dev_match *cdm;
2104 dev_match_ret retval;
2105
2106 cdm = (struct ccb_dev_match *)arg;
2107
2108 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2109
2110 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2111 cdm->status = CAM_DEV_MATCH_ERROR;
2112 return(0);
2113 }
2114
2115 /*
2116 * If the copy flag is set, copy this peripheral out.
2117 */
2118 if (retval & DM_RET_COPY) {
2119 int spaceleft, j;
2120 size_t l;
2121
2122 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2123 sizeof(struct dev_match_result));
2124
2125 /*
2126 * If we don't have enough space to put in another
2127 * match result, save our position and tell the
2128 * user there are more devices to check.
2129 */
2130 if (spaceleft < sizeof(struct dev_match_result)) {
2131 struct periph_driver **pdrv;
2132
2133 pdrv = NULL;
2134 bzero(&cdm->pos, sizeof(cdm->pos));
2135 cdm->pos.position_type =
2136 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2137 CAM_DEV_POS_PERIPH;
2138
2139 /*
2140 * This may look a bit non-sensical, but it is
2141 * actually quite logical. There are very few
2142 * peripheral drivers, and bloating every peripheral
2143 * structure with a pointer back to its parent
2144 * peripheral driver linker set entry would cost
2145 * more in the long run than doing this quick lookup.
2146 */
2147 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2148 if (strcmp((*pdrv)->driver_name,
2149 periph->periph_name) == 0)
2150 break;
2151 }
2152
2153 if (*pdrv == NULL) {
2154 cdm->status = CAM_DEV_MATCH_ERROR;
2155 return(0);
2156 }
2157
2158 cdm->pos.cookie.pdrv = pdrv;
2159 /*
2160 * The periph generation slot does double duty, as
2161 * does the periph pointer slot. They are used for
2162 * both edt and pdrv lookups and positioning.
2163 */
2164 cdm->pos.cookie.periph = periph;
2165 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2166 (*pdrv)->generation;
2167 cdm->status = CAM_DEV_MATCH_MORE;
2168 return(0);
2169 }
2170
2171 j = cdm->num_matches;
2172 cdm->num_matches++;
2173 cdm->matches[j].type = DEV_MATCH_PERIPH;
2174 cdm->matches[j].result.periph_result.path_id =
2175 periph->path->bus->path_id;
2176
2177 /*
2178 * The transport layer peripheral doesn't have a target or
2179 * lun.
2180 */
2181 if (periph->path->target)
2182 cdm->matches[j].result.periph_result.target_id =
2183 periph->path->target->target_id;
2184 else
2185 cdm->matches[j].result.periph_result.target_id =
2186 CAM_TARGET_WILDCARD;
2187
2188 if (periph->path->device)
2189 cdm->matches[j].result.periph_result.target_lun =
2190 periph->path->device->lun_id;
2191 else
2192 cdm->matches[j].result.periph_result.target_lun =
2193 CAM_LUN_WILDCARD;
2194
2195 cdm->matches[j].result.periph_result.unit_number =
2196 periph->unit_number;
2197 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2198 strlcpy(cdm->matches[j].result.periph_result.periph_name,
2199 periph->periph_name, l);
2200 }
2201
2202 return(1);
2203 }
2204
2205 static int
2206 xptperiphlistmatch(struct ccb_dev_match *cdm)
2207 {
2208 int ret;
2209
2210 cdm->num_matches = 0;
2211
2212 /*
2213 * At this point in the edt traversal function, we check the bus
2214 * list generation to make sure that no buses have been added or
2215 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2216 * For the peripheral driver list traversal function, however, we
2217 * don't have to worry about new peripheral driver types coming or
2218 * going; they're in a linker set, and therefore can't change
2219 * without a recompile.
2220 */
2221
2222 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2223 && (cdm->pos.cookie.pdrv != NULL))
2224 ret = xptpdrvtraverse(
2225 (struct periph_driver **)cdm->pos.cookie.pdrv,
2226 xptplistpdrvfunc, cdm);
2227 else
2228 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2229
2230 /*
2231 * If we get back 0, that means that we had to stop before fully
2232 * traversing the peripheral driver tree. It also means that one of
2233 * the subroutines has set the status field to the proper value. If
2234 * we get back 1, we've fully traversed the EDT and copied out any
2235 * matching entries.
2236 */
2237 if (ret == 1)
2238 cdm->status = CAM_DEV_MATCH_LAST;
2239
2240 return(ret);
2241 }
2242
2243 static int
2244 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2245 {
2246 struct cam_eb *bus, *next_bus;
2247 int retval;
2248
2249 retval = 1;
2250 if (start_bus)
2251 bus = start_bus;
2252 else {
2253 xpt_lock_buses();
2254 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2255 if (bus == NULL) {
2256 xpt_unlock_buses();
2257 return (retval);
2258 }
2259 bus->refcount++;
2260 xpt_unlock_buses();
2261 }
2262 for (; bus != NULL; bus = next_bus) {
2263 retval = tr_func(bus, arg);
2264 if (retval == 0) {
2265 xpt_release_bus(bus);
2266 break;
2267 }
2268 xpt_lock_buses();
2269 next_bus = TAILQ_NEXT(bus, links);
2270 if (next_bus)
2271 next_bus->refcount++;
2272 xpt_unlock_buses();
2273 xpt_release_bus(bus);
2274 }
2275 return(retval);
2276 }
2277
2278 static int
2279 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2280 xpt_targetfunc_t *tr_func, void *arg)
2281 {
2282 struct cam_et *target, *next_target;
2283 int retval;
2284
2285 retval = 1;
2286 if (start_target)
2287 target = start_target;
2288 else {
2289 mtx_lock(&bus->eb_mtx);
2290 target = TAILQ_FIRST(&bus->et_entries);
2291 if (target == NULL) {
2292 mtx_unlock(&bus->eb_mtx);
2293 return (retval);
2294 }
2295 target->refcount++;
2296 mtx_unlock(&bus->eb_mtx);
2297 }
2298 for (; target != NULL; target = next_target) {
2299 retval = tr_func(target, arg);
2300 if (retval == 0) {
2301 xpt_release_target(target);
2302 break;
2303 }
2304 mtx_lock(&bus->eb_mtx);
2305 next_target = TAILQ_NEXT(target, links);
2306 if (next_target)
2307 next_target->refcount++;
2308 mtx_unlock(&bus->eb_mtx);
2309 xpt_release_target(target);
2310 }
2311 return(retval);
2312 }
2313
2314 static int
2315 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2316 xpt_devicefunc_t *tr_func, void *arg)
2317 {
2318 struct cam_eb *bus;
2319 struct cam_ed *device, *next_device;
2320 int retval;
2321
2322 retval = 1;
2323 bus = target->bus;
2324 if (start_device)
2325 device = start_device;
2326 else {
2327 mtx_lock(&bus->eb_mtx);
2328 device = TAILQ_FIRST(&target->ed_entries);
2329 if (device == NULL) {
2330 mtx_unlock(&bus->eb_mtx);
2331 return (retval);
2332 }
2333 device->refcount++;
2334 mtx_unlock(&bus->eb_mtx);
2335 }
2336 for (; device != NULL; device = next_device) {
2337 mtx_lock(&device->device_mtx);
2338 retval = tr_func(device, arg);
2339 mtx_unlock(&device->device_mtx);
2340 if (retval == 0) {
2341 xpt_release_device(device);
2342 break;
2343 }
2344 mtx_lock(&bus->eb_mtx);
2345 next_device = TAILQ_NEXT(device, links);
2346 if (next_device)
2347 next_device->refcount++;
2348 mtx_unlock(&bus->eb_mtx);
2349 xpt_release_device(device);
2350 }
2351 return(retval);
2352 }
2353
2354 static int
2355 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2356 xpt_periphfunc_t *tr_func, void *arg)
2357 {
2358 struct cam_eb *bus;
2359 struct cam_periph *periph, *next_periph;
2360 int retval;
2361
2362 retval = 1;
2363
2364 bus = device->target->bus;
2365 if (start_periph)
2366 periph = start_periph;
2367 else {
2368 xpt_lock_buses();
2369 mtx_lock(&bus->eb_mtx);
2370 periph = SLIST_FIRST(&device->periphs);
2371 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2372 periph = SLIST_NEXT(periph, periph_links);
2373 if (periph == NULL) {
2374 mtx_unlock(&bus->eb_mtx);
2375 xpt_unlock_buses();
2376 return (retval);
2377 }
2378 periph->refcount++;
2379 mtx_unlock(&bus->eb_mtx);
2380 xpt_unlock_buses();
2381 }
2382 for (; periph != NULL; periph = next_periph) {
2383 retval = tr_func(periph, arg);
2384 if (retval == 0) {
2385 cam_periph_release_locked(periph);
2386 break;
2387 }
2388 xpt_lock_buses();
2389 mtx_lock(&bus->eb_mtx);
2390 next_periph = SLIST_NEXT(periph, periph_links);
2391 while (next_periph != NULL &&
2392 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2393 next_periph = SLIST_NEXT(next_periph, periph_links);
2394 if (next_periph)
2395 next_periph->refcount++;
2396 mtx_unlock(&bus->eb_mtx);
2397 xpt_unlock_buses();
2398 cam_periph_release_locked(periph);
2399 }
2400 return(retval);
2401 }
2402
2403 static int
2404 xptpdrvtraverse(struct periph_driver **start_pdrv,
2405 xpt_pdrvfunc_t *tr_func, void *arg)
2406 {
2407 struct periph_driver **pdrv;
2408 int retval;
2409
2410 retval = 1;
2411
2412 /*
2413 * We don't traverse the peripheral driver list like we do the
2414 * other lists, because it is a linker set, and therefore cannot be
2415 * changed during runtime. If the peripheral driver list is ever
2416 * re-done to be something other than a linker set (i.e. it can
2417 * change while the system is running), the list traversal should
2418 * be modified to work like the other traversal functions.
2419 */
2420 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2421 *pdrv != NULL; pdrv++) {
2422 retval = tr_func(pdrv, arg);
2423
2424 if (retval == 0)
2425 return(retval);
2426 }
2427
2428 return(retval);
2429 }
2430
2431 static int
2432 xptpdperiphtraverse(struct periph_driver **pdrv,
2433 struct cam_periph *start_periph,
2434 xpt_periphfunc_t *tr_func, void *arg)
2435 {
2436 struct cam_periph *periph, *next_periph;
2437 int retval;
2438
2439 retval = 1;
2440
2441 if (start_periph)
2442 periph = start_periph;
2443 else {
2444 xpt_lock_buses();
2445 periph = TAILQ_FIRST(&(*pdrv)->units);
2446 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2447 periph = TAILQ_NEXT(periph, unit_links);
2448 if (periph == NULL) {
2449 xpt_unlock_buses();
2450 return (retval);
2451 }
2452 periph->refcount++;
2453 xpt_unlock_buses();
2454 }
2455 for (; periph != NULL; periph = next_periph) {
2456 cam_periph_lock(periph);
2457 retval = tr_func(periph, arg);
2458 cam_periph_unlock(periph);
2459 if (retval == 0) {
2460 cam_periph_release(periph);
2461 break;
2462 }
2463 xpt_lock_buses();
2464 next_periph = TAILQ_NEXT(periph, unit_links);
2465 while (next_periph != NULL &&
2466 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2467 next_periph = TAILQ_NEXT(next_periph, unit_links);
2468 if (next_periph)
2469 next_periph->refcount++;
2470 xpt_unlock_buses();
2471 cam_periph_release(periph);
2472 }
2473 return(retval);
2474 }
2475
2476 static int
2477 xptdefbusfunc(struct cam_eb *bus, void *arg)
2478 {
2479 struct xpt_traverse_config *tr_config;
2480
2481 tr_config = (struct xpt_traverse_config *)arg;
2482
2483 if (tr_config->depth == XPT_DEPTH_BUS) {
2484 xpt_busfunc_t *tr_func;
2485
2486 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2487
2488 return(tr_func(bus, tr_config->tr_arg));
2489 } else
2490 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2491 }
2492
2493 static int
2494 xptdeftargetfunc(struct cam_et *target, void *arg)
2495 {
2496 struct xpt_traverse_config *tr_config;
2497
2498 tr_config = (struct xpt_traverse_config *)arg;
2499
2500 if (tr_config->depth == XPT_DEPTH_TARGET) {
2501 xpt_targetfunc_t *tr_func;
2502
2503 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2504
2505 return(tr_func(target, tr_config->tr_arg));
2506 } else
2507 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2508 }
2509
2510 static int
2511 xptdefdevicefunc(struct cam_ed *device, void *arg)
2512 {
2513 struct xpt_traverse_config *tr_config;
2514
2515 tr_config = (struct xpt_traverse_config *)arg;
2516
2517 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2518 xpt_devicefunc_t *tr_func;
2519
2520 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2521
2522 return(tr_func(device, tr_config->tr_arg));
2523 } else
2524 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2525 }
2526
2527 static int
2528 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2529 {
2530 struct xpt_traverse_config *tr_config;
2531 xpt_periphfunc_t *tr_func;
2532
2533 tr_config = (struct xpt_traverse_config *)arg;
2534
2535 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2536
2537 /*
2538 * Unlike the other default functions, we don't check for depth
2539 * here. The peripheral driver level is the last level in the EDT,
2540 * so if we're here, we should execute the function in question.
2541 */
2542 return(tr_func(periph, tr_config->tr_arg));
2543 }
2544
2545 /*
2546 * Execute the given function for every bus in the EDT.
2547 */
2548 static int
2549 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2550 {
2551 struct xpt_traverse_config tr_config;
2552
2553 tr_config.depth = XPT_DEPTH_BUS;
2554 tr_config.tr_func = tr_func;
2555 tr_config.tr_arg = arg;
2556
2557 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2558 }
2559
2560 /*
2561 * Execute the given function for every device in the EDT.
2562 */
2563 static int
2564 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2565 {
2566 struct xpt_traverse_config tr_config;
2567
2568 tr_config.depth = XPT_DEPTH_DEVICE;
2569 tr_config.tr_func = tr_func;
2570 tr_config.tr_arg = arg;
2571
2572 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2573 }
2574
2575 static int
2576 xptsetasyncfunc(struct cam_ed *device, void *arg)
2577 {
2578 struct cam_path path;
2579 struct ccb_getdev cgd;
2580 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2581
2582 /*
2583 * Don't report unconfigured devices (Wildcard devs,
2584 * devices only for target mode, device instances
2585 * that have been invalidated but are waiting for
2586 * their last reference count to be released).
2587 */
2588 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2589 return (1);
2590
2591 xpt_compile_path(&path,
2592 NULL,
2593 device->target->bus->path_id,
2594 device->target->target_id,
2595 device->lun_id);
2596 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2597 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2598 xpt_action((union ccb *)&cgd);
2599 csa->callback(csa->callback_arg,
2600 AC_FOUND_DEVICE,
2601 &path, &cgd);
2602 xpt_release_path(&path);
2603
2604 return(1);
2605 }
2606
2607 static int
2608 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2609 {
2610 struct cam_path path;
2611 struct ccb_pathinq cpi;
2612 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2613
2614 xpt_compile_path(&path, /*periph*/NULL,
2615 bus->path_id,
2616 CAM_TARGET_WILDCARD,
2617 CAM_LUN_WILDCARD);
2618 xpt_path_lock(&path);
2619 xpt_path_inq(&cpi, &path);
2620 csa->callback(csa->callback_arg,
2621 AC_PATH_REGISTERED,
2622 &path, &cpi);
2623 xpt_path_unlock(&path);
2624 xpt_release_path(&path);
2625
2626 return(1);
2627 }
2628
2629 void
2630 xpt_action(union ccb *start_ccb)
2631 {
2632
2633 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2634 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2635 xpt_action_name(start_ccb->ccb_h.func_code)));
2636
2637 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2638 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2639 }
2640
2641 void
2642 xpt_action_default(union ccb *start_ccb)
2643 {
2644 struct cam_path *path;
2645 struct cam_sim *sim;
2646 struct mtx *mtx;
2647
2648 path = start_ccb->ccb_h.path;
2649 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2650 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2651 xpt_action_name(start_ccb->ccb_h.func_code)));
2652
2653 switch (start_ccb->ccb_h.func_code) {
2654 case XPT_SCSI_IO:
2655 {
2656 struct cam_ed *device;
2657
2658 /*
2659 * For the sake of compatibility with SCSI-1
2660 * devices that may not understand the identify
2661 * message, we include lun information in the
2662 * second byte of all commands. SCSI-1 specifies
2663 * that luns are a 3 bit value and reserves only 3
2664 * bits for lun information in the CDB. Later
2665 * revisions of the SCSI spec allow for more than 8
2666 * luns, but have deprecated lun information in the
2667 * CDB. So, if the lun won't fit, we must omit.
2668 *
2669 * Also be aware that during initial probing for devices,
2670 * the inquiry information is unknown but initialized to 0.
2671 * This means that this code will be exercised while probing
2672 * devices with an ANSI revision greater than 2.
2673 */
2674 device = path->device;
2675 if (device->protocol_version <= SCSI_REV_2
2676 && start_ccb->ccb_h.target_lun < 8
2677 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2678
2679 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2680 start_ccb->ccb_h.target_lun << 5;
2681 }
2682 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2683 }
2684 /* FALLTHROUGH */
2685 case XPT_TARGET_IO:
2686 case XPT_CONT_TARGET_IO:
2687 start_ccb->csio.sense_resid = 0;
2688 start_ccb->csio.resid = 0;
2689 /* FALLTHROUGH */
2690 case XPT_ATA_IO:
2691 if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2692 start_ccb->ataio.resid = 0;
2693 /* FALLTHROUGH */
2694 case XPT_NVME_IO:
2695 /* FALLTHROUGH */
2696 case XPT_NVME_ADMIN:
2697 /* FALLTHROUGH */
2698 case XPT_MMC_IO:
2699 /* XXX just like nmve_io? */
2700 case XPT_RESET_DEV:
2701 case XPT_ENG_EXEC:
2702 case XPT_SMP_IO:
2703 {
2704 struct cam_devq *devq;
2705
2706 devq = path->bus->sim->devq;
2707 mtx_lock(&devq->send_mtx);
2708 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2709 if (xpt_schedule_devq(devq, path->device) != 0)
2710 xpt_run_devq(devq);
2711 mtx_unlock(&devq->send_mtx);
2712 break;
2713 }
2714 case XPT_CALC_GEOMETRY:
2715 /* Filter out garbage */
2716 if (start_ccb->ccg.block_size == 0
2717 || start_ccb->ccg.volume_size == 0) {
2718 start_ccb->ccg.cylinders = 0;
2719 start_ccb->ccg.heads = 0;
2720 start_ccb->ccg.secs_per_track = 0;
2721 start_ccb->ccb_h.status = CAM_REQ_CMP;
2722 break;
2723 }
2724 #if defined(__sparc64__)
2725 /*
2726 * For sparc64, we may need adjust the geometry of large
2727 * disks in order to fit the limitations of the 16-bit
2728 * fields of the VTOC8 disk label.
2729 */
2730 if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2731 start_ccb->ccb_h.status = CAM_REQ_CMP;
2732 break;
2733 }
2734 #endif
2735 goto call_sim;
2736 case XPT_ABORT:
2737 {
2738 union ccb* abort_ccb;
2739
2740 abort_ccb = start_ccb->cab.abort_ccb;
2741 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2742 struct cam_ed *device;
2743 struct cam_devq *devq;
2744
2745 device = abort_ccb->ccb_h.path->device;
2746 devq = device->sim->devq;
2747
2748 mtx_lock(&devq->send_mtx);
2749 if (abort_ccb->ccb_h.pinfo.index > 0) {
2750 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2751 abort_ccb->ccb_h.status =
2752 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2753 xpt_freeze_devq_device(device, 1);
2754 mtx_unlock(&devq->send_mtx);
2755 xpt_done(abort_ccb);
2756 start_ccb->ccb_h.status = CAM_REQ_CMP;
2757 break;
2758 }
2759 mtx_unlock(&devq->send_mtx);
2760
2761 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2762 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2763 /*
2764 * We've caught this ccb en route to
2765 * the SIM. Flag it for abort and the
2766 * SIM will do so just before starting
2767 * real work on the CCB.
2768 */
2769 abort_ccb->ccb_h.status =
2770 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2771 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2772 start_ccb->ccb_h.status = CAM_REQ_CMP;
2773 break;
2774 }
2775 }
2776 if (XPT_FC_IS_QUEUED(abort_ccb)
2777 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2778 /*
2779 * It's already completed but waiting
2780 * for our SWI to get to it.
2781 */
2782 start_ccb->ccb_h.status = CAM_UA_ABORT;
2783 break;
2784 }
2785 /*
2786 * If we weren't able to take care of the abort request
2787 * in the XPT, pass the request down to the SIM for processing.
2788 */
2789 }
2790 /* FALLTHROUGH */
2791 case XPT_ACCEPT_TARGET_IO:
2792 case XPT_EN_LUN:
2793 case XPT_IMMED_NOTIFY:
2794 case XPT_NOTIFY_ACK:
2795 case XPT_RESET_BUS:
2796 case XPT_IMMEDIATE_NOTIFY:
2797 case XPT_NOTIFY_ACKNOWLEDGE:
2798 case XPT_GET_SIM_KNOB_OLD:
2799 case XPT_GET_SIM_KNOB:
2800 case XPT_SET_SIM_KNOB:
2801 case XPT_GET_TRAN_SETTINGS:
2802 case XPT_SET_TRAN_SETTINGS:
2803 case XPT_PATH_INQ:
2804 call_sim:
2805 sim = path->bus->sim;
2806 mtx = sim->mtx;
2807 if (mtx && !mtx_owned(mtx))
2808 mtx_lock(mtx);
2809 else
2810 mtx = NULL;
2811
2812 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2813 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2814 (*(sim->sim_action))(sim, start_ccb);
2815 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2816 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2817 if (mtx)
2818 mtx_unlock(mtx);
2819 break;
2820 case XPT_PATH_STATS:
2821 start_ccb->cpis.last_reset = path->bus->last_reset;
2822 start_ccb->ccb_h.status = CAM_REQ_CMP;
2823 break;
2824 case XPT_GDEV_TYPE:
2825 {
2826 struct cam_ed *dev;
2827
2828 dev = path->device;
2829 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2830 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2831 } else {
2832 struct ccb_getdev *cgd;
2833
2834 cgd = &start_ccb->cgd;
2835 cgd->protocol = dev->protocol;
2836 cgd->inq_data = dev->inq_data;
2837 cgd->ident_data = dev->ident_data;
2838 cgd->inq_flags = dev->inq_flags;
2839 cgd->ccb_h.status = CAM_REQ_CMP;
2840 cgd->serial_num_len = dev->serial_num_len;
2841 if ((dev->serial_num_len > 0)
2842 && (dev->serial_num != NULL))
2843 bcopy(dev->serial_num, cgd->serial_num,
2844 dev->serial_num_len);
2845 }
2846 break;
2847 }
2848 case XPT_GDEV_STATS:
2849 {
2850 struct ccb_getdevstats *cgds = &start_ccb->cgds;
2851 struct cam_ed *dev = path->device;
2852 struct cam_eb *bus = path->bus;
2853 struct cam_et *tar = path->target;
2854 struct cam_devq *devq = bus->sim->devq;
2855
2856 mtx_lock(&devq->send_mtx);
2857 cgds->dev_openings = dev->ccbq.dev_openings;
2858 cgds->dev_active = dev->ccbq.dev_active;
2859 cgds->allocated = dev->ccbq.allocated;
2860 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2861 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2862 cgds->last_reset = tar->last_reset;
2863 cgds->maxtags = dev->maxtags;
2864 cgds->mintags = dev->mintags;
2865 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2866 cgds->last_reset = bus->last_reset;
2867 mtx_unlock(&devq->send_mtx);
2868 cgds->ccb_h.status = CAM_REQ_CMP;
2869 break;
2870 }
2871 case XPT_GDEVLIST:
2872 {
2873 struct cam_periph *nperiph;
2874 struct periph_list *periph_head;
2875 struct ccb_getdevlist *cgdl;
2876 u_int i;
2877 struct cam_ed *device;
2878 int found;
2879
2880
2881 found = 0;
2882
2883 /*
2884 * Don't want anyone mucking with our data.
2885 */
2886 device = path->device;
2887 periph_head = &device->periphs;
2888 cgdl = &start_ccb->cgdl;
2889
2890 /*
2891 * Check and see if the list has changed since the user
2892 * last requested a list member. If so, tell them that the
2893 * list has changed, and therefore they need to start over
2894 * from the beginning.
2895 */
2896 if ((cgdl->index != 0) &&
2897 (cgdl->generation != device->generation)) {
2898 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2899 break;
2900 }
2901
2902 /*
2903 * Traverse the list of peripherals and attempt to find
2904 * the requested peripheral.
2905 */
2906 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2907 (nperiph != NULL) && (i <= cgdl->index);
2908 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2909 if (i == cgdl->index) {
2910 strlcpy(cgdl->periph_name,
2911 nperiph->periph_name,
2912 sizeof(cgdl->periph_name));
2913 cgdl->unit_number = nperiph->unit_number;
2914 found = 1;
2915 }
2916 }
2917 if (found == 0) {
2918 cgdl->status = CAM_GDEVLIST_ERROR;
2919 break;
2920 }
2921
2922 if (nperiph == NULL)
2923 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2924 else
2925 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2926
2927 cgdl->index++;
2928 cgdl->generation = device->generation;
2929
2930 cgdl->ccb_h.status = CAM_REQ_CMP;
2931 break;
2932 }
2933 case XPT_DEV_MATCH:
2934 {
2935 dev_pos_type position_type;
2936 struct ccb_dev_match *cdm;
2937
2938 cdm = &start_ccb->cdm;
2939
2940 /*
2941 * There are two ways of getting at information in the EDT.
2942 * The first way is via the primary EDT tree. It starts
2943 * with a list of buses, then a list of targets on a bus,
2944 * then devices/luns on a target, and then peripherals on a
2945 * device/lun. The "other" way is by the peripheral driver
2946 * lists. The peripheral driver lists are organized by
2947 * peripheral driver. (obviously) So it makes sense to
2948 * use the peripheral driver list if the user is looking
2949 * for something like "da1", or all "da" devices. If the
2950 * user is looking for something on a particular bus/target
2951 * or lun, it's generally better to go through the EDT tree.
2952 */
2953
2954 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2955 position_type = cdm->pos.position_type;
2956 else {
2957 u_int i;
2958
2959 position_type = CAM_DEV_POS_NONE;
2960
2961 for (i = 0; i < cdm->num_patterns; i++) {
2962 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2963 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2964 position_type = CAM_DEV_POS_EDT;
2965 break;
2966 }
2967 }
2968
2969 if (cdm->num_patterns == 0)
2970 position_type = CAM_DEV_POS_EDT;
2971 else if (position_type == CAM_DEV_POS_NONE)
2972 position_type = CAM_DEV_POS_PDRV;
2973 }
2974
2975 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2976 case CAM_DEV_POS_EDT:
2977 xptedtmatch(cdm);
2978 break;
2979 case CAM_DEV_POS_PDRV:
2980 xptperiphlistmatch(cdm);
2981 break;
2982 default:
2983 cdm->status = CAM_DEV_MATCH_ERROR;
2984 break;
2985 }
2986
2987 if (cdm->status == CAM_DEV_MATCH_ERROR)
2988 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2989 else
2990 start_ccb->ccb_h.status = CAM_REQ_CMP;
2991
2992 break;
2993 }
2994 case XPT_SASYNC_CB:
2995 {
2996 struct ccb_setasync *csa;
2997 struct async_node *cur_entry;
2998 struct async_list *async_head;
2999 u_int32_t added;
3000
3001 csa = &start_ccb->csa;
3002 added = csa->event_enable;
3003 async_head = &path->device->asyncs;
3004
3005 /*
3006 * If there is already an entry for us, simply
3007 * update it.
3008 */
3009 cur_entry = SLIST_FIRST(async_head);
3010 while (cur_entry != NULL) {
3011 if ((cur_entry->callback_arg == csa->callback_arg)
3012 && (cur_entry->callback == csa->callback))
3013 break;
3014 cur_entry = SLIST_NEXT(cur_entry, links);
3015 }
3016
3017 if (cur_entry != NULL) {
3018 /*
3019 * If the request has no flags set,
3020 * remove the entry.
3021 */
3022 added &= ~cur_entry->event_enable;
3023 if (csa->event_enable == 0) {
3024 SLIST_REMOVE(async_head, cur_entry,
3025 async_node, links);
3026 xpt_release_device(path->device);
3027 free(cur_entry, M_CAMXPT);
3028 } else {
3029 cur_entry->event_enable = csa->event_enable;
3030 }
3031 csa->event_enable = added;
3032 } else {
3033 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3034 M_NOWAIT);
3035 if (cur_entry == NULL) {
3036 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3037 break;
3038 }
3039 cur_entry->event_enable = csa->event_enable;
3040 cur_entry->event_lock = (path->bus->sim->mtx &&
3041 mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3042 cur_entry->callback_arg = csa->callback_arg;
3043 cur_entry->callback = csa->callback;
3044 SLIST_INSERT_HEAD(async_head, cur_entry, links);
3045 xpt_acquire_device(path->device);
3046 }
3047 start_ccb->ccb_h.status = CAM_REQ_CMP;
3048 break;
3049 }
3050 case XPT_REL_SIMQ:
3051 {
3052 struct ccb_relsim *crs;
3053 struct cam_ed *dev;
3054
3055 crs = &start_ccb->crs;
3056 dev = path->device;
3057 if (dev == NULL) {
3058
3059 crs->ccb_h.status = CAM_DEV_NOT_THERE;
3060 break;
3061 }
3062
3063 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3064
3065 /* Don't ever go below one opening */
3066 if (crs->openings > 0) {
3067 xpt_dev_ccbq_resize(path, crs->openings);
3068 if (bootverbose) {
3069 xpt_print(path,
3070 "number of openings is now %d\n",
3071 crs->openings);
3072 }
3073 }
3074 }
3075
3076 mtx_lock(&dev->sim->devq->send_mtx);
3077 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3078
3079 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3080
3081 /*
3082 * Just extend the old timeout and decrement
3083 * the freeze count so that a single timeout
3084 * is sufficient for releasing the queue.
3085 */
3086 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3087 callout_stop(&dev->callout);
3088 } else {
3089
3090 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3091 }
3092
3093 callout_reset_sbt(&dev->callout,
3094 SBT_1MS * crs->release_timeout, 0,
3095 xpt_release_devq_timeout, dev, 0);
3096
3097 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3098
3099 }
3100
3101 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3102
3103 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3104 /*
3105 * Decrement the freeze count so that a single
3106 * completion is still sufficient to unfreeze
3107 * the queue.
3108 */
3109 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3110 } else {
3111
3112 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3113 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3114 }
3115 }
3116
3117 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3118
3119 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3120 || (dev->ccbq.dev_active == 0)) {
3121
3122 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3123 } else {
3124
3125 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3126 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3127 }
3128 }
3129 mtx_unlock(&dev->sim->devq->send_mtx);
3130
3131 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3132 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3133 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3134 start_ccb->ccb_h.status = CAM_REQ_CMP;
3135 break;
3136 }
3137 case XPT_DEBUG: {
3138 struct cam_path *oldpath;
3139
3140 /* Check that all request bits are supported. */
3141 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3142 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3143 break;
3144 }
3145
3146 cam_dflags = CAM_DEBUG_NONE;
3147 if (cam_dpath != NULL) {
3148 oldpath = cam_dpath;
3149 cam_dpath = NULL;
3150 xpt_free_path(oldpath);
3151 }
3152 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3153 if (xpt_create_path(&cam_dpath, NULL,
3154 start_ccb->ccb_h.path_id,
3155 start_ccb->ccb_h.target_id,
3156 start_ccb->ccb_h.target_lun) !=
3157 CAM_REQ_CMP) {
3158 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3159 } else {
3160 cam_dflags = start_ccb->cdbg.flags;
3161 start_ccb->ccb_h.status = CAM_REQ_CMP;
3162 xpt_print(cam_dpath, "debugging flags now %x\n",
3163 cam_dflags);
3164 }
3165 } else
3166 start_ccb->ccb_h.status = CAM_REQ_CMP;
3167 break;
3168 }
3169 case XPT_NOOP:
3170 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3171 xpt_freeze_devq(path, 1);
3172 start_ccb->ccb_h.status = CAM_REQ_CMP;
3173 break;
3174 case XPT_REPROBE_LUN:
3175 xpt_async(AC_INQ_CHANGED, path, NULL);
3176 start_ccb->ccb_h.status = CAM_REQ_CMP;
3177 xpt_done(start_ccb);
3178 break;
3179 default:
3180 case XPT_SDEV_TYPE:
3181 case XPT_TERM_IO:
3182 case XPT_ENG_INQ:
3183 /* XXX Implement */
3184 xpt_print(start_ccb->ccb_h.path,
3185 "%s: CCB type %#x %s not supported\n", __func__,
3186 start_ccb->ccb_h.func_code,
3187 xpt_action_name(start_ccb->ccb_h.func_code));
3188 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3189 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3190 xpt_done(start_ccb);
3191 }
3192 break;
3193 }
3194 CAM_DEBUG(path, CAM_DEBUG_TRACE,
3195 ("xpt_action_default: func= %#x %s status %#x\n",
3196 start_ccb->ccb_h.func_code,
3197 xpt_action_name(start_ccb->ccb_h.func_code),
3198 start_ccb->ccb_h.status));
3199 }
3200
3201 /*
3202 * Call the sim poll routine to allow the sim to complete
3203 * any inflight requests, then call camisr_runqueue to
3204 * complete any CCB that the polling completed.
3205 */
3206 void
3207 xpt_sim_poll(struct cam_sim *sim)
3208 {
3209 struct mtx *mtx;
3210
3211 mtx = sim->mtx;
3212 if (mtx)
3213 mtx_lock(mtx);
3214 (*(sim->sim_poll))(sim);
3215 if (mtx)
3216 mtx_unlock(mtx);
3217 camisr_runqueue();
3218 }
3219
3220 uint32_t
3221 xpt_poll_setup(union ccb *start_ccb)
3222 {
3223 u_int32_t timeout;
3224 struct cam_sim *sim;
3225 struct cam_devq *devq;
3226 struct cam_ed *dev;
3227
3228 timeout = start_ccb->ccb_h.timeout * 10;
3229 sim = start_ccb->ccb_h.path->bus->sim;
3230 devq = sim->devq;
3231 dev = start_ccb->ccb_h.path->device;
3232
3233 /*
3234 * Steal an opening so that no other queued requests
3235 * can get it before us while we simulate interrupts.
3236 */
3237 mtx_lock(&devq->send_mtx);
3238 dev->ccbq.dev_openings--;
3239 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3240 (--timeout > 0)) {
3241 mtx_unlock(&devq->send_mtx);
3242 DELAY(100);
3243 xpt_sim_poll(sim);
3244 mtx_lock(&devq->send_mtx);
3245 }
3246 dev->ccbq.dev_openings++;
3247 mtx_unlock(&devq->send_mtx);
3248
3249 return (timeout);
3250 }
3251
3252 void
3253 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3254 {
3255
3256 while (--timeout > 0) {
3257 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3258 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3259 != CAM_REQ_INPROG)
3260 break;
3261 DELAY(100);
3262 }
3263
3264 if (timeout == 0) {
3265 /*
3266 * XXX Is it worth adding a sim_timeout entry
3267 * point so we can attempt recovery? If
3268 * this is only used for dumps, I don't think
3269 * it is.
3270 */
3271 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3272 }
3273 }
3274
3275 void
3276 xpt_polled_action(union ccb *start_ccb)
3277 {
3278 uint32_t timeout;
3279 struct cam_ed *dev;
3280
3281 timeout = start_ccb->ccb_h.timeout * 10;
3282 dev = start_ccb->ccb_h.path->device;
3283
3284 mtx_unlock(&dev->device_mtx);
3285
3286 timeout = xpt_poll_setup(start_ccb);
3287 if (timeout > 0) {
3288 xpt_action(start_ccb);
3289 xpt_pollwait(start_ccb, timeout);
3290 } else {
3291 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3292 }
3293
3294 mtx_lock(&dev->device_mtx);
3295 }
3296
3297 /*
3298 * Schedule a peripheral driver to receive a ccb when its
3299 * target device has space for more transactions.
3300 */
3301 void
3302 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3303 {
3304
3305 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3306 cam_periph_assert(periph, MA_OWNED);
3307 if (new_priority < periph->scheduled_priority) {
3308 periph->scheduled_priority = new_priority;
3309 xpt_run_allocq(periph, 0);
3310 }
3311 }
3312
3313
3314 /*
3315 * Schedule a device to run on a given queue.
3316 * If the device was inserted as a new entry on the queue,
3317 * return 1 meaning the device queue should be run. If we
3318 * were already queued, implying someone else has already
3319 * started the queue, return 0 so the caller doesn't attempt
3320 * to run the queue.
3321 */
3322 static int
3323 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3324 u_int32_t new_priority)
3325 {
3326 int retval;
3327 u_int32_t old_priority;
3328
3329 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3330
3331
3332 old_priority = pinfo->priority;
3333
3334 /*
3335 * Are we already queued?
3336 */
3337 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3338 /* Simply reorder based on new priority */
3339 if (new_priority < old_priority) {
3340 camq_change_priority(queue, pinfo->index,
3341 new_priority);
3342 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3343 ("changed priority to %d\n",
3344 new_priority));
3345 retval = 1;
3346 } else
3347 retval = 0;
3348 } else {
3349 /* New entry on the queue */
3350 if (new_priority < old_priority)
3351 pinfo->priority = new_priority;
3352
3353 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3354 ("Inserting onto queue\n"));
3355 pinfo->generation = ++queue->generation;
3356 camq_insert(queue, pinfo);
3357 retval = 1;
3358 }
3359 return (retval);
3360 }
3361
3362 static void
3363 xpt_run_allocq_task(void *context, int pending)
3364 {
3365 struct cam_periph *periph = context;
3366
3367 cam_periph_lock(periph);
3368 periph->flags &= ~CAM_PERIPH_RUN_TASK;
3369 xpt_run_allocq(periph, 1);
3370 cam_periph_unlock(periph);
3371 cam_periph_release(periph);
3372 }
3373
3374 static void
3375 xpt_run_allocq(struct cam_periph *periph, int sleep)
3376 {
3377 struct cam_ed *device;
3378 union ccb *ccb;
3379 uint32_t prio;
3380
3381 cam_periph_assert(periph, MA_OWNED);
3382 if (periph->periph_allocating)
3383 return;
3384 cam_periph_doacquire(periph);
3385 periph->periph_allocating = 1;
3386 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3387 device = periph->path->device;
3388 ccb = NULL;
3389 restart:
3390 while ((prio = min(periph->scheduled_priority,
3391 periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3392 (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3393 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3394
3395 if (ccb == NULL &&
3396 (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3397 if (sleep) {
3398 ccb = xpt_get_ccb(periph);
3399 goto restart;
3400 }
3401 if (periph->flags & CAM_PERIPH_RUN_TASK)
3402 break;
3403 cam_periph_doacquire(periph);
3404 periph->flags |= CAM_PERIPH_RUN_TASK;
3405 taskqueue_enqueue(xsoftc.xpt_taskq,
3406 &periph->periph_run_task);
3407 break;
3408 }
3409 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3410 if (prio == periph->immediate_priority) {
3411 periph->immediate_priority = CAM_PRIORITY_NONE;
3412 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3413 ("waking cam_periph_getccb()\n"));
3414 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3415 periph_links.sle);
3416 wakeup(&periph->ccb_list);
3417 } else {
3418 periph->scheduled_priority = CAM_PRIORITY_NONE;
3419 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3420 ("calling periph_start()\n"));
3421 periph->periph_start(periph, ccb);
3422 }
3423 ccb = NULL;
3424 }
3425 if (ccb != NULL)
3426 xpt_release_ccb(ccb);
3427 periph->periph_allocating = 0;
3428 cam_periph_release_locked(periph);
3429 }
3430
3431 static void
3432 xpt_run_devq(struct cam_devq *devq)
3433 {
3434 struct mtx *mtx;
3435
3436 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3437
3438 devq->send_queue.qfrozen_cnt++;
3439 while ((devq->send_queue.entries > 0)
3440 && (devq->send_openings > 0)
3441 && (devq->send_queue.qfrozen_cnt <= 1)) {
3442 struct cam_ed *device;
3443 union ccb *work_ccb;
3444 struct cam_sim *sim;
3445 struct xpt_proto *proto;
3446
3447 device = (struct cam_ed *)camq_remove(&devq->send_queue,
3448 CAMQ_HEAD);
3449 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3450 ("running device %p\n", device));
3451
3452 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3453 if (work_ccb == NULL) {
3454 printf("device on run queue with no ccbs???\n");
3455 continue;
3456 }
3457
3458 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3459
3460 mtx_lock(&xsoftc.xpt_highpower_lock);
3461 if (xsoftc.num_highpower <= 0) {
3462 /*
3463 * We got a high power command, but we
3464 * don't have any available slots. Freeze
3465 * the device queue until we have a slot
3466 * available.
3467 */
3468 xpt_freeze_devq_device(device, 1);
3469 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3470 highpowerq_entry);
3471
3472 mtx_unlock(&xsoftc.xpt_highpower_lock);
3473 continue;
3474 } else {
3475 /*
3476 * Consume a high power slot while
3477 * this ccb runs.
3478 */
3479 xsoftc.num_highpower--;
3480 }
3481 mtx_unlock(&xsoftc.xpt_highpower_lock);
3482 }
3483 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3484 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3485 devq->send_openings--;
3486 devq->send_active++;
3487 xpt_schedule_devq(devq, device);
3488 mtx_unlock(&devq->send_mtx);
3489
3490 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3491 /*
3492 * The client wants to freeze the queue
3493 * after this CCB is sent.
3494 */
3495 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3496 }
3497
3498 /* In Target mode, the peripheral driver knows best... */
3499 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3500 if ((device->inq_flags & SID_CmdQue) != 0
3501 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3502 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3503 else
3504 /*
3505 * Clear this in case of a retried CCB that
3506 * failed due to a rejected tag.
3507 */
3508 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3509 }
3510
3511 KASSERT(device == work_ccb->ccb_h.path->device,
3512 ("device (%p) / path->device (%p) mismatch",
3513 device, work_ccb->ccb_h.path->device));
3514 proto = xpt_proto_find(device->protocol);
3515 if (proto && proto->ops->debug_out)
3516 proto->ops->debug_out(work_ccb);
3517
3518 /*
3519 * Device queues can be shared among multiple SIM instances
3520 * that reside on different buses. Use the SIM from the
3521 * queued device, rather than the one from the calling bus.
3522 */
3523 sim = device->sim;
3524 mtx = sim->mtx;
3525 if (mtx && !mtx_owned(mtx))
3526 mtx_lock(mtx);
3527 else
3528 mtx = NULL;
3529 work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3530 (*(sim->sim_action))(sim, work_ccb);
3531 if (mtx)
3532 mtx_unlock(mtx);
3533 mtx_lock(&devq->send_mtx);
3534 }
3535 devq->send_queue.qfrozen_cnt--;
3536 }
3537
3538 /*
3539 * This function merges stuff from the slave ccb into the master ccb, while
3540 * keeping important fields in the master ccb constant.
3541 */
3542 void
3543 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3544 {
3545
3546 /*
3547 * Pull fields that are valid for peripheral drivers to set
3548 * into the master CCB along with the CCB "payload".
3549 */
3550 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3551 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3552 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3553 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3554 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3555 sizeof(union ccb) - sizeof(struct ccb_hdr));
3556 }
3557
3558 void
3559 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3560 u_int32_t priority, u_int32_t flags)
3561 {
3562
3563 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3564 ccb_h->pinfo.priority = priority;
3565 ccb_h->path = path;
3566 ccb_h->path_id = path->bus->path_id;
3567 if (path->target)
3568 ccb_h->target_id = path->target->target_id;
3569 else
3570 ccb_h->target_id = CAM_TARGET_WILDCARD;
3571 if (path->device) {
3572 ccb_h->target_lun = path->device->lun_id;
3573 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3574 } else {
3575 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3576 }
3577 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3578 ccb_h->flags = flags;
3579 ccb_h->xflags = 0;
3580 }
3581
3582 void
3583 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3584 {
3585 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3586 }
3587
3588 /* Path manipulation functions */
3589 cam_status
3590 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3591 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3592 {
3593 struct cam_path *path;
3594 cam_status status;
3595
3596 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3597
3598 if (path == NULL) {
3599 status = CAM_RESRC_UNAVAIL;
3600 return(status);
3601 }
3602 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3603 if (status != CAM_REQ_CMP) {
3604 free(path, M_CAMPATH);
3605 path = NULL;
3606 }
3607 *new_path_ptr = path;
3608 return (status);
3609 }
3610
3611 cam_status
3612 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3613 struct cam_periph *periph, path_id_t path_id,
3614 target_id_t target_id, lun_id_t lun_id)
3615 {
3616
3617 return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3618 lun_id));
3619 }
3620
3621 cam_status
3622 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3623 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3624 {
3625 struct cam_eb *bus;
3626 struct cam_et *target;
3627 struct cam_ed *device;
3628 cam_status status;
3629
3630 status = CAM_REQ_CMP; /* Completed without error */
3631 target = NULL; /* Wildcarded */
3632 device = NULL; /* Wildcarded */
3633
3634 /*
3635 * We will potentially modify the EDT, so block interrupts
3636 * that may attempt to create cam paths.
3637 */
3638 bus = xpt_find_bus(path_id);
3639 if (bus == NULL) {
3640 status = CAM_PATH_INVALID;
3641 } else {
3642 xpt_lock_buses();
3643 mtx_lock(&bus->eb_mtx);
3644 target = xpt_find_target(bus, target_id);
3645 if (target == NULL) {
3646 /* Create one */
3647 struct cam_et *new_target;
3648
3649 new_target = xpt_alloc_target(bus, target_id);
3650 if (new_target == NULL) {
3651 status = CAM_RESRC_UNAVAIL;
3652 } else {
3653 target = new_target;
3654 }
3655 }
3656 xpt_unlock_buses();
3657 if (target != NULL) {
3658 device = xpt_find_device(target, lun_id);
3659 if (device == NULL) {
3660 /* Create one */
3661 struct cam_ed *new_device;
3662
3663 new_device =
3664 (*(bus->xport->ops->alloc_device))(bus,
3665 target,
3666 lun_id);
3667 if (new_device == NULL) {
3668 status = CAM_RESRC_UNAVAIL;
3669 } else {
3670 device = new_device;
3671 }
3672 }
3673 }
3674 mtx_unlock(&bus->eb_mtx);
3675 }
3676
3677 /*
3678 * Only touch the user's data if we are successful.
3679 */
3680 if (status == CAM_REQ_CMP) {
3681 new_path->periph = perph;
3682 new_path->bus = bus;
3683 new_path->target = target;
3684 new_path->device = device;
3685 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3686 } else {
3687 if (device != NULL)
3688 xpt_release_device(device);
3689 if (target != NULL)
3690 xpt_release_target(target);
3691 if (bus != NULL)
3692 xpt_release_bus(bus);
3693 }
3694 return (status);
3695 }
3696
3697 cam_status
3698 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3699 {
3700 struct cam_path *new_path;
3701
3702 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3703 if (new_path == NULL)
3704 return(CAM_RESRC_UNAVAIL);
3705 xpt_copy_path(new_path, path);
3706 *new_path_ptr = new_path;
3707 return (CAM_REQ_CMP);
3708 }
3709
3710 void
3711 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3712 {
3713
3714 *new_path = *path;
3715 if (path->bus != NULL)
3716 xpt_acquire_bus(path->bus);
3717 if (path->target != NULL)
3718 xpt_acquire_target(path->target);
3719 if (path->device != NULL)
3720 xpt_acquire_device(path->device);
3721 }
3722
3723 void
3724 xpt_release_path(struct cam_path *path)
3725 {
3726 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3727 if (path->device != NULL) {
3728 xpt_release_device(path->device);
3729 path->device = NULL;
3730 }
3731 if (path->target != NULL) {
3732 xpt_release_target(path->target);
3733 path->target = NULL;
3734 }
3735 if (path->bus != NULL) {
3736 xpt_release_bus(path->bus);
3737 path->bus = NULL;
3738 }
3739 }
3740
3741 void
3742 xpt_free_path(struct cam_path *path)
3743 {
3744
3745 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3746 xpt_release_path(path);
3747 free(path, M_CAMPATH);
3748 }
3749
3750 void
3751 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3752 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3753 {
3754
3755 xpt_lock_buses();
3756 if (bus_ref) {
3757 if (path->bus)
3758 *bus_ref = path->bus->refcount;
3759 else
3760 *bus_ref = 0;
3761 }
3762 if (periph_ref) {
3763 if (path->periph)
3764 *periph_ref = path->periph->refcount;
3765 else
3766 *periph_ref = 0;
3767 }
3768 xpt_unlock_buses();
3769 if (target_ref) {
3770 if (path->target)
3771 *target_ref = path->target->refcount;
3772 else
3773 *target_ref = 0;
3774 }
3775 if (device_ref) {
3776 if (path->device)
3777 *device_ref = path->device->refcount;
3778 else
3779 *device_ref = 0;
3780 }
3781 }
3782
3783 /*
3784 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3785 * in path1, 2 for match with wildcards in path2.
3786 */
3787 int
3788 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3789 {
3790 int retval = 0;
3791
3792 if (path1->bus != path2->bus) {
3793 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3794 retval = 1;
3795 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3796 retval = 2;
3797 else
3798 return (-1);
3799 }
3800 if (path1->target != path2->target) {
3801 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3802 if (retval == 0)
3803 retval = 1;
3804 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3805 retval = 2;
3806 else
3807 return (-1);
3808 }
3809 if (path1->device != path2->device) {
3810 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3811 if (retval == 0)
3812 retval = 1;
3813 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3814 retval = 2;
3815 else
3816 return (-1);
3817 }
3818 return (retval);
3819 }
3820
3821 int
3822 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3823 {
3824 int retval = 0;
3825
3826 if (path->bus != dev->target->bus) {
3827 if (path->bus->path_id == CAM_BUS_WILDCARD)
3828 retval = 1;
3829 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3830 retval = 2;
3831 else
3832 return (-1);
3833 }
3834 if (path->target != dev->target) {
3835 if (path->target->target_id == CAM_TARGET_WILDCARD) {
3836 if (retval == 0)
3837 retval = 1;
3838 } else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3839 retval = 2;
3840 else
3841 return (-1);
3842 }
3843 if (path->device != dev) {
3844 if (path->device->lun_id == CAM_LUN_WILDCARD) {
3845 if (retval == 0)
3846 retval = 1;
3847 } else if (dev->lun_id == CAM_LUN_WILDCARD)
3848 retval = 2;
3849 else
3850 return (-1);
3851 }
3852 return (retval);
3853 }
3854
3855 void
3856 xpt_print_path(struct cam_path *path)
3857 {
3858 struct sbuf sb;
3859 char buffer[XPT_PRINT_LEN];
3860
3861 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3862 xpt_path_sbuf(path, &sb);
3863 sbuf_finish(&sb);
3864 printf("%s", sbuf_data(&sb));
3865 sbuf_delete(&sb);
3866 }
3867
3868 void
3869 xpt_print_device(struct cam_ed *device)
3870 {
3871
3872 if (device == NULL)
3873 printf("(nopath): ");
3874 else {
3875 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3876 device->sim->unit_number,
3877 device->sim->bus_id,
3878 device->target->target_id,
3879 (uintmax_t)device->lun_id);
3880 }
3881 }
3882
3883 void
3884 xpt_print(struct cam_path *path, const char *fmt, ...)
3885 {
3886 va_list ap;
3887 struct sbuf sb;
3888 char buffer[XPT_PRINT_LEN];
3889
3890 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3891
3892 xpt_path_sbuf(path, &sb);
3893 va_start(ap, fmt);
3894 sbuf_vprintf(&sb, fmt, ap);
3895 va_end(ap);
3896
3897 sbuf_finish(&sb);
3898 printf("%s", sbuf_data(&sb));
3899 sbuf_delete(&sb);
3900 }
3901
3902 int
3903 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3904 {
3905 struct sbuf sb;
3906 int len;
3907
3908 sbuf_new(&sb, str, str_len, 0);
3909 len = xpt_path_sbuf(path, &sb);
3910 sbuf_finish(&sb);
3911 return (len);
3912 }
3913
3914 int
3915 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3916 {
3917
3918 if (path == NULL)
3919 sbuf_printf(sb, "(nopath): ");
3920 else {
3921 if (path->periph != NULL)
3922 sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3923 path->periph->unit_number);
3924 else
3925 sbuf_printf(sb, "(noperiph:");
3926
3927 if (path->bus != NULL)
3928 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3929 path->bus->sim->unit_number,
3930 path->bus->sim->bus_id);
3931 else
3932 sbuf_printf(sb, "nobus:");
3933
3934 if (path->target != NULL)
3935 sbuf_printf(sb, "%d:", path->target->target_id);
3936 else
3937 sbuf_printf(sb, "X:");
3938
3939 if (path->device != NULL)
3940 sbuf_printf(sb, "%jx): ",
3941 (uintmax_t)path->device->lun_id);
3942 else
3943 sbuf_printf(sb, "X): ");
3944 }
3945
3946 return(sbuf_len(sb));
3947 }
3948
3949 path_id_t
3950 xpt_path_path_id(struct cam_path *path)
3951 {
3952 return(path->bus->path_id);
3953 }
3954
3955 target_id_t
3956 xpt_path_target_id(struct cam_path *path)
3957 {
3958 if (path->target != NULL)
3959 return (path->target->target_id);
3960 else
3961 return (CAM_TARGET_WILDCARD);
3962 }
3963
3964 lun_id_t
3965 xpt_path_lun_id(struct cam_path *path)
3966 {
3967 if (path->device != NULL)
3968 return (path->device->lun_id);
3969 else
3970 return (CAM_LUN_WILDCARD);
3971 }
3972
3973 struct cam_sim *
3974 xpt_path_sim(struct cam_path *path)
3975 {
3976
3977 return (path->bus->sim);
3978 }
3979
3980 struct cam_periph*
3981 xpt_path_periph(struct cam_path *path)
3982 {
3983
3984 return (path->periph);
3985 }
3986
3987 /*
3988 * Release a CAM control block for the caller. Remit the cost of the structure
3989 * to the device referenced by the path. If the this device had no 'credits'
3990 * and peripheral drivers have registered async callbacks for this notification
3991 * call them now.
3992 */
3993 void
3994 xpt_release_ccb(union ccb *free_ccb)
3995 {
3996 struct cam_ed *device;
3997 struct cam_periph *periph;
3998
3999 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4000 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
4001 device = free_ccb->ccb_h.path->device;
4002 periph = free_ccb->ccb_h.path->periph;
4003
4004 xpt_free_ccb(free_ccb);
4005 periph->periph_allocated--;
4006 cam_ccbq_release_opening(&device->ccbq);
4007 xpt_run_allocq(periph, 0);
4008 }
4009
4010 /* Functions accessed by SIM drivers */
4011
4012 static struct xpt_xport_ops xport_default_ops = {
4013 .alloc_device = xpt_alloc_device_default,
4014 .action = xpt_action_default,
4015 .async = xpt_dev_async_default,
4016 };
4017 static struct xpt_xport xport_default = {
4018 .xport = XPORT_UNKNOWN,
4019 .name = "unknown",
4020 .ops = &xport_default_ops,
4021 };
4022
4023 CAM_XPT_XPORT(xport_default);
4024
4025 /*
4026 * A sim structure, listing the SIM entry points and instance
4027 * identification info is passed to xpt_bus_register to hook the SIM
4028 * into the CAM framework. xpt_bus_register creates a cam_eb entry
4029 * for this new bus and places it in the array of buses and assigns
4030 * it a path_id. The path_id may be influenced by "hard wiring"
4031 * information specified by the user. Once interrupt services are
4032 * available, the bus will be probed.
4033 */
4034 int32_t
4035 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4036 {
4037 struct cam_eb *new_bus;
4038 struct cam_eb *old_bus;
4039 struct ccb_pathinq cpi;
4040 struct cam_path *path;
4041 cam_status status;
4042
4043 sim->bus_id = bus;
4044 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4045 M_CAMXPT, M_NOWAIT|M_ZERO);
4046 if (new_bus == NULL) {
4047 /* Couldn't satisfy request */
4048 return (CAM_RESRC_UNAVAIL);
4049 }
4050
4051 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4052 TAILQ_INIT(&new_bus->et_entries);
4053 cam_sim_hold(sim);
4054 new_bus->sim = sim;
4055 timevalclear(&new_bus->last_reset);
4056 new_bus->flags = 0;
4057 new_bus->refcount = 1; /* Held until a bus_deregister event */
4058 new_bus->generation = 0;
4059
4060 xpt_lock_buses();
4061 sim->path_id = new_bus->path_id =
4062 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4063 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4064 while (old_bus != NULL
4065 && old_bus->path_id < new_bus->path_id)
4066 old_bus = TAILQ_NEXT(old_bus, links);
4067 if (old_bus != NULL)
4068 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4069 else
4070 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4071 xsoftc.bus_generation++;
4072 xpt_unlock_buses();
4073
4074 /*
4075 * Set a default transport so that a PATH_INQ can be issued to
4076 * the SIM. This will then allow for probing and attaching of
4077 * a more appropriate transport.
4078 */
4079 new_bus->xport = &xport_default;
4080
4081 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4082 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4083 if (status != CAM_REQ_CMP) {
4084 xpt_release_bus(new_bus);
4085 return (CAM_RESRC_UNAVAIL);
4086 }
4087
4088 xpt_path_inq(&cpi, path);
4089
4090 if (cpi.ccb_h.status == CAM_REQ_CMP) {
4091 struct xpt_xport **xpt;
4092
4093 SET_FOREACH(xpt, cam_xpt_xport_set) {
4094 if ((*xpt)->xport == cpi.transport) {
4095 new_bus->xport = *xpt;
4096 break;
4097 }
4098 }
4099 if (new_bus->xport == NULL) {
4100 xpt_print(path,
4101 "No transport found for %d\n", cpi.transport);
4102 xpt_release_bus(new_bus);
4103 free(path, M_CAMXPT);
4104 return (CAM_RESRC_UNAVAIL);
4105 }
4106 }
4107
4108 /* Notify interested parties */
4109 if (sim->path_id != CAM_XPT_PATH_ID) {
4110
4111 xpt_async(AC_PATH_REGISTERED, path, &cpi);
4112 if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4113 union ccb *scan_ccb;
4114
4115 /* Initiate bus rescan. */
4116 scan_ccb = xpt_alloc_ccb_nowait();
4117 if (scan_ccb != NULL) {
4118 scan_ccb->ccb_h.path = path;
4119 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4120 scan_ccb->crcn.flags = 0;
4121 xpt_rescan(scan_ccb);
4122 } else {
4123 xpt_print(path,
4124 "Can't allocate CCB to scan bus\n");
4125 xpt_free_path(path);
4126 }
4127 } else
4128 xpt_free_path(path);
4129 } else
4130 xpt_free_path(path);
4131 return (CAM_SUCCESS);
4132 }
4133
4134 int32_t
4135 xpt_bus_deregister(path_id_t pathid)
4136 {
4137 struct cam_path bus_path;
4138 cam_status status;
4139
4140 status = xpt_compile_path(&bus_path, NULL, pathid,
4141 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4142 if (status != CAM_REQ_CMP)
4143 return (status);
4144
4145 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4146 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4147
4148 /* Release the reference count held while registered. */
4149 xpt_release_bus(bus_path.bus);
4150 xpt_release_path(&bus_path);
4151
4152 return (CAM_REQ_CMP);
4153 }
4154
4155 static path_id_t
4156 xptnextfreepathid(void)
4157 {
4158 struct cam_eb *bus;
4159 path_id_t pathid;
4160 const char *strval;
4161
4162 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4163 pathid = 0;
4164 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4165 retry:
4166 /* Find an unoccupied pathid */
4167 while (bus != NULL && bus->path_id <= pathid) {
4168 if (bus->path_id == pathid)
4169 pathid++;
4170 bus = TAILQ_NEXT(bus, links);
4171 }
4172
4173 /*
4174 * Ensure that this pathid is not reserved for
4175 * a bus that may be registered in the future.
4176 */
4177 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4178 ++pathid;
4179 /* Start the search over */
4180 goto retry;
4181 }
4182 return (pathid);
4183 }
4184
4185 static path_id_t
4186 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4187 {
4188 path_id_t pathid;
4189 int i, dunit, val;
4190 char buf[32];
4191 const char *dname;
4192
4193 pathid = CAM_XPT_PATH_ID;
4194 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4195 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4196 return (pathid);
4197 i = 0;
4198 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4199 if (strcmp(dname, "scbus")) {
4200 /* Avoid a bit of foot shooting. */
4201 continue;
4202 }
4203 if (dunit < 0) /* unwired?! */
4204 continue;
4205 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4206 if (sim_bus == val) {
4207 pathid = dunit;
4208 break;
4209 }
4210 } else if (sim_bus == 0) {
4211 /* Unspecified matches bus 0 */
4212 pathid = dunit;
4213 break;
4214 } else {
4215 printf("Ambiguous scbus configuration for %s%d "
4216 "bus %d, cannot wire down. The kernel "
4217 "config entry for scbus%d should "
4218 "specify a controller bus.\n"
4219 "Scbus will be assigned dynamically.\n",
4220 sim_name, sim_unit, sim_bus, dunit);
4221 break;
4222 }
4223 }
4224
4225 if (pathid == CAM_XPT_PATH_ID)
4226 pathid = xptnextfreepathid();
4227 return (pathid);
4228 }
4229
4230 static const char *
4231 xpt_async_string(u_int32_t async_code)
4232 {
4233
4234 switch (async_code) {
4235 case AC_BUS_RESET: return ("AC_BUS_RESET");
4236 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4237 case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4238 case AC_SENT_BDR: return ("AC_SENT_BDR");
4239 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4240 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4241 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4242 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4243 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4244 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4245 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4246 case AC_CONTRACT: return ("AC_CONTRACT");
4247 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4248 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4249 }
4250 return ("AC_UNKNOWN");
4251 }
4252
4253 static int
4254 xpt_async_size(u_int32_t async_code)
4255 {
4256
4257 switch (async_code) {
4258 case AC_BUS_RESET: return (0);
4259 case AC_UNSOL_RESEL: return (0);
4260 case AC_SCSI_AEN: return (0);
4261 case AC_SENT_BDR: return (0);
4262 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4263 case AC_PATH_DEREGISTERED: return (0);
4264 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4265 case AC_LOST_DEVICE: return (0);
4266 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4267 case AC_INQ_CHANGED: return (0);
4268 case AC_GETDEV_CHANGED: return (0);
4269 case AC_CONTRACT: return (sizeof(struct ac_contract));
4270 case AC_ADVINFO_CHANGED: return (-1);
4271 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4272 }
4273 return (0);
4274 }
4275
4276 static int
4277 xpt_async_process_dev(struct cam_ed *device, void *arg)
4278 {
4279 union ccb *ccb = arg;
4280 struct cam_path *path = ccb->ccb_h.path;
4281 void *async_arg = ccb->casync.async_arg_ptr;
4282 u_int32_t async_code = ccb->casync.async_code;
4283 int relock;
4284
4285 if (path->device != device
4286 && path->device->lun_id != CAM_LUN_WILDCARD
4287 && device->lun_id != CAM_LUN_WILDCARD)
4288 return (1);
4289
4290 /*
4291 * The async callback could free the device.
4292 * If it is a broadcast async, it doesn't hold
4293 * device reference, so take our own reference.
4294 */
4295 xpt_acquire_device(device);
4296
4297 /*
4298 * If async for specific device is to be delivered to
4299 * the wildcard client, take the specific device lock.
4300 * XXX: We may need a way for client to specify it.
4301 */
4302 if ((device->lun_id == CAM_LUN_WILDCARD &&
4303 path->device->lun_id != CAM_LUN_WILDCARD) ||
4304 (device->target->target_id == CAM_TARGET_WILDCARD &&
4305 path->target->target_id != CAM_TARGET_WILDCARD) ||
4306 (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4307 path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4308 mtx_unlock(&device->device_mtx);
4309 xpt_path_lock(path);
4310 relock = 1;
4311 } else
4312 relock = 0;
4313
4314 (*(device->target->bus->xport->ops->async))(async_code,
4315 device->target->bus, device->target, device, async_arg);
4316 xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4317
4318 if (relock) {
4319 xpt_path_unlock(path);
4320 mtx_lock(&device->device_mtx);
4321 }
4322 xpt_release_device(device);
4323 return (1);
4324 }
4325
4326 static int
4327 xpt_async_process_tgt(struct cam_et *target, void *arg)
4328 {
4329 union ccb *ccb = arg;
4330 struct cam_path *path = ccb->ccb_h.path;
4331
4332 if (path->target != target
4333 && path->target->target_id != CAM_TARGET_WILDCARD
4334 && target->target_id != CAM_TARGET_WILDCARD)
4335 return (1);
4336
4337 if (ccb->casync.async_code == AC_SENT_BDR) {
4338 /* Update our notion of when the last reset occurred */
4339 microtime(&target->last_reset);
4340 }
4341
4342 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4343 }
4344
4345 static void
4346 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4347 {
4348 struct cam_eb *bus;
4349 struct cam_path *path;
4350 void *async_arg;
4351 u_int32_t async_code;
4352
4353 path = ccb->ccb_h.path;
4354 async_code = ccb->casync.async_code;
4355 async_arg = ccb->casync.async_arg_ptr;
4356 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4357 ("xpt_async(%s)\n", xpt_async_string(async_code)));
4358 bus = path->bus;
4359
4360 if (async_code == AC_BUS_RESET) {
4361 /* Update our notion of when the last reset occurred */
4362 microtime(&bus->last_reset);
4363 }
4364
4365 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4366
4367 /*
4368 * If this wasn't a fully wildcarded async, tell all
4369 * clients that want all async events.
4370 */
4371 if (bus != xpt_periph->path->bus) {
4372 xpt_path_lock(xpt_periph->path);
4373 xpt_async_process_dev(xpt_periph->path->device, ccb);
4374 xpt_path_unlock(xpt_periph->path);
4375 }
4376
4377 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4378 xpt_release_devq(path, 1, TRUE);
4379 else
4380 xpt_release_simq(path->bus->sim, TRUE);
4381 if (ccb->casync.async_arg_size > 0)
4382 free(async_arg, M_CAMXPT);
4383 xpt_free_path(path);
4384 xpt_free_ccb(ccb);
4385 }
4386
4387 static void
4388 xpt_async_bcast(struct async_list *async_head,
4389 u_int32_t async_code,
4390 struct cam_path *path, void *async_arg)
4391 {
4392 struct async_node *cur_entry;
4393 struct mtx *mtx;
4394
4395 cur_entry = SLIST_FIRST(async_head);
4396 while (cur_entry != NULL) {
4397 struct async_node *next_entry;
4398 /*
4399 * Grab the next list entry before we call the current
4400 * entry's callback. This is because the callback function
4401 * can delete its async callback entry.
4402 */
4403 next_entry = SLIST_NEXT(cur_entry, links);
4404 if ((cur_entry->event_enable & async_code) != 0) {
4405 mtx = cur_entry->event_lock ?
4406 path->device->sim->mtx : NULL;
4407 if (mtx)
4408 mtx_lock(mtx);
4409 cur_entry->callback(cur_entry->callback_arg,
4410 async_code, path,
4411 async_arg);
4412 if (mtx)
4413 mtx_unlock(mtx);
4414 }
4415 cur_entry = next_entry;
4416 }
4417 }
4418
4419 void
4420 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4421 {
4422 union ccb *ccb;
4423 int size;
4424
4425 ccb = xpt_alloc_ccb_nowait();
4426 if (ccb == NULL) {
4427 xpt_print(path, "Can't allocate CCB to send %s\n",
4428 xpt_async_string(async_code));
4429 return;
4430 }
4431
4432 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4433 xpt_print(path, "Can't allocate path to send %s\n",
4434 xpt_async_string(async_code));
4435 xpt_free_ccb(ccb);
4436 return;
4437 }
4438 ccb->ccb_h.path->periph = NULL;
4439 ccb->ccb_h.func_code = XPT_ASYNC;
4440 ccb->ccb_h.cbfcnp = xpt_async_process;
4441 ccb->ccb_h.flags |= CAM_UNLOCKED;
4442 ccb->casync.async_code = async_code;
4443 ccb->casync.async_arg_size = 0;
4444 size = xpt_async_size(async_code);
4445 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4446 ("xpt_async: func %#x %s aync_code %d %s\n",
4447 ccb->ccb_h.func_code,
4448 xpt_action_name(ccb->ccb_h.func_code),
4449 async_code,
4450 xpt_async_string(async_code)));
4451 if (size > 0 && async_arg != NULL) {
4452 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4453 if (ccb->casync.async_arg_ptr == NULL) {
4454 xpt_print(path, "Can't allocate argument to send %s\n",
4455 xpt_async_string(async_code));
4456 xpt_free_path(ccb->ccb_h.path);
4457 xpt_free_ccb(ccb);
4458 return;
4459 }
4460 memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4461 ccb->casync.async_arg_size = size;
4462 } else if (size < 0) {
4463 ccb->casync.async_arg_ptr = async_arg;
4464 ccb->casync.async_arg_size = size;
4465 }
4466 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4467 xpt_freeze_devq(path, 1);
4468 else
4469 xpt_freeze_simq(path->bus->sim, 1);
4470 xpt_done(ccb);
4471 }
4472
4473 static void
4474 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4475 struct cam_et *target, struct cam_ed *device,
4476 void *async_arg)
4477 {
4478
4479 /*
4480 * We only need to handle events for real devices.
4481 */
4482 if (target->target_id == CAM_TARGET_WILDCARD
4483 || device->lun_id == CAM_LUN_WILDCARD)
4484 return;
4485
4486 printf("%s called\n", __func__);
4487 }
4488
4489 static uint32_t
4490 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4491 {
4492 struct cam_devq *devq;
4493 uint32_t freeze;
4494
4495 devq = dev->sim->devq;
4496 mtx_assert(&devq->send_mtx, MA_OWNED);
4497 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4498 ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4499 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4500 freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4501 /* Remove frozen device from sendq. */
4502 if (device_is_queued(dev))
4503 camq_remove(&devq->send_queue, dev->devq_entry.index);
4504 return (freeze);
4505 }
4506
4507 u_int32_t
4508 xpt_freeze_devq(struct cam_path *path, u_int count)
4509 {
4510 struct cam_ed *dev = path->device;
4511 struct cam_devq *devq;
4512 uint32_t freeze;
4513
4514 devq = dev->sim->devq;
4515 mtx_lock(&devq->send_mtx);
4516 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4517 freeze = xpt_freeze_devq_device(dev, count);
4518 mtx_unlock(&devq->send_mtx);
4519 return (freeze);
4520 }
4521
4522 u_int32_t
4523 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4524 {
4525 struct cam_devq *devq;
4526 uint32_t freeze;
4527
4528 devq = sim->devq;
4529 mtx_lock(&devq->send_mtx);
4530 freeze = (devq->send_queue.qfrozen_cnt += count);
4531 mtx_unlock(&devq->send_mtx);
4532 return (freeze);
4533 }
4534
4535 static void
4536 xpt_release_devq_timeout(void *arg)
4537 {
4538 struct cam_ed *dev;
4539 struct cam_devq *devq;
4540
4541 dev = (struct cam_ed *)arg;
4542 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4543 devq = dev->sim->devq;
4544 mtx_assert(&devq->send_mtx, MA_OWNED);
4545 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4546 xpt_run_devq(devq);
4547 }
4548
4549 void
4550 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4551 {
4552 struct cam_ed *dev;
4553 struct cam_devq *devq;
4554
4555 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4556 count, run_queue));
4557 dev = path->device;
4558 devq = dev->sim->devq;
4559 mtx_lock(&devq->send_mtx);
4560 if (xpt_release_devq_device(dev, count, run_queue))
4561 xpt_run_devq(dev->sim->devq);
4562 mtx_unlock(&devq->send_mtx);
4563 }
4564
4565 static int
4566 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4567 {
4568
4569 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4570 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4571 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4572 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4573 if (count > dev->ccbq.queue.qfrozen_cnt) {
4574 #ifdef INVARIANTS
4575 printf("xpt_release_devq(): requested %u > present %u\n",
4576 count, dev->ccbq.queue.qfrozen_cnt);
4577 #endif
4578 count = dev->ccbq.queue.qfrozen_cnt;
4579 }
4580 dev->ccbq.queue.qfrozen_cnt -= count;
4581 if (dev->ccbq.queue.qfrozen_cnt == 0) {
4582 /*
4583 * No longer need to wait for a successful
4584 * command completion.
4585 */
4586 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4587 /*
4588 * Remove any timeouts that might be scheduled
4589 * to release this queue.
4590 */
4591 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4592 callout_stop(&dev->callout);
4593 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4594 }
4595 /*
4596 * Now that we are unfrozen schedule the
4597 * device so any pending transactions are
4598 * run.
4599 */
4600 xpt_schedule_devq(dev->sim->devq, dev);
4601 } else
4602 run_queue = 0;
4603 return (run_queue);
4604 }
4605
4606 void
4607 xpt_release_simq(struct cam_sim *sim, int run_queue)
4608 {
4609 struct cam_devq *devq;
4610
4611 devq = sim->devq;
4612 mtx_lock(&devq->send_mtx);
4613 if (devq->send_queue.qfrozen_cnt <= 0) {
4614 #ifdef INVARIANTS
4615 printf("xpt_release_simq: requested 1 > present %u\n",
4616 devq->send_queue.qfrozen_cnt);
4617 #endif
4618 } else
4619 devq->send_queue.qfrozen_cnt--;
4620 if (devq->send_queue.qfrozen_cnt == 0) {
4621 /*
4622 * If there is a timeout scheduled to release this
4623 * sim queue, remove it. The queue frozen count is
4624 * already at 0.
4625 */
4626 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4627 callout_stop(&sim->callout);
4628 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4629 }
4630 if (run_queue) {
4631 /*
4632 * Now that we are unfrozen run the send queue.
4633 */
4634 xpt_run_devq(sim->devq);
4635 }
4636 }
4637 mtx_unlock(&devq->send_mtx);
4638 }
4639
4640 /*
4641 * XXX Appears to be unused.
4642 */
4643 static void
4644 xpt_release_simq_timeout(void *arg)
4645 {
4646 struct cam_sim *sim;
4647
4648 sim = (struct cam_sim *)arg;
4649 xpt_release_simq(sim, /* run_queue */ TRUE);
4650 }
4651
4652 void
4653 xpt_done(union ccb *done_ccb)
4654 {
4655 struct cam_doneq *queue;
4656 int run, hash;
4657
4658 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4659 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4660 done_ccb->csio.bio != NULL)
4661 biotrack(done_ccb->csio.bio, __func__);
4662 #endif
4663
4664 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4665 ("xpt_done: func= %#x %s status %#x\n",
4666 done_ccb->ccb_h.func_code,
4667 xpt_action_name(done_ccb->ccb_h.func_code),
4668 done_ccb->ccb_h.status));
4669 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4670 return;
4671
4672 /* Store the time the ccb was in the sim */
4673 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4674 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4675 done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4676 queue = &cam_doneqs[hash];
4677 mtx_lock(&queue->cam_doneq_mtx);
4678 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4679 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4680 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4681 mtx_unlock(&queue->cam_doneq_mtx);
4682 if (run)
4683 wakeup(&queue->cam_doneq);
4684 }
4685
4686 void
4687 xpt_done_direct(union ccb *done_ccb)
4688 {
4689
4690 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4691 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4692 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4693 return;
4694
4695 /* Store the time the ccb was in the sim */
4696 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4697 xpt_done_process(&done_ccb->ccb_h);
4698 }
4699
4700 union ccb *
4701 xpt_alloc_ccb()
4702 {
4703 union ccb *new_ccb;
4704
4705 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4706 return (new_ccb);
4707 }
4708
4709 union ccb *
4710 xpt_alloc_ccb_nowait()
4711 {
4712 union ccb *new_ccb;
4713
4714 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4715 return (new_ccb);
4716 }
4717
4718 void
4719 xpt_free_ccb(union ccb *free_ccb)
4720 {
4721 free(free_ccb, M_CAMCCB);
4722 }
4723
4724
4725
4726 /* Private XPT functions */
4727
4728 /*
4729 * Get a CAM control block for the caller. Charge the structure to the device
4730 * referenced by the path. If we don't have sufficient resources to allocate
4731 * more ccbs, we return NULL.
4732 */
4733 static union ccb *
4734 xpt_get_ccb_nowait(struct cam_periph *periph)
4735 {
4736 union ccb *new_ccb;
4737
4738 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4739 if (new_ccb == NULL)
4740 return (NULL);
4741 periph->periph_allocated++;
4742 cam_ccbq_take_opening(&periph->path->device->ccbq);
4743 return (new_ccb);
4744 }
4745
4746 static union ccb *
4747 xpt_get_ccb(struct cam_periph *periph)
4748 {
4749 union ccb *new_ccb;
4750
4751 cam_periph_unlock(periph);
4752 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4753 cam_periph_lock(periph);
4754 periph->periph_allocated++;
4755 cam_ccbq_take_opening(&periph->path->device->ccbq);
4756 return (new_ccb);
4757 }
4758
4759 union ccb *
4760 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4761 {
4762 struct ccb_hdr *ccb_h;
4763
4764 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4765 cam_periph_assert(periph, MA_OWNED);
4766 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4767 ccb_h->pinfo.priority != priority) {
4768 if (priority < periph->immediate_priority) {
4769 periph->immediate_priority = priority;
4770 xpt_run_allocq(periph, 0);
4771 } else
4772 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4773 "cgticb", 0);
4774 }
4775 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4776 return ((union ccb *)ccb_h);
4777 }
4778
4779 static void
4780 xpt_acquire_bus(struct cam_eb *bus)
4781 {
4782
4783 xpt_lock_buses();
4784 bus->refcount++;
4785 xpt_unlock_buses();
4786 }
4787
4788 static void
4789 xpt_release_bus(struct cam_eb *bus)
4790 {
4791
4792 xpt_lock_buses();
4793 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4794 if (--bus->refcount > 0) {
4795 xpt_unlock_buses();
4796 return;
4797 }
4798 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4799 xsoftc.bus_generation++;
4800 xpt_unlock_buses();
4801 KASSERT(TAILQ_EMPTY(&bus->et_entries),
4802 ("destroying bus, but target list is not empty"));
4803 cam_sim_release(bus->sim);
4804 mtx_destroy(&bus->eb_mtx);
4805 free(bus, M_CAMXPT);
4806 }
4807
4808 static struct cam_et *
4809 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4810 {
4811 struct cam_et *cur_target, *target;
4812
4813 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4814 mtx_assert(&bus->eb_mtx, MA_OWNED);
4815 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4816 M_NOWAIT|M_ZERO);
4817 if (target == NULL)
4818 return (NULL);
4819
4820 TAILQ_INIT(&target->ed_entries);
4821 target->bus = bus;
4822 target->target_id = target_id;
4823 target->refcount = 1;
4824 target->generation = 0;
4825 target->luns = NULL;
4826 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4827 timevalclear(&target->last_reset);
4828 /*
4829 * Hold a reference to our parent bus so it
4830 * will not go away before we do.
4831 */
4832 bus->refcount++;
4833
4834 /* Insertion sort into our bus's target list */
4835 cur_target = TAILQ_FIRST(&bus->et_entries);
4836 while (cur_target != NULL && cur_target->target_id < target_id)
4837 cur_target = TAILQ_NEXT(cur_target, links);
4838 if (cur_target != NULL) {
4839 TAILQ_INSERT_BEFORE(cur_target, target, links);
4840 } else {
4841 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4842 }
4843 bus->generation++;
4844 return (target);
4845 }
4846
4847 static void
4848 xpt_acquire_target(struct cam_et *target)
4849 {
4850 struct cam_eb *bus = target->bus;
4851
4852 mtx_lock(&bus->eb_mtx);
4853 target->refcount++;
4854 mtx_unlock(&bus->eb_mtx);
4855 }
4856
4857 static void
4858 xpt_release_target(struct cam_et *target)
4859 {
4860 struct cam_eb *bus = target->bus;
4861
4862 mtx_lock(&bus->eb_mtx);
4863 if (--target->refcount > 0) {
4864 mtx_unlock(&bus->eb_mtx);
4865 return;
4866 }
4867 TAILQ_REMOVE(&bus->et_entries, target, links);
4868 bus->generation++;
4869 mtx_unlock(&bus->eb_mtx);
4870 KASSERT(TAILQ_EMPTY(&target->ed_entries),
4871 ("destroying target, but device list is not empty"));
4872 xpt_release_bus(bus);
4873 mtx_destroy(&target->luns_mtx);
4874 if (target->luns)
4875 free(target->luns, M_CAMXPT);
4876 free(target, M_CAMXPT);
4877 }
4878
4879 static struct cam_ed *
4880 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4881 lun_id_t lun_id)
4882 {
4883 struct cam_ed *device;
4884
4885 device = xpt_alloc_device(bus, target, lun_id);
4886 if (device == NULL)
4887 return (NULL);
4888
4889 device->mintags = 1;
4890 device->maxtags = 1;
4891 return (device);
4892 }
4893
4894 static void
4895 xpt_destroy_device(void *context, int pending)
4896 {
4897 struct cam_ed *device = context;
4898
4899 mtx_lock(&device->device_mtx);
4900 mtx_destroy(&device->device_mtx);
4901 free(device, M_CAMDEV);
4902 }
4903
4904 struct cam_ed *
4905 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4906 {
4907 struct cam_ed *cur_device, *device;
4908 struct cam_devq *devq;
4909 cam_status status;
4910
4911 mtx_assert(&bus->eb_mtx, MA_OWNED);
4912 /* Make space for us in the device queue on our bus */
4913 devq = bus->sim->devq;
4914 mtx_lock(&devq->send_mtx);
4915 status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4916 mtx_unlock(&devq->send_mtx);
4917 if (status != CAM_REQ_CMP)
4918 return (NULL);
4919
4920 device = (struct cam_ed *)malloc(sizeof(*device),
4921 M_CAMDEV, M_NOWAIT|M_ZERO);
4922 if (device == NULL)
4923 return (NULL);
4924
4925 cam_init_pinfo(&device->devq_entry);
4926 device->target = target;
4927 device->lun_id = lun_id;
4928 device->sim = bus->sim;
4929 if (cam_ccbq_init(&device->ccbq,
4930 bus->sim->max_dev_openings) != 0) {
4931 free(device, M_CAMDEV);
4932 return (NULL);
4933 }
4934 SLIST_INIT(&device->asyncs);
4935 SLIST_INIT(&device->periphs);
4936 device->generation = 0;
4937 device->flags = CAM_DEV_UNCONFIGURED;
4938 device->tag_delay_count = 0;
4939 device->tag_saved_openings = 0;
4940 device->refcount = 1;
4941 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4942 callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4943 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4944 /*
4945 * Hold a reference to our parent bus so it
4946 * will not go away before we do.
4947 */
4948 target->refcount++;
4949
4950 cur_device = TAILQ_FIRST(&target->ed_entries);
4951 while (cur_device != NULL && cur_device->lun_id < lun_id)
4952 cur_device = TAILQ_NEXT(cur_device, links);
4953 if (cur_device != NULL)
4954 TAILQ_INSERT_BEFORE(cur_device, device, links);
4955 else
4956 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4957 target->generation++;
4958 return (device);
4959 }
4960
4961 void
4962 xpt_acquire_device(struct cam_ed *device)
4963 {
4964 struct cam_eb *bus = device->target->bus;
4965
4966 mtx_lock(&bus->eb_mtx);
4967 device->refcount++;
4968 mtx_unlock(&bus->eb_mtx);
4969 }
4970
4971 void
4972 xpt_release_device(struct cam_ed *device)
4973 {
4974 struct cam_eb *bus = device->target->bus;
4975 struct cam_devq *devq;
4976
4977 mtx_lock(&bus->eb_mtx);
4978 if (--device->refcount > 0) {
4979 mtx_unlock(&bus->eb_mtx);
4980 return;
4981 }
4982
4983 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4984 device->target->generation++;
4985 mtx_unlock(&bus->eb_mtx);
4986
4987 /* Release our slot in the devq */
4988 devq = bus->sim->devq;
4989 mtx_lock(&devq->send_mtx);
4990 cam_devq_resize(devq, devq->send_queue.array_size - 1);
4991 mtx_unlock(&devq->send_mtx);
4992
4993 KASSERT(SLIST_EMPTY(&device->periphs),
4994 ("destroying device, but periphs list is not empty"));
4995 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4996 ("destroying device while still queued for ccbs"));
4997
4998 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4999 callout_stop(&device->callout);
5000
5001 xpt_release_target(device->target);
5002
5003 cam_ccbq_fini(&device->ccbq);
5004 /*
5005 * Free allocated memory. free(9) does nothing if the
5006 * supplied pointer is NULL, so it is safe to call without
5007 * checking.
5008 */
5009 free(device->supported_vpds, M_CAMXPT);
5010 free(device->device_id, M_CAMXPT);
5011 free(device->ext_inq, M_CAMXPT);
5012 free(device->physpath, M_CAMXPT);
5013 free(device->rcap_buf, M_CAMXPT);
5014 free(device->serial_num, M_CAMXPT);
5015 free(device->nvme_data, M_CAMXPT);
5016 free(device->nvme_cdata, M_CAMXPT);
5017 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
5018 }
5019
5020 u_int32_t
5021 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5022 {
5023 int result;
5024 struct cam_ed *dev;
5025
5026 dev = path->device;
5027 mtx_lock(&dev->sim->devq->send_mtx);
5028 result = cam_ccbq_resize(&dev->ccbq, newopenings);
5029 mtx_unlock(&dev->sim->devq->send_mtx);
5030 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5031 || (dev->inq_flags & SID_CmdQue) != 0)
5032 dev->tag_saved_openings = newopenings;
5033 return (result);
5034 }
5035
5036 static struct cam_eb *
5037 xpt_find_bus(path_id_t path_id)
5038 {
5039 struct cam_eb *bus;
5040
5041 xpt_lock_buses();
5042 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5043 bus != NULL;
5044 bus = TAILQ_NEXT(bus, links)) {
5045 if (bus->path_id == path_id) {
5046 bus->refcount++;
5047 break;
5048 }
5049 }
5050 xpt_unlock_buses();
5051 return (bus);
5052 }
5053
5054 static struct cam_et *
5055 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
5056 {
5057 struct cam_et *target;
5058
5059 mtx_assert(&bus->eb_mtx, MA_OWNED);
5060 for (target = TAILQ_FIRST(&bus->et_entries);
5061 target != NULL;
5062 target = TAILQ_NEXT(target, links)) {
5063 if (target->target_id == target_id) {
5064 target->refcount++;
5065 break;
5066 }
5067 }
5068 return (target);
5069 }
5070
5071 static struct cam_ed *
5072 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5073 {
5074 struct cam_ed *device;
5075
5076 mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5077 for (device = TAILQ_FIRST(&target->ed_entries);
5078 device != NULL;
5079 device = TAILQ_NEXT(device, links)) {
5080 if (device->lun_id == lun_id) {
5081 device->refcount++;
5082 break;
5083 }
5084 }
5085 return (device);
5086 }
5087
5088 void
5089 xpt_start_tags(struct cam_path *path)
5090 {
5091 struct ccb_relsim crs;
5092 struct cam_ed *device;
5093 struct cam_sim *sim;
5094 int newopenings;
5095
5096 device = path->device;
5097 sim = path->bus->sim;
5098 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5099 xpt_freeze_devq(path, /*count*/1);
5100 device->inq_flags |= SID_CmdQue;
5101 if (device->tag_saved_openings != 0)
5102 newopenings = device->tag_saved_openings;
5103 else
5104 newopenings = min(device->maxtags,
5105 sim->max_tagged_dev_openings);
5106 xpt_dev_ccbq_resize(path, newopenings);
5107 xpt_async(AC_GETDEV_CHANGED, path, NULL);
5108 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5109 crs.ccb_h.func_code = XPT_REL_SIMQ;
5110 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5111 crs.openings
5112 = crs.release_timeout
5113 = crs.qfrozen_cnt
5114 = 0;
5115 xpt_action((union ccb *)&crs);
5116 }
5117
5118 void
5119 xpt_stop_tags(struct cam_path *path)
5120 {
5121 struct ccb_relsim crs;
5122 struct cam_ed *device;
5123 struct cam_sim *sim;
5124
5125 device = path->device;
5126 sim = path->bus->sim;
5127 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5128 device->tag_delay_count = 0;
5129 xpt_freeze_devq(path, /*count*/1);
5130 device->inq_flags &= ~SID_CmdQue;
5131 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5132 xpt_async(AC_GETDEV_CHANGED, path, NULL);
5133 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5134 crs.ccb_h.func_code = XPT_REL_SIMQ;
5135 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5136 crs.openings
5137 = crs.release_timeout
5138 = crs.qfrozen_cnt
5139 = 0;
5140 xpt_action((union ccb *)&crs);
5141 }
5142
5143 static void
5144 xpt_boot_delay(void *arg)
5145 {
5146
5147 xpt_release_boot();
5148 }
5149
5150 static void
5151 xpt_config(void *arg)
5152 {
5153 /*
5154 * Now that interrupts are enabled, go find our devices
5155 */
5156 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5157 printf("xpt_config: failed to create taskqueue thread.\n");
5158
5159 /* Setup debugging path */
5160 if (cam_dflags != CAM_DEBUG_NONE) {
5161 if (xpt_create_path(&cam_dpath, NULL,
5162 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5163 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5164 printf("xpt_config: xpt_create_path() failed for debug"
5165 " target %d:%d:%d, debugging disabled\n",
5166 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5167 cam_dflags = CAM_DEBUG_NONE;
5168 }
5169 } else
5170 cam_dpath = NULL;
5171
5172 periphdriver_init(1);
5173 xpt_hold_boot();
5174 callout_init(&xsoftc.boot_callout, 1);
5175 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5176 xpt_boot_delay, NULL, 0);
5177 /* Fire up rescan thread. */
5178 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5179 "cam", "scanner")) {
5180 printf("xpt_config: failed to create rescan thread.\n");
5181 }
5182 }
5183
5184 void
5185 xpt_hold_boot(void)
5186 {
5187 xpt_lock_buses();
5188 xsoftc.buses_to_config++;
5189 xpt_unlock_buses();
5190 }
5191
5192 void
5193 xpt_release_boot(void)
5194 {
5195 xpt_lock_buses();
5196 xsoftc.buses_to_config--;
5197 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5198 struct xpt_task *task;
5199
5200 xsoftc.buses_config_done = 1;
5201 xpt_unlock_buses();
5202 /* Call manually because we don't have any buses */
5203 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5204 if (task != NULL) {
5205 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5206 taskqueue_enqueue(taskqueue_thread, &task->task);
5207 }
5208 } else
5209 xpt_unlock_buses();
5210 }
5211
5212 /*
5213 * If the given device only has one peripheral attached to it, and if that
5214 * peripheral is the passthrough driver, announce it. This insures that the
5215 * user sees some sort of announcement for every peripheral in their system.
5216 */
5217 static int
5218 xptpassannouncefunc(struct cam_ed *device, void *arg)
5219 {
5220 struct cam_periph *periph;
5221 int i;
5222
5223 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5224 periph = SLIST_NEXT(periph, periph_links), i++);
5225
5226 periph = SLIST_FIRST(&device->periphs);
5227 if ((i == 1)
5228 && (strncmp(periph->periph_name, "pass", 4) == 0))
5229 xpt_announce_periph(periph, NULL);
5230
5231 return(1);
5232 }
5233
5234 static void
5235 xpt_finishconfig_task(void *context, int pending)
5236 {
5237
5238 periphdriver_init(2);
5239 /*
5240 * Check for devices with no "standard" peripheral driver
5241 * attached. For any devices like that, announce the
5242 * passthrough driver so the user will see something.
5243 */
5244 if (!bootverbose)
5245 xpt_for_all_devices(xptpassannouncefunc, NULL);
5246
5247 /* Release our hook so that the boot can continue. */
5248 config_intrhook_disestablish(xsoftc.xpt_config_hook);
5249 free(xsoftc.xpt_config_hook, M_CAMXPT);
5250 xsoftc.xpt_config_hook = NULL;
5251
5252 free(context, M_CAMXPT);
5253 }
5254
5255 cam_status
5256 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5257 struct cam_path *path)
5258 {
5259 struct ccb_setasync csa;
5260 cam_status status;
5261 int xptpath = 0;
5262
5263 if (path == NULL) {
5264 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5265 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5266 if (status != CAM_REQ_CMP)
5267 return (status);
5268 xpt_path_lock(path);
5269 xptpath = 1;
5270 }
5271
5272 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5273 csa.ccb_h.func_code = XPT_SASYNC_CB;
5274 csa.event_enable = event;
5275 csa.callback = cbfunc;
5276 csa.callback_arg = cbarg;
5277 xpt_action((union ccb *)&csa);
5278 status = csa.ccb_h.status;
5279
5280 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5281 ("xpt_register_async: func %p\n", cbfunc));
5282
5283 if (xptpath) {
5284 xpt_path_unlock(path);
5285 xpt_free_path(path);
5286 }
5287
5288 if ((status == CAM_REQ_CMP) &&
5289 (csa.event_enable & AC_FOUND_DEVICE)) {
5290 /*
5291 * Get this peripheral up to date with all
5292 * the currently existing devices.
5293 */
5294 xpt_for_all_devices(xptsetasyncfunc, &csa);
5295 }
5296 if ((status == CAM_REQ_CMP) &&
5297 (csa.event_enable & AC_PATH_REGISTERED)) {
5298 /*
5299 * Get this peripheral up to date with all
5300 * the currently existing buses.
5301 */
5302 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5303 }
5304
5305 return (status);
5306 }
5307
5308 static void
5309 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5310 {
5311 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5312
5313 switch (work_ccb->ccb_h.func_code) {
5314 /* Common cases first */
5315 case XPT_PATH_INQ: /* Path routing inquiry */
5316 {
5317 struct ccb_pathinq *cpi;
5318
5319 cpi = &work_ccb->cpi;
5320 cpi->version_num = 1; /* XXX??? */
5321 cpi->hba_inquiry = 0;
5322 cpi->target_sprt = 0;
5323 cpi->hba_misc = 0;
5324 cpi->hba_eng_cnt = 0;
5325 cpi->max_target = 0;
5326 cpi->max_lun = 0;
5327 cpi->initiator_id = 0;
5328 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5329 strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5330 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5331 cpi->unit_number = sim->unit_number;
5332 cpi->bus_id = sim->bus_id;
5333 cpi->base_transfer_speed = 0;
5334 cpi->protocol = PROTO_UNSPECIFIED;
5335 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5336 cpi->transport = XPORT_UNSPECIFIED;
5337 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5338 cpi->ccb_h.status = CAM_REQ_CMP;
5339 xpt_done(work_ccb);
5340 break;
5341 }
5342 default:
5343 work_ccb->ccb_h.status = CAM_REQ_INVALID;
5344 xpt_done(work_ccb);
5345 break;
5346 }
5347 }
5348
5349 /*
5350 * The xpt as a "controller" has no interrupt sources, so polling
5351 * is a no-op.
5352 */
5353 static void
5354 xptpoll(struct cam_sim *sim)
5355 {
5356 }
5357
5358 void
5359 xpt_lock_buses(void)
5360 {
5361 mtx_lock(&xsoftc.xpt_topo_lock);
5362 }
5363
5364 void
5365 xpt_unlock_buses(void)
5366 {
5367 mtx_unlock(&xsoftc.xpt_topo_lock);
5368 }
5369
5370 struct mtx *
5371 xpt_path_mtx(struct cam_path *path)
5372 {
5373
5374 return (&path->device->device_mtx);
5375 }
5376
5377 static void
5378 xpt_done_process(struct ccb_hdr *ccb_h)
5379 {
5380 struct cam_sim *sim = NULL;
5381 struct cam_devq *devq = NULL;
5382 struct mtx *mtx = NULL;
5383
5384 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5385 struct ccb_scsiio *csio;
5386
5387 if (ccb_h->func_code == XPT_SCSI_IO) {
5388 csio = &((union ccb *)ccb_h)->csio;
5389 if (csio->bio != NULL)
5390 biotrack(csio->bio, __func__);
5391 }
5392 #endif
5393
5394 if (ccb_h->flags & CAM_HIGH_POWER) {
5395 struct highpowerlist *hphead;
5396 struct cam_ed *device;
5397
5398 mtx_lock(&xsoftc.xpt_highpower_lock);
5399 hphead = &xsoftc.highpowerq;
5400
5401 device = STAILQ_FIRST(hphead);
5402
5403 /*
5404 * Increment the count since this command is done.
5405 */
5406 xsoftc.num_highpower++;
5407
5408 /*
5409 * Any high powered commands queued up?
5410 */
5411 if (device != NULL) {
5412
5413 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5414 mtx_unlock(&xsoftc.xpt_highpower_lock);
5415
5416 mtx_lock(&device->sim->devq->send_mtx);
5417 xpt_release_devq_device(device,
5418 /*count*/1, /*runqueue*/TRUE);
5419 mtx_unlock(&device->sim->devq->send_mtx);
5420 } else
5421 mtx_unlock(&xsoftc.xpt_highpower_lock);
5422 }
5423
5424 /*
5425 * Insulate against a race where the periph is destroyed
5426 * but CCBs are still not all processed.
5427 */
5428 if (ccb_h->path->bus)
5429 sim = ccb_h->path->bus->sim;
5430
5431 if (ccb_h->status & CAM_RELEASE_SIMQ) {
5432 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5433 xpt_release_simq(sim, /*run_queue*/FALSE);
5434 ccb_h->status &= ~CAM_RELEASE_SIMQ;
5435 }
5436
5437 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5438 && (ccb_h->status & CAM_DEV_QFRZN)) {
5439 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5440 ccb_h->status &= ~CAM_DEV_QFRZN;
5441 }
5442
5443 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5444 struct cam_ed *dev = ccb_h->path->device;
5445
5446 if (sim)
5447 devq = sim->devq;
5448 KASSERT(devq, ("sim missing for XPT_FC_USER_CCB request"));
5449
5450 mtx_lock(&devq->send_mtx);
5451 devq->send_active--;
5452 devq->send_openings++;
5453 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5454
5455 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5456 && (dev->ccbq.dev_active == 0))) {
5457 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5458 xpt_release_devq_device(dev, /*count*/1,
5459 /*run_queue*/FALSE);
5460 }
5461
5462 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5463 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5464 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5465 xpt_release_devq_device(dev, /*count*/1,
5466 /*run_queue*/FALSE);
5467 }
5468
5469 if (!device_is_queued(dev))
5470 (void)xpt_schedule_devq(devq, dev);
5471 xpt_run_devq(devq);
5472 mtx_unlock(&devq->send_mtx);
5473
5474 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5475 mtx = xpt_path_mtx(ccb_h->path);
5476 mtx_lock(mtx);
5477
5478 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5479 && (--dev->tag_delay_count == 0))
5480 xpt_start_tags(ccb_h->path);
5481 }
5482 }
5483
5484 if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5485 if (mtx == NULL) {
5486 mtx = xpt_path_mtx(ccb_h->path);
5487 mtx_lock(mtx);
5488 }
5489 } else {
5490 if (mtx != NULL) {
5491 mtx_unlock(mtx);
5492 mtx = NULL;
5493 }
5494 }
5495
5496 /* Call the peripheral driver's callback */
5497 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5498 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5499 if (mtx != NULL)
5500 mtx_unlock(mtx);
5501 }
5502
5503 void
5504 xpt_done_td(void *arg)
5505 {
5506 struct cam_doneq *queue = arg;
5507 struct ccb_hdr *ccb_h;
5508 STAILQ_HEAD(, ccb_hdr) doneq;
5509
5510 STAILQ_INIT(&doneq);
5511 mtx_lock(&queue->cam_doneq_mtx);
5512 while (1) {
5513 while (STAILQ_EMPTY(&queue->cam_doneq)) {
5514 queue->cam_doneq_sleep = 1;
5515 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5516 PRIBIO, "-", 0);
5517 queue->cam_doneq_sleep = 0;
5518 }
5519 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5520 mtx_unlock(&queue->cam_doneq_mtx);
5521
5522 THREAD_NO_SLEEPING();
5523 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5524 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5525 xpt_done_process(ccb_h);
5526 }
5527 THREAD_SLEEPING_OK();
5528
5529 mtx_lock(&queue->cam_doneq_mtx);
5530 }
5531 }
5532
5533 static void
5534 camisr_runqueue(void)
5535 {
5536 struct ccb_hdr *ccb_h;
5537 struct cam_doneq *queue;
5538 int i;
5539
5540 /* Process global queues. */
5541 for (i = 0; i < cam_num_doneqs; i++) {
5542 queue = &cam_doneqs[i];
5543 mtx_lock(&queue->cam_doneq_mtx);
5544 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5545 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5546 mtx_unlock(&queue->cam_doneq_mtx);
5547 xpt_done_process(ccb_h);
5548 mtx_lock(&queue->cam_doneq_mtx);
5549 }
5550 mtx_unlock(&queue->cam_doneq_mtx);
5551 }
5552 }
5553
5554 struct kv
5555 {
5556 uint32_t v;
5557 const char *name;
5558 };
5559
5560 static struct kv map[] = {
5561 { XPT_NOOP, "XPT_NOOP" },
5562 { XPT_SCSI_IO, "XPT_SCSI_IO" },
5563 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5564 { XPT_GDEVLIST, "XPT_GDEVLIST" },
5565 { XPT_PATH_INQ, "XPT_PATH_INQ" },
5566 { XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5567 { XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5568 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5569 { XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5570 { XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5571 { XPT_DEBUG, "XPT_DEBUG" },
5572 { XPT_PATH_STATS, "XPT_PATH_STATS" },
5573 { XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5574 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5575 { XPT_ASYNC, "XPT_ASYNC" },
5576 { XPT_ABORT, "XPT_ABORT" },
5577 { XPT_RESET_BUS, "XPT_RESET_BUS" },
5578 { XPT_RESET_DEV, "XPT_RESET_DEV" },
5579 { XPT_TERM_IO, "XPT_TERM_IO" },
5580 { XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5581 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5582 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5583 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5584 { XPT_ATA_IO, "XPT_ATA_IO" },
5585 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5586 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5587 { XPT_NVME_IO, "XPT_NVME_IO" },
5588 { XPT_MMC_IO, "XPT_MMC_IO" },
5589 { XPT_SMP_IO, "XPT_SMP_IO" },
5590 { XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5591 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5592 { XPT_ENG_INQ, "XPT_ENG_INQ" },
5593 { XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5594 { XPT_EN_LUN, "XPT_EN_LUN" },
5595 { XPT_TARGET_IO, "XPT_TARGET_IO" },
5596 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5597 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5598 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5599 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5600 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5601 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5602 { 0, 0 }
5603 };
5604
5605 const char *
5606 xpt_action_name(uint32_t action)
5607 {
5608 static char buffer[32]; /* Only for unknown messages -- racy */
5609 struct kv *walker = map;
5610
5611 while (walker->name != NULL) {
5612 if (walker->v == action)
5613 return (walker->name);
5614 walker++;
5615 }
5616
5617 snprintf(buffer, sizeof(buffer), "%#x", action);
5618 return (buffer);
5619 }
Cache object: 616c9913a79ea2b6fc0a0a73af841dfb
|