FreeBSD/Linux Kernel Cross Reference
sys/cam/cam_xpt.c
1 /*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include "opt_printf.h"
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73
74 #include <machine/stdarg.h> /* for xpt_print below */
75
76 #include "opt_cam.h"
77
78 /* Wild guess based on not wanting to grow the stack too much */
79 #define XPT_PRINT_MAXLEN 512
80 #ifdef PRINTF_BUFR_SIZE
81 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE
82 #else
83 #define XPT_PRINT_LEN 128
84 #endif
85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
86
87 /*
88 * This is the maximum number of high powered commands (e.g. start unit)
89 * that can be outstanding at a particular time.
90 */
91 #ifndef CAM_MAX_HIGHPOWER
92 #define CAM_MAX_HIGHPOWER 4
93 #endif
94
95 /* Datastructures internal to the xpt layer */
96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
100
101 struct xpt_softc {
102 uint32_t xpt_generation;
103
104 /* number of high powered commands that can go through right now */
105 struct mtx xpt_highpower_lock;
106 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq;
107 int num_highpower;
108
109 /* queue for handling async rescan requests. */
110 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
111 int buses_to_config;
112 int buses_config_done;
113 int announce_nosbuf;
114
115 /*
116 * Registered buses
117 *
118 * N.B., "busses" is an archaic spelling of "buses". In new code
119 * "buses" is preferred.
120 */
121 TAILQ_HEAD(,cam_eb) xpt_busses;
122 u_int bus_generation;
123
124 int boot_delay;
125 struct callout boot_callout;
126 struct task boot_task;
127 struct root_hold_token xpt_rootmount;
128
129 struct mtx xpt_topo_lock;
130 struct taskqueue *xpt_taskq;
131 };
132
133 typedef enum {
134 DM_RET_COPY = 0x01,
135 DM_RET_FLAG_MASK = 0x0f,
136 DM_RET_NONE = 0x00,
137 DM_RET_STOP = 0x10,
138 DM_RET_DESCEND = 0x20,
139 DM_RET_ERROR = 0x30,
140 DM_RET_ACTION_MASK = 0xf0
141 } dev_match_ret;
142
143 typedef enum {
144 XPT_DEPTH_BUS,
145 XPT_DEPTH_TARGET,
146 XPT_DEPTH_DEVICE,
147 XPT_DEPTH_PERIPH
148 } xpt_traverse_depth;
149
150 struct xpt_traverse_config {
151 xpt_traverse_depth depth;
152 void *tr_func;
153 void *tr_arg;
154 };
155
156 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
157 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
158 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
159 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
160 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
161
162 /* Transport layer configuration information */
163 static struct xpt_softc xsoftc;
164
165 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
166
167 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
168 &xsoftc.boot_delay, 0, "Bus registration wait time");
169 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
170 &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
171 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
172 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
173
174 struct cam_doneq {
175 struct mtx_padalign cam_doneq_mtx;
176 STAILQ_HEAD(, ccb_hdr) cam_doneq;
177 int cam_doneq_sleep;
178 };
179
180 static struct cam_doneq cam_doneqs[MAXCPU];
181 static u_int __read_mostly cam_num_doneqs;
182 static struct proc *cam_proc;
183
184 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
185 &cam_num_doneqs, 0, "Number of completion queues/threads");
186
187 struct cam_periph *xpt_periph;
188
189 static periph_init_t xpt_periph_init;
190
191 static struct periph_driver xpt_driver =
192 {
193 xpt_periph_init, "xpt",
194 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
195 CAM_PERIPH_DRV_EARLY
196 };
197
198 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
199
200 static d_open_t xptopen;
201 static d_close_t xptclose;
202 static d_ioctl_t xptioctl;
203 static d_ioctl_t xptdoioctl;
204
205 static struct cdevsw xpt_cdevsw = {
206 .d_version = D_VERSION,
207 .d_flags = 0,
208 .d_open = xptopen,
209 .d_close = xptclose,
210 .d_ioctl = xptioctl,
211 .d_name = "xpt",
212 };
213
214 /* Storage for debugging datastructures */
215 struct cam_path *cam_dpath;
216 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
217 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
218 &cam_dflags, 0, "Enabled debug flags");
219 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
220 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
221 &cam_debug_delay, 0, "Delay in us after each debug message");
222
223 /* Our boot-time initialization hook */
224 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
225
226 static moduledata_t cam_moduledata = {
227 "cam",
228 cam_module_event_handler,
229 NULL
230 };
231
232 static int xpt_init(void *);
233
234 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
235 MODULE_VERSION(cam, 1);
236
237 static void xpt_async_bcast(struct async_list *async_head,
238 u_int32_t async_code,
239 struct cam_path *path,
240 void *async_arg);
241 static path_id_t xptnextfreepathid(void);
242 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
243 static union ccb *xpt_get_ccb(struct cam_periph *periph);
244 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
245 static void xpt_run_allocq(struct cam_periph *periph, int sleep);
246 static void xpt_run_allocq_task(void *context, int pending);
247 static void xpt_run_devq(struct cam_devq *devq);
248 static callout_func_t xpt_release_devq_timeout;
249 static void xpt_acquire_bus(struct cam_eb *bus);
250 static void xpt_release_bus(struct cam_eb *bus);
251 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
252 static int xpt_release_devq_device(struct cam_ed *dev, u_int count,
253 int run_queue);
254 static struct cam_et*
255 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
256 static void xpt_acquire_target(struct cam_et *target);
257 static void xpt_release_target(struct cam_et *target);
258 static struct cam_eb*
259 xpt_find_bus(path_id_t path_id);
260 static struct cam_et*
261 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
262 static struct cam_ed*
263 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
264 static void xpt_config(void *arg);
265 static void xpt_hold_boot_locked(void);
266 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
267 u_int32_t new_priority);
268 static xpt_devicefunc_t xptpassannouncefunc;
269 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
270 static void xptpoll(struct cam_sim *sim);
271 static void camisr_runqueue(void);
272 static void xpt_done_process(struct ccb_hdr *ccb_h);
273 static void xpt_done_td(void *);
274 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
275 u_int num_patterns, struct cam_eb *bus);
276 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
277 u_int num_patterns,
278 struct cam_ed *device);
279 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
280 u_int num_patterns,
281 struct cam_periph *periph);
282 static xpt_busfunc_t xptedtbusfunc;
283 static xpt_targetfunc_t xptedttargetfunc;
284 static xpt_devicefunc_t xptedtdevicefunc;
285 static xpt_periphfunc_t xptedtperiphfunc;
286 static xpt_pdrvfunc_t xptplistpdrvfunc;
287 static xpt_periphfunc_t xptplistperiphfunc;
288 static int xptedtmatch(struct ccb_dev_match *cdm);
289 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
290 static int xptbustraverse(struct cam_eb *start_bus,
291 xpt_busfunc_t *tr_func, void *arg);
292 static int xpttargettraverse(struct cam_eb *bus,
293 struct cam_et *start_target,
294 xpt_targetfunc_t *tr_func, void *arg);
295 static int xptdevicetraverse(struct cam_et *target,
296 struct cam_ed *start_device,
297 xpt_devicefunc_t *tr_func, void *arg);
298 static int xptperiphtraverse(struct cam_ed *device,
299 struct cam_periph *start_periph,
300 xpt_periphfunc_t *tr_func, void *arg);
301 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
302 xpt_pdrvfunc_t *tr_func, void *arg);
303 static int xptpdperiphtraverse(struct periph_driver **pdrv,
304 struct cam_periph *start_periph,
305 xpt_periphfunc_t *tr_func,
306 void *arg);
307 static xpt_busfunc_t xptdefbusfunc;
308 static xpt_targetfunc_t xptdeftargetfunc;
309 static xpt_devicefunc_t xptdefdevicefunc;
310 static xpt_periphfunc_t xptdefperiphfunc;
311 static void xpt_finishconfig_task(void *context, int pending);
312 static void xpt_dev_async_default(u_int32_t async_code,
313 struct cam_eb *bus,
314 struct cam_et *target,
315 struct cam_ed *device,
316 void *async_arg);
317 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
318 struct cam_et *target,
319 lun_id_t lun_id);
320 static xpt_devicefunc_t xptsetasyncfunc;
321 static xpt_busfunc_t xptsetasyncbusfunc;
322 static cam_status xptregister(struct cam_periph *periph,
323 void *arg);
324
325 static __inline int
326 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
327 {
328 int retval;
329
330 mtx_assert(&devq->send_mtx, MA_OWNED);
331 if ((dev->ccbq.queue.entries > 0) &&
332 (dev->ccbq.dev_openings > 0) &&
333 (dev->ccbq.queue.qfrozen_cnt == 0)) {
334 /*
335 * The priority of a device waiting for controller
336 * resources is that of the highest priority CCB
337 * enqueued.
338 */
339 retval =
340 xpt_schedule_dev(&devq->send_queue,
341 &dev->devq_entry,
342 CAMQ_GET_PRIO(&dev->ccbq.queue));
343 } else {
344 retval = 0;
345 }
346 return (retval);
347 }
348
349 static __inline int
350 device_is_queued(struct cam_ed *device)
351 {
352 return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
353 }
354
355 static void
356 xpt_periph_init(void)
357 {
358 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
359 }
360
361 static int
362 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
363 {
364
365 /*
366 * Only allow read-write access.
367 */
368 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
369 return(EPERM);
370
371 /*
372 * We don't allow nonblocking access.
373 */
374 if ((flags & O_NONBLOCK) != 0) {
375 printf("%s: can't do nonblocking access\n", devtoname(dev));
376 return(ENODEV);
377 }
378
379 return(0);
380 }
381
382 static int
383 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
384 {
385
386 return(0);
387 }
388
389 /*
390 * Don't automatically grab the xpt softc lock here even though this is going
391 * through the xpt device. The xpt device is really just a back door for
392 * accessing other devices and SIMs, so the right thing to do is to grab
393 * the appropriate SIM lock once the bus/SIM is located.
394 */
395 static int
396 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
397 {
398 int error;
399
400 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
401 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
402 }
403 return (error);
404 }
405
406 static int
407 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
408 {
409 int error;
410
411 error = 0;
412
413 switch(cmd) {
414 /*
415 * For the transport layer CAMIOCOMMAND ioctl, we really only want
416 * to accept CCB types that don't quite make sense to send through a
417 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
418 * in the CAM spec.
419 */
420 case CAMIOCOMMAND: {
421 union ccb *ccb;
422 union ccb *inccb;
423 struct cam_eb *bus;
424
425 inccb = (union ccb *)addr;
426 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
427 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
428 inccb->csio.bio = NULL;
429 #endif
430
431 if (inccb->ccb_h.flags & CAM_UNLOCKED)
432 return (EINVAL);
433
434 bus = xpt_find_bus(inccb->ccb_h.path_id);
435 if (bus == NULL)
436 return (EINVAL);
437
438 switch (inccb->ccb_h.func_code) {
439 case XPT_SCAN_BUS:
440 case XPT_RESET_BUS:
441 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
442 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
443 xpt_release_bus(bus);
444 return (EINVAL);
445 }
446 break;
447 case XPT_SCAN_TGT:
448 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
449 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
450 xpt_release_bus(bus);
451 return (EINVAL);
452 }
453 break;
454 default:
455 break;
456 }
457
458 switch(inccb->ccb_h.func_code) {
459 case XPT_SCAN_BUS:
460 case XPT_RESET_BUS:
461 case XPT_PATH_INQ:
462 case XPT_ENG_INQ:
463 case XPT_SCAN_LUN:
464 case XPT_SCAN_TGT:
465
466 ccb = xpt_alloc_ccb();
467
468 /*
469 * Create a path using the bus, target, and lun the
470 * user passed in.
471 */
472 if (xpt_create_path(&ccb->ccb_h.path, NULL,
473 inccb->ccb_h.path_id,
474 inccb->ccb_h.target_id,
475 inccb->ccb_h.target_lun) !=
476 CAM_REQ_CMP){
477 error = EINVAL;
478 xpt_free_ccb(ccb);
479 break;
480 }
481 /* Ensure all of our fields are correct */
482 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
483 inccb->ccb_h.pinfo.priority);
484 xpt_merge_ccb(ccb, inccb);
485 xpt_path_lock(ccb->ccb_h.path);
486 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
487 xpt_path_unlock(ccb->ccb_h.path);
488 bcopy(ccb, inccb, sizeof(union ccb));
489 xpt_free_path(ccb->ccb_h.path);
490 xpt_free_ccb(ccb);
491 break;
492
493 case XPT_DEBUG: {
494 union ccb ccb;
495
496 /*
497 * This is an immediate CCB, so it's okay to
498 * allocate it on the stack.
499 */
500
501 /*
502 * Create a path using the bus, target, and lun the
503 * user passed in.
504 */
505 if (xpt_create_path(&ccb.ccb_h.path, NULL,
506 inccb->ccb_h.path_id,
507 inccb->ccb_h.target_id,
508 inccb->ccb_h.target_lun) !=
509 CAM_REQ_CMP){
510 error = EINVAL;
511 break;
512 }
513 /* Ensure all of our fields are correct */
514 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
515 inccb->ccb_h.pinfo.priority);
516 xpt_merge_ccb(&ccb, inccb);
517 xpt_action(&ccb);
518 bcopy(&ccb, inccb, sizeof(union ccb));
519 xpt_free_path(ccb.ccb_h.path);
520 break;
521 }
522 case XPT_DEV_MATCH: {
523 struct cam_periph_map_info mapinfo;
524 struct cam_path *old_path;
525
526 /*
527 * We can't deal with physical addresses for this
528 * type of transaction.
529 */
530 if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
531 CAM_DATA_VADDR) {
532 error = EINVAL;
533 break;
534 }
535
536 /*
537 * Save this in case the caller had it set to
538 * something in particular.
539 */
540 old_path = inccb->ccb_h.path;
541
542 /*
543 * We really don't need a path for the matching
544 * code. The path is needed because of the
545 * debugging statements in xpt_action(). They
546 * assume that the CCB has a valid path.
547 */
548 inccb->ccb_h.path = xpt_periph->path;
549
550 bzero(&mapinfo, sizeof(mapinfo));
551
552 /*
553 * Map the pattern and match buffers into kernel
554 * virtual address space.
555 */
556 error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
557
558 if (error) {
559 inccb->ccb_h.path = old_path;
560 break;
561 }
562
563 /*
564 * This is an immediate CCB, we can send it on directly.
565 */
566 xpt_action(inccb);
567
568 /*
569 * Map the buffers back into user space.
570 */
571 cam_periph_unmapmem(inccb, &mapinfo);
572
573 inccb->ccb_h.path = old_path;
574
575 error = 0;
576 break;
577 }
578 default:
579 error = ENOTSUP;
580 break;
581 }
582 xpt_release_bus(bus);
583 break;
584 }
585 /*
586 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
587 * with the periphal driver name and unit name filled in. The other
588 * fields don't really matter as input. The passthrough driver name
589 * ("pass"), and unit number are passed back in the ccb. The current
590 * device generation number, and the index into the device peripheral
591 * driver list, and the status are also passed back. Note that
592 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
593 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
594 * (or rather should be) impossible for the device peripheral driver
595 * list to change since we look at the whole thing in one pass, and
596 * we do it with lock protection.
597 *
598 */
599 case CAMGETPASSTHRU: {
600 union ccb *ccb;
601 struct cam_periph *periph;
602 struct periph_driver **p_drv;
603 char *name;
604 u_int unit;
605 int base_periph_found;
606
607 ccb = (union ccb *)addr;
608 unit = ccb->cgdl.unit_number;
609 name = ccb->cgdl.periph_name;
610 base_periph_found = 0;
611 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
612 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
613 ccb->csio.bio = NULL;
614 #endif
615
616 /*
617 * Sanity check -- make sure we don't get a null peripheral
618 * driver name.
619 */
620 if (*ccb->cgdl.periph_name == '\0') {
621 error = EINVAL;
622 break;
623 }
624
625 /* Keep the list from changing while we traverse it */
626 xpt_lock_buses();
627
628 /* first find our driver in the list of drivers */
629 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
630 if (strcmp((*p_drv)->driver_name, name) == 0)
631 break;
632
633 if (*p_drv == NULL) {
634 xpt_unlock_buses();
635 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
636 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
637 *ccb->cgdl.periph_name = '\0';
638 ccb->cgdl.unit_number = 0;
639 error = ENOENT;
640 break;
641 }
642
643 /*
644 * Run through every peripheral instance of this driver
645 * and check to see whether it matches the unit passed
646 * in by the user. If it does, get out of the loops and
647 * find the passthrough driver associated with that
648 * peripheral driver.
649 */
650 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
651 periph = TAILQ_NEXT(periph, unit_links)) {
652 if (periph->unit_number == unit)
653 break;
654 }
655 /*
656 * If we found the peripheral driver that the user passed
657 * in, go through all of the peripheral drivers for that
658 * particular device and look for a passthrough driver.
659 */
660 if (periph != NULL) {
661 struct cam_ed *device;
662 int i;
663
664 base_periph_found = 1;
665 device = periph->path->device;
666 for (i = 0, periph = SLIST_FIRST(&device->periphs);
667 periph != NULL;
668 periph = SLIST_NEXT(periph, periph_links), i++) {
669 /*
670 * Check to see whether we have a
671 * passthrough device or not.
672 */
673 if (strcmp(periph->periph_name, "pass") == 0) {
674 /*
675 * Fill in the getdevlist fields.
676 */
677 strlcpy(ccb->cgdl.periph_name,
678 periph->periph_name,
679 sizeof(ccb->cgdl.periph_name));
680 ccb->cgdl.unit_number =
681 periph->unit_number;
682 if (SLIST_NEXT(periph, periph_links))
683 ccb->cgdl.status =
684 CAM_GDEVLIST_MORE_DEVS;
685 else
686 ccb->cgdl.status =
687 CAM_GDEVLIST_LAST_DEVICE;
688 ccb->cgdl.generation =
689 device->generation;
690 ccb->cgdl.index = i;
691 /*
692 * Fill in some CCB header fields
693 * that the user may want.
694 */
695 ccb->ccb_h.path_id =
696 periph->path->bus->path_id;
697 ccb->ccb_h.target_id =
698 periph->path->target->target_id;
699 ccb->ccb_h.target_lun =
700 periph->path->device->lun_id;
701 ccb->ccb_h.status = CAM_REQ_CMP;
702 break;
703 }
704 }
705 }
706
707 /*
708 * If the periph is null here, one of two things has
709 * happened. The first possibility is that we couldn't
710 * find the unit number of the particular peripheral driver
711 * that the user is asking about. e.g. the user asks for
712 * the passthrough driver for "da11". We find the list of
713 * "da" peripherals all right, but there is no unit 11.
714 * The other possibility is that we went through the list
715 * of peripheral drivers attached to the device structure,
716 * but didn't find one with the name "pass". Either way,
717 * we return ENOENT, since we couldn't find something.
718 */
719 if (periph == NULL) {
720 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
721 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
722 *ccb->cgdl.periph_name = '\0';
723 ccb->cgdl.unit_number = 0;
724 error = ENOENT;
725 /*
726 * It is unfortunate that this is even necessary,
727 * but there are many, many clueless users out there.
728 * If this is true, the user is looking for the
729 * passthrough driver, but doesn't have one in his
730 * kernel.
731 */
732 if (base_periph_found == 1) {
733 printf("xptioctl: pass driver is not in the "
734 "kernel\n");
735 printf("xptioctl: put \"device pass\" in "
736 "your kernel config file\n");
737 }
738 }
739 xpt_unlock_buses();
740 break;
741 }
742 default:
743 error = ENOTTY;
744 break;
745 }
746
747 return(error);
748 }
749
750 static int
751 cam_module_event_handler(module_t mod, int what, void *arg)
752 {
753 int error;
754
755 switch (what) {
756 case MOD_LOAD:
757 if ((error = xpt_init(NULL)) != 0)
758 return (error);
759 break;
760 case MOD_UNLOAD:
761 return EBUSY;
762 default:
763 return EOPNOTSUPP;
764 }
765
766 return 0;
767 }
768
769 static struct xpt_proto *
770 xpt_proto_find(cam_proto proto)
771 {
772 struct xpt_proto **pp;
773
774 SET_FOREACH(pp, cam_xpt_proto_set) {
775 if ((*pp)->proto == proto)
776 return *pp;
777 }
778
779 return NULL;
780 }
781
782 static void
783 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
784 {
785
786 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
787 xpt_free_path(done_ccb->ccb_h.path);
788 xpt_free_ccb(done_ccb);
789 } else {
790 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
791 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
792 }
793 xpt_release_boot();
794 }
795
796 /* thread to handle bus rescans */
797 static void
798 xpt_scanner_thread(void *dummy)
799 {
800 union ccb *ccb;
801 struct mtx *mtx;
802 struct cam_ed *device;
803
804 xpt_lock_buses();
805 for (;;) {
806 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
807 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
808 "-", 0);
809 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
810 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
811 xpt_unlock_buses();
812
813 /*
814 * We need to lock the device's mutex which we use as
815 * the path mutex. We can't do it directly because the
816 * cam_path in the ccb may wind up going away because
817 * the path lock may be dropped and the path retired in
818 * the completion callback. We do this directly to keep
819 * the reference counts in cam_path sane. We also have
820 * to copy the device pointer because ccb_h.path may
821 * be freed in the callback.
822 */
823 mtx = xpt_path_mtx(ccb->ccb_h.path);
824 device = ccb->ccb_h.path->device;
825 xpt_acquire_device(device);
826 mtx_lock(mtx);
827 xpt_action(ccb);
828 mtx_unlock(mtx);
829 xpt_release_device(device);
830
831 xpt_lock_buses();
832 }
833 }
834 }
835
836 void
837 xpt_rescan(union ccb *ccb)
838 {
839 struct ccb_hdr *hdr;
840
841 /* Prepare request */
842 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
843 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
844 ccb->ccb_h.func_code = XPT_SCAN_BUS;
845 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
846 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
847 ccb->ccb_h.func_code = XPT_SCAN_TGT;
848 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
849 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
850 ccb->ccb_h.func_code = XPT_SCAN_LUN;
851 else {
852 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
853 xpt_free_path(ccb->ccb_h.path);
854 xpt_free_ccb(ccb);
855 return;
856 }
857 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
858 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
859 xpt_action_name(ccb->ccb_h.func_code)));
860
861 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
862 ccb->ccb_h.cbfcnp = xpt_rescan_done;
863 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
864 /* Don't make duplicate entries for the same paths. */
865 xpt_lock_buses();
866 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
867 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
868 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
869 wakeup(&xsoftc.ccb_scanq);
870 xpt_unlock_buses();
871 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
872 xpt_free_path(ccb->ccb_h.path);
873 xpt_free_ccb(ccb);
874 return;
875 }
876 }
877 }
878 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
879 xpt_hold_boot_locked();
880 wakeup(&xsoftc.ccb_scanq);
881 xpt_unlock_buses();
882 }
883
884 /* Functions accessed by the peripheral drivers */
885 static int
886 xpt_init(void *dummy)
887 {
888 struct cam_sim *xpt_sim;
889 struct cam_path *path;
890 struct cam_devq *devq;
891 cam_status status;
892 int error, i;
893
894 TAILQ_INIT(&xsoftc.xpt_busses);
895 TAILQ_INIT(&xsoftc.ccb_scanq);
896 STAILQ_INIT(&xsoftc.highpowerq);
897 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
898
899 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
900 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
901 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
902
903 #ifdef CAM_BOOT_DELAY
904 /*
905 * Override this value at compile time to assist our users
906 * who don't use loader to boot a kernel.
907 */
908 xsoftc.boot_delay = CAM_BOOT_DELAY;
909 #endif
910
911 /*
912 * The xpt layer is, itself, the equivalent of a SIM.
913 * Allow 16 ccbs in the ccb pool for it. This should
914 * give decent parallelism when we probe buses and
915 * perform other XPT functions.
916 */
917 devq = cam_simq_alloc(16);
918 xpt_sim = cam_sim_alloc(xptaction,
919 xptpoll,
920 "xpt",
921 /*softc*/NULL,
922 /*unit*/0,
923 /*mtx*/NULL,
924 /*max_dev_transactions*/0,
925 /*max_tagged_dev_transactions*/0,
926 devq);
927 if (xpt_sim == NULL)
928 return (ENOMEM);
929
930 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
931 printf("xpt_init: xpt_bus_register failed with status %#x,"
932 " failing attach\n", status);
933 return (EINVAL);
934 }
935
936 /*
937 * Looking at the XPT from the SIM layer, the XPT is
938 * the equivalent of a peripheral driver. Allocate
939 * a peripheral driver entry for us.
940 */
941 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
942 CAM_TARGET_WILDCARD,
943 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
944 printf("xpt_init: xpt_create_path failed with status %#x,"
945 " failing attach\n", status);
946 return (EINVAL);
947 }
948 xpt_path_lock(path);
949 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
950 path, NULL, 0, xpt_sim);
951 xpt_path_unlock(path);
952 xpt_free_path(path);
953
954 if (cam_num_doneqs < 1)
955 cam_num_doneqs = 1 + mp_ncpus / 6;
956 else if (cam_num_doneqs > MAXCPU)
957 cam_num_doneqs = MAXCPU;
958 for (i = 0; i < cam_num_doneqs; i++) {
959 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
960 MTX_DEF);
961 STAILQ_INIT(&cam_doneqs[i].cam_doneq);
962 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
963 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
964 if (error != 0) {
965 cam_num_doneqs = i;
966 break;
967 }
968 }
969 if (cam_num_doneqs < 1) {
970 printf("xpt_init: Cannot init completion queues "
971 "- failing attach\n");
972 return (ENOMEM);
973 }
974
975 /*
976 * Register a callback for when interrupts are enabled.
977 */
978 config_intrhook_oneshot(xpt_config, NULL);
979
980 return (0);
981 }
982
983 static cam_status
984 xptregister(struct cam_periph *periph, void *arg)
985 {
986 struct cam_sim *xpt_sim;
987
988 if (periph == NULL) {
989 printf("xptregister: periph was NULL!!\n");
990 return(CAM_REQ_CMP_ERR);
991 }
992
993 xpt_sim = (struct cam_sim *)arg;
994 xpt_sim->softc = periph;
995 xpt_periph = periph;
996 periph->softc = NULL;
997
998 return(CAM_REQ_CMP);
999 }
1000
1001 int32_t
1002 xpt_add_periph(struct cam_periph *periph)
1003 {
1004 struct cam_ed *device;
1005 int32_t status;
1006
1007 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1008 device = periph->path->device;
1009 status = CAM_REQ_CMP;
1010 if (device != NULL) {
1011 mtx_lock(&device->target->bus->eb_mtx);
1012 device->generation++;
1013 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1014 mtx_unlock(&device->target->bus->eb_mtx);
1015 atomic_add_32(&xsoftc.xpt_generation, 1);
1016 }
1017
1018 return (status);
1019 }
1020
1021 void
1022 xpt_remove_periph(struct cam_periph *periph)
1023 {
1024 struct cam_ed *device;
1025
1026 device = periph->path->device;
1027 if (device != NULL) {
1028 mtx_lock(&device->target->bus->eb_mtx);
1029 device->generation++;
1030 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1031 mtx_unlock(&device->target->bus->eb_mtx);
1032 atomic_add_32(&xsoftc.xpt_generation, 1);
1033 }
1034 }
1035
1036 void
1037 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1038 {
1039 struct cam_path *path = periph->path;
1040 struct xpt_proto *proto;
1041
1042 cam_periph_assert(periph, MA_OWNED);
1043 periph->flags |= CAM_PERIPH_ANNOUNCED;
1044
1045 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1046 periph->periph_name, periph->unit_number,
1047 path->bus->sim->sim_name,
1048 path->bus->sim->unit_number,
1049 path->bus->sim->bus_id,
1050 path->bus->path_id,
1051 path->target->target_id,
1052 (uintmax_t)path->device->lun_id);
1053 printf("%s%d: ", periph->periph_name, periph->unit_number);
1054 proto = xpt_proto_find(path->device->protocol);
1055 if (proto)
1056 proto->ops->announce(path->device);
1057 else
1058 printf("%s%d: Unknown protocol device %d\n",
1059 periph->periph_name, periph->unit_number,
1060 path->device->protocol);
1061 if (path->device->serial_num_len > 0) {
1062 /* Don't wrap the screen - print only the first 60 chars */
1063 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1064 periph->unit_number, path->device->serial_num);
1065 }
1066 /* Announce transport details. */
1067 path->bus->xport->ops->announce(periph);
1068 /* Announce command queueing. */
1069 if (path->device->inq_flags & SID_CmdQue
1070 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1071 printf("%s%d: Command Queueing enabled\n",
1072 periph->periph_name, periph->unit_number);
1073 }
1074 /* Announce caller's details if they've passed in. */
1075 if (announce_string != NULL)
1076 printf("%s%d: %s\n", periph->periph_name,
1077 periph->unit_number, announce_string);
1078 }
1079
1080 void
1081 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1082 char *announce_string)
1083 {
1084 struct cam_path *path = periph->path;
1085 struct xpt_proto *proto;
1086
1087 cam_periph_assert(periph, MA_OWNED);
1088 periph->flags |= CAM_PERIPH_ANNOUNCED;
1089
1090 /* Fall back to the non-sbuf method if necessary */
1091 if (xsoftc.announce_nosbuf != 0) {
1092 xpt_announce_periph(periph, announce_string);
1093 return;
1094 }
1095 proto = xpt_proto_find(path->device->protocol);
1096 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1097 (path->bus->xport->ops->announce_sbuf == NULL)) {
1098 xpt_announce_periph(periph, announce_string);
1099 return;
1100 }
1101
1102 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1103 periph->periph_name, periph->unit_number,
1104 path->bus->sim->sim_name,
1105 path->bus->sim->unit_number,
1106 path->bus->sim->bus_id,
1107 path->bus->path_id,
1108 path->target->target_id,
1109 (uintmax_t)path->device->lun_id);
1110 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1111
1112 if (proto)
1113 proto->ops->announce_sbuf(path->device, sb);
1114 else
1115 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1116 periph->periph_name, periph->unit_number,
1117 path->device->protocol);
1118 if (path->device->serial_num_len > 0) {
1119 /* Don't wrap the screen - print only the first 60 chars */
1120 sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1121 periph->periph_name, periph->unit_number,
1122 path->device->serial_num);
1123 }
1124 /* Announce transport details. */
1125 path->bus->xport->ops->announce_sbuf(periph, sb);
1126 /* Announce command queueing. */
1127 if (path->device->inq_flags & SID_CmdQue
1128 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1129 sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1130 periph->periph_name, periph->unit_number);
1131 }
1132 /* Announce caller's details if they've passed in. */
1133 if (announce_string != NULL)
1134 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1135 periph->unit_number, announce_string);
1136 }
1137
1138 void
1139 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1140 {
1141 if (quirks != 0) {
1142 printf("%s%d: quirks=0x%b\n", periph->periph_name,
1143 periph->unit_number, quirks, bit_string);
1144 }
1145 }
1146
1147 void
1148 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1149 int quirks, char *bit_string)
1150 {
1151 if (xsoftc.announce_nosbuf != 0) {
1152 xpt_announce_quirks(periph, quirks, bit_string);
1153 return;
1154 }
1155
1156 if (quirks != 0) {
1157 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1158 periph->unit_number, quirks, bit_string);
1159 }
1160 }
1161
1162 void
1163 xpt_denounce_periph(struct cam_periph *periph)
1164 {
1165 struct cam_path *path = periph->path;
1166 struct xpt_proto *proto;
1167
1168 cam_periph_assert(periph, MA_OWNED);
1169 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1170 periph->periph_name, periph->unit_number,
1171 path->bus->sim->sim_name,
1172 path->bus->sim->unit_number,
1173 path->bus->sim->bus_id,
1174 path->bus->path_id,
1175 path->target->target_id,
1176 (uintmax_t)path->device->lun_id);
1177 printf("%s%d: ", periph->periph_name, periph->unit_number);
1178 proto = xpt_proto_find(path->device->protocol);
1179 if (proto)
1180 proto->ops->denounce(path->device);
1181 else
1182 printf("%s%d: Unknown protocol device %d\n",
1183 periph->periph_name, periph->unit_number,
1184 path->device->protocol);
1185 if (path->device->serial_num_len > 0)
1186 printf(" s/n %.60s", path->device->serial_num);
1187 printf(" detached\n");
1188 }
1189
1190 void
1191 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1192 {
1193 struct cam_path *path = periph->path;
1194 struct xpt_proto *proto;
1195
1196 cam_periph_assert(periph, MA_OWNED);
1197
1198 /* Fall back to the non-sbuf method if necessary */
1199 if (xsoftc.announce_nosbuf != 0) {
1200 xpt_denounce_periph(periph);
1201 return;
1202 }
1203 proto = xpt_proto_find(path->device->protocol);
1204 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1205 xpt_denounce_periph(periph);
1206 return;
1207 }
1208
1209 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1210 periph->periph_name, periph->unit_number,
1211 path->bus->sim->sim_name,
1212 path->bus->sim->unit_number,
1213 path->bus->sim->bus_id,
1214 path->bus->path_id,
1215 path->target->target_id,
1216 (uintmax_t)path->device->lun_id);
1217 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1218
1219 if (proto)
1220 proto->ops->denounce_sbuf(path->device, sb);
1221 else
1222 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1223 periph->periph_name, periph->unit_number,
1224 path->device->protocol);
1225 if (path->device->serial_num_len > 0)
1226 sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1227 sbuf_printf(sb, " detached\n");
1228 }
1229
1230 int
1231 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1232 {
1233 int ret = -1, l, o;
1234 struct ccb_dev_advinfo cdai;
1235 struct scsi_vpd_device_id *did;
1236 struct scsi_vpd_id_descriptor *idd;
1237
1238 xpt_path_assert(path, MA_OWNED);
1239
1240 memset(&cdai, 0, sizeof(cdai));
1241 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1242 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1243 cdai.flags = CDAI_FLAG_NONE;
1244 cdai.bufsiz = len;
1245 cdai.buf = buf;
1246
1247 if (!strcmp(attr, "GEOM::ident"))
1248 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1249 else if (!strcmp(attr, "GEOM::physpath"))
1250 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1251 else if (strcmp(attr, "GEOM::lunid") == 0 ||
1252 strcmp(attr, "GEOM::lunname") == 0) {
1253 cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1254 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1255 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1256 if (cdai.buf == NULL) {
1257 ret = ENOMEM;
1258 goto out;
1259 }
1260 } else
1261 goto out;
1262
1263 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1264 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1265 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1266 if (cdai.provsiz == 0)
1267 goto out;
1268 switch(cdai.buftype) {
1269 case CDAI_TYPE_SCSI_DEVID:
1270 did = (struct scsi_vpd_device_id *)cdai.buf;
1271 if (strcmp(attr, "GEOM::lunid") == 0) {
1272 idd = scsi_get_devid(did, cdai.provsiz,
1273 scsi_devid_is_lun_naa);
1274 if (idd == NULL)
1275 idd = scsi_get_devid(did, cdai.provsiz,
1276 scsi_devid_is_lun_eui64);
1277 if (idd == NULL)
1278 idd = scsi_get_devid(did, cdai.provsiz,
1279 scsi_devid_is_lun_uuid);
1280 if (idd == NULL)
1281 idd = scsi_get_devid(did, cdai.provsiz,
1282 scsi_devid_is_lun_md5);
1283 } else
1284 idd = NULL;
1285
1286 if (idd == NULL)
1287 idd = scsi_get_devid(did, cdai.provsiz,
1288 scsi_devid_is_lun_t10);
1289 if (idd == NULL)
1290 idd = scsi_get_devid(did, cdai.provsiz,
1291 scsi_devid_is_lun_name);
1292 if (idd == NULL)
1293 break;
1294
1295 ret = 0;
1296 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1297 SVPD_ID_CODESET_ASCII) {
1298 if (idd->length < len) {
1299 for (l = 0; l < idd->length; l++)
1300 buf[l] = idd->identifier[l] ?
1301 idd->identifier[l] : ' ';
1302 buf[l] = 0;
1303 } else
1304 ret = EFAULT;
1305 break;
1306 }
1307 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1308 SVPD_ID_CODESET_UTF8) {
1309 l = strnlen(idd->identifier, idd->length);
1310 if (l < len) {
1311 bcopy(idd->identifier, buf, l);
1312 buf[l] = 0;
1313 } else
1314 ret = EFAULT;
1315 break;
1316 }
1317 if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1318 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1319 if ((idd->length - 2) * 2 + 4 >= len) {
1320 ret = EFAULT;
1321 break;
1322 }
1323 for (l = 2, o = 0; l < idd->length; l++) {
1324 if (l == 6 || l == 8 || l == 10 || l == 12)
1325 o += sprintf(buf + o, "-");
1326 o += sprintf(buf + o, "%02x",
1327 idd->identifier[l]);
1328 }
1329 break;
1330 }
1331 if (idd->length * 2 < len) {
1332 for (l = 0; l < idd->length; l++)
1333 sprintf(buf + l * 2, "%02x",
1334 idd->identifier[l]);
1335 } else
1336 ret = EFAULT;
1337 break;
1338 default:
1339 if (cdai.provsiz < len) {
1340 cdai.buf[cdai.provsiz] = 0;
1341 ret = 0;
1342 } else
1343 ret = EFAULT;
1344 break;
1345 }
1346
1347 out:
1348 if ((char *)cdai.buf != buf)
1349 free(cdai.buf, M_CAMXPT);
1350 return ret;
1351 }
1352
1353 static dev_match_ret
1354 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1355 struct cam_eb *bus)
1356 {
1357 dev_match_ret retval;
1358 u_int i;
1359
1360 retval = DM_RET_NONE;
1361
1362 /*
1363 * If we aren't given something to match against, that's an error.
1364 */
1365 if (bus == NULL)
1366 return(DM_RET_ERROR);
1367
1368 /*
1369 * If there are no match entries, then this bus matches no
1370 * matter what.
1371 */
1372 if ((patterns == NULL) || (num_patterns == 0))
1373 return(DM_RET_DESCEND | DM_RET_COPY);
1374
1375 for (i = 0; i < num_patterns; i++) {
1376 struct bus_match_pattern *cur_pattern;
1377
1378 /*
1379 * If the pattern in question isn't for a bus node, we
1380 * aren't interested. However, we do indicate to the
1381 * calling routine that we should continue descending the
1382 * tree, since the user wants to match against lower-level
1383 * EDT elements.
1384 */
1385 if (patterns[i].type != DEV_MATCH_BUS) {
1386 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1387 retval |= DM_RET_DESCEND;
1388 continue;
1389 }
1390
1391 cur_pattern = &patterns[i].pattern.bus_pattern;
1392
1393 /*
1394 * If they want to match any bus node, we give them any
1395 * device node.
1396 */
1397 if (cur_pattern->flags == BUS_MATCH_ANY) {
1398 /* set the copy flag */
1399 retval |= DM_RET_COPY;
1400
1401 /*
1402 * If we've already decided on an action, go ahead
1403 * and return.
1404 */
1405 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1406 return(retval);
1407 }
1408
1409 /*
1410 * Not sure why someone would do this...
1411 */
1412 if (cur_pattern->flags == BUS_MATCH_NONE)
1413 continue;
1414
1415 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1416 && (cur_pattern->path_id != bus->path_id))
1417 continue;
1418
1419 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1420 && (cur_pattern->bus_id != bus->sim->bus_id))
1421 continue;
1422
1423 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1424 && (cur_pattern->unit_number != bus->sim->unit_number))
1425 continue;
1426
1427 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1428 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1429 DEV_IDLEN) != 0))
1430 continue;
1431
1432 /*
1433 * If we get to this point, the user definitely wants
1434 * information on this bus. So tell the caller to copy the
1435 * data out.
1436 */
1437 retval |= DM_RET_COPY;
1438
1439 /*
1440 * If the return action has been set to descend, then we
1441 * know that we've already seen a non-bus matching
1442 * expression, therefore we need to further descend the tree.
1443 * This won't change by continuing around the loop, so we
1444 * go ahead and return. If we haven't seen a non-bus
1445 * matching expression, we keep going around the loop until
1446 * we exhaust the matching expressions. We'll set the stop
1447 * flag once we fall out of the loop.
1448 */
1449 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1450 return(retval);
1451 }
1452
1453 /*
1454 * If the return action hasn't been set to descend yet, that means
1455 * we haven't seen anything other than bus matching patterns. So
1456 * tell the caller to stop descending the tree -- the user doesn't
1457 * want to match against lower level tree elements.
1458 */
1459 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1460 retval |= DM_RET_STOP;
1461
1462 return(retval);
1463 }
1464
1465 static dev_match_ret
1466 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1467 struct cam_ed *device)
1468 {
1469 dev_match_ret retval;
1470 u_int i;
1471
1472 retval = DM_RET_NONE;
1473
1474 /*
1475 * If we aren't given something to match against, that's an error.
1476 */
1477 if (device == NULL)
1478 return(DM_RET_ERROR);
1479
1480 /*
1481 * If there are no match entries, then this device matches no
1482 * matter what.
1483 */
1484 if ((patterns == NULL) || (num_patterns == 0))
1485 return(DM_RET_DESCEND | DM_RET_COPY);
1486
1487 for (i = 0; i < num_patterns; i++) {
1488 struct device_match_pattern *cur_pattern;
1489 struct scsi_vpd_device_id *device_id_page;
1490
1491 /*
1492 * If the pattern in question isn't for a device node, we
1493 * aren't interested.
1494 */
1495 if (patterns[i].type != DEV_MATCH_DEVICE) {
1496 if ((patterns[i].type == DEV_MATCH_PERIPH)
1497 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1498 retval |= DM_RET_DESCEND;
1499 continue;
1500 }
1501
1502 cur_pattern = &patterns[i].pattern.device_pattern;
1503
1504 /* Error out if mutually exclusive options are specified. */
1505 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1506 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1507 return(DM_RET_ERROR);
1508
1509 /*
1510 * If they want to match any device node, we give them any
1511 * device node.
1512 */
1513 if (cur_pattern->flags == DEV_MATCH_ANY)
1514 goto copy_dev_node;
1515
1516 /*
1517 * Not sure why someone would do this...
1518 */
1519 if (cur_pattern->flags == DEV_MATCH_NONE)
1520 continue;
1521
1522 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1523 && (cur_pattern->path_id != device->target->bus->path_id))
1524 continue;
1525
1526 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1527 && (cur_pattern->target_id != device->target->target_id))
1528 continue;
1529
1530 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1531 && (cur_pattern->target_lun != device->lun_id))
1532 continue;
1533
1534 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1535 && (cam_quirkmatch((caddr_t)&device->inq_data,
1536 (caddr_t)&cur_pattern->data.inq_pat,
1537 1, sizeof(cur_pattern->data.inq_pat),
1538 scsi_static_inquiry_match) == NULL))
1539 continue;
1540
1541 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1542 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1543 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1544 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1545 device->device_id_len
1546 - SVPD_DEVICE_ID_HDR_LEN,
1547 cur_pattern->data.devid_pat.id,
1548 cur_pattern->data.devid_pat.id_len) != 0))
1549 continue;
1550
1551 copy_dev_node:
1552 /*
1553 * If we get to this point, the user definitely wants
1554 * information on this device. So tell the caller to copy
1555 * the data out.
1556 */
1557 retval |= DM_RET_COPY;
1558
1559 /*
1560 * If the return action has been set to descend, then we
1561 * know that we've already seen a peripheral matching
1562 * expression, therefore we need to further descend the tree.
1563 * This won't change by continuing around the loop, so we
1564 * go ahead and return. If we haven't seen a peripheral
1565 * matching expression, we keep going around the loop until
1566 * we exhaust the matching expressions. We'll set the stop
1567 * flag once we fall out of the loop.
1568 */
1569 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1570 return(retval);
1571 }
1572
1573 /*
1574 * If the return action hasn't been set to descend yet, that means
1575 * we haven't seen any peripheral matching patterns. So tell the
1576 * caller to stop descending the tree -- the user doesn't want to
1577 * match against lower level tree elements.
1578 */
1579 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1580 retval |= DM_RET_STOP;
1581
1582 return(retval);
1583 }
1584
1585 /*
1586 * Match a single peripheral against any number of match patterns.
1587 */
1588 static dev_match_ret
1589 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1590 struct cam_periph *periph)
1591 {
1592 dev_match_ret retval;
1593 u_int i;
1594
1595 /*
1596 * If we aren't given something to match against, that's an error.
1597 */
1598 if (periph == NULL)
1599 return(DM_RET_ERROR);
1600
1601 /*
1602 * If there are no match entries, then this peripheral matches no
1603 * matter what.
1604 */
1605 if ((patterns == NULL) || (num_patterns == 0))
1606 return(DM_RET_STOP | DM_RET_COPY);
1607
1608 /*
1609 * There aren't any nodes below a peripheral node, so there's no
1610 * reason to descend the tree any further.
1611 */
1612 retval = DM_RET_STOP;
1613
1614 for (i = 0; i < num_patterns; i++) {
1615 struct periph_match_pattern *cur_pattern;
1616
1617 /*
1618 * If the pattern in question isn't for a peripheral, we
1619 * aren't interested.
1620 */
1621 if (patterns[i].type != DEV_MATCH_PERIPH)
1622 continue;
1623
1624 cur_pattern = &patterns[i].pattern.periph_pattern;
1625
1626 /*
1627 * If they want to match on anything, then we will do so.
1628 */
1629 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1630 /* set the copy flag */
1631 retval |= DM_RET_COPY;
1632
1633 /*
1634 * We've already set the return action to stop,
1635 * since there are no nodes below peripherals in
1636 * the tree.
1637 */
1638 return(retval);
1639 }
1640
1641 /*
1642 * Not sure why someone would do this...
1643 */
1644 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1645 continue;
1646
1647 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1648 && (cur_pattern->path_id != periph->path->bus->path_id))
1649 continue;
1650
1651 /*
1652 * For the target and lun id's, we have to make sure the
1653 * target and lun pointers aren't NULL. The xpt peripheral
1654 * has a wildcard target and device.
1655 */
1656 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1657 && ((periph->path->target == NULL)
1658 ||(cur_pattern->target_id != periph->path->target->target_id)))
1659 continue;
1660
1661 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1662 && ((periph->path->device == NULL)
1663 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1664 continue;
1665
1666 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1667 && (cur_pattern->unit_number != periph->unit_number))
1668 continue;
1669
1670 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1671 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1672 DEV_IDLEN) != 0))
1673 continue;
1674
1675 /*
1676 * If we get to this point, the user definitely wants
1677 * information on this peripheral. So tell the caller to
1678 * copy the data out.
1679 */
1680 retval |= DM_RET_COPY;
1681
1682 /*
1683 * The return action has already been set to stop, since
1684 * peripherals don't have any nodes below them in the EDT.
1685 */
1686 return(retval);
1687 }
1688
1689 /*
1690 * If we get to this point, the peripheral that was passed in
1691 * doesn't match any of the patterns.
1692 */
1693 return(retval);
1694 }
1695
1696 static int
1697 xptedtbusfunc(struct cam_eb *bus, void *arg)
1698 {
1699 struct ccb_dev_match *cdm;
1700 struct cam_et *target;
1701 dev_match_ret retval;
1702
1703 cdm = (struct ccb_dev_match *)arg;
1704
1705 /*
1706 * If our position is for something deeper in the tree, that means
1707 * that we've already seen this node. So, we keep going down.
1708 */
1709 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1710 && (cdm->pos.cookie.bus == bus)
1711 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1712 && (cdm->pos.cookie.target != NULL))
1713 retval = DM_RET_DESCEND;
1714 else
1715 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1716
1717 /*
1718 * If we got an error, bail out of the search.
1719 */
1720 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1721 cdm->status = CAM_DEV_MATCH_ERROR;
1722 return(0);
1723 }
1724
1725 /*
1726 * If the copy flag is set, copy this bus out.
1727 */
1728 if (retval & DM_RET_COPY) {
1729 int spaceleft, j;
1730
1731 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1732 sizeof(struct dev_match_result));
1733
1734 /*
1735 * If we don't have enough space to put in another
1736 * match result, save our position and tell the
1737 * user there are more devices to check.
1738 */
1739 if (spaceleft < sizeof(struct dev_match_result)) {
1740 bzero(&cdm->pos, sizeof(cdm->pos));
1741 cdm->pos.position_type =
1742 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1743
1744 cdm->pos.cookie.bus = bus;
1745 cdm->pos.generations[CAM_BUS_GENERATION]=
1746 xsoftc.bus_generation;
1747 cdm->status = CAM_DEV_MATCH_MORE;
1748 return(0);
1749 }
1750 j = cdm->num_matches;
1751 cdm->num_matches++;
1752 cdm->matches[j].type = DEV_MATCH_BUS;
1753 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1754 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1755 cdm->matches[j].result.bus_result.unit_number =
1756 bus->sim->unit_number;
1757 strlcpy(cdm->matches[j].result.bus_result.dev_name,
1758 bus->sim->sim_name,
1759 sizeof(cdm->matches[j].result.bus_result.dev_name));
1760 }
1761
1762 /*
1763 * If the user is only interested in buses, there's no
1764 * reason to descend to the next level in the tree.
1765 */
1766 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1767 return(1);
1768
1769 /*
1770 * If there is a target generation recorded, check it to
1771 * make sure the target list hasn't changed.
1772 */
1773 mtx_lock(&bus->eb_mtx);
1774 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1775 && (cdm->pos.cookie.bus == bus)
1776 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1777 && (cdm->pos.cookie.target != NULL)) {
1778 if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1779 bus->generation)) {
1780 mtx_unlock(&bus->eb_mtx);
1781 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1782 return (0);
1783 }
1784 target = (struct cam_et *)cdm->pos.cookie.target;
1785 target->refcount++;
1786 } else
1787 target = NULL;
1788 mtx_unlock(&bus->eb_mtx);
1789
1790 return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1791 }
1792
1793 static int
1794 xptedttargetfunc(struct cam_et *target, void *arg)
1795 {
1796 struct ccb_dev_match *cdm;
1797 struct cam_eb *bus;
1798 struct cam_ed *device;
1799
1800 cdm = (struct ccb_dev_match *)arg;
1801 bus = target->bus;
1802
1803 /*
1804 * If there is a device list generation recorded, check it to
1805 * make sure the device list hasn't changed.
1806 */
1807 mtx_lock(&bus->eb_mtx);
1808 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1809 && (cdm->pos.cookie.bus == bus)
1810 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1811 && (cdm->pos.cookie.target == target)
1812 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1813 && (cdm->pos.cookie.device != NULL)) {
1814 if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1815 target->generation) {
1816 mtx_unlock(&bus->eb_mtx);
1817 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1818 return(0);
1819 }
1820 device = (struct cam_ed *)cdm->pos.cookie.device;
1821 device->refcount++;
1822 } else
1823 device = NULL;
1824 mtx_unlock(&bus->eb_mtx);
1825
1826 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1827 }
1828
1829 static int
1830 xptedtdevicefunc(struct cam_ed *device, void *arg)
1831 {
1832 struct cam_eb *bus;
1833 struct cam_periph *periph;
1834 struct ccb_dev_match *cdm;
1835 dev_match_ret retval;
1836
1837 cdm = (struct ccb_dev_match *)arg;
1838 bus = device->target->bus;
1839
1840 /*
1841 * If our position is for something deeper in the tree, that means
1842 * that we've already seen this node. So, we keep going down.
1843 */
1844 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1845 && (cdm->pos.cookie.device == device)
1846 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1847 && (cdm->pos.cookie.periph != NULL))
1848 retval = DM_RET_DESCEND;
1849 else
1850 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1851 device);
1852
1853 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1854 cdm->status = CAM_DEV_MATCH_ERROR;
1855 return(0);
1856 }
1857
1858 /*
1859 * If the copy flag is set, copy this device out.
1860 */
1861 if (retval & DM_RET_COPY) {
1862 int spaceleft, j;
1863
1864 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1865 sizeof(struct dev_match_result));
1866
1867 /*
1868 * If we don't have enough space to put in another
1869 * match result, save our position and tell the
1870 * user there are more devices to check.
1871 */
1872 if (spaceleft < sizeof(struct dev_match_result)) {
1873 bzero(&cdm->pos, sizeof(cdm->pos));
1874 cdm->pos.position_type =
1875 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1876 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1877
1878 cdm->pos.cookie.bus = device->target->bus;
1879 cdm->pos.generations[CAM_BUS_GENERATION]=
1880 xsoftc.bus_generation;
1881 cdm->pos.cookie.target = device->target;
1882 cdm->pos.generations[CAM_TARGET_GENERATION] =
1883 device->target->bus->generation;
1884 cdm->pos.cookie.device = device;
1885 cdm->pos.generations[CAM_DEV_GENERATION] =
1886 device->target->generation;
1887 cdm->status = CAM_DEV_MATCH_MORE;
1888 return(0);
1889 }
1890 j = cdm->num_matches;
1891 cdm->num_matches++;
1892 cdm->matches[j].type = DEV_MATCH_DEVICE;
1893 cdm->matches[j].result.device_result.path_id =
1894 device->target->bus->path_id;
1895 cdm->matches[j].result.device_result.target_id =
1896 device->target->target_id;
1897 cdm->matches[j].result.device_result.target_lun =
1898 device->lun_id;
1899 cdm->matches[j].result.device_result.protocol =
1900 device->protocol;
1901 bcopy(&device->inq_data,
1902 &cdm->matches[j].result.device_result.inq_data,
1903 sizeof(struct scsi_inquiry_data));
1904 bcopy(&device->ident_data,
1905 &cdm->matches[j].result.device_result.ident_data,
1906 sizeof(struct ata_params));
1907
1908 /* Let the user know whether this device is unconfigured */
1909 if (device->flags & CAM_DEV_UNCONFIGURED)
1910 cdm->matches[j].result.device_result.flags =
1911 DEV_RESULT_UNCONFIGURED;
1912 else
1913 cdm->matches[j].result.device_result.flags =
1914 DEV_RESULT_NOFLAG;
1915 }
1916
1917 /*
1918 * If the user isn't interested in peripherals, don't descend
1919 * the tree any further.
1920 */
1921 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1922 return(1);
1923
1924 /*
1925 * If there is a peripheral list generation recorded, make sure
1926 * it hasn't changed.
1927 */
1928 xpt_lock_buses();
1929 mtx_lock(&bus->eb_mtx);
1930 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1931 && (cdm->pos.cookie.bus == bus)
1932 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1933 && (cdm->pos.cookie.target == device->target)
1934 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1935 && (cdm->pos.cookie.device == device)
1936 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1937 && (cdm->pos.cookie.periph != NULL)) {
1938 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1939 device->generation) {
1940 mtx_unlock(&bus->eb_mtx);
1941 xpt_unlock_buses();
1942 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1943 return(0);
1944 }
1945 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1946 periph->refcount++;
1947 } else
1948 periph = NULL;
1949 mtx_unlock(&bus->eb_mtx);
1950 xpt_unlock_buses();
1951
1952 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1953 }
1954
1955 static int
1956 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1957 {
1958 struct ccb_dev_match *cdm;
1959 dev_match_ret retval;
1960
1961 cdm = (struct ccb_dev_match *)arg;
1962
1963 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1964
1965 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1966 cdm->status = CAM_DEV_MATCH_ERROR;
1967 return(0);
1968 }
1969
1970 /*
1971 * If the copy flag is set, copy this peripheral out.
1972 */
1973 if (retval & DM_RET_COPY) {
1974 int spaceleft, j;
1975 size_t l;
1976
1977 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1978 sizeof(struct dev_match_result));
1979
1980 /*
1981 * If we don't have enough space to put in another
1982 * match result, save our position and tell the
1983 * user there are more devices to check.
1984 */
1985 if (spaceleft < sizeof(struct dev_match_result)) {
1986 bzero(&cdm->pos, sizeof(cdm->pos));
1987 cdm->pos.position_type =
1988 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1989 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1990 CAM_DEV_POS_PERIPH;
1991
1992 cdm->pos.cookie.bus = periph->path->bus;
1993 cdm->pos.generations[CAM_BUS_GENERATION]=
1994 xsoftc.bus_generation;
1995 cdm->pos.cookie.target = periph->path->target;
1996 cdm->pos.generations[CAM_TARGET_GENERATION] =
1997 periph->path->bus->generation;
1998 cdm->pos.cookie.device = periph->path->device;
1999 cdm->pos.generations[CAM_DEV_GENERATION] =
2000 periph->path->target->generation;
2001 cdm->pos.cookie.periph = periph;
2002 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2003 periph->path->device->generation;
2004 cdm->status = CAM_DEV_MATCH_MORE;
2005 return(0);
2006 }
2007
2008 j = cdm->num_matches;
2009 cdm->num_matches++;
2010 cdm->matches[j].type = DEV_MATCH_PERIPH;
2011 cdm->matches[j].result.periph_result.path_id =
2012 periph->path->bus->path_id;
2013 cdm->matches[j].result.periph_result.target_id =
2014 periph->path->target->target_id;
2015 cdm->matches[j].result.periph_result.target_lun =
2016 periph->path->device->lun_id;
2017 cdm->matches[j].result.periph_result.unit_number =
2018 periph->unit_number;
2019 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2020 strlcpy(cdm->matches[j].result.periph_result.periph_name,
2021 periph->periph_name, l);
2022 }
2023
2024 return(1);
2025 }
2026
2027 static int
2028 xptedtmatch(struct ccb_dev_match *cdm)
2029 {
2030 struct cam_eb *bus;
2031 int ret;
2032
2033 cdm->num_matches = 0;
2034
2035 /*
2036 * Check the bus list generation. If it has changed, the user
2037 * needs to reset everything and start over.
2038 */
2039 xpt_lock_buses();
2040 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2041 && (cdm->pos.cookie.bus != NULL)) {
2042 if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2043 xsoftc.bus_generation) {
2044 xpt_unlock_buses();
2045 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2046 return(0);
2047 }
2048 bus = (struct cam_eb *)cdm->pos.cookie.bus;
2049 bus->refcount++;
2050 } else
2051 bus = NULL;
2052 xpt_unlock_buses();
2053
2054 ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2055
2056 /*
2057 * If we get back 0, that means that we had to stop before fully
2058 * traversing the EDT. It also means that one of the subroutines
2059 * has set the status field to the proper value. If we get back 1,
2060 * we've fully traversed the EDT and copied out any matching entries.
2061 */
2062 if (ret == 1)
2063 cdm->status = CAM_DEV_MATCH_LAST;
2064
2065 return(ret);
2066 }
2067
2068 static int
2069 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2070 {
2071 struct cam_periph *periph;
2072 struct ccb_dev_match *cdm;
2073
2074 cdm = (struct ccb_dev_match *)arg;
2075
2076 xpt_lock_buses();
2077 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2078 && (cdm->pos.cookie.pdrv == pdrv)
2079 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2080 && (cdm->pos.cookie.periph != NULL)) {
2081 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2082 (*pdrv)->generation) {
2083 xpt_unlock_buses();
2084 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2085 return(0);
2086 }
2087 periph = (struct cam_periph *)cdm->pos.cookie.periph;
2088 periph->refcount++;
2089 } else
2090 periph = NULL;
2091 xpt_unlock_buses();
2092
2093 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2094 }
2095
2096 static int
2097 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2098 {
2099 struct ccb_dev_match *cdm;
2100 dev_match_ret retval;
2101
2102 cdm = (struct ccb_dev_match *)arg;
2103
2104 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2105
2106 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2107 cdm->status = CAM_DEV_MATCH_ERROR;
2108 return(0);
2109 }
2110
2111 /*
2112 * If the copy flag is set, copy this peripheral out.
2113 */
2114 if (retval & DM_RET_COPY) {
2115 int spaceleft, j;
2116 size_t l;
2117
2118 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2119 sizeof(struct dev_match_result));
2120
2121 /*
2122 * If we don't have enough space to put in another
2123 * match result, save our position and tell the
2124 * user there are more devices to check.
2125 */
2126 if (spaceleft < sizeof(struct dev_match_result)) {
2127 struct periph_driver **pdrv;
2128
2129 pdrv = NULL;
2130 bzero(&cdm->pos, sizeof(cdm->pos));
2131 cdm->pos.position_type =
2132 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2133 CAM_DEV_POS_PERIPH;
2134
2135 /*
2136 * This may look a bit non-sensical, but it is
2137 * actually quite logical. There are very few
2138 * peripheral drivers, and bloating every peripheral
2139 * structure with a pointer back to its parent
2140 * peripheral driver linker set entry would cost
2141 * more in the long run than doing this quick lookup.
2142 */
2143 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2144 if (strcmp((*pdrv)->driver_name,
2145 periph->periph_name) == 0)
2146 break;
2147 }
2148
2149 if (*pdrv == NULL) {
2150 cdm->status = CAM_DEV_MATCH_ERROR;
2151 return(0);
2152 }
2153
2154 cdm->pos.cookie.pdrv = pdrv;
2155 /*
2156 * The periph generation slot does double duty, as
2157 * does the periph pointer slot. They are used for
2158 * both edt and pdrv lookups and positioning.
2159 */
2160 cdm->pos.cookie.periph = periph;
2161 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2162 (*pdrv)->generation;
2163 cdm->status = CAM_DEV_MATCH_MORE;
2164 return(0);
2165 }
2166
2167 j = cdm->num_matches;
2168 cdm->num_matches++;
2169 cdm->matches[j].type = DEV_MATCH_PERIPH;
2170 cdm->matches[j].result.periph_result.path_id =
2171 periph->path->bus->path_id;
2172
2173 /*
2174 * The transport layer peripheral doesn't have a target or
2175 * lun.
2176 */
2177 if (periph->path->target)
2178 cdm->matches[j].result.periph_result.target_id =
2179 periph->path->target->target_id;
2180 else
2181 cdm->matches[j].result.periph_result.target_id =
2182 CAM_TARGET_WILDCARD;
2183
2184 if (periph->path->device)
2185 cdm->matches[j].result.periph_result.target_lun =
2186 periph->path->device->lun_id;
2187 else
2188 cdm->matches[j].result.periph_result.target_lun =
2189 CAM_LUN_WILDCARD;
2190
2191 cdm->matches[j].result.periph_result.unit_number =
2192 periph->unit_number;
2193 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2194 strlcpy(cdm->matches[j].result.periph_result.periph_name,
2195 periph->periph_name, l);
2196 }
2197
2198 return(1);
2199 }
2200
2201 static int
2202 xptperiphlistmatch(struct ccb_dev_match *cdm)
2203 {
2204 int ret;
2205
2206 cdm->num_matches = 0;
2207
2208 /*
2209 * At this point in the edt traversal function, we check the bus
2210 * list generation to make sure that no buses have been added or
2211 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2212 * For the peripheral driver list traversal function, however, we
2213 * don't have to worry about new peripheral driver types coming or
2214 * going; they're in a linker set, and therefore can't change
2215 * without a recompile.
2216 */
2217
2218 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2219 && (cdm->pos.cookie.pdrv != NULL))
2220 ret = xptpdrvtraverse(
2221 (struct periph_driver **)cdm->pos.cookie.pdrv,
2222 xptplistpdrvfunc, cdm);
2223 else
2224 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2225
2226 /*
2227 * If we get back 0, that means that we had to stop before fully
2228 * traversing the peripheral driver tree. It also means that one of
2229 * the subroutines has set the status field to the proper value. If
2230 * we get back 1, we've fully traversed the EDT and copied out any
2231 * matching entries.
2232 */
2233 if (ret == 1)
2234 cdm->status = CAM_DEV_MATCH_LAST;
2235
2236 return(ret);
2237 }
2238
2239 static int
2240 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2241 {
2242 struct cam_eb *bus, *next_bus;
2243 int retval;
2244
2245 retval = 1;
2246 if (start_bus)
2247 bus = start_bus;
2248 else {
2249 xpt_lock_buses();
2250 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2251 if (bus == NULL) {
2252 xpt_unlock_buses();
2253 return (retval);
2254 }
2255 bus->refcount++;
2256 xpt_unlock_buses();
2257 }
2258 for (; bus != NULL; bus = next_bus) {
2259 retval = tr_func(bus, arg);
2260 if (retval == 0) {
2261 xpt_release_bus(bus);
2262 break;
2263 }
2264 xpt_lock_buses();
2265 next_bus = TAILQ_NEXT(bus, links);
2266 if (next_bus)
2267 next_bus->refcount++;
2268 xpt_unlock_buses();
2269 xpt_release_bus(bus);
2270 }
2271 return(retval);
2272 }
2273
2274 static int
2275 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2276 xpt_targetfunc_t *tr_func, void *arg)
2277 {
2278 struct cam_et *target, *next_target;
2279 int retval;
2280
2281 retval = 1;
2282 if (start_target)
2283 target = start_target;
2284 else {
2285 mtx_lock(&bus->eb_mtx);
2286 target = TAILQ_FIRST(&bus->et_entries);
2287 if (target == NULL) {
2288 mtx_unlock(&bus->eb_mtx);
2289 return (retval);
2290 }
2291 target->refcount++;
2292 mtx_unlock(&bus->eb_mtx);
2293 }
2294 for (; target != NULL; target = next_target) {
2295 retval = tr_func(target, arg);
2296 if (retval == 0) {
2297 xpt_release_target(target);
2298 break;
2299 }
2300 mtx_lock(&bus->eb_mtx);
2301 next_target = TAILQ_NEXT(target, links);
2302 if (next_target)
2303 next_target->refcount++;
2304 mtx_unlock(&bus->eb_mtx);
2305 xpt_release_target(target);
2306 }
2307 return(retval);
2308 }
2309
2310 static int
2311 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2312 xpt_devicefunc_t *tr_func, void *arg)
2313 {
2314 struct cam_eb *bus;
2315 struct cam_ed *device, *next_device;
2316 int retval;
2317
2318 retval = 1;
2319 bus = target->bus;
2320 if (start_device)
2321 device = start_device;
2322 else {
2323 mtx_lock(&bus->eb_mtx);
2324 device = TAILQ_FIRST(&target->ed_entries);
2325 if (device == NULL) {
2326 mtx_unlock(&bus->eb_mtx);
2327 return (retval);
2328 }
2329 device->refcount++;
2330 mtx_unlock(&bus->eb_mtx);
2331 }
2332 for (; device != NULL; device = next_device) {
2333 mtx_lock(&device->device_mtx);
2334 retval = tr_func(device, arg);
2335 mtx_unlock(&device->device_mtx);
2336 if (retval == 0) {
2337 xpt_release_device(device);
2338 break;
2339 }
2340 mtx_lock(&bus->eb_mtx);
2341 next_device = TAILQ_NEXT(device, links);
2342 if (next_device)
2343 next_device->refcount++;
2344 mtx_unlock(&bus->eb_mtx);
2345 xpt_release_device(device);
2346 }
2347 return(retval);
2348 }
2349
2350 static int
2351 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2352 xpt_periphfunc_t *tr_func, void *arg)
2353 {
2354 struct cam_eb *bus;
2355 struct cam_periph *periph, *next_periph;
2356 int retval;
2357
2358 retval = 1;
2359
2360 bus = device->target->bus;
2361 if (start_periph)
2362 periph = start_periph;
2363 else {
2364 xpt_lock_buses();
2365 mtx_lock(&bus->eb_mtx);
2366 periph = SLIST_FIRST(&device->periphs);
2367 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2368 periph = SLIST_NEXT(periph, periph_links);
2369 if (periph == NULL) {
2370 mtx_unlock(&bus->eb_mtx);
2371 xpt_unlock_buses();
2372 return (retval);
2373 }
2374 periph->refcount++;
2375 mtx_unlock(&bus->eb_mtx);
2376 xpt_unlock_buses();
2377 }
2378 for (; periph != NULL; periph = next_periph) {
2379 retval = tr_func(periph, arg);
2380 if (retval == 0) {
2381 cam_periph_release_locked(periph);
2382 break;
2383 }
2384 xpt_lock_buses();
2385 mtx_lock(&bus->eb_mtx);
2386 next_periph = SLIST_NEXT(periph, periph_links);
2387 while (next_periph != NULL &&
2388 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2389 next_periph = SLIST_NEXT(next_periph, periph_links);
2390 if (next_periph)
2391 next_periph->refcount++;
2392 mtx_unlock(&bus->eb_mtx);
2393 xpt_unlock_buses();
2394 cam_periph_release_locked(periph);
2395 }
2396 return(retval);
2397 }
2398
2399 static int
2400 xptpdrvtraverse(struct periph_driver **start_pdrv,
2401 xpt_pdrvfunc_t *tr_func, void *arg)
2402 {
2403 struct periph_driver **pdrv;
2404 int retval;
2405
2406 retval = 1;
2407
2408 /*
2409 * We don't traverse the peripheral driver list like we do the
2410 * other lists, because it is a linker set, and therefore cannot be
2411 * changed during runtime. If the peripheral driver list is ever
2412 * re-done to be something other than a linker set (i.e. it can
2413 * change while the system is running), the list traversal should
2414 * be modified to work like the other traversal functions.
2415 */
2416 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2417 *pdrv != NULL; pdrv++) {
2418 retval = tr_func(pdrv, arg);
2419
2420 if (retval == 0)
2421 return(retval);
2422 }
2423
2424 return(retval);
2425 }
2426
2427 static int
2428 xptpdperiphtraverse(struct periph_driver **pdrv,
2429 struct cam_periph *start_periph,
2430 xpt_periphfunc_t *tr_func, void *arg)
2431 {
2432 struct cam_periph *periph, *next_periph;
2433 int retval;
2434
2435 retval = 1;
2436
2437 if (start_periph)
2438 periph = start_periph;
2439 else {
2440 xpt_lock_buses();
2441 periph = TAILQ_FIRST(&(*pdrv)->units);
2442 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2443 periph = TAILQ_NEXT(periph, unit_links);
2444 if (periph == NULL) {
2445 xpt_unlock_buses();
2446 return (retval);
2447 }
2448 periph->refcount++;
2449 xpt_unlock_buses();
2450 }
2451 for (; periph != NULL; periph = next_periph) {
2452 cam_periph_lock(periph);
2453 retval = tr_func(periph, arg);
2454 cam_periph_unlock(periph);
2455 if (retval == 0) {
2456 cam_periph_release(periph);
2457 break;
2458 }
2459 xpt_lock_buses();
2460 next_periph = TAILQ_NEXT(periph, unit_links);
2461 while (next_periph != NULL &&
2462 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2463 next_periph = TAILQ_NEXT(next_periph, unit_links);
2464 if (next_periph)
2465 next_periph->refcount++;
2466 xpt_unlock_buses();
2467 cam_periph_release(periph);
2468 }
2469 return(retval);
2470 }
2471
2472 static int
2473 xptdefbusfunc(struct cam_eb *bus, void *arg)
2474 {
2475 struct xpt_traverse_config *tr_config;
2476
2477 tr_config = (struct xpt_traverse_config *)arg;
2478
2479 if (tr_config->depth == XPT_DEPTH_BUS) {
2480 xpt_busfunc_t *tr_func;
2481
2482 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2483
2484 return(tr_func(bus, tr_config->tr_arg));
2485 } else
2486 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2487 }
2488
2489 static int
2490 xptdeftargetfunc(struct cam_et *target, void *arg)
2491 {
2492 struct xpt_traverse_config *tr_config;
2493
2494 tr_config = (struct xpt_traverse_config *)arg;
2495
2496 if (tr_config->depth == XPT_DEPTH_TARGET) {
2497 xpt_targetfunc_t *tr_func;
2498
2499 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2500
2501 return(tr_func(target, tr_config->tr_arg));
2502 } else
2503 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2504 }
2505
2506 static int
2507 xptdefdevicefunc(struct cam_ed *device, void *arg)
2508 {
2509 struct xpt_traverse_config *tr_config;
2510
2511 tr_config = (struct xpt_traverse_config *)arg;
2512
2513 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2514 xpt_devicefunc_t *tr_func;
2515
2516 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2517
2518 return(tr_func(device, tr_config->tr_arg));
2519 } else
2520 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2521 }
2522
2523 static int
2524 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2525 {
2526 struct xpt_traverse_config *tr_config;
2527 xpt_periphfunc_t *tr_func;
2528
2529 tr_config = (struct xpt_traverse_config *)arg;
2530
2531 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2532
2533 /*
2534 * Unlike the other default functions, we don't check for depth
2535 * here. The peripheral driver level is the last level in the EDT,
2536 * so if we're here, we should execute the function in question.
2537 */
2538 return(tr_func(periph, tr_config->tr_arg));
2539 }
2540
2541 /*
2542 * Execute the given function for every bus in the EDT.
2543 */
2544 static int
2545 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2546 {
2547 struct xpt_traverse_config tr_config;
2548
2549 tr_config.depth = XPT_DEPTH_BUS;
2550 tr_config.tr_func = tr_func;
2551 tr_config.tr_arg = arg;
2552
2553 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2554 }
2555
2556 /*
2557 * Execute the given function for every device in the EDT.
2558 */
2559 static int
2560 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2561 {
2562 struct xpt_traverse_config tr_config;
2563
2564 tr_config.depth = XPT_DEPTH_DEVICE;
2565 tr_config.tr_func = tr_func;
2566 tr_config.tr_arg = arg;
2567
2568 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2569 }
2570
2571 static int
2572 xptsetasyncfunc(struct cam_ed *device, void *arg)
2573 {
2574 struct cam_path path;
2575 struct ccb_getdev cgd;
2576 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2577
2578 /*
2579 * Don't report unconfigured devices (Wildcard devs,
2580 * devices only for target mode, device instances
2581 * that have been invalidated but are waiting for
2582 * their last reference count to be released).
2583 */
2584 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2585 return (1);
2586
2587 xpt_compile_path(&path,
2588 NULL,
2589 device->target->bus->path_id,
2590 device->target->target_id,
2591 device->lun_id);
2592 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2593 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2594 xpt_action((union ccb *)&cgd);
2595 csa->callback(csa->callback_arg,
2596 AC_FOUND_DEVICE,
2597 &path, &cgd);
2598 xpt_release_path(&path);
2599
2600 return(1);
2601 }
2602
2603 static int
2604 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2605 {
2606 struct cam_path path;
2607 struct ccb_pathinq cpi;
2608 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2609
2610 xpt_compile_path(&path, /*periph*/NULL,
2611 bus->path_id,
2612 CAM_TARGET_WILDCARD,
2613 CAM_LUN_WILDCARD);
2614 xpt_path_lock(&path);
2615 xpt_path_inq(&cpi, &path);
2616 csa->callback(csa->callback_arg,
2617 AC_PATH_REGISTERED,
2618 &path, &cpi);
2619 xpt_path_unlock(&path);
2620 xpt_release_path(&path);
2621
2622 return(1);
2623 }
2624
2625 void
2626 xpt_action(union ccb *start_ccb)
2627 {
2628
2629 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2630 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2631 xpt_action_name(start_ccb->ccb_h.func_code)));
2632
2633 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2634 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2635 }
2636
2637 void
2638 xpt_action_default(union ccb *start_ccb)
2639 {
2640 struct cam_path *path;
2641 struct cam_sim *sim;
2642 struct mtx *mtx;
2643
2644 path = start_ccb->ccb_h.path;
2645 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2646 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2647 xpt_action_name(start_ccb->ccb_h.func_code)));
2648
2649 switch (start_ccb->ccb_h.func_code) {
2650 case XPT_SCSI_IO:
2651 {
2652 struct cam_ed *device;
2653
2654 /*
2655 * For the sake of compatibility with SCSI-1
2656 * devices that may not understand the identify
2657 * message, we include lun information in the
2658 * second byte of all commands. SCSI-1 specifies
2659 * that luns are a 3 bit value and reserves only 3
2660 * bits for lun information in the CDB. Later
2661 * revisions of the SCSI spec allow for more than 8
2662 * luns, but have deprecated lun information in the
2663 * CDB. So, if the lun won't fit, we must omit.
2664 *
2665 * Also be aware that during initial probing for devices,
2666 * the inquiry information is unknown but initialized to 0.
2667 * This means that this code will be exercised while probing
2668 * devices with an ANSI revision greater than 2.
2669 */
2670 device = path->device;
2671 if (device->protocol_version <= SCSI_REV_2
2672 && start_ccb->ccb_h.target_lun < 8
2673 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2674 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2675 start_ccb->ccb_h.target_lun << 5;
2676 }
2677 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2678 }
2679 /* FALLTHROUGH */
2680 case XPT_TARGET_IO:
2681 case XPT_CONT_TARGET_IO:
2682 start_ccb->csio.sense_resid = 0;
2683 start_ccb->csio.resid = 0;
2684 /* FALLTHROUGH */
2685 case XPT_ATA_IO:
2686 if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2687 start_ccb->ataio.resid = 0;
2688 /* FALLTHROUGH */
2689 case XPT_NVME_IO:
2690 case XPT_NVME_ADMIN:
2691 case XPT_MMC_IO:
2692 case XPT_RESET_DEV:
2693 case XPT_ENG_EXEC:
2694 case XPT_SMP_IO:
2695 {
2696 struct cam_devq *devq;
2697
2698 devq = path->bus->sim->devq;
2699 mtx_lock(&devq->send_mtx);
2700 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2701 if (xpt_schedule_devq(devq, path->device) != 0)
2702 xpt_run_devq(devq);
2703 mtx_unlock(&devq->send_mtx);
2704 break;
2705 }
2706 case XPT_CALC_GEOMETRY:
2707 /* Filter out garbage */
2708 if (start_ccb->ccg.block_size == 0
2709 || start_ccb->ccg.volume_size == 0) {
2710 start_ccb->ccg.cylinders = 0;
2711 start_ccb->ccg.heads = 0;
2712 start_ccb->ccg.secs_per_track = 0;
2713 start_ccb->ccb_h.status = CAM_REQ_CMP;
2714 break;
2715 }
2716 goto call_sim;
2717 case XPT_ABORT:
2718 {
2719 union ccb* abort_ccb;
2720
2721 abort_ccb = start_ccb->cab.abort_ccb;
2722 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2723 struct cam_ed *device;
2724 struct cam_devq *devq;
2725
2726 device = abort_ccb->ccb_h.path->device;
2727 devq = device->sim->devq;
2728
2729 mtx_lock(&devq->send_mtx);
2730 if (abort_ccb->ccb_h.pinfo.index > 0) {
2731 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2732 abort_ccb->ccb_h.status =
2733 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2734 xpt_freeze_devq_device(device, 1);
2735 mtx_unlock(&devq->send_mtx);
2736 xpt_done(abort_ccb);
2737 start_ccb->ccb_h.status = CAM_REQ_CMP;
2738 break;
2739 }
2740 mtx_unlock(&devq->send_mtx);
2741
2742 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2743 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2744 /*
2745 * We've caught this ccb en route to
2746 * the SIM. Flag it for abort and the
2747 * SIM will do so just before starting
2748 * real work on the CCB.
2749 */
2750 abort_ccb->ccb_h.status =
2751 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2752 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2753 start_ccb->ccb_h.status = CAM_REQ_CMP;
2754 break;
2755 }
2756 }
2757 if (XPT_FC_IS_QUEUED(abort_ccb)
2758 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2759 /*
2760 * It's already completed but waiting
2761 * for our SWI to get to it.
2762 */
2763 start_ccb->ccb_h.status = CAM_UA_ABORT;
2764 break;
2765 }
2766 /*
2767 * If we weren't able to take care of the abort request
2768 * in the XPT, pass the request down to the SIM for processing.
2769 */
2770 }
2771 /* FALLTHROUGH */
2772 case XPT_ACCEPT_TARGET_IO:
2773 case XPT_EN_LUN:
2774 case XPT_IMMED_NOTIFY:
2775 case XPT_NOTIFY_ACK:
2776 case XPT_RESET_BUS:
2777 case XPT_IMMEDIATE_NOTIFY:
2778 case XPT_NOTIFY_ACKNOWLEDGE:
2779 case XPT_GET_SIM_KNOB_OLD:
2780 case XPT_GET_SIM_KNOB:
2781 case XPT_SET_SIM_KNOB:
2782 case XPT_GET_TRAN_SETTINGS:
2783 case XPT_SET_TRAN_SETTINGS:
2784 case XPT_PATH_INQ:
2785 call_sim:
2786 sim = path->bus->sim;
2787 mtx = sim->mtx;
2788 if (mtx && !mtx_owned(mtx))
2789 mtx_lock(mtx);
2790 else
2791 mtx = NULL;
2792
2793 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2794 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2795 (*(sim->sim_action))(sim, start_ccb);
2796 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2797 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2798 if (mtx)
2799 mtx_unlock(mtx);
2800 break;
2801 case XPT_PATH_STATS:
2802 start_ccb->cpis.last_reset = path->bus->last_reset;
2803 start_ccb->ccb_h.status = CAM_REQ_CMP;
2804 break;
2805 case XPT_GDEV_TYPE:
2806 {
2807 struct cam_ed *dev;
2808
2809 dev = path->device;
2810 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2811 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2812 } else {
2813 struct ccb_getdev *cgd;
2814
2815 cgd = &start_ccb->cgd;
2816 cgd->protocol = dev->protocol;
2817 cgd->inq_data = dev->inq_data;
2818 cgd->ident_data = dev->ident_data;
2819 cgd->inq_flags = dev->inq_flags;
2820 cgd->ccb_h.status = CAM_REQ_CMP;
2821 cgd->serial_num_len = dev->serial_num_len;
2822 if ((dev->serial_num_len > 0)
2823 && (dev->serial_num != NULL))
2824 bcopy(dev->serial_num, cgd->serial_num,
2825 dev->serial_num_len);
2826 }
2827 break;
2828 }
2829 case XPT_GDEV_STATS:
2830 {
2831 struct ccb_getdevstats *cgds = &start_ccb->cgds;
2832 struct cam_ed *dev = path->device;
2833 struct cam_eb *bus = path->bus;
2834 struct cam_et *tar = path->target;
2835 struct cam_devq *devq = bus->sim->devq;
2836
2837 mtx_lock(&devq->send_mtx);
2838 cgds->dev_openings = dev->ccbq.dev_openings;
2839 cgds->dev_active = dev->ccbq.dev_active;
2840 cgds->allocated = dev->ccbq.allocated;
2841 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2842 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2843 cgds->last_reset = tar->last_reset;
2844 cgds->maxtags = dev->maxtags;
2845 cgds->mintags = dev->mintags;
2846 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2847 cgds->last_reset = bus->last_reset;
2848 mtx_unlock(&devq->send_mtx);
2849 cgds->ccb_h.status = CAM_REQ_CMP;
2850 break;
2851 }
2852 case XPT_GDEVLIST:
2853 {
2854 struct cam_periph *nperiph;
2855 struct periph_list *periph_head;
2856 struct ccb_getdevlist *cgdl;
2857 u_int i;
2858 struct cam_ed *device;
2859 int found;
2860
2861 found = 0;
2862
2863 /*
2864 * Don't want anyone mucking with our data.
2865 */
2866 device = path->device;
2867 periph_head = &device->periphs;
2868 cgdl = &start_ccb->cgdl;
2869
2870 /*
2871 * Check and see if the list has changed since the user
2872 * last requested a list member. If so, tell them that the
2873 * list has changed, and therefore they need to start over
2874 * from the beginning.
2875 */
2876 if ((cgdl->index != 0) &&
2877 (cgdl->generation != device->generation)) {
2878 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2879 break;
2880 }
2881
2882 /*
2883 * Traverse the list of peripherals and attempt to find
2884 * the requested peripheral.
2885 */
2886 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2887 (nperiph != NULL) && (i <= cgdl->index);
2888 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2889 if (i == cgdl->index) {
2890 strlcpy(cgdl->periph_name,
2891 nperiph->periph_name,
2892 sizeof(cgdl->periph_name));
2893 cgdl->unit_number = nperiph->unit_number;
2894 found = 1;
2895 }
2896 }
2897 if (found == 0) {
2898 cgdl->status = CAM_GDEVLIST_ERROR;
2899 break;
2900 }
2901
2902 if (nperiph == NULL)
2903 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2904 else
2905 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2906
2907 cgdl->index++;
2908 cgdl->generation = device->generation;
2909
2910 cgdl->ccb_h.status = CAM_REQ_CMP;
2911 break;
2912 }
2913 case XPT_DEV_MATCH:
2914 {
2915 dev_pos_type position_type;
2916 struct ccb_dev_match *cdm;
2917
2918 cdm = &start_ccb->cdm;
2919
2920 /*
2921 * There are two ways of getting at information in the EDT.
2922 * The first way is via the primary EDT tree. It starts
2923 * with a list of buses, then a list of targets on a bus,
2924 * then devices/luns on a target, and then peripherals on a
2925 * device/lun. The "other" way is by the peripheral driver
2926 * lists. The peripheral driver lists are organized by
2927 * peripheral driver. (obviously) So it makes sense to
2928 * use the peripheral driver list if the user is looking
2929 * for something like "da1", or all "da" devices. If the
2930 * user is looking for something on a particular bus/target
2931 * or lun, it's generally better to go through the EDT tree.
2932 */
2933
2934 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2935 position_type = cdm->pos.position_type;
2936 else {
2937 u_int i;
2938
2939 position_type = CAM_DEV_POS_NONE;
2940
2941 for (i = 0; i < cdm->num_patterns; i++) {
2942 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2943 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2944 position_type = CAM_DEV_POS_EDT;
2945 break;
2946 }
2947 }
2948
2949 if (cdm->num_patterns == 0)
2950 position_type = CAM_DEV_POS_EDT;
2951 else if (position_type == CAM_DEV_POS_NONE)
2952 position_type = CAM_DEV_POS_PDRV;
2953 }
2954
2955 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2956 case CAM_DEV_POS_EDT:
2957 xptedtmatch(cdm);
2958 break;
2959 case CAM_DEV_POS_PDRV:
2960 xptperiphlistmatch(cdm);
2961 break;
2962 default:
2963 cdm->status = CAM_DEV_MATCH_ERROR;
2964 break;
2965 }
2966
2967 if (cdm->status == CAM_DEV_MATCH_ERROR)
2968 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2969 else
2970 start_ccb->ccb_h.status = CAM_REQ_CMP;
2971
2972 break;
2973 }
2974 case XPT_SASYNC_CB:
2975 {
2976 struct ccb_setasync *csa;
2977 struct async_node *cur_entry;
2978 struct async_list *async_head;
2979 u_int32_t added;
2980
2981 csa = &start_ccb->csa;
2982 added = csa->event_enable;
2983 async_head = &path->device->asyncs;
2984
2985 /*
2986 * If there is already an entry for us, simply
2987 * update it.
2988 */
2989 cur_entry = SLIST_FIRST(async_head);
2990 while (cur_entry != NULL) {
2991 if ((cur_entry->callback_arg == csa->callback_arg)
2992 && (cur_entry->callback == csa->callback))
2993 break;
2994 cur_entry = SLIST_NEXT(cur_entry, links);
2995 }
2996
2997 if (cur_entry != NULL) {
2998 /*
2999 * If the request has no flags set,
3000 * remove the entry.
3001 */
3002 added &= ~cur_entry->event_enable;
3003 if (csa->event_enable == 0) {
3004 SLIST_REMOVE(async_head, cur_entry,
3005 async_node, links);
3006 xpt_release_device(path->device);
3007 free(cur_entry, M_CAMXPT);
3008 } else {
3009 cur_entry->event_enable = csa->event_enable;
3010 }
3011 csa->event_enable = added;
3012 } else {
3013 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3014 M_NOWAIT);
3015 if (cur_entry == NULL) {
3016 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3017 break;
3018 }
3019 cur_entry->event_enable = csa->event_enable;
3020 cur_entry->event_lock = (path->bus->sim->mtx &&
3021 mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3022 cur_entry->callback_arg = csa->callback_arg;
3023 cur_entry->callback = csa->callback;
3024 SLIST_INSERT_HEAD(async_head, cur_entry, links);
3025 xpt_acquire_device(path->device);
3026 }
3027 start_ccb->ccb_h.status = CAM_REQ_CMP;
3028 break;
3029 }
3030 case XPT_REL_SIMQ:
3031 {
3032 struct ccb_relsim *crs;
3033 struct cam_ed *dev;
3034
3035 crs = &start_ccb->crs;
3036 dev = path->device;
3037 if (dev == NULL) {
3038 crs->ccb_h.status = CAM_DEV_NOT_THERE;
3039 break;
3040 }
3041
3042 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3043 /* Don't ever go below one opening */
3044 if (crs->openings > 0) {
3045 xpt_dev_ccbq_resize(path, crs->openings);
3046 if (bootverbose) {
3047 xpt_print(path,
3048 "number of openings is now %d\n",
3049 crs->openings);
3050 }
3051 }
3052 }
3053
3054 mtx_lock(&dev->sim->devq->send_mtx);
3055 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3056 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3057 /*
3058 * Just extend the old timeout and decrement
3059 * the freeze count so that a single timeout
3060 * is sufficient for releasing the queue.
3061 */
3062 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3063 callout_stop(&dev->callout);
3064 } else {
3065 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3066 }
3067
3068 callout_reset_sbt(&dev->callout,
3069 SBT_1MS * crs->release_timeout, 0,
3070 xpt_release_devq_timeout, dev, 0);
3071
3072 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3073 }
3074
3075 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3076 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3077 /*
3078 * Decrement the freeze count so that a single
3079 * completion is still sufficient to unfreeze
3080 * the queue.
3081 */
3082 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3083 } else {
3084 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3085 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3086 }
3087 }
3088
3089 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3090 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3091 || (dev->ccbq.dev_active == 0)) {
3092 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3093 } else {
3094 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3095 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3096 }
3097 }
3098 mtx_unlock(&dev->sim->devq->send_mtx);
3099
3100 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3101 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3102 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3103 start_ccb->ccb_h.status = CAM_REQ_CMP;
3104 break;
3105 }
3106 case XPT_DEBUG: {
3107 struct cam_path *oldpath;
3108
3109 /* Check that all request bits are supported. */
3110 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3111 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3112 break;
3113 }
3114
3115 cam_dflags = CAM_DEBUG_NONE;
3116 if (cam_dpath != NULL) {
3117 oldpath = cam_dpath;
3118 cam_dpath = NULL;
3119 xpt_free_path(oldpath);
3120 }
3121 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3122 if (xpt_create_path(&cam_dpath, NULL,
3123 start_ccb->ccb_h.path_id,
3124 start_ccb->ccb_h.target_id,
3125 start_ccb->ccb_h.target_lun) !=
3126 CAM_REQ_CMP) {
3127 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3128 } else {
3129 cam_dflags = start_ccb->cdbg.flags;
3130 start_ccb->ccb_h.status = CAM_REQ_CMP;
3131 xpt_print(cam_dpath, "debugging flags now %x\n",
3132 cam_dflags);
3133 }
3134 } else
3135 start_ccb->ccb_h.status = CAM_REQ_CMP;
3136 break;
3137 }
3138 case XPT_NOOP:
3139 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3140 xpt_freeze_devq(path, 1);
3141 start_ccb->ccb_h.status = CAM_REQ_CMP;
3142 break;
3143 case XPT_REPROBE_LUN:
3144 xpt_async(AC_INQ_CHANGED, path, NULL);
3145 start_ccb->ccb_h.status = CAM_REQ_CMP;
3146 xpt_done(start_ccb);
3147 break;
3148 case XPT_ASYNC:
3149 start_ccb->ccb_h.status = CAM_REQ_CMP;
3150 xpt_done(start_ccb);
3151 break;
3152 default:
3153 case XPT_SDEV_TYPE:
3154 case XPT_TERM_IO:
3155 case XPT_ENG_INQ:
3156 /* XXX Implement */
3157 xpt_print(start_ccb->ccb_h.path,
3158 "%s: CCB type %#x %s not supported\n", __func__,
3159 start_ccb->ccb_h.func_code,
3160 xpt_action_name(start_ccb->ccb_h.func_code));
3161 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3162 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3163 xpt_done(start_ccb);
3164 }
3165 break;
3166 }
3167 CAM_DEBUG(path, CAM_DEBUG_TRACE,
3168 ("xpt_action_default: func= %#x %s status %#x\n",
3169 start_ccb->ccb_h.func_code,
3170 xpt_action_name(start_ccb->ccb_h.func_code),
3171 start_ccb->ccb_h.status));
3172 }
3173
3174 /*
3175 * Call the sim poll routine to allow the sim to complete
3176 * any inflight requests, then call camisr_runqueue to
3177 * complete any CCB that the polling completed.
3178 */
3179 void
3180 xpt_sim_poll(struct cam_sim *sim)
3181 {
3182 struct mtx *mtx;
3183
3184 mtx = sim->mtx;
3185 if (mtx)
3186 mtx_lock(mtx);
3187 (*(sim->sim_poll))(sim);
3188 if (mtx)
3189 mtx_unlock(mtx);
3190 camisr_runqueue();
3191 }
3192
3193 uint32_t
3194 xpt_poll_setup(union ccb *start_ccb)
3195 {
3196 u_int32_t timeout;
3197 struct cam_sim *sim;
3198 struct cam_devq *devq;
3199 struct cam_ed *dev;
3200
3201 timeout = start_ccb->ccb_h.timeout * 10;
3202 sim = start_ccb->ccb_h.path->bus->sim;
3203 devq = sim->devq;
3204 dev = start_ccb->ccb_h.path->device;
3205
3206 /*
3207 * Steal an opening so that no other queued requests
3208 * can get it before us while we simulate interrupts.
3209 */
3210 mtx_lock(&devq->send_mtx);
3211 dev->ccbq.dev_openings--;
3212 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3213 (--timeout > 0)) {
3214 mtx_unlock(&devq->send_mtx);
3215 DELAY(100);
3216 xpt_sim_poll(sim);
3217 mtx_lock(&devq->send_mtx);
3218 }
3219 dev->ccbq.dev_openings++;
3220 mtx_unlock(&devq->send_mtx);
3221
3222 return (timeout);
3223 }
3224
3225 void
3226 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3227 {
3228
3229 while (--timeout > 0) {
3230 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3231 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3232 != CAM_REQ_INPROG)
3233 break;
3234 DELAY(100);
3235 }
3236
3237 if (timeout == 0) {
3238 /*
3239 * XXX Is it worth adding a sim_timeout entry
3240 * point so we can attempt recovery? If
3241 * this is only used for dumps, I don't think
3242 * it is.
3243 */
3244 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3245 }
3246 }
3247
3248 void
3249 xpt_polled_action(union ccb *start_ccb)
3250 {
3251 uint32_t timeout;
3252 struct cam_ed *dev;
3253
3254 timeout = start_ccb->ccb_h.timeout * 10;
3255 dev = start_ccb->ccb_h.path->device;
3256
3257 mtx_unlock(&dev->device_mtx);
3258
3259 timeout = xpt_poll_setup(start_ccb);
3260 if (timeout > 0) {
3261 xpt_action(start_ccb);
3262 xpt_pollwait(start_ccb, timeout);
3263 } else {
3264 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3265 }
3266
3267 mtx_lock(&dev->device_mtx);
3268 }
3269
3270 /*
3271 * Schedule a peripheral driver to receive a ccb when its
3272 * target device has space for more transactions.
3273 */
3274 void
3275 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3276 {
3277
3278 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3279 cam_periph_assert(periph, MA_OWNED);
3280 if (new_priority < periph->scheduled_priority) {
3281 periph->scheduled_priority = new_priority;
3282 xpt_run_allocq(periph, 0);
3283 }
3284 }
3285
3286 /*
3287 * Schedule a device to run on a given queue.
3288 * If the device was inserted as a new entry on the queue,
3289 * return 1 meaning the device queue should be run. If we
3290 * were already queued, implying someone else has already
3291 * started the queue, return 0 so the caller doesn't attempt
3292 * to run the queue.
3293 */
3294 static int
3295 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3296 u_int32_t new_priority)
3297 {
3298 int retval;
3299 u_int32_t old_priority;
3300
3301 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3302
3303 old_priority = pinfo->priority;
3304
3305 /*
3306 * Are we already queued?
3307 */
3308 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3309 /* Simply reorder based on new priority */
3310 if (new_priority < old_priority) {
3311 camq_change_priority(queue, pinfo->index,
3312 new_priority);
3313 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3314 ("changed priority to %d\n",
3315 new_priority));
3316 retval = 1;
3317 } else
3318 retval = 0;
3319 } else {
3320 /* New entry on the queue */
3321 if (new_priority < old_priority)
3322 pinfo->priority = new_priority;
3323
3324 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3325 ("Inserting onto queue\n"));
3326 pinfo->generation = ++queue->generation;
3327 camq_insert(queue, pinfo);
3328 retval = 1;
3329 }
3330 return (retval);
3331 }
3332
3333 static void
3334 xpt_run_allocq_task(void *context, int pending)
3335 {
3336 struct cam_periph *periph = context;
3337
3338 cam_periph_lock(periph);
3339 periph->flags &= ~CAM_PERIPH_RUN_TASK;
3340 xpt_run_allocq(periph, 1);
3341 cam_periph_unlock(periph);
3342 cam_periph_release(periph);
3343 }
3344
3345 static void
3346 xpt_run_allocq(struct cam_periph *periph, int sleep)
3347 {
3348 struct cam_ed *device;
3349 union ccb *ccb;
3350 uint32_t prio;
3351
3352 cam_periph_assert(periph, MA_OWNED);
3353 if (periph->periph_allocating)
3354 return;
3355 cam_periph_doacquire(periph);
3356 periph->periph_allocating = 1;
3357 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3358 device = periph->path->device;
3359 ccb = NULL;
3360 restart:
3361 while ((prio = min(periph->scheduled_priority,
3362 periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3363 (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3364 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3365 if (ccb == NULL &&
3366 (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3367 if (sleep) {
3368 ccb = xpt_get_ccb(periph);
3369 goto restart;
3370 }
3371 if (periph->flags & CAM_PERIPH_RUN_TASK)
3372 break;
3373 cam_periph_doacquire(periph);
3374 periph->flags |= CAM_PERIPH_RUN_TASK;
3375 taskqueue_enqueue(xsoftc.xpt_taskq,
3376 &periph->periph_run_task);
3377 break;
3378 }
3379 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3380 if (prio == periph->immediate_priority) {
3381 periph->immediate_priority = CAM_PRIORITY_NONE;
3382 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3383 ("waking cam_periph_getccb()\n"));
3384 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3385 periph_links.sle);
3386 wakeup(&periph->ccb_list);
3387 } else {
3388 periph->scheduled_priority = CAM_PRIORITY_NONE;
3389 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3390 ("calling periph_start()\n"));
3391 periph->periph_start(periph, ccb);
3392 }
3393 ccb = NULL;
3394 }
3395 if (ccb != NULL)
3396 xpt_release_ccb(ccb);
3397 periph->periph_allocating = 0;
3398 cam_periph_release_locked(periph);
3399 }
3400
3401 static void
3402 xpt_run_devq(struct cam_devq *devq)
3403 {
3404 struct mtx *mtx;
3405
3406 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3407
3408 devq->send_queue.qfrozen_cnt++;
3409 while ((devq->send_queue.entries > 0)
3410 && (devq->send_openings > 0)
3411 && (devq->send_queue.qfrozen_cnt <= 1)) {
3412 struct cam_ed *device;
3413 union ccb *work_ccb;
3414 struct cam_sim *sim;
3415 struct xpt_proto *proto;
3416
3417 device = (struct cam_ed *)camq_remove(&devq->send_queue,
3418 CAMQ_HEAD);
3419 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3420 ("running device %p\n", device));
3421
3422 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3423 if (work_ccb == NULL) {
3424 printf("device on run queue with no ccbs???\n");
3425 continue;
3426 }
3427
3428 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3429 mtx_lock(&xsoftc.xpt_highpower_lock);
3430 if (xsoftc.num_highpower <= 0) {
3431 /*
3432 * We got a high power command, but we
3433 * don't have any available slots. Freeze
3434 * the device queue until we have a slot
3435 * available.
3436 */
3437 xpt_freeze_devq_device(device, 1);
3438 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3439 highpowerq_entry);
3440
3441 mtx_unlock(&xsoftc.xpt_highpower_lock);
3442 continue;
3443 } else {
3444 /*
3445 * Consume a high power slot while
3446 * this ccb runs.
3447 */
3448 xsoftc.num_highpower--;
3449 }
3450 mtx_unlock(&xsoftc.xpt_highpower_lock);
3451 }
3452 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3453 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3454 devq->send_openings--;
3455 devq->send_active++;
3456 xpt_schedule_devq(devq, device);
3457 mtx_unlock(&devq->send_mtx);
3458
3459 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3460 /*
3461 * The client wants to freeze the queue
3462 * after this CCB is sent.
3463 */
3464 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3465 }
3466
3467 /* In Target mode, the peripheral driver knows best... */
3468 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3469 if ((device->inq_flags & SID_CmdQue) != 0
3470 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3471 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3472 else
3473 /*
3474 * Clear this in case of a retried CCB that
3475 * failed due to a rejected tag.
3476 */
3477 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3478 }
3479
3480 KASSERT(device == work_ccb->ccb_h.path->device,
3481 ("device (%p) / path->device (%p) mismatch",
3482 device, work_ccb->ccb_h.path->device));
3483 proto = xpt_proto_find(device->protocol);
3484 if (proto && proto->ops->debug_out)
3485 proto->ops->debug_out(work_ccb);
3486
3487 /*
3488 * Device queues can be shared among multiple SIM instances
3489 * that reside on different buses. Use the SIM from the
3490 * queued device, rather than the one from the calling bus.
3491 */
3492 sim = device->sim;
3493 mtx = sim->mtx;
3494 if (mtx && !mtx_owned(mtx))
3495 mtx_lock(mtx);
3496 else
3497 mtx = NULL;
3498 work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3499 (*(sim->sim_action))(sim, work_ccb);
3500 if (mtx)
3501 mtx_unlock(mtx);
3502 mtx_lock(&devq->send_mtx);
3503 }
3504 devq->send_queue.qfrozen_cnt--;
3505 }
3506
3507 /*
3508 * This function merges stuff from the src ccb into the dst ccb, while keeping
3509 * important fields in the dst ccb constant.
3510 */
3511 void
3512 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3513 {
3514
3515 /*
3516 * Pull fields that are valid for peripheral drivers to set
3517 * into the dst CCB along with the CCB "payload".
3518 */
3519 dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3520 dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3521 dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3522 dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3523 bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3524 sizeof(union ccb) - sizeof(struct ccb_hdr));
3525 }
3526
3527 void
3528 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3529 u_int32_t priority, u_int32_t flags)
3530 {
3531
3532 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3533 ccb_h->pinfo.priority = priority;
3534 ccb_h->path = path;
3535 ccb_h->path_id = path->bus->path_id;
3536 if (path->target)
3537 ccb_h->target_id = path->target->target_id;
3538 else
3539 ccb_h->target_id = CAM_TARGET_WILDCARD;
3540 if (path->device) {
3541 ccb_h->target_lun = path->device->lun_id;
3542 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3543 } else {
3544 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3545 }
3546 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3547 ccb_h->flags = flags;
3548 ccb_h->xflags = 0;
3549 }
3550
3551 void
3552 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3553 {
3554 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3555 }
3556
3557 /* Path manipulation functions */
3558 cam_status
3559 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3560 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3561 {
3562 struct cam_path *path;
3563 cam_status status;
3564
3565 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3566
3567 if (path == NULL) {
3568 status = CAM_RESRC_UNAVAIL;
3569 return(status);
3570 }
3571 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3572 if (status != CAM_REQ_CMP) {
3573 free(path, M_CAMPATH);
3574 path = NULL;
3575 }
3576 *new_path_ptr = path;
3577 return (status);
3578 }
3579
3580 cam_status
3581 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3582 struct cam_periph *periph, path_id_t path_id,
3583 target_id_t target_id, lun_id_t lun_id)
3584 {
3585
3586 return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3587 lun_id));
3588 }
3589
3590 cam_status
3591 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3592 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3593 {
3594 struct cam_eb *bus;
3595 struct cam_et *target;
3596 struct cam_ed *device;
3597 cam_status status;
3598
3599 status = CAM_REQ_CMP; /* Completed without error */
3600 target = NULL; /* Wildcarded */
3601 device = NULL; /* Wildcarded */
3602
3603 /*
3604 * We will potentially modify the EDT, so block interrupts
3605 * that may attempt to create cam paths.
3606 */
3607 bus = xpt_find_bus(path_id);
3608 if (bus == NULL) {
3609 status = CAM_PATH_INVALID;
3610 } else {
3611 xpt_lock_buses();
3612 mtx_lock(&bus->eb_mtx);
3613 target = xpt_find_target(bus, target_id);
3614 if (target == NULL) {
3615 /* Create one */
3616 struct cam_et *new_target;
3617
3618 new_target = xpt_alloc_target(bus, target_id);
3619 if (new_target == NULL) {
3620 status = CAM_RESRC_UNAVAIL;
3621 } else {
3622 target = new_target;
3623 }
3624 }
3625 xpt_unlock_buses();
3626 if (target != NULL) {
3627 device = xpt_find_device(target, lun_id);
3628 if (device == NULL) {
3629 /* Create one */
3630 struct cam_ed *new_device;
3631
3632 new_device =
3633 (*(bus->xport->ops->alloc_device))(bus,
3634 target,
3635 lun_id);
3636 if (new_device == NULL) {
3637 status = CAM_RESRC_UNAVAIL;
3638 } else {
3639 device = new_device;
3640 }
3641 }
3642 }
3643 mtx_unlock(&bus->eb_mtx);
3644 }
3645
3646 /*
3647 * Only touch the user's data if we are successful.
3648 */
3649 if (status == CAM_REQ_CMP) {
3650 new_path->periph = perph;
3651 new_path->bus = bus;
3652 new_path->target = target;
3653 new_path->device = device;
3654 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3655 } else {
3656 if (device != NULL)
3657 xpt_release_device(device);
3658 if (target != NULL)
3659 xpt_release_target(target);
3660 if (bus != NULL)
3661 xpt_release_bus(bus);
3662 }
3663 return (status);
3664 }
3665
3666 cam_status
3667 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3668 {
3669 struct cam_path *new_path;
3670
3671 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3672 if (new_path == NULL)
3673 return(CAM_RESRC_UNAVAIL);
3674 *new_path = *path;
3675 if (path->bus != NULL)
3676 xpt_acquire_bus(path->bus);
3677 if (path->target != NULL)
3678 xpt_acquire_target(path->target);
3679 if (path->device != NULL)
3680 xpt_acquire_device(path->device);
3681 *new_path_ptr = new_path;
3682 return (CAM_REQ_CMP);
3683 }
3684
3685 void
3686 xpt_release_path(struct cam_path *path)
3687 {
3688 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3689 if (path->device != NULL) {
3690 xpt_release_device(path->device);
3691 path->device = NULL;
3692 }
3693 if (path->target != NULL) {
3694 xpt_release_target(path->target);
3695 path->target = NULL;
3696 }
3697 if (path->bus != NULL) {
3698 xpt_release_bus(path->bus);
3699 path->bus = NULL;
3700 }
3701 }
3702
3703 void
3704 xpt_free_path(struct cam_path *path)
3705 {
3706
3707 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3708 xpt_release_path(path);
3709 free(path, M_CAMPATH);
3710 }
3711
3712 void
3713 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3714 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3715 {
3716
3717 xpt_lock_buses();
3718 if (bus_ref) {
3719 if (path->bus)
3720 *bus_ref = path->bus->refcount;
3721 else
3722 *bus_ref = 0;
3723 }
3724 if (periph_ref) {
3725 if (path->periph)
3726 *periph_ref = path->periph->refcount;
3727 else
3728 *periph_ref = 0;
3729 }
3730 xpt_unlock_buses();
3731 if (target_ref) {
3732 if (path->target)
3733 *target_ref = path->target->refcount;
3734 else
3735 *target_ref = 0;
3736 }
3737 if (device_ref) {
3738 if (path->device)
3739 *device_ref = path->device->refcount;
3740 else
3741 *device_ref = 0;
3742 }
3743 }
3744
3745 /*
3746 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3747 * in path1, 2 for match with wildcards in path2.
3748 */
3749 int
3750 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3751 {
3752 int retval = 0;
3753
3754 if (path1->bus != path2->bus) {
3755 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3756 retval = 1;
3757 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3758 retval = 2;
3759 else
3760 return (-1);
3761 }
3762 if (path1->target != path2->target) {
3763 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3764 if (retval == 0)
3765 retval = 1;
3766 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3767 retval = 2;
3768 else
3769 return (-1);
3770 }
3771 if (path1->device != path2->device) {
3772 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3773 if (retval == 0)
3774 retval = 1;
3775 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3776 retval = 2;
3777 else
3778 return (-1);
3779 }
3780 return (retval);
3781 }
3782
3783 int
3784 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3785 {
3786 int retval = 0;
3787
3788 if (path->bus != dev->target->bus) {
3789 if (path->bus->path_id == CAM_BUS_WILDCARD)
3790 retval = 1;
3791 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3792 retval = 2;
3793 else
3794 return (-1);
3795 }
3796 if (path->target != dev->target) {
3797 if (path->target->target_id == CAM_TARGET_WILDCARD) {
3798 if (retval == 0)
3799 retval = 1;
3800 } else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3801 retval = 2;
3802 else
3803 return (-1);
3804 }
3805 if (path->device != dev) {
3806 if (path->device->lun_id == CAM_LUN_WILDCARD) {
3807 if (retval == 0)
3808 retval = 1;
3809 } else if (dev->lun_id == CAM_LUN_WILDCARD)
3810 retval = 2;
3811 else
3812 return (-1);
3813 }
3814 return (retval);
3815 }
3816
3817 void
3818 xpt_print_path(struct cam_path *path)
3819 {
3820 struct sbuf sb;
3821 char buffer[XPT_PRINT_LEN];
3822
3823 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3824 xpt_path_sbuf(path, &sb);
3825 sbuf_finish(&sb);
3826 printf("%s", sbuf_data(&sb));
3827 sbuf_delete(&sb);
3828 }
3829
3830 void
3831 xpt_print_device(struct cam_ed *device)
3832 {
3833
3834 if (device == NULL)
3835 printf("(nopath): ");
3836 else {
3837 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3838 device->sim->unit_number,
3839 device->sim->bus_id,
3840 device->target->target_id,
3841 (uintmax_t)device->lun_id);
3842 }
3843 }
3844
3845 void
3846 xpt_print(struct cam_path *path, const char *fmt, ...)
3847 {
3848 va_list ap;
3849 struct sbuf sb;
3850 char buffer[XPT_PRINT_LEN];
3851
3852 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3853
3854 xpt_path_sbuf(path, &sb);
3855 va_start(ap, fmt);
3856 sbuf_vprintf(&sb, fmt, ap);
3857 va_end(ap);
3858
3859 sbuf_finish(&sb);
3860 printf("%s", sbuf_data(&sb));
3861 sbuf_delete(&sb);
3862 }
3863
3864 int
3865 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3866 {
3867 struct sbuf sb;
3868 int len;
3869
3870 sbuf_new(&sb, str, str_len, 0);
3871 len = xpt_path_sbuf(path, &sb);
3872 sbuf_finish(&sb);
3873 return (len);
3874 }
3875
3876 int
3877 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3878 {
3879
3880 if (path == NULL)
3881 sbuf_printf(sb, "(nopath): ");
3882 else {
3883 if (path->periph != NULL)
3884 sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3885 path->periph->unit_number);
3886 else
3887 sbuf_printf(sb, "(noperiph:");
3888
3889 if (path->bus != NULL)
3890 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3891 path->bus->sim->unit_number,
3892 path->bus->sim->bus_id);
3893 else
3894 sbuf_printf(sb, "nobus:");
3895
3896 if (path->target != NULL)
3897 sbuf_printf(sb, "%d:", path->target->target_id);
3898 else
3899 sbuf_printf(sb, "X:");
3900
3901 if (path->device != NULL)
3902 sbuf_printf(sb, "%jx): ",
3903 (uintmax_t)path->device->lun_id);
3904 else
3905 sbuf_printf(sb, "X): ");
3906 }
3907
3908 return(sbuf_len(sb));
3909 }
3910
3911 path_id_t
3912 xpt_path_path_id(struct cam_path *path)
3913 {
3914 return(path->bus->path_id);
3915 }
3916
3917 target_id_t
3918 xpt_path_target_id(struct cam_path *path)
3919 {
3920 if (path->target != NULL)
3921 return (path->target->target_id);
3922 else
3923 return (CAM_TARGET_WILDCARD);
3924 }
3925
3926 lun_id_t
3927 xpt_path_lun_id(struct cam_path *path)
3928 {
3929 if (path->device != NULL)
3930 return (path->device->lun_id);
3931 else
3932 return (CAM_LUN_WILDCARD);
3933 }
3934
3935 struct cam_sim *
3936 xpt_path_sim(struct cam_path *path)
3937 {
3938
3939 return (path->bus->sim);
3940 }
3941
3942 struct cam_periph*
3943 xpt_path_periph(struct cam_path *path)
3944 {
3945
3946 return (path->periph);
3947 }
3948
3949 /*
3950 * Release a CAM control block for the caller. Remit the cost of the structure
3951 * to the device referenced by the path. If the this device had no 'credits'
3952 * and peripheral drivers have registered async callbacks for this notification
3953 * call them now.
3954 */
3955 void
3956 xpt_release_ccb(union ccb *free_ccb)
3957 {
3958 struct cam_ed *device;
3959 struct cam_periph *periph;
3960
3961 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3962 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3963 device = free_ccb->ccb_h.path->device;
3964 periph = free_ccb->ccb_h.path->periph;
3965
3966 xpt_free_ccb(free_ccb);
3967 periph->periph_allocated--;
3968 cam_ccbq_release_opening(&device->ccbq);
3969 xpt_run_allocq(periph, 0);
3970 }
3971
3972 /* Functions accessed by SIM drivers */
3973
3974 static struct xpt_xport_ops xport_default_ops = {
3975 .alloc_device = xpt_alloc_device_default,
3976 .action = xpt_action_default,
3977 .async = xpt_dev_async_default,
3978 };
3979 static struct xpt_xport xport_default = {
3980 .xport = XPORT_UNKNOWN,
3981 .name = "unknown",
3982 .ops = &xport_default_ops,
3983 };
3984
3985 CAM_XPT_XPORT(xport_default);
3986
3987 /*
3988 * A sim structure, listing the SIM entry points and instance
3989 * identification info is passed to xpt_bus_register to hook the SIM
3990 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3991 * for this new bus and places it in the array of buses and assigns
3992 * it a path_id. The path_id may be influenced by "hard wiring"
3993 * information specified by the user. Once interrupt services are
3994 * available, the bus will be probed.
3995 */
3996 int32_t
3997 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3998 {
3999 struct cam_eb *new_bus;
4000 struct cam_eb *old_bus;
4001 struct ccb_pathinq cpi;
4002 struct cam_path *path;
4003 cam_status status;
4004
4005 sim->bus_id = bus;
4006 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4007 M_CAMXPT, M_NOWAIT|M_ZERO);
4008 if (new_bus == NULL) {
4009 /* Couldn't satisfy request */
4010 return (CAM_RESRC_UNAVAIL);
4011 }
4012
4013 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4014 TAILQ_INIT(&new_bus->et_entries);
4015 cam_sim_hold(sim);
4016 new_bus->sim = sim;
4017 timevalclear(&new_bus->last_reset);
4018 new_bus->flags = 0;
4019 new_bus->refcount = 1; /* Held until a bus_deregister event */
4020 new_bus->generation = 0;
4021
4022 xpt_lock_buses();
4023 sim->path_id = new_bus->path_id =
4024 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4025 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4026 while (old_bus != NULL
4027 && old_bus->path_id < new_bus->path_id)
4028 old_bus = TAILQ_NEXT(old_bus, links);
4029 if (old_bus != NULL)
4030 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4031 else
4032 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4033 xsoftc.bus_generation++;
4034 xpt_unlock_buses();
4035
4036 /*
4037 * Set a default transport so that a PATH_INQ can be issued to
4038 * the SIM. This will then allow for probing and attaching of
4039 * a more appropriate transport.
4040 */
4041 new_bus->xport = &xport_default;
4042
4043 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4044 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4045 if (status != CAM_REQ_CMP) {
4046 xpt_release_bus(new_bus);
4047 return (CAM_RESRC_UNAVAIL);
4048 }
4049
4050 xpt_path_inq(&cpi, path);
4051
4052 if (cpi.ccb_h.status == CAM_REQ_CMP) {
4053 struct xpt_xport **xpt;
4054
4055 SET_FOREACH(xpt, cam_xpt_xport_set) {
4056 if ((*xpt)->xport == cpi.transport) {
4057 new_bus->xport = *xpt;
4058 break;
4059 }
4060 }
4061 if (new_bus->xport == NULL) {
4062 xpt_print(path,
4063 "No transport found for %d\n", cpi.transport);
4064 xpt_release_bus(new_bus);
4065 free(path, M_CAMXPT);
4066 return (CAM_RESRC_UNAVAIL);
4067 }
4068 }
4069
4070 /* Notify interested parties */
4071 if (sim->path_id != CAM_XPT_PATH_ID) {
4072 xpt_async(AC_PATH_REGISTERED, path, &cpi);
4073 if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4074 union ccb *scan_ccb;
4075
4076 /* Initiate bus rescan. */
4077 scan_ccb = xpt_alloc_ccb_nowait();
4078 if (scan_ccb != NULL) {
4079 scan_ccb->ccb_h.path = path;
4080 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4081 scan_ccb->crcn.flags = 0;
4082 xpt_rescan(scan_ccb);
4083 } else {
4084 xpt_print(path,
4085 "Can't allocate CCB to scan bus\n");
4086 xpt_free_path(path);
4087 }
4088 } else
4089 xpt_free_path(path);
4090 } else
4091 xpt_free_path(path);
4092 return (CAM_SUCCESS);
4093 }
4094
4095 int32_t
4096 xpt_bus_deregister(path_id_t pathid)
4097 {
4098 struct cam_path bus_path;
4099 cam_status status;
4100
4101 status = xpt_compile_path(&bus_path, NULL, pathid,
4102 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4103 if (status != CAM_REQ_CMP)
4104 return (status);
4105
4106 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4107 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4108
4109 /* Release the reference count held while registered. */
4110 xpt_release_bus(bus_path.bus);
4111 xpt_release_path(&bus_path);
4112
4113 return (CAM_REQ_CMP);
4114 }
4115
4116 static path_id_t
4117 xptnextfreepathid(void)
4118 {
4119 struct cam_eb *bus;
4120 path_id_t pathid;
4121 const char *strval;
4122
4123 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4124 pathid = 0;
4125 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4126 retry:
4127 /* Find an unoccupied pathid */
4128 while (bus != NULL && bus->path_id <= pathid) {
4129 if (bus->path_id == pathid)
4130 pathid++;
4131 bus = TAILQ_NEXT(bus, links);
4132 }
4133
4134 /*
4135 * Ensure that this pathid is not reserved for
4136 * a bus that may be registered in the future.
4137 */
4138 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4139 ++pathid;
4140 /* Start the search over */
4141 goto retry;
4142 }
4143 return (pathid);
4144 }
4145
4146 static path_id_t
4147 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4148 {
4149 path_id_t pathid;
4150 int i, dunit, val;
4151 char buf[32];
4152 const char *dname;
4153
4154 pathid = CAM_XPT_PATH_ID;
4155 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4156 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4157 return (pathid);
4158 i = 0;
4159 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4160 if (strcmp(dname, "scbus")) {
4161 /* Avoid a bit of foot shooting. */
4162 continue;
4163 }
4164 if (dunit < 0) /* unwired?! */
4165 continue;
4166 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4167 if (sim_bus == val) {
4168 pathid = dunit;
4169 break;
4170 }
4171 } else if (sim_bus == 0) {
4172 /* Unspecified matches bus 0 */
4173 pathid = dunit;
4174 break;
4175 } else {
4176 printf("Ambiguous scbus configuration for %s%d "
4177 "bus %d, cannot wire down. The kernel "
4178 "config entry for scbus%d should "
4179 "specify a controller bus.\n"
4180 "Scbus will be assigned dynamically.\n",
4181 sim_name, sim_unit, sim_bus, dunit);
4182 break;
4183 }
4184 }
4185
4186 if (pathid == CAM_XPT_PATH_ID)
4187 pathid = xptnextfreepathid();
4188 return (pathid);
4189 }
4190
4191 static const char *
4192 xpt_async_string(u_int32_t async_code)
4193 {
4194
4195 switch (async_code) {
4196 case AC_BUS_RESET: return ("AC_BUS_RESET");
4197 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4198 case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4199 case AC_SENT_BDR: return ("AC_SENT_BDR");
4200 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4201 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4202 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4203 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4204 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4205 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4206 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4207 case AC_CONTRACT: return ("AC_CONTRACT");
4208 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4209 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4210 }
4211 return ("AC_UNKNOWN");
4212 }
4213
4214 static int
4215 xpt_async_size(u_int32_t async_code)
4216 {
4217
4218 switch (async_code) {
4219 case AC_BUS_RESET: return (0);
4220 case AC_UNSOL_RESEL: return (0);
4221 case AC_SCSI_AEN: return (0);
4222 case AC_SENT_BDR: return (0);
4223 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4224 case AC_PATH_DEREGISTERED: return (0);
4225 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4226 case AC_LOST_DEVICE: return (0);
4227 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4228 case AC_INQ_CHANGED: return (0);
4229 case AC_GETDEV_CHANGED: return (0);
4230 case AC_CONTRACT: return (sizeof(struct ac_contract));
4231 case AC_ADVINFO_CHANGED: return (-1);
4232 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4233 }
4234 return (0);
4235 }
4236
4237 static int
4238 xpt_async_process_dev(struct cam_ed *device, void *arg)
4239 {
4240 union ccb *ccb = arg;
4241 struct cam_path *path = ccb->ccb_h.path;
4242 void *async_arg = ccb->casync.async_arg_ptr;
4243 u_int32_t async_code = ccb->casync.async_code;
4244 int relock;
4245
4246 if (path->device != device
4247 && path->device->lun_id != CAM_LUN_WILDCARD
4248 && device->lun_id != CAM_LUN_WILDCARD)
4249 return (1);
4250
4251 /*
4252 * The async callback could free the device.
4253 * If it is a broadcast async, it doesn't hold
4254 * device reference, so take our own reference.
4255 */
4256 xpt_acquire_device(device);
4257
4258 /*
4259 * If async for specific device is to be delivered to
4260 * the wildcard client, take the specific device lock.
4261 * XXX: We may need a way for client to specify it.
4262 */
4263 if ((device->lun_id == CAM_LUN_WILDCARD &&
4264 path->device->lun_id != CAM_LUN_WILDCARD) ||
4265 (device->target->target_id == CAM_TARGET_WILDCARD &&
4266 path->target->target_id != CAM_TARGET_WILDCARD) ||
4267 (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4268 path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4269 mtx_unlock(&device->device_mtx);
4270 xpt_path_lock(path);
4271 relock = 1;
4272 } else
4273 relock = 0;
4274
4275 (*(device->target->bus->xport->ops->async))(async_code,
4276 device->target->bus, device->target, device, async_arg);
4277 xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4278
4279 if (relock) {
4280 xpt_path_unlock(path);
4281 mtx_lock(&device->device_mtx);
4282 }
4283 xpt_release_device(device);
4284 return (1);
4285 }
4286
4287 static int
4288 xpt_async_process_tgt(struct cam_et *target, void *arg)
4289 {
4290 union ccb *ccb = arg;
4291 struct cam_path *path = ccb->ccb_h.path;
4292
4293 if (path->target != target
4294 && path->target->target_id != CAM_TARGET_WILDCARD
4295 && target->target_id != CAM_TARGET_WILDCARD)
4296 return (1);
4297
4298 if (ccb->casync.async_code == AC_SENT_BDR) {
4299 /* Update our notion of when the last reset occurred */
4300 microtime(&target->last_reset);
4301 }
4302
4303 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4304 }
4305
4306 static void
4307 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4308 {
4309 struct cam_eb *bus;
4310 struct cam_path *path;
4311 void *async_arg;
4312 u_int32_t async_code;
4313
4314 path = ccb->ccb_h.path;
4315 async_code = ccb->casync.async_code;
4316 async_arg = ccb->casync.async_arg_ptr;
4317 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4318 ("xpt_async(%s)\n", xpt_async_string(async_code)));
4319 bus = path->bus;
4320
4321 if (async_code == AC_BUS_RESET) {
4322 /* Update our notion of when the last reset occurred */
4323 microtime(&bus->last_reset);
4324 }
4325
4326 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4327
4328 /*
4329 * If this wasn't a fully wildcarded async, tell all
4330 * clients that want all async events.
4331 */
4332 if (bus != xpt_periph->path->bus) {
4333 xpt_path_lock(xpt_periph->path);
4334 xpt_async_process_dev(xpt_periph->path->device, ccb);
4335 xpt_path_unlock(xpt_periph->path);
4336 }
4337
4338 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4339 xpt_release_devq(path, 1, TRUE);
4340 else
4341 xpt_release_simq(path->bus->sim, TRUE);
4342 if (ccb->casync.async_arg_size > 0)
4343 free(async_arg, M_CAMXPT);
4344 xpt_free_path(path);
4345 xpt_free_ccb(ccb);
4346 }
4347
4348 static void
4349 xpt_async_bcast(struct async_list *async_head,
4350 u_int32_t async_code,
4351 struct cam_path *path, void *async_arg)
4352 {
4353 struct async_node *cur_entry;
4354 struct mtx *mtx;
4355
4356 cur_entry = SLIST_FIRST(async_head);
4357 while (cur_entry != NULL) {
4358 struct async_node *next_entry;
4359 /*
4360 * Grab the next list entry before we call the current
4361 * entry's callback. This is because the callback function
4362 * can delete its async callback entry.
4363 */
4364 next_entry = SLIST_NEXT(cur_entry, links);
4365 if ((cur_entry->event_enable & async_code) != 0) {
4366 mtx = cur_entry->event_lock ?
4367 path->device->sim->mtx : NULL;
4368 if (mtx)
4369 mtx_lock(mtx);
4370 cur_entry->callback(cur_entry->callback_arg,
4371 async_code, path,
4372 async_arg);
4373 if (mtx)
4374 mtx_unlock(mtx);
4375 }
4376 cur_entry = next_entry;
4377 }
4378 }
4379
4380 void
4381 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4382 {
4383 union ccb *ccb;
4384 int size;
4385
4386 ccb = xpt_alloc_ccb_nowait();
4387 if (ccb == NULL) {
4388 xpt_print(path, "Can't allocate CCB to send %s\n",
4389 xpt_async_string(async_code));
4390 return;
4391 }
4392
4393 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4394 xpt_print(path, "Can't allocate path to send %s\n",
4395 xpt_async_string(async_code));
4396 xpt_free_ccb(ccb);
4397 return;
4398 }
4399 ccb->ccb_h.path->periph = NULL;
4400 ccb->ccb_h.func_code = XPT_ASYNC;
4401 ccb->ccb_h.cbfcnp = xpt_async_process;
4402 ccb->ccb_h.flags |= CAM_UNLOCKED;
4403 ccb->casync.async_code = async_code;
4404 ccb->casync.async_arg_size = 0;
4405 size = xpt_async_size(async_code);
4406 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4407 ("xpt_async: func %#x %s aync_code %d %s\n",
4408 ccb->ccb_h.func_code,
4409 xpt_action_name(ccb->ccb_h.func_code),
4410 async_code,
4411 xpt_async_string(async_code)));
4412 if (size > 0 && async_arg != NULL) {
4413 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4414 if (ccb->casync.async_arg_ptr == NULL) {
4415 xpt_print(path, "Can't allocate argument to send %s\n",
4416 xpt_async_string(async_code));
4417 xpt_free_path(ccb->ccb_h.path);
4418 xpt_free_ccb(ccb);
4419 return;
4420 }
4421 memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4422 ccb->casync.async_arg_size = size;
4423 } else if (size < 0) {
4424 ccb->casync.async_arg_ptr = async_arg;
4425 ccb->casync.async_arg_size = size;
4426 }
4427 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4428 xpt_freeze_devq(path, 1);
4429 else
4430 xpt_freeze_simq(path->bus->sim, 1);
4431 xpt_action(ccb);
4432 }
4433
4434 static void
4435 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4436 struct cam_et *target, struct cam_ed *device,
4437 void *async_arg)
4438 {
4439
4440 /*
4441 * We only need to handle events for real devices.
4442 */
4443 if (target->target_id == CAM_TARGET_WILDCARD
4444 || device->lun_id == CAM_LUN_WILDCARD)
4445 return;
4446
4447 printf("%s called\n", __func__);
4448 }
4449
4450 static uint32_t
4451 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4452 {
4453 struct cam_devq *devq;
4454 uint32_t freeze;
4455
4456 devq = dev->sim->devq;
4457 mtx_assert(&devq->send_mtx, MA_OWNED);
4458 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4459 ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4460 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4461 freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4462 /* Remove frozen device from sendq. */
4463 if (device_is_queued(dev))
4464 camq_remove(&devq->send_queue, dev->devq_entry.index);
4465 return (freeze);
4466 }
4467
4468 u_int32_t
4469 xpt_freeze_devq(struct cam_path *path, u_int count)
4470 {
4471 struct cam_ed *dev = path->device;
4472 struct cam_devq *devq;
4473 uint32_t freeze;
4474
4475 devq = dev->sim->devq;
4476 mtx_lock(&devq->send_mtx);
4477 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4478 freeze = xpt_freeze_devq_device(dev, count);
4479 mtx_unlock(&devq->send_mtx);
4480 return (freeze);
4481 }
4482
4483 u_int32_t
4484 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4485 {
4486 struct cam_devq *devq;
4487 uint32_t freeze;
4488
4489 devq = sim->devq;
4490 mtx_lock(&devq->send_mtx);
4491 freeze = (devq->send_queue.qfrozen_cnt += count);
4492 mtx_unlock(&devq->send_mtx);
4493 return (freeze);
4494 }
4495
4496 static void
4497 xpt_release_devq_timeout(void *arg)
4498 {
4499 struct cam_ed *dev;
4500 struct cam_devq *devq;
4501
4502 dev = (struct cam_ed *)arg;
4503 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4504 devq = dev->sim->devq;
4505 mtx_assert(&devq->send_mtx, MA_OWNED);
4506 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4507 xpt_run_devq(devq);
4508 }
4509
4510 void
4511 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4512 {
4513 struct cam_ed *dev;
4514 struct cam_devq *devq;
4515
4516 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4517 count, run_queue));
4518 dev = path->device;
4519 devq = dev->sim->devq;
4520 mtx_lock(&devq->send_mtx);
4521 if (xpt_release_devq_device(dev, count, run_queue))
4522 xpt_run_devq(dev->sim->devq);
4523 mtx_unlock(&devq->send_mtx);
4524 }
4525
4526 static int
4527 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4528 {
4529
4530 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4531 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4532 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4533 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4534 if (count > dev->ccbq.queue.qfrozen_cnt) {
4535 #ifdef INVARIANTS
4536 printf("xpt_release_devq(): requested %u > present %u\n",
4537 count, dev->ccbq.queue.qfrozen_cnt);
4538 #endif
4539 count = dev->ccbq.queue.qfrozen_cnt;
4540 }
4541 dev->ccbq.queue.qfrozen_cnt -= count;
4542 if (dev->ccbq.queue.qfrozen_cnt == 0) {
4543 /*
4544 * No longer need to wait for a successful
4545 * command completion.
4546 */
4547 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4548 /*
4549 * Remove any timeouts that might be scheduled
4550 * to release this queue.
4551 */
4552 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4553 callout_stop(&dev->callout);
4554 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4555 }
4556 /*
4557 * Now that we are unfrozen schedule the
4558 * device so any pending transactions are
4559 * run.
4560 */
4561 xpt_schedule_devq(dev->sim->devq, dev);
4562 } else
4563 run_queue = 0;
4564 return (run_queue);
4565 }
4566
4567 void
4568 xpt_release_simq(struct cam_sim *sim, int run_queue)
4569 {
4570 struct cam_devq *devq;
4571
4572 devq = sim->devq;
4573 mtx_lock(&devq->send_mtx);
4574 if (devq->send_queue.qfrozen_cnt <= 0) {
4575 #ifdef INVARIANTS
4576 printf("xpt_release_simq: requested 1 > present %u\n",
4577 devq->send_queue.qfrozen_cnt);
4578 #endif
4579 } else
4580 devq->send_queue.qfrozen_cnt--;
4581 if (devq->send_queue.qfrozen_cnt == 0) {
4582 /*
4583 * If there is a timeout scheduled to release this
4584 * sim queue, remove it. The queue frozen count is
4585 * already at 0.
4586 */
4587 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4588 callout_stop(&sim->callout);
4589 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4590 }
4591 if (run_queue) {
4592 /*
4593 * Now that we are unfrozen run the send queue.
4594 */
4595 xpt_run_devq(sim->devq);
4596 }
4597 }
4598 mtx_unlock(&devq->send_mtx);
4599 }
4600
4601 void
4602 xpt_done(union ccb *done_ccb)
4603 {
4604 struct cam_doneq *queue;
4605 int run, hash;
4606
4607 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4608 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4609 done_ccb->csio.bio != NULL)
4610 biotrack(done_ccb->csio.bio, __func__);
4611 #endif
4612
4613 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4614 ("xpt_done: func= %#x %s status %#x\n",
4615 done_ccb->ccb_h.func_code,
4616 xpt_action_name(done_ccb->ccb_h.func_code),
4617 done_ccb->ccb_h.status));
4618 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4619 return;
4620
4621 /* Store the time the ccb was in the sim */
4622 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4623 hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4624 done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4625 queue = &cam_doneqs[hash];
4626 mtx_lock(&queue->cam_doneq_mtx);
4627 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4628 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4629 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4630 mtx_unlock(&queue->cam_doneq_mtx);
4631 if (run)
4632 wakeup(&queue->cam_doneq);
4633 }
4634
4635 void
4636 xpt_done_direct(union ccb *done_ccb)
4637 {
4638
4639 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4640 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4641 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4642 return;
4643
4644 /* Store the time the ccb was in the sim */
4645 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4646 xpt_done_process(&done_ccb->ccb_h);
4647 }
4648
4649 union ccb *
4650 xpt_alloc_ccb(void)
4651 {
4652 union ccb *new_ccb;
4653
4654 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4655 return (new_ccb);
4656 }
4657
4658 union ccb *
4659 xpt_alloc_ccb_nowait(void)
4660 {
4661 union ccb *new_ccb;
4662
4663 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4664 return (new_ccb);
4665 }
4666
4667 void
4668 xpt_free_ccb(union ccb *free_ccb)
4669 {
4670 free(free_ccb, M_CAMCCB);
4671 }
4672
4673 /* Private XPT functions */
4674
4675 /*
4676 * Get a CAM control block for the caller. Charge the structure to the device
4677 * referenced by the path. If we don't have sufficient resources to allocate
4678 * more ccbs, we return NULL.
4679 */
4680 static union ccb *
4681 xpt_get_ccb_nowait(struct cam_periph *periph)
4682 {
4683 union ccb *new_ccb;
4684
4685 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4686 if (new_ccb == NULL)
4687 return (NULL);
4688 periph->periph_allocated++;
4689 cam_ccbq_take_opening(&periph->path->device->ccbq);
4690 return (new_ccb);
4691 }
4692
4693 static union ccb *
4694 xpt_get_ccb(struct cam_periph *periph)
4695 {
4696 union ccb *new_ccb;
4697
4698 cam_periph_unlock(periph);
4699 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4700 cam_periph_lock(periph);
4701 periph->periph_allocated++;
4702 cam_ccbq_take_opening(&periph->path->device->ccbq);
4703 return (new_ccb);
4704 }
4705
4706 union ccb *
4707 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4708 {
4709 struct ccb_hdr *ccb_h;
4710
4711 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4712 cam_periph_assert(periph, MA_OWNED);
4713 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4714 ccb_h->pinfo.priority != priority) {
4715 if (priority < periph->immediate_priority) {
4716 periph->immediate_priority = priority;
4717 xpt_run_allocq(periph, 0);
4718 } else
4719 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4720 "cgticb", 0);
4721 }
4722 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4723 return ((union ccb *)ccb_h);
4724 }
4725
4726 static void
4727 xpt_acquire_bus(struct cam_eb *bus)
4728 {
4729
4730 xpt_lock_buses();
4731 bus->refcount++;
4732 xpt_unlock_buses();
4733 }
4734
4735 static void
4736 xpt_release_bus(struct cam_eb *bus)
4737 {
4738
4739 xpt_lock_buses();
4740 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4741 if (--bus->refcount > 0) {
4742 xpt_unlock_buses();
4743 return;
4744 }
4745 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4746 xsoftc.bus_generation++;
4747 xpt_unlock_buses();
4748 KASSERT(TAILQ_EMPTY(&bus->et_entries),
4749 ("destroying bus, but target list is not empty"));
4750 cam_sim_release(bus->sim);
4751 mtx_destroy(&bus->eb_mtx);
4752 free(bus, M_CAMXPT);
4753 }
4754
4755 static struct cam_et *
4756 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4757 {
4758 struct cam_et *cur_target, *target;
4759
4760 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4761 mtx_assert(&bus->eb_mtx, MA_OWNED);
4762 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4763 M_NOWAIT|M_ZERO);
4764 if (target == NULL)
4765 return (NULL);
4766
4767 TAILQ_INIT(&target->ed_entries);
4768 target->bus = bus;
4769 target->target_id = target_id;
4770 target->refcount = 1;
4771 target->generation = 0;
4772 target->luns = NULL;
4773 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4774 timevalclear(&target->last_reset);
4775 /*
4776 * Hold a reference to our parent bus so it
4777 * will not go away before we do.
4778 */
4779 bus->refcount++;
4780
4781 /* Insertion sort into our bus's target list */
4782 cur_target = TAILQ_FIRST(&bus->et_entries);
4783 while (cur_target != NULL && cur_target->target_id < target_id)
4784 cur_target = TAILQ_NEXT(cur_target, links);
4785 if (cur_target != NULL) {
4786 TAILQ_INSERT_BEFORE(cur_target, target, links);
4787 } else {
4788 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4789 }
4790 bus->generation++;
4791 return (target);
4792 }
4793
4794 static void
4795 xpt_acquire_target(struct cam_et *target)
4796 {
4797 struct cam_eb *bus = target->bus;
4798
4799 mtx_lock(&bus->eb_mtx);
4800 target->refcount++;
4801 mtx_unlock(&bus->eb_mtx);
4802 }
4803
4804 static void
4805 xpt_release_target(struct cam_et *target)
4806 {
4807 struct cam_eb *bus = target->bus;
4808
4809 mtx_lock(&bus->eb_mtx);
4810 if (--target->refcount > 0) {
4811 mtx_unlock(&bus->eb_mtx);
4812 return;
4813 }
4814 TAILQ_REMOVE(&bus->et_entries, target, links);
4815 bus->generation++;
4816 mtx_unlock(&bus->eb_mtx);
4817 KASSERT(TAILQ_EMPTY(&target->ed_entries),
4818 ("destroying target, but device list is not empty"));
4819 xpt_release_bus(bus);
4820 mtx_destroy(&target->luns_mtx);
4821 if (target->luns)
4822 free(target->luns, M_CAMXPT);
4823 free(target, M_CAMXPT);
4824 }
4825
4826 static struct cam_ed *
4827 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4828 lun_id_t lun_id)
4829 {
4830 struct cam_ed *device;
4831
4832 device = xpt_alloc_device(bus, target, lun_id);
4833 if (device == NULL)
4834 return (NULL);
4835
4836 device->mintags = 1;
4837 device->maxtags = 1;
4838 return (device);
4839 }
4840
4841 static void
4842 xpt_destroy_device(void *context, int pending)
4843 {
4844 struct cam_ed *device = context;
4845
4846 mtx_lock(&device->device_mtx);
4847 mtx_destroy(&device->device_mtx);
4848 free(device, M_CAMDEV);
4849 }
4850
4851 struct cam_ed *
4852 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4853 {
4854 struct cam_ed *cur_device, *device;
4855 struct cam_devq *devq;
4856 cam_status status;
4857
4858 mtx_assert(&bus->eb_mtx, MA_OWNED);
4859 /* Make space for us in the device queue on our bus */
4860 devq = bus->sim->devq;
4861 mtx_lock(&devq->send_mtx);
4862 status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4863 mtx_unlock(&devq->send_mtx);
4864 if (status != CAM_REQ_CMP)
4865 return (NULL);
4866
4867 device = (struct cam_ed *)malloc(sizeof(*device),
4868 M_CAMDEV, M_NOWAIT|M_ZERO);
4869 if (device == NULL)
4870 return (NULL);
4871
4872 cam_init_pinfo(&device->devq_entry);
4873 device->target = target;
4874 device->lun_id = lun_id;
4875 device->sim = bus->sim;
4876 if (cam_ccbq_init(&device->ccbq,
4877 bus->sim->max_dev_openings) != 0) {
4878 free(device, M_CAMDEV);
4879 return (NULL);
4880 }
4881 SLIST_INIT(&device->asyncs);
4882 SLIST_INIT(&device->periphs);
4883 device->generation = 0;
4884 device->flags = CAM_DEV_UNCONFIGURED;
4885 device->tag_delay_count = 0;
4886 device->tag_saved_openings = 0;
4887 device->refcount = 1;
4888 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4889 callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4890 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4891 /*
4892 * Hold a reference to our parent bus so it
4893 * will not go away before we do.
4894 */
4895 target->refcount++;
4896
4897 cur_device = TAILQ_FIRST(&target->ed_entries);
4898 while (cur_device != NULL && cur_device->lun_id < lun_id)
4899 cur_device = TAILQ_NEXT(cur_device, links);
4900 if (cur_device != NULL)
4901 TAILQ_INSERT_BEFORE(cur_device, device, links);
4902 else
4903 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4904 target->generation++;
4905 return (device);
4906 }
4907
4908 void
4909 xpt_acquire_device(struct cam_ed *device)
4910 {
4911 struct cam_eb *bus = device->target->bus;
4912
4913 mtx_lock(&bus->eb_mtx);
4914 device->refcount++;
4915 mtx_unlock(&bus->eb_mtx);
4916 }
4917
4918 void
4919 xpt_release_device(struct cam_ed *device)
4920 {
4921 struct cam_eb *bus = device->target->bus;
4922 struct cam_devq *devq;
4923
4924 mtx_lock(&bus->eb_mtx);
4925 if (--device->refcount > 0) {
4926 mtx_unlock(&bus->eb_mtx);
4927 return;
4928 }
4929
4930 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4931 device->target->generation++;
4932 mtx_unlock(&bus->eb_mtx);
4933
4934 /* Release our slot in the devq */
4935 devq = bus->sim->devq;
4936 mtx_lock(&devq->send_mtx);
4937 cam_devq_resize(devq, devq->send_queue.array_size - 1);
4938
4939 KASSERT(SLIST_EMPTY(&device->periphs),
4940 ("destroying device, but periphs list is not empty"));
4941 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4942 ("destroying device while still queued for ccbs"));
4943
4944 /* The send_mtx must be held when accessing the callout */
4945 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4946 callout_stop(&device->callout);
4947
4948 mtx_unlock(&devq->send_mtx);
4949
4950 xpt_release_target(device->target);
4951
4952 cam_ccbq_fini(&device->ccbq);
4953 /*
4954 * Free allocated memory. free(9) does nothing if the
4955 * supplied pointer is NULL, so it is safe to call without
4956 * checking.
4957 */
4958 free(device->supported_vpds, M_CAMXPT);
4959 free(device->device_id, M_CAMXPT);
4960 free(device->ext_inq, M_CAMXPT);
4961 free(device->physpath, M_CAMXPT);
4962 free(device->rcap_buf, M_CAMXPT);
4963 free(device->serial_num, M_CAMXPT);
4964 free(device->nvme_data, M_CAMXPT);
4965 free(device->nvme_cdata, M_CAMXPT);
4966 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4967 }
4968
4969 u_int32_t
4970 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4971 {
4972 int result;
4973 struct cam_ed *dev;
4974
4975 dev = path->device;
4976 mtx_lock(&dev->sim->devq->send_mtx);
4977 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4978 mtx_unlock(&dev->sim->devq->send_mtx);
4979 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4980 || (dev->inq_flags & SID_CmdQue) != 0)
4981 dev->tag_saved_openings = newopenings;
4982 return (result);
4983 }
4984
4985 static struct cam_eb *
4986 xpt_find_bus(path_id_t path_id)
4987 {
4988 struct cam_eb *bus;
4989
4990 xpt_lock_buses();
4991 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4992 bus != NULL;
4993 bus = TAILQ_NEXT(bus, links)) {
4994 if (bus->path_id == path_id) {
4995 bus->refcount++;
4996 break;
4997 }
4998 }
4999 xpt_unlock_buses();
5000 return (bus);
5001 }
5002
5003 static struct cam_et *
5004 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
5005 {
5006 struct cam_et *target;
5007
5008 mtx_assert(&bus->eb_mtx, MA_OWNED);
5009 for (target = TAILQ_FIRST(&bus->et_entries);
5010 target != NULL;
5011 target = TAILQ_NEXT(target, links)) {
5012 if (target->target_id == target_id) {
5013 target->refcount++;
5014 break;
5015 }
5016 }
5017 return (target);
5018 }
5019
5020 static struct cam_ed *
5021 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5022 {
5023 struct cam_ed *device;
5024
5025 mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5026 for (device = TAILQ_FIRST(&target->ed_entries);
5027 device != NULL;
5028 device = TAILQ_NEXT(device, links)) {
5029 if (device->lun_id == lun_id) {
5030 device->refcount++;
5031 break;
5032 }
5033 }
5034 return (device);
5035 }
5036
5037 void
5038 xpt_start_tags(struct cam_path *path)
5039 {
5040 struct ccb_relsim crs;
5041 struct cam_ed *device;
5042 struct cam_sim *sim;
5043 int newopenings;
5044
5045 device = path->device;
5046 sim = path->bus->sim;
5047 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5048 xpt_freeze_devq(path, /*count*/1);
5049 device->inq_flags |= SID_CmdQue;
5050 if (device->tag_saved_openings != 0)
5051 newopenings = device->tag_saved_openings;
5052 else
5053 newopenings = min(device->maxtags,
5054 sim->max_tagged_dev_openings);
5055 xpt_dev_ccbq_resize(path, newopenings);
5056 xpt_async(AC_GETDEV_CHANGED, path, NULL);
5057 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5058 crs.ccb_h.func_code = XPT_REL_SIMQ;
5059 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5060 crs.openings
5061 = crs.release_timeout
5062 = crs.qfrozen_cnt
5063 = 0;
5064 xpt_action((union ccb *)&crs);
5065 }
5066
5067 void
5068 xpt_stop_tags(struct cam_path *path)
5069 {
5070 struct ccb_relsim crs;
5071 struct cam_ed *device;
5072 struct cam_sim *sim;
5073
5074 device = path->device;
5075 sim = path->bus->sim;
5076 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5077 device->tag_delay_count = 0;
5078 xpt_freeze_devq(path, /*count*/1);
5079 device->inq_flags &= ~SID_CmdQue;
5080 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5081 xpt_async(AC_GETDEV_CHANGED, path, NULL);
5082 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5083 crs.ccb_h.func_code = XPT_REL_SIMQ;
5084 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5085 crs.openings
5086 = crs.release_timeout
5087 = crs.qfrozen_cnt
5088 = 0;
5089 xpt_action((union ccb *)&crs);
5090 }
5091
5092 /*
5093 * Assume all possible buses are detected by this time, so allow boot
5094 * as soon as they all are scanned.
5095 */
5096 static void
5097 xpt_boot_delay(void *arg)
5098 {
5099
5100 xpt_release_boot();
5101 }
5102
5103 /*
5104 * Now that all config hooks have completed, start boot_delay timer,
5105 * waiting for possibly still undetected buses (USB) to appear.
5106 */
5107 static void
5108 xpt_ch_done(void *arg)
5109 {
5110
5111 callout_init(&xsoftc.boot_callout, 1);
5112 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5113 xpt_boot_delay, NULL, 0);
5114 }
5115 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5116
5117 /*
5118 * Now that interrupts are enabled, go find our devices
5119 */
5120 static void
5121 xpt_config(void *arg)
5122 {
5123 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5124 printf("xpt_config: failed to create taskqueue thread.\n");
5125
5126 /* Setup debugging path */
5127 if (cam_dflags != CAM_DEBUG_NONE) {
5128 if (xpt_create_path(&cam_dpath, NULL,
5129 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5130 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5131 printf("xpt_config: xpt_create_path() failed for debug"
5132 " target %d:%d:%d, debugging disabled\n",
5133 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5134 cam_dflags = CAM_DEBUG_NONE;
5135 }
5136 } else
5137 cam_dpath = NULL;
5138
5139 periphdriver_init(1);
5140 xpt_hold_boot();
5141
5142 /* Fire up rescan thread. */
5143 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5144 "cam", "scanner")) {
5145 printf("xpt_config: failed to create rescan thread.\n");
5146 }
5147 }
5148
5149 void
5150 xpt_hold_boot_locked(void)
5151 {
5152
5153 if (xsoftc.buses_to_config++ == 0)
5154 root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5155 }
5156
5157 void
5158 xpt_hold_boot(void)
5159 {
5160
5161 xpt_lock_buses();
5162 xpt_hold_boot_locked();
5163 xpt_unlock_buses();
5164 }
5165
5166 void
5167 xpt_release_boot(void)
5168 {
5169
5170 xpt_lock_buses();
5171 if (--xsoftc.buses_to_config == 0) {
5172 if (xsoftc.buses_config_done == 0) {
5173 xsoftc.buses_config_done = 1;
5174 xsoftc.buses_to_config++;
5175 TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5176 NULL);
5177 taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5178 } else
5179 root_mount_rel(&xsoftc.xpt_rootmount);
5180 }
5181 xpt_unlock_buses();
5182 }
5183
5184 /*
5185 * If the given device only has one peripheral attached to it, and if that
5186 * peripheral is the passthrough driver, announce it. This insures that the
5187 * user sees some sort of announcement for every peripheral in their system.
5188 */
5189 static int
5190 xptpassannouncefunc(struct cam_ed *device, void *arg)
5191 {
5192 struct cam_periph *periph;
5193 int i;
5194
5195 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5196 periph = SLIST_NEXT(periph, periph_links), i++);
5197
5198 periph = SLIST_FIRST(&device->periphs);
5199 if ((i == 1)
5200 && (strncmp(periph->periph_name, "pass", 4) == 0))
5201 xpt_announce_periph(periph, NULL);
5202
5203 return(1);
5204 }
5205
5206 static void
5207 xpt_finishconfig_task(void *context, int pending)
5208 {
5209
5210 periphdriver_init(2);
5211 /*
5212 * Check for devices with no "standard" peripheral driver
5213 * attached. For any devices like that, announce the
5214 * passthrough driver so the user will see something.
5215 */
5216 if (!bootverbose)
5217 xpt_for_all_devices(xptpassannouncefunc, NULL);
5218
5219 xpt_release_boot();
5220 }
5221
5222 cam_status
5223 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5224 struct cam_path *path)
5225 {
5226 struct ccb_setasync csa;
5227 cam_status status;
5228 int xptpath = 0;
5229
5230 if (path == NULL) {
5231 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5232 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5233 if (status != CAM_REQ_CMP)
5234 return (status);
5235 xpt_path_lock(path);
5236 xptpath = 1;
5237 }
5238
5239 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5240 csa.ccb_h.func_code = XPT_SASYNC_CB;
5241 csa.event_enable = event;
5242 csa.callback = cbfunc;
5243 csa.callback_arg = cbarg;
5244 xpt_action((union ccb *)&csa);
5245 status = csa.ccb_h.status;
5246
5247 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5248 ("xpt_register_async: func %p\n", cbfunc));
5249
5250 if (xptpath) {
5251 xpt_path_unlock(path);
5252 xpt_free_path(path);
5253 }
5254
5255 if ((status == CAM_REQ_CMP) &&
5256 (csa.event_enable & AC_FOUND_DEVICE)) {
5257 /*
5258 * Get this peripheral up to date with all
5259 * the currently existing devices.
5260 */
5261 xpt_for_all_devices(xptsetasyncfunc, &csa);
5262 }
5263 if ((status == CAM_REQ_CMP) &&
5264 (csa.event_enable & AC_PATH_REGISTERED)) {
5265 /*
5266 * Get this peripheral up to date with all
5267 * the currently existing buses.
5268 */
5269 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5270 }
5271
5272 return (status);
5273 }
5274
5275 static void
5276 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5277 {
5278 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5279
5280 switch (work_ccb->ccb_h.func_code) {
5281 /* Common cases first */
5282 case XPT_PATH_INQ: /* Path routing inquiry */
5283 {
5284 struct ccb_pathinq *cpi;
5285
5286 cpi = &work_ccb->cpi;
5287 cpi->version_num = 1; /* XXX??? */
5288 cpi->hba_inquiry = 0;
5289 cpi->target_sprt = 0;
5290 cpi->hba_misc = 0;
5291 cpi->hba_eng_cnt = 0;
5292 cpi->max_target = 0;
5293 cpi->max_lun = 0;
5294 cpi->initiator_id = 0;
5295 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5296 strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5297 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5298 cpi->unit_number = sim->unit_number;
5299 cpi->bus_id = sim->bus_id;
5300 cpi->base_transfer_speed = 0;
5301 cpi->protocol = PROTO_UNSPECIFIED;
5302 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5303 cpi->transport = XPORT_UNSPECIFIED;
5304 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5305 cpi->ccb_h.status = CAM_REQ_CMP;
5306 break;
5307 }
5308 default:
5309 work_ccb->ccb_h.status = CAM_REQ_INVALID;
5310 break;
5311 }
5312 xpt_done(work_ccb);
5313 }
5314
5315 /*
5316 * The xpt as a "controller" has no interrupt sources, so polling
5317 * is a no-op.
5318 */
5319 static void
5320 xptpoll(struct cam_sim *sim)
5321 {
5322 }
5323
5324 void
5325 xpt_lock_buses(void)
5326 {
5327 mtx_lock(&xsoftc.xpt_topo_lock);
5328 }
5329
5330 void
5331 xpt_unlock_buses(void)
5332 {
5333 mtx_unlock(&xsoftc.xpt_topo_lock);
5334 }
5335
5336 struct mtx *
5337 xpt_path_mtx(struct cam_path *path)
5338 {
5339
5340 return (&path->device->device_mtx);
5341 }
5342
5343 static void
5344 xpt_done_process(struct ccb_hdr *ccb_h)
5345 {
5346 struct cam_sim *sim = NULL;
5347 struct cam_devq *devq = NULL;
5348 struct mtx *mtx = NULL;
5349
5350 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5351 struct ccb_scsiio *csio;
5352
5353 if (ccb_h->func_code == XPT_SCSI_IO) {
5354 csio = &((union ccb *)ccb_h)->csio;
5355 if (csio->bio != NULL)
5356 biotrack(csio->bio, __func__);
5357 }
5358 #endif
5359
5360 if (ccb_h->flags & CAM_HIGH_POWER) {
5361 struct highpowerlist *hphead;
5362 struct cam_ed *device;
5363
5364 mtx_lock(&xsoftc.xpt_highpower_lock);
5365 hphead = &xsoftc.highpowerq;
5366
5367 device = STAILQ_FIRST(hphead);
5368
5369 /*
5370 * Increment the count since this command is done.
5371 */
5372 xsoftc.num_highpower++;
5373
5374 /*
5375 * Any high powered commands queued up?
5376 */
5377 if (device != NULL) {
5378 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5379 mtx_unlock(&xsoftc.xpt_highpower_lock);
5380
5381 mtx_lock(&device->sim->devq->send_mtx);
5382 xpt_release_devq_device(device,
5383 /*count*/1, /*runqueue*/TRUE);
5384 mtx_unlock(&device->sim->devq->send_mtx);
5385 } else
5386 mtx_unlock(&xsoftc.xpt_highpower_lock);
5387 }
5388
5389 /*
5390 * Insulate against a race where the periph is destroyed but CCBs are
5391 * still not all processed. This shouldn't happen, but allows us better
5392 * bug diagnostic when it does.
5393 */
5394 if (ccb_h->path->bus)
5395 sim = ccb_h->path->bus->sim;
5396
5397 if (ccb_h->status & CAM_RELEASE_SIMQ) {
5398 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5399 xpt_release_simq(sim, /*run_queue*/FALSE);
5400 ccb_h->status &= ~CAM_RELEASE_SIMQ;
5401 }
5402
5403 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5404 && (ccb_h->status & CAM_DEV_QFRZN)) {
5405 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5406 ccb_h->status &= ~CAM_DEV_QFRZN;
5407 }
5408
5409 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5410 struct cam_ed *dev = ccb_h->path->device;
5411
5412 if (sim)
5413 devq = sim->devq;
5414 KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5415 ccb_h, xpt_action_name(ccb_h->func_code)));
5416
5417 mtx_lock(&devq->send_mtx);
5418 devq->send_active--;
5419 devq->send_openings++;
5420 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5421
5422 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5423 && (dev->ccbq.dev_active == 0))) {
5424 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5425 xpt_release_devq_device(dev, /*count*/1,
5426 /*run_queue*/FALSE);
5427 }
5428
5429 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5430 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5431 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5432 xpt_release_devq_device(dev, /*count*/1,
5433 /*run_queue*/FALSE);
5434 }
5435
5436 if (!device_is_queued(dev))
5437 (void)xpt_schedule_devq(devq, dev);
5438 xpt_run_devq(devq);
5439 mtx_unlock(&devq->send_mtx);
5440
5441 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5442 mtx = xpt_path_mtx(ccb_h->path);
5443 mtx_lock(mtx);
5444
5445 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5446 && (--dev->tag_delay_count == 0))
5447 xpt_start_tags(ccb_h->path);
5448 }
5449 }
5450
5451 if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5452 if (mtx == NULL) {
5453 mtx = xpt_path_mtx(ccb_h->path);
5454 mtx_lock(mtx);
5455 }
5456 } else {
5457 if (mtx != NULL) {
5458 mtx_unlock(mtx);
5459 mtx = NULL;
5460 }
5461 }
5462
5463 /* Call the peripheral driver's callback */
5464 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5465 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5466 if (mtx != NULL)
5467 mtx_unlock(mtx);
5468 }
5469
5470 void
5471 xpt_done_td(void *arg)
5472 {
5473 struct cam_doneq *queue = arg;
5474 struct ccb_hdr *ccb_h;
5475 STAILQ_HEAD(, ccb_hdr) doneq;
5476
5477 STAILQ_INIT(&doneq);
5478 mtx_lock(&queue->cam_doneq_mtx);
5479 while (1) {
5480 while (STAILQ_EMPTY(&queue->cam_doneq)) {
5481 queue->cam_doneq_sleep = 1;
5482 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5483 PRIBIO, "-", 0);
5484 queue->cam_doneq_sleep = 0;
5485 }
5486 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5487 mtx_unlock(&queue->cam_doneq_mtx);
5488
5489 THREAD_NO_SLEEPING();
5490 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5491 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5492 xpt_done_process(ccb_h);
5493 }
5494 THREAD_SLEEPING_OK();
5495
5496 mtx_lock(&queue->cam_doneq_mtx);
5497 }
5498 }
5499
5500 static void
5501 camisr_runqueue(void)
5502 {
5503 struct ccb_hdr *ccb_h;
5504 struct cam_doneq *queue;
5505 int i;
5506
5507 /* Process global queues. */
5508 for (i = 0; i < cam_num_doneqs; i++) {
5509 queue = &cam_doneqs[i];
5510 mtx_lock(&queue->cam_doneq_mtx);
5511 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5512 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5513 mtx_unlock(&queue->cam_doneq_mtx);
5514 xpt_done_process(ccb_h);
5515 mtx_lock(&queue->cam_doneq_mtx);
5516 }
5517 mtx_unlock(&queue->cam_doneq_mtx);
5518 }
5519 }
5520
5521 struct kv
5522 {
5523 uint32_t v;
5524 const char *name;
5525 };
5526
5527 static struct kv map[] = {
5528 { XPT_NOOP, "XPT_NOOP" },
5529 { XPT_SCSI_IO, "XPT_SCSI_IO" },
5530 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5531 { XPT_GDEVLIST, "XPT_GDEVLIST" },
5532 { XPT_PATH_INQ, "XPT_PATH_INQ" },
5533 { XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5534 { XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5535 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5536 { XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5537 { XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5538 { XPT_DEBUG, "XPT_DEBUG" },
5539 { XPT_PATH_STATS, "XPT_PATH_STATS" },
5540 { XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5541 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5542 { XPT_ASYNC, "XPT_ASYNC" },
5543 { XPT_ABORT, "XPT_ABORT" },
5544 { XPT_RESET_BUS, "XPT_RESET_BUS" },
5545 { XPT_RESET_DEV, "XPT_RESET_DEV" },
5546 { XPT_TERM_IO, "XPT_TERM_IO" },
5547 { XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5548 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5549 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5550 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5551 { XPT_ATA_IO, "XPT_ATA_IO" },
5552 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5553 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5554 { XPT_NVME_IO, "XPT_NVME_IO" },
5555 { XPT_MMC_IO, "XPT_MMC_IO" },
5556 { XPT_SMP_IO, "XPT_SMP_IO" },
5557 { XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5558 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5559 { XPT_ENG_INQ, "XPT_ENG_INQ" },
5560 { XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5561 { XPT_EN_LUN, "XPT_EN_LUN" },
5562 { XPT_TARGET_IO, "XPT_TARGET_IO" },
5563 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5564 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5565 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5566 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5567 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5568 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5569 { 0, 0 }
5570 };
5571
5572 const char *
5573 xpt_action_name(uint32_t action)
5574 {
5575 static char buffer[32]; /* Only for unknown messages -- racy */
5576 struct kv *walker = map;
5577
5578 while (walker->name != NULL) {
5579 if (walker->v == action)
5580 return (walker->name);
5581 walker++;
5582 }
5583
5584 snprintf(buffer, sizeof(buffer), "%#x", action);
5585 return (buffer);
5586 }
Cache object: 15658f59ce59283dc9c3d7a92450707a
|