1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/conf.h>
37 #include <sys/types.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/devicestat.h>
41 #include <sys/errno.h>
42 #include <sys/fcntl.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/poll.h>
46 #include <sys/selinfo.h>
47 #include <sys/sdt.h>
48 #include <sys/sysent.h>
49 #include <sys/taskqueue.h>
50 #include <vm/uma.h>
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53
54 #include <machine/bus.h>
55
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_periph.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 #include <cam/cam_xpt_periph.h>
65
66 #include <cam/scsi/scsi_all.h>
67 #include <cam/scsi/scsi_pass.h>
68
69 typedef enum {
70 PASS_FLAG_OPEN = 0x01,
71 PASS_FLAG_LOCKED = 0x02,
72 PASS_FLAG_INVALID = 0x04,
73 PASS_FLAG_INITIAL_PHYSPATH = 0x08,
74 PASS_FLAG_ZONE_INPROG = 0x10,
75 PASS_FLAG_ZONE_VALID = 0x20,
76 PASS_FLAG_UNMAPPED_CAPABLE = 0x40,
77 PASS_FLAG_ABANDONED_REF_SET = 0x80
78 } pass_flags;
79
80 typedef enum {
81 PASS_STATE_NORMAL
82 } pass_state;
83
84 typedef enum {
85 PASS_CCB_BUFFER_IO,
86 PASS_CCB_QUEUED_IO
87 } pass_ccb_types;
88
89 #define ccb_type ppriv_field0
90 #define ccb_ioreq ppriv_ptr1
91
92 /*
93 * The maximum number of memory segments we preallocate.
94 */
95 #define PASS_MAX_SEGS 16
96
97 typedef enum {
98 PASS_IO_NONE = 0x00,
99 PASS_IO_USER_SEG_MALLOC = 0x01,
100 PASS_IO_KERN_SEG_MALLOC = 0x02,
101 PASS_IO_ABANDONED = 0x04
102 } pass_io_flags;
103
104 struct pass_io_req {
105 union ccb ccb;
106 union ccb *alloced_ccb;
107 union ccb *user_ccb_ptr;
108 camq_entry user_periph_links;
109 ccb_ppriv_area user_periph_priv;
110 struct cam_periph_map_info mapinfo;
111 pass_io_flags flags;
112 ccb_flags data_flags;
113 int num_user_segs;
114 bus_dma_segment_t user_segs[PASS_MAX_SEGS];
115 int num_kern_segs;
116 bus_dma_segment_t kern_segs[PASS_MAX_SEGS];
117 bus_dma_segment_t *user_segptr;
118 bus_dma_segment_t *kern_segptr;
119 int num_bufs;
120 uint32_t dirs[CAM_PERIPH_MAXMAPS];
121 uint32_t lengths[CAM_PERIPH_MAXMAPS];
122 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS];
123 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS];
124 struct bintime start_time;
125 TAILQ_ENTRY(pass_io_req) links;
126 };
127
128 struct pass_softc {
129 pass_state state;
130 pass_flags flags;
131 u_int8_t pd_type;
132 int open_count;
133 u_int maxio;
134 struct devstat *device_stats;
135 struct cdev *dev;
136 struct cdev *alias_dev;
137 struct task add_physpath_task;
138 struct task shutdown_kqueue_task;
139 struct selinfo read_select;
140 TAILQ_HEAD(, pass_io_req) incoming_queue;
141 TAILQ_HEAD(, pass_io_req) active_queue;
142 TAILQ_HEAD(, pass_io_req) abandoned_queue;
143 TAILQ_HEAD(, pass_io_req) done_queue;
144 struct cam_periph *periph;
145 char zone_name[12];
146 char io_zone_name[12];
147 uma_zone_t pass_zone;
148 uma_zone_t pass_io_zone;
149 size_t io_zone_size;
150 };
151
152 static d_open_t passopen;
153 static d_close_t passclose;
154 static d_ioctl_t passioctl;
155 static d_ioctl_t passdoioctl;
156 static d_poll_t passpoll;
157 static d_kqfilter_t passkqfilter;
158 static void passreadfiltdetach(struct knote *kn);
159 static int passreadfilt(struct knote *kn, long hint);
160
161 static periph_init_t passinit;
162 static periph_ctor_t passregister;
163 static periph_oninv_t passoninvalidate;
164 static periph_dtor_t passcleanup;
165 static periph_start_t passstart;
166 static void pass_shutdown_kqueue(void *context, int pending);
167 static void pass_add_physpath(void *context, int pending);
168 static void passasync(void *callback_arg, u_int32_t code,
169 struct cam_path *path, void *arg);
170 static void passdone(struct cam_periph *periph,
171 union ccb *done_ccb);
172 static int passcreatezone(struct cam_periph *periph);
173 static void passiocleanup(struct pass_softc *softc,
174 struct pass_io_req *io_req);
175 static int passcopysglist(struct cam_periph *periph,
176 struct pass_io_req *io_req,
177 ccb_flags direction);
178 static int passmemsetup(struct cam_periph *periph,
179 struct pass_io_req *io_req);
180 static int passmemdone(struct cam_periph *periph,
181 struct pass_io_req *io_req);
182 static int passerror(union ccb *ccb, u_int32_t cam_flags,
183 u_int32_t sense_flags);
184 static int passsendccb(struct cam_periph *periph, union ccb *ccb,
185 union ccb *inccb);
186
187 static struct periph_driver passdriver =
188 {
189 passinit, "pass",
190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0
191 };
192
193 PERIPHDRIVER_DECLARE(pass, passdriver);
194
195 static struct cdevsw pass_cdevsw = {
196 .d_version = D_VERSION,
197 .d_flags = D_TRACKCLOSE,
198 .d_open = passopen,
199 .d_close = passclose,
200 .d_ioctl = passioctl,
201 .d_poll = passpoll,
202 .d_kqfilter = passkqfilter,
203 .d_name = "pass",
204 };
205
206 static struct filterops passread_filtops = {
207 .f_isfd = 1,
208 .f_detach = passreadfiltdetach,
209 .f_event = passreadfilt
210 };
211
212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
213
214 static void
215 passinit(void)
216 {
217 cam_status status;
218
219 /*
220 * Install a global async callback. This callback will
221 * receive async callbacks like "new device found".
222 */
223 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL);
224
225 if (status != CAM_REQ_CMP) {
226 printf("pass: Failed to attach master async callback "
227 "due to status 0x%x!\n", status);
228 }
229
230 }
231
232 static void
233 passrejectios(struct cam_periph *periph)
234 {
235 struct pass_io_req *io_req, *io_req2;
236 struct pass_softc *softc;
237
238 softc = (struct pass_softc *)periph->softc;
239
240 /*
241 * The user can no longer get status for I/O on the done queue, so
242 * clean up all outstanding I/O on the done queue.
243 */
244 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
245 TAILQ_REMOVE(&softc->done_queue, io_req, links);
246 passiocleanup(softc, io_req);
247 uma_zfree(softc->pass_zone, io_req);
248 }
249
250 /*
251 * The underlying device is gone, so we can't issue these I/Os.
252 * The devfs node has been shut down, so we can't return status to
253 * the user. Free any I/O left on the incoming queue.
254 */
255 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
256 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
257 passiocleanup(softc, io_req);
258 uma_zfree(softc->pass_zone, io_req);
259 }
260
261 /*
262 * Normally we would put I/Os on the abandoned queue and acquire a
263 * reference when we saw the final close. But, the device went
264 * away and devfs may have moved everything off to deadfs by the
265 * time the I/O done callback is called; as a result, we won't see
266 * any more closes. So, if we have any active I/Os, we need to put
267 * them on the abandoned queue. When the abandoned queue is empty,
268 * we'll release the remaining reference (see below) to the peripheral.
269 */
270 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
271 TAILQ_REMOVE(&softc->active_queue, io_req, links);
272 io_req->flags |= PASS_IO_ABANDONED;
273 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
274 }
275
276 /*
277 * If we put any I/O on the abandoned queue, acquire a reference.
278 */
279 if ((!TAILQ_EMPTY(&softc->abandoned_queue))
280 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
281 cam_periph_doacquire(periph);
282 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
283 }
284 }
285
286 static void
287 passdevgonecb(void *arg)
288 {
289 struct cam_periph *periph;
290 struct mtx *mtx;
291 struct pass_softc *softc;
292 int i;
293
294 periph = (struct cam_periph *)arg;
295 mtx = cam_periph_mtx(periph);
296 mtx_lock(mtx);
297
298 softc = (struct pass_softc *)periph->softc;
299 KASSERT(softc->open_count >= 0, ("Negative open count %d",
300 softc->open_count));
301
302 /*
303 * When we get this callback, we will get no more close calls from
304 * devfs. So if we have any dangling opens, we need to release the
305 * reference held for that particular context.
306 */
307 for (i = 0; i < softc->open_count; i++)
308 cam_periph_release_locked(periph);
309
310 softc->open_count = 0;
311
312 /*
313 * Release the reference held for the device node, it is gone now.
314 * Accordingly, inform all queued I/Os of their fate.
315 */
316 cam_periph_release_locked(periph);
317 passrejectios(periph);
318
319 /*
320 * We reference the SIM lock directly here, instead of using
321 * cam_periph_unlock(). The reason is that the final call to
322 * cam_periph_release_locked() above could result in the periph
323 * getting freed. If that is the case, dereferencing the periph
324 * with a cam_periph_unlock() call would cause a page fault.
325 */
326 mtx_unlock(mtx);
327
328 /*
329 * We have to remove our kqueue context from a thread because it
330 * may sleep. It would be nice if we could get a callback from
331 * kqueue when it is done cleaning up resources.
332 */
333 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
334 }
335
336 static void
337 passoninvalidate(struct cam_periph *periph)
338 {
339 struct pass_softc *softc;
340
341 softc = (struct pass_softc *)periph->softc;
342
343 /*
344 * De-register any async callbacks.
345 */
346 xpt_register_async(0, passasync, periph, periph->path);
347
348 softc->flags |= PASS_FLAG_INVALID;
349
350 /*
351 * Tell devfs this device has gone away, and ask for a callback
352 * when it has cleaned up its state.
353 */
354 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
355 }
356
357 static void
358 passcleanup(struct cam_periph *periph)
359 {
360 struct pass_softc *softc;
361
362 softc = (struct pass_softc *)periph->softc;
363
364 cam_periph_assert(periph, MA_OWNED);
365 KASSERT(TAILQ_EMPTY(&softc->active_queue),
366 ("%s called when there are commands on the active queue!\n",
367 __func__));
368 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
369 ("%s called when there are commands on the abandoned queue!\n",
370 __func__));
371 KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
372 ("%s called when there are commands on the incoming queue!\n",
373 __func__));
374 KASSERT(TAILQ_EMPTY(&softc->done_queue),
375 ("%s called when there are commands on the done queue!\n",
376 __func__));
377
378 devstat_remove_entry(softc->device_stats);
379
380 cam_periph_unlock(periph);
381
382 /*
383 * We call taskqueue_drain() for the physpath task to make sure it
384 * is complete. We drop the lock because this can potentially
385 * sleep. XXX KDM that is bad. Need a way to get a callback when
386 * a taskqueue is drained.
387 *
388 * Note that we don't drain the kqueue shutdown task queue. This
389 * is because we hold a reference on the periph for kqueue, and
390 * release that reference from the kqueue shutdown task queue. So
391 * we cannot come into this routine unless we've released that
392 * reference. Also, because that could be the last reference, we
393 * could be called from the cam_periph_release() call in
394 * pass_shutdown_kqueue(). In that case, the taskqueue_drain()
395 * would deadlock. It would be preferable if we had a way to
396 * get a callback when a taskqueue is done.
397 */
398 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
399
400 /*
401 * It should be safe to destroy the zones from here, because all
402 * of the references to this peripheral have been freed, and all
403 * I/O has been terminated and freed. We check the zones for NULL
404 * because they may not have been allocated yet if the device went
405 * away before any asynchronous I/O has been issued.
406 */
407 if (softc->pass_zone != NULL)
408 uma_zdestroy(softc->pass_zone);
409 if (softc->pass_io_zone != NULL)
410 uma_zdestroy(softc->pass_io_zone);
411
412 cam_periph_lock(periph);
413
414 free(softc, M_DEVBUF);
415 }
416
417 static void
418 pass_shutdown_kqueue(void *context, int pending)
419 {
420 struct cam_periph *periph;
421 struct pass_softc *softc;
422
423 periph = context;
424 softc = periph->softc;
425
426 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
427 knlist_destroy(&softc->read_select.si_note);
428
429 /*
430 * Release the reference we held for kqueue.
431 */
432 cam_periph_release(periph);
433 }
434
435 static void
436 pass_add_physpath(void *context, int pending)
437 {
438 struct cam_periph *periph;
439 struct pass_softc *softc;
440 struct mtx *mtx;
441 char *physpath;
442
443 /*
444 * If we have one, create a devfs alias for our
445 * physical path.
446 */
447 periph = context;
448 softc = periph->softc;
449 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
450 mtx = cam_periph_mtx(periph);
451 mtx_lock(mtx);
452
453 if (periph->flags & CAM_PERIPH_INVALID)
454 goto out;
455
456 if (xpt_getattr(physpath, MAXPATHLEN,
457 "GEOM::physpath", periph->path) == 0
458 && strlen(physpath) != 0) {
459 mtx_unlock(mtx);
460 make_dev_physpath_alias(MAKEDEV_WAITOK | MAKEDEV_CHECKNAME,
461 &softc->alias_dev, softc->dev,
462 softc->alias_dev, physpath);
463 mtx_lock(mtx);
464 }
465
466 out:
467 /*
468 * Now that we've made our alias, we no longer have to have a
469 * reference to the device.
470 */
471 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
472 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
473
474 /*
475 * We always acquire a reference to the periph before queueing this
476 * task queue function, so it won't go away before we run.
477 */
478 while (pending-- > 0)
479 cam_periph_release_locked(periph);
480 mtx_unlock(mtx);
481
482 free(physpath, M_DEVBUF);
483 }
484
485 static void
486 passasync(void *callback_arg, u_int32_t code,
487 struct cam_path *path, void *arg)
488 {
489 struct cam_periph *periph;
490
491 periph = (struct cam_periph *)callback_arg;
492
493 switch (code) {
494 case AC_FOUND_DEVICE:
495 {
496 struct ccb_getdev *cgd;
497 cam_status status;
498
499 cgd = (struct ccb_getdev *)arg;
500 if (cgd == NULL)
501 break;
502
503 /*
504 * Allocate a peripheral instance for
505 * this device and start the probe
506 * process.
507 */
508 status = cam_periph_alloc(passregister, passoninvalidate,
509 passcleanup, passstart, "pass",
510 CAM_PERIPH_BIO, path,
511 passasync, AC_FOUND_DEVICE, cgd);
512
513 if (status != CAM_REQ_CMP
514 && status != CAM_REQ_INPROG) {
515 const struct cam_status_entry *entry;
516
517 entry = cam_fetch_status_entry(status);
518
519 printf("passasync: Unable to attach new device "
520 "due to status %#x: %s\n", status, entry ?
521 entry->status_text : "Unknown");
522 }
523
524 break;
525 }
526 case AC_ADVINFO_CHANGED:
527 {
528 uintptr_t buftype;
529
530 buftype = (uintptr_t)arg;
531 if (buftype == CDAI_TYPE_PHYS_PATH) {
532 struct pass_softc *softc;
533
534 softc = (struct pass_softc *)periph->softc;
535 /*
536 * Acquire a reference to the periph before we
537 * start the taskqueue, so that we don't run into
538 * a situation where the periph goes away before
539 * the task queue has a chance to run.
540 */
541 if (cam_periph_acquire(periph) != 0)
542 break;
543
544 taskqueue_enqueue(taskqueue_thread,
545 &softc->add_physpath_task);
546 }
547 break;
548 }
549 default:
550 cam_periph_async(periph, code, path, arg);
551 break;
552 }
553 }
554
555 static cam_status
556 passregister(struct cam_periph *periph, void *arg)
557 {
558 struct pass_softc *softc;
559 struct ccb_getdev *cgd;
560 struct ccb_pathinq cpi;
561 struct make_dev_args args;
562 int error, no_tags;
563
564 cgd = (struct ccb_getdev *)arg;
565 if (cgd == NULL) {
566 printf("%s: no getdev CCB, can't register device\n", __func__);
567 return(CAM_REQ_CMP_ERR);
568 }
569
570 softc = (struct pass_softc *)malloc(sizeof(*softc),
571 M_DEVBUF, M_NOWAIT);
572
573 if (softc == NULL) {
574 printf("%s: Unable to probe new device. "
575 "Unable to allocate softc\n", __func__);
576 return(CAM_REQ_CMP_ERR);
577 }
578
579 bzero(softc, sizeof(*softc));
580 softc->state = PASS_STATE_NORMAL;
581 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI)
582 softc->pd_type = SID_TYPE(&cgd->inq_data);
583 else if (cgd->protocol == PROTO_SATAPM)
584 softc->pd_type = T_ENCLOSURE;
585 else
586 softc->pd_type = T_DIRECT;
587
588 periph->softc = softc;
589 softc->periph = periph;
590 TAILQ_INIT(&softc->incoming_queue);
591 TAILQ_INIT(&softc->active_queue);
592 TAILQ_INIT(&softc->abandoned_queue);
593 TAILQ_INIT(&softc->done_queue);
594 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
595 periph->periph_name, periph->unit_number);
596 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
597 periph->periph_name, periph->unit_number);
598 softc->io_zone_size = maxphys;
599 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
600
601 xpt_path_inq(&cpi, periph->path);
602
603 if (cpi.maxio == 0)
604 softc->maxio = DFLTPHYS; /* traditional default */
605 else if (cpi.maxio > maxphys)
606 softc->maxio = maxphys; /* for safety */
607 else
608 softc->maxio = cpi.maxio; /* real value */
609
610 if (cpi.hba_misc & PIM_UNMAPPED)
611 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
612
613 /*
614 * We pass in 0 for a blocksize, since we don't
615 * know what the blocksize of this device is, if
616 * it even has a blocksize.
617 */
618 cam_periph_unlock(periph);
619 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0;
620 softc->device_stats = devstat_new_entry("pass",
621 periph->unit_number, 0,
622 DEVSTAT_NO_BLOCKSIZE
623 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0),
624 softc->pd_type |
625 XPORT_DEVSTAT_TYPE(cpi.transport) |
626 DEVSTAT_TYPE_PASS,
627 DEVSTAT_PRIORITY_PASS);
628
629 /*
630 * Initialize the taskqueue handler for shutting down kqueue.
631 */
632 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
633 pass_shutdown_kqueue, periph);
634
635 /*
636 * Acquire a reference to the periph that we can release once we've
637 * cleaned up the kqueue.
638 */
639 if (cam_periph_acquire(periph) != 0) {
640 xpt_print(periph->path, "%s: lost periph during "
641 "registration!\n", __func__);
642 cam_periph_lock(periph);
643 return (CAM_REQ_CMP_ERR);
644 }
645
646 /*
647 * Acquire a reference to the periph before we create the devfs
648 * instance for it. We'll release this reference once the devfs
649 * instance has been freed.
650 */
651 if (cam_periph_acquire(periph) != 0) {
652 xpt_print(periph->path, "%s: lost periph during "
653 "registration!\n", __func__);
654 cam_periph_lock(periph);
655 return (CAM_REQ_CMP_ERR);
656 }
657
658 /* Register the device */
659 make_dev_args_init(&args);
660 args.mda_devsw = &pass_cdevsw;
661 args.mda_unit = periph->unit_number;
662 args.mda_uid = UID_ROOT;
663 args.mda_gid = GID_OPERATOR;
664 args.mda_mode = 0600;
665 args.mda_si_drv1 = periph;
666 args.mda_flags = MAKEDEV_NOWAIT;
667 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name,
668 periph->unit_number);
669 if (error != 0) {
670 cam_periph_lock(periph);
671 cam_periph_release_locked(periph);
672 return (CAM_REQ_CMP_ERR);
673 }
674
675 /*
676 * Hold a reference to the periph before we create the physical
677 * path alias so it can't go away.
678 */
679 if (cam_periph_acquire(periph) != 0) {
680 xpt_print(periph->path, "%s: lost periph during "
681 "registration!\n", __func__);
682 cam_periph_lock(periph);
683 return (CAM_REQ_CMP_ERR);
684 }
685
686 cam_periph_lock(periph);
687
688 TASK_INIT(&softc->add_physpath_task, /*priority*/0,
689 pass_add_physpath, periph);
690
691 /*
692 * See if physical path information is already available.
693 */
694 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task);
695
696 /*
697 * Add an async callback so that we get notified if
698 * this device goes away or its physical path
699 * (stored in the advanced info data of the EDT) has
700 * changed.
701 */
702 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED,
703 passasync, periph, periph->path);
704
705 if (bootverbose)
706 xpt_announce_periph(periph, NULL);
707
708 return(CAM_REQ_CMP);
709 }
710
711 static int
712 passopen(struct cdev *dev, int flags, int fmt, struct thread *td)
713 {
714 struct cam_periph *periph;
715 struct pass_softc *softc;
716 int error;
717
718 periph = (struct cam_periph *)dev->si_drv1;
719 if (cam_periph_acquire(periph) != 0)
720 return (ENXIO);
721
722 cam_periph_lock(periph);
723
724 softc = (struct pass_softc *)periph->softc;
725
726 if (softc->flags & PASS_FLAG_INVALID) {
727 cam_periph_release_locked(periph);
728 cam_periph_unlock(periph);
729 return(ENXIO);
730 }
731
732 /*
733 * Don't allow access when we're running at a high securelevel.
734 */
735 error = securelevel_gt(td->td_ucred, 1);
736 if (error) {
737 cam_periph_release_locked(periph);
738 cam_periph_unlock(periph);
739 return(error);
740 }
741
742 /*
743 * Only allow read-write access.
744 */
745 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) {
746 cam_periph_release_locked(periph);
747 cam_periph_unlock(periph);
748 return(EPERM);
749 }
750
751 /*
752 * We don't allow nonblocking access.
753 */
754 if ((flags & O_NONBLOCK) != 0) {
755 xpt_print(periph->path, "can't do nonblocking access\n");
756 cam_periph_release_locked(periph);
757 cam_periph_unlock(periph);
758 return(EINVAL);
759 }
760
761 softc->open_count++;
762
763 cam_periph_unlock(periph);
764
765 return (error);
766 }
767
768 static int
769 passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
770 {
771 struct cam_periph *periph;
772 struct pass_softc *softc;
773 struct mtx *mtx;
774
775 periph = (struct cam_periph *)dev->si_drv1;
776 mtx = cam_periph_mtx(periph);
777 mtx_lock(mtx);
778
779 softc = periph->softc;
780 softc->open_count--;
781
782 if (softc->open_count == 0) {
783 struct pass_io_req *io_req, *io_req2;
784
785 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
786 TAILQ_REMOVE(&softc->done_queue, io_req, links);
787 passiocleanup(softc, io_req);
788 uma_zfree(softc->pass_zone, io_req);
789 }
790
791 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
792 io_req2) {
793 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
794 passiocleanup(softc, io_req);
795 uma_zfree(softc->pass_zone, io_req);
796 }
797
798 /*
799 * If there are any active I/Os, we need to forcibly acquire a
800 * reference to the peripheral so that we don't go away
801 * before they complete. We'll release the reference when
802 * the abandoned queue is empty.
803 */
804 io_req = TAILQ_FIRST(&softc->active_queue);
805 if ((io_req != NULL)
806 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
807 cam_periph_doacquire(periph);
808 softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
809 }
810
811 /*
812 * Since the I/O in the active queue is not under our
813 * control, just set a flag so that we can clean it up when
814 * it completes and put it on the abandoned queue. This
815 * will prevent our sending spurious completions in the
816 * event that the device is opened again before these I/Os
817 * complete.
818 */
819 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
820 io_req2) {
821 TAILQ_REMOVE(&softc->active_queue, io_req, links);
822 io_req->flags |= PASS_IO_ABANDONED;
823 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
824 links);
825 }
826 }
827
828 cam_periph_release_locked(periph);
829
830 /*
831 * We reference the lock directly here, instead of using
832 * cam_periph_unlock(). The reason is that the call to
833 * cam_periph_release_locked() above could result in the periph
834 * getting freed. If that is the case, dereferencing the periph
835 * with a cam_periph_unlock() call would cause a page fault.
836 *
837 * cam_periph_release() avoids this problem using the same method,
838 * but we're manually acquiring and dropping the lock here to
839 * protect the open count and avoid another lock acquisition and
840 * release.
841 */
842 mtx_unlock(mtx);
843
844 return (0);
845 }
846
847 static void
848 passstart(struct cam_periph *periph, union ccb *start_ccb)
849 {
850 struct pass_softc *softc;
851
852 softc = (struct pass_softc *)periph->softc;
853
854 switch (softc->state) {
855 case PASS_STATE_NORMAL: {
856 struct pass_io_req *io_req;
857
858 /*
859 * Check for any queued I/O requests that require an
860 * allocated slot.
861 */
862 io_req = TAILQ_FIRST(&softc->incoming_queue);
863 if (io_req == NULL) {
864 xpt_release_ccb(start_ccb);
865 break;
866 }
867 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
868 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
869 /*
870 * Merge the user's CCB into the allocated CCB.
871 */
872 xpt_merge_ccb(start_ccb, &io_req->ccb);
873 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
874 start_ccb->ccb_h.ccb_ioreq = io_req;
875 start_ccb->ccb_h.cbfcnp = passdone;
876 io_req->alloced_ccb = start_ccb;
877 binuptime(&io_req->start_time);
878 devstat_start_transaction(softc->device_stats,
879 &io_req->start_time);
880
881 xpt_action(start_ccb);
882
883 /*
884 * If we have any more I/O waiting, schedule ourselves again.
885 */
886 if (!TAILQ_EMPTY(&softc->incoming_queue))
887 xpt_schedule(periph, CAM_PRIORITY_NORMAL);
888 break;
889 }
890 default:
891 break;
892 }
893 }
894
895 static void
896 passdone(struct cam_periph *periph, union ccb *done_ccb)
897 {
898 struct pass_softc *softc;
899 struct ccb_scsiio *csio;
900
901 softc = (struct pass_softc *)periph->softc;
902
903 cam_periph_assert(periph, MA_OWNED);
904
905 csio = &done_ccb->csio;
906 switch (csio->ccb_h.ccb_type) {
907 case PASS_CCB_QUEUED_IO: {
908 struct pass_io_req *io_req;
909
910 io_req = done_ccb->ccb_h.ccb_ioreq;
911 #if 0
912 xpt_print(periph->path, "%s: called for user CCB %p\n",
913 __func__, io_req->user_ccb_ptr);
914 #endif
915 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
916 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
917 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
918 int error;
919
920 error = passerror(done_ccb, CAM_RETRY_SELTO,
921 SF_RETRY_UA | SF_NO_PRINT);
922
923 if (error == ERESTART) {
924 /*
925 * A retry was scheduled, so
926 * just return.
927 */
928 return;
929 }
930 }
931
932 /*
933 * Copy the allocated CCB contents back to the malloced CCB
934 * so we can give status back to the user when he requests it.
935 */
936 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
937
938 /*
939 * Log data/transaction completion with devstat(9).
940 */
941 switch (done_ccb->ccb_h.func_code) {
942 case XPT_SCSI_IO:
943 devstat_end_transaction(softc->device_stats,
944 done_ccb->csio.dxfer_len - done_ccb->csio.resid,
945 done_ccb->csio.tag_action & 0x3,
946 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
947 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
948 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
949 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
950 &io_req->start_time);
951 break;
952 case XPT_ATA_IO:
953 devstat_end_transaction(softc->device_stats,
954 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
955 0, /* Not used in ATA */
956 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
957 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
958 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
959 DEVSTAT_WRITE : DEVSTAT_READ, NULL,
960 &io_req->start_time);
961 break;
962 case XPT_SMP_IO:
963 /*
964 * XXX KDM this isn't quite right, but there isn't
965 * currently an easy way to represent a bidirectional
966 * transfer in devstat. The only way to do it
967 * and have the byte counts come out right would
968 * mean that we would have to record two
969 * transactions, one for the request and one for the
970 * response. For now, so that we report something,
971 * just treat the entire thing as a read.
972 */
973 devstat_end_transaction(softc->device_stats,
974 done_ccb->smpio.smp_request_len +
975 done_ccb->smpio.smp_response_len,
976 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
977 &io_req->start_time);
978 break;
979 default:
980 devstat_end_transaction(softc->device_stats, 0,
981 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
982 &io_req->start_time);
983 break;
984 }
985
986 /*
987 * In the normal case, take the completed I/O off of the
988 * active queue and put it on the done queue. Notitfy the
989 * user that we have a completed I/O.
990 */
991 if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
992 TAILQ_REMOVE(&softc->active_queue, io_req, links);
993 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
994 selwakeuppri(&softc->read_select, PRIBIO);
995 KNOTE_LOCKED(&softc->read_select.si_note, 0);
996 } else {
997 /*
998 * In the case of an abandoned I/O (final close
999 * without fetching the I/O), take it off of the
1000 * abandoned queue and free it.
1001 */
1002 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
1003 passiocleanup(softc, io_req);
1004 uma_zfree(softc->pass_zone, io_req);
1005
1006 /*
1007 * Release the done_ccb here, since we may wind up
1008 * freeing the peripheral when we decrement the
1009 * reference count below.
1010 */
1011 xpt_release_ccb(done_ccb);
1012
1013 /*
1014 * If the abandoned queue is empty, we can release
1015 * our reference to the periph since we won't have
1016 * any more completions coming.
1017 */
1018 if ((TAILQ_EMPTY(&softc->abandoned_queue))
1019 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
1020 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
1021 cam_periph_release_locked(periph);
1022 }
1023
1024 /*
1025 * We have already released the CCB, so we can
1026 * return.
1027 */
1028 return;
1029 }
1030 break;
1031 }
1032 }
1033 xpt_release_ccb(done_ccb);
1034 }
1035
1036 static int
1037 passcreatezone(struct cam_periph *periph)
1038 {
1039 struct pass_softc *softc;
1040 int error;
1041
1042 error = 0;
1043 softc = (struct pass_softc *)periph->softc;
1044
1045 cam_periph_assert(periph, MA_OWNED);
1046 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
1047 ("%s called when the pass(4) zone is valid!\n", __func__));
1048 KASSERT((softc->pass_zone == NULL),
1049 ("%s called when the pass(4) zone is allocated!\n", __func__));
1050
1051 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
1052 /*
1053 * We're the first context through, so we need to create
1054 * the pass(4) UMA zone for I/O requests.
1055 */
1056 softc->flags |= PASS_FLAG_ZONE_INPROG;
1057
1058 /*
1059 * uma_zcreate() does a blocking (M_WAITOK) allocation,
1060 * so we cannot hold a mutex while we call it.
1061 */
1062 cam_periph_unlock(periph);
1063
1064 softc->pass_zone = uma_zcreate(softc->zone_name,
1065 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
1066 /*align*/ 0, /*flags*/ 0);
1067
1068 softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
1069 softc->io_zone_size, NULL, NULL, NULL, NULL,
1070 /*align*/ 0, /*flags*/ 0);
1071
1072 cam_periph_lock(periph);
1073
1074 if ((softc->pass_zone == NULL)
1075 || (softc->pass_io_zone == NULL)) {
1076 if (softc->pass_zone == NULL)
1077 xpt_print(periph->path, "unable to allocate "
1078 "IO Req UMA zone\n");
1079 else
1080 xpt_print(periph->path, "unable to allocate "
1081 "IO UMA zone\n");
1082 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1083 goto bailout;
1084 }
1085
1086 /*
1087 * Set the flags appropriately and notify any other waiters.
1088 */
1089 softc->flags &= ~PASS_FLAG_ZONE_INPROG;
1090 softc->flags |= PASS_FLAG_ZONE_VALID;
1091 wakeup(&softc->pass_zone);
1092 } else {
1093 /*
1094 * In this case, the UMA zone has not yet been created, but
1095 * another context is in the process of creating it. We
1096 * need to sleep until the creation is either done or has
1097 * failed.
1098 */
1099 while ((softc->flags & PASS_FLAG_ZONE_INPROG)
1100 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
1101 error = msleep(&softc->pass_zone,
1102 cam_periph_mtx(periph), PRIBIO,
1103 "paszon", 0);
1104 if (error != 0)
1105 goto bailout;
1106 }
1107 /*
1108 * If the zone creation failed, no luck for the user.
1109 */
1110 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
1111 error = ENOMEM;
1112 goto bailout;
1113 }
1114 }
1115 bailout:
1116 return (error);
1117 }
1118
1119 static void
1120 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
1121 {
1122 union ccb *ccb;
1123 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1124 int i, numbufs;
1125
1126 ccb = &io_req->ccb;
1127
1128 switch (ccb->ccb_h.func_code) {
1129 case XPT_DEV_MATCH:
1130 numbufs = min(io_req->num_bufs, 2);
1131
1132 if (numbufs == 1) {
1133 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1134 } else {
1135 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1136 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1137 }
1138 break;
1139 case XPT_SCSI_IO:
1140 case XPT_CONT_TARGET_IO:
1141 data_ptrs[0] = &ccb->csio.data_ptr;
1142 numbufs = min(io_req->num_bufs, 1);
1143 break;
1144 case XPT_ATA_IO:
1145 data_ptrs[0] = &ccb->ataio.data_ptr;
1146 numbufs = min(io_req->num_bufs, 1);
1147 break;
1148 case XPT_SMP_IO:
1149 numbufs = min(io_req->num_bufs, 2);
1150 data_ptrs[0] = &ccb->smpio.smp_request;
1151 data_ptrs[1] = &ccb->smpio.smp_response;
1152 break;
1153 case XPT_DEV_ADVINFO:
1154 numbufs = min(io_req->num_bufs, 1);
1155 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1156 break;
1157 case XPT_NVME_IO:
1158 case XPT_NVME_ADMIN:
1159 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1160 numbufs = min(io_req->num_bufs, 1);
1161 break;
1162 default:
1163 /* allow ourselves to be swapped once again */
1164 return;
1165 break; /* NOTREACHED */
1166 }
1167
1168 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
1169 free(io_req->user_segptr, M_SCSIPASS);
1170 io_req->user_segptr = NULL;
1171 }
1172
1173 /*
1174 * We only want to free memory we malloced.
1175 */
1176 if (io_req->data_flags == CAM_DATA_VADDR) {
1177 for (i = 0; i < io_req->num_bufs; i++) {
1178 if (io_req->kern_bufs[i] == NULL)
1179 continue;
1180
1181 free(io_req->kern_bufs[i], M_SCSIPASS);
1182 io_req->kern_bufs[i] = NULL;
1183 }
1184 } else if (io_req->data_flags == CAM_DATA_SG) {
1185 for (i = 0; i < io_req->num_kern_segs; i++) {
1186 if ((uint8_t *)(uintptr_t)
1187 io_req->kern_segptr[i].ds_addr == NULL)
1188 continue;
1189
1190 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
1191 io_req->kern_segptr[i].ds_addr);
1192 io_req->kern_segptr[i].ds_addr = 0;
1193 }
1194 }
1195
1196 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
1197 free(io_req->kern_segptr, M_SCSIPASS);
1198 io_req->kern_segptr = NULL;
1199 }
1200
1201 if (io_req->data_flags != CAM_DATA_PADDR) {
1202 for (i = 0; i < numbufs; i++) {
1203 /*
1204 * Restore the user's buffer pointers to their
1205 * previous values.
1206 */
1207 if (io_req->user_bufs[i] != NULL)
1208 *data_ptrs[i] = io_req->user_bufs[i];
1209 }
1210 }
1211
1212 }
1213
1214 static int
1215 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
1216 ccb_flags direction)
1217 {
1218 bus_size_t kern_watermark, user_watermark, len_to_copy;
1219 bus_dma_segment_t *user_sglist, *kern_sglist;
1220 int i, j, error;
1221
1222 error = 0;
1223 kern_watermark = 0;
1224 user_watermark = 0;
1225 len_to_copy = 0;
1226 user_sglist = io_req->user_segptr;
1227 kern_sglist = io_req->kern_segptr;
1228
1229 for (i = 0, j = 0; i < io_req->num_user_segs &&
1230 j < io_req->num_kern_segs;) {
1231 uint8_t *user_ptr, *kern_ptr;
1232
1233 len_to_copy = min(user_sglist[i].ds_len -user_watermark,
1234 kern_sglist[j].ds_len - kern_watermark);
1235
1236 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
1237 user_ptr = user_ptr + user_watermark;
1238 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
1239 kern_ptr = kern_ptr + kern_watermark;
1240
1241 user_watermark += len_to_copy;
1242 kern_watermark += len_to_copy;
1243
1244 if (direction == CAM_DIR_IN) {
1245 error = copyout(kern_ptr, user_ptr, len_to_copy);
1246 if (error != 0) {
1247 xpt_print(periph->path, "%s: copyout of %u "
1248 "bytes from %p to %p failed with "
1249 "error %d\n", __func__, len_to_copy,
1250 kern_ptr, user_ptr, error);
1251 goto bailout;
1252 }
1253 } else {
1254 error = copyin(user_ptr, kern_ptr, len_to_copy);
1255 if (error != 0) {
1256 xpt_print(periph->path, "%s: copyin of %u "
1257 "bytes from %p to %p failed with "
1258 "error %d\n", __func__, len_to_copy,
1259 user_ptr, kern_ptr, error);
1260 goto bailout;
1261 }
1262 }
1263
1264 if (user_sglist[i].ds_len == user_watermark) {
1265 i++;
1266 user_watermark = 0;
1267 }
1268
1269 if (kern_sglist[j].ds_len == kern_watermark) {
1270 j++;
1271 kern_watermark = 0;
1272 }
1273 }
1274
1275 bailout:
1276
1277 return (error);
1278 }
1279
1280 static int
1281 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
1282 {
1283 union ccb *ccb;
1284 struct pass_softc *softc;
1285 int numbufs, i;
1286 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
1287 uint32_t lengths[CAM_PERIPH_MAXMAPS];
1288 uint32_t dirs[CAM_PERIPH_MAXMAPS];
1289 uint32_t num_segs;
1290 uint16_t *seg_cnt_ptr;
1291 size_t maxmap;
1292 int error;
1293
1294 cam_periph_assert(periph, MA_NOTOWNED);
1295
1296 softc = periph->softc;
1297
1298 error = 0;
1299 ccb = &io_req->ccb;
1300 maxmap = 0;
1301 num_segs = 0;
1302 seg_cnt_ptr = NULL;
1303
1304 switch(ccb->ccb_h.func_code) {
1305 case XPT_DEV_MATCH:
1306 if (ccb->cdm.match_buf_len == 0) {
1307 printf("%s: invalid match buffer length 0\n", __func__);
1308 return(EINVAL);
1309 }
1310 if (ccb->cdm.pattern_buf_len > 0) {
1311 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
1312 lengths[0] = ccb->cdm.pattern_buf_len;
1313 dirs[0] = CAM_DIR_OUT;
1314 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
1315 lengths[1] = ccb->cdm.match_buf_len;
1316 dirs[1] = CAM_DIR_IN;
1317 numbufs = 2;
1318 } else {
1319 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
1320 lengths[0] = ccb->cdm.match_buf_len;
1321 dirs[0] = CAM_DIR_IN;
1322 numbufs = 1;
1323 }
1324 io_req->data_flags = CAM_DATA_VADDR;
1325 break;
1326 case XPT_SCSI_IO:
1327 case XPT_CONT_TARGET_IO:
1328 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1329 return(0);
1330
1331 /*
1332 * The user shouldn't be able to supply a bio.
1333 */
1334 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
1335 return (EINVAL);
1336
1337 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1338
1339 data_ptrs[0] = &ccb->csio.data_ptr;
1340 lengths[0] = ccb->csio.dxfer_len;
1341 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1342 num_segs = ccb->csio.sglist_cnt;
1343 seg_cnt_ptr = &ccb->csio.sglist_cnt;
1344 numbufs = 1;
1345 maxmap = softc->maxio;
1346 break;
1347 case XPT_ATA_IO:
1348 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1349 return(0);
1350
1351 /*
1352 * We only support a single virtual address for ATA I/O.
1353 */
1354 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
1355 return (EINVAL);
1356
1357 io_req->data_flags = CAM_DATA_VADDR;
1358
1359 data_ptrs[0] = &ccb->ataio.data_ptr;
1360 lengths[0] = ccb->ataio.dxfer_len;
1361 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1362 numbufs = 1;
1363 maxmap = softc->maxio;
1364 break;
1365 case XPT_SMP_IO:
1366 io_req->data_flags = CAM_DATA_VADDR;
1367
1368 data_ptrs[0] = &ccb->smpio.smp_request;
1369 lengths[0] = ccb->smpio.smp_request_len;
1370 dirs[0] = CAM_DIR_OUT;
1371 data_ptrs[1] = &ccb->smpio.smp_response;
1372 lengths[1] = ccb->smpio.smp_response_len;
1373 dirs[1] = CAM_DIR_IN;
1374 numbufs = 2;
1375 maxmap = softc->maxio;
1376 break;
1377 case XPT_DEV_ADVINFO:
1378 if (ccb->cdai.bufsiz == 0)
1379 return (0);
1380
1381 io_req->data_flags = CAM_DATA_VADDR;
1382
1383 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
1384 lengths[0] = ccb->cdai.bufsiz;
1385 dirs[0] = CAM_DIR_IN;
1386 numbufs = 1;
1387 break;
1388 case XPT_NVME_ADMIN:
1389 case XPT_NVME_IO:
1390 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
1391 return (0);
1392
1393 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
1394
1395 data_ptrs[0] = &ccb->nvmeio.data_ptr;
1396 lengths[0] = ccb->nvmeio.dxfer_len;
1397 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
1398 num_segs = ccb->nvmeio.sglist_cnt;
1399 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt;
1400 numbufs = 1;
1401 maxmap = softc->maxio;
1402 break;
1403 default:
1404 return(EINVAL);
1405 break; /* NOTREACHED */
1406 }
1407
1408 io_req->num_bufs = numbufs;
1409
1410 /*
1411 * If there is a maximum, check to make sure that the user's
1412 * request fits within the limit. In general, we should only have
1413 * a maximum length for requests that go to hardware. Otherwise it
1414 * is whatever we're able to malloc.
1415 */
1416 for (i = 0; i < numbufs; i++) {
1417 io_req->user_bufs[i] = *data_ptrs[i];
1418 io_req->dirs[i] = dirs[i];
1419 io_req->lengths[i] = lengths[i];
1420
1421 if (maxmap == 0)
1422 continue;
1423
1424 if (lengths[i] <= maxmap)
1425 continue;
1426
1427 xpt_print(periph->path, "%s: data length %u > max allowed %u "
1428 "bytes\n", __func__, lengths[i], maxmap);
1429 error = EINVAL;
1430 goto bailout;
1431 }
1432
1433 switch (io_req->data_flags) {
1434 case CAM_DATA_VADDR:
1435 /* Map or copy the buffer into kernel address space */
1436 for (i = 0; i < numbufs; i++) {
1437 uint8_t *tmp_buf;
1438
1439 /*
1440 * If for some reason no length is specified, we
1441 * don't need to allocate anything.
1442 */
1443 if (io_req->lengths[i] == 0)
1444 continue;
1445
1446 tmp_buf = malloc(lengths[i], M_SCSIPASS,
1447 M_WAITOK | M_ZERO);
1448 io_req->kern_bufs[i] = tmp_buf;
1449 *data_ptrs[i] = tmp_buf;
1450
1451 #if 0
1452 xpt_print(periph->path, "%s: malloced %p len %u, user "
1453 "buffer %p, operation: %s\n", __func__,
1454 tmp_buf, lengths[i], io_req->user_bufs[i],
1455 (dirs[i] == CAM_DIR_IN) ? "read" : "write");
1456 #endif
1457 /*
1458 * We only need to copy in if the user is writing.
1459 */
1460 if (dirs[i] != CAM_DIR_OUT)
1461 continue;
1462
1463 error = copyin(io_req->user_bufs[i],
1464 io_req->kern_bufs[i], lengths[i]);
1465 if (error != 0) {
1466 xpt_print(periph->path, "%s: copy of user "
1467 "buffer from %p to %p failed with "
1468 "error %d\n", __func__,
1469 io_req->user_bufs[i],
1470 io_req->kern_bufs[i], error);
1471 goto bailout;
1472 }
1473 }
1474 break;
1475 case CAM_DATA_PADDR:
1476 /* Pass down the pointer as-is */
1477 break;
1478 case CAM_DATA_SG: {
1479 size_t sg_length, size_to_go, alloc_size;
1480 uint32_t num_segs_needed;
1481
1482 /*
1483 * Copy the user S/G list in, and then copy in the
1484 * individual segments.
1485 */
1486 /*
1487 * We shouldn't see this, but check just in case.
1488 */
1489 if (numbufs != 1) {
1490 xpt_print(periph->path, "%s: cannot currently handle "
1491 "more than one S/G list per CCB\n", __func__);
1492 error = EINVAL;
1493 goto bailout;
1494 }
1495
1496 /*
1497 * We have to have at least one segment.
1498 */
1499 if (num_segs == 0) {
1500 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
1501 "but sglist_cnt=0!\n", __func__);
1502 error = EINVAL;
1503 goto bailout;
1504 }
1505
1506 /*
1507 * Make sure the user specified the total length and didn't
1508 * just leave it to us to decode the S/G list.
1509 */
1510 if (lengths[0] == 0) {
1511 xpt_print(periph->path, "%s: no dxfer_len specified, "
1512 "but CAM_DATA_SG flag is set!\n", __func__);
1513 error = EINVAL;
1514 goto bailout;
1515 }
1516
1517 /*
1518 * We allocate buffers in io_zone_size increments for an
1519 * S/G list. This will generally be maxphys.
1520 */
1521 if (lengths[0] <= softc->io_zone_size)
1522 num_segs_needed = 1;
1523 else {
1524 num_segs_needed = lengths[0] / softc->io_zone_size;
1525 if ((lengths[0] % softc->io_zone_size) != 0)
1526 num_segs_needed++;
1527 }
1528
1529 /* Figure out the size of the S/G list */
1530 sg_length = num_segs * sizeof(bus_dma_segment_t);
1531 io_req->num_user_segs = num_segs;
1532 io_req->num_kern_segs = num_segs_needed;
1533
1534 /* Save the user's S/G list pointer for later restoration */
1535 io_req->user_bufs[0] = *data_ptrs[0];
1536
1537 /*
1538 * If we have enough segments allocated by default to handle
1539 * the length of the user's S/G list,
1540 */
1541 if (num_segs > PASS_MAX_SEGS) {
1542 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1543 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1544 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1545 } else
1546 io_req->user_segptr = io_req->user_segs;
1547
1548 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1549 if (error != 0) {
1550 xpt_print(periph->path, "%s: copy of user S/G list "
1551 "from %p to %p failed with error %d\n",
1552 __func__, *data_ptrs[0], io_req->user_segptr,
1553 error);
1554 goto bailout;
1555 }
1556
1557 if (num_segs_needed > PASS_MAX_SEGS) {
1558 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
1559 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
1560 io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
1561 } else {
1562 io_req->kern_segptr = io_req->kern_segs;
1563 }
1564
1565 /*
1566 * Allocate the kernel S/G list.
1567 */
1568 for (size_to_go = lengths[0], i = 0;
1569 size_to_go > 0 && i < num_segs_needed;
1570 i++, size_to_go -= alloc_size) {
1571 uint8_t *kern_ptr;
1572
1573 alloc_size = min(size_to_go, softc->io_zone_size);
1574 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
1575 io_req->kern_segptr[i].ds_addr =
1576 (bus_addr_t)(uintptr_t)kern_ptr;
1577 io_req->kern_segptr[i].ds_len = alloc_size;
1578 }
1579 if (size_to_go > 0) {
1580 printf("%s: size_to_go = %zu, software error!\n",
1581 __func__, size_to_go);
1582 error = EINVAL;
1583 goto bailout;
1584 }
1585
1586 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
1587 *seg_cnt_ptr = io_req->num_kern_segs;
1588
1589 /*
1590 * We only need to copy data here if the user is writing.
1591 */
1592 if (dirs[0] == CAM_DIR_OUT)
1593 error = passcopysglist(periph, io_req, dirs[0]);
1594 break;
1595 }
1596 case CAM_DATA_SG_PADDR: {
1597 size_t sg_length;
1598
1599 /*
1600 * We shouldn't see this, but check just in case.
1601 */
1602 if (numbufs != 1) {
1603 printf("%s: cannot currently handle more than one "
1604 "S/G list per CCB\n", __func__);
1605 error = EINVAL;
1606 goto bailout;
1607 }
1608
1609 /*
1610 * We have to have at least one segment.
1611 */
1612 if (num_segs == 0) {
1613 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
1614 "set, but sglist_cnt=0!\n", __func__);
1615 error = EINVAL;
1616 goto bailout;
1617 }
1618
1619 /*
1620 * Make sure the user specified the total length and didn't
1621 * just leave it to us to decode the S/G list.
1622 */
1623 if (lengths[0] == 0) {
1624 xpt_print(periph->path, "%s: no dxfer_len specified, "
1625 "but CAM_DATA_SG flag is set!\n", __func__);
1626 error = EINVAL;
1627 goto bailout;
1628 }
1629
1630 /* Figure out the size of the S/G list */
1631 sg_length = num_segs * sizeof(bus_dma_segment_t);
1632 io_req->num_user_segs = num_segs;
1633 io_req->num_kern_segs = io_req->num_user_segs;
1634
1635 /* Save the user's S/G list pointer for later restoration */
1636 io_req->user_bufs[0] = *data_ptrs[0];
1637
1638 if (num_segs > PASS_MAX_SEGS) {
1639 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
1640 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
1641 io_req->flags |= PASS_IO_USER_SEG_MALLOC;
1642 } else
1643 io_req->user_segptr = io_req->user_segs;
1644
1645 io_req->kern_segptr = io_req->user_segptr;
1646
1647 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
1648 if (error != 0) {
1649 xpt_print(periph->path, "%s: copy of user S/G list "
1650 "from %p to %p failed with error %d\n",
1651 __func__, *data_ptrs[0], io_req->user_segptr,
1652 error);
1653 goto bailout;
1654 }
1655 break;
1656 }
1657 default:
1658 case CAM_DATA_BIO:
1659 /*
1660 * A user shouldn't be attaching a bio to the CCB. It
1661 * isn't a user-accessible structure.
1662 */
1663 error = EINVAL;
1664 break;
1665 }
1666
1667 bailout:
1668 if (error != 0)
1669 passiocleanup(softc, io_req);
1670
1671 return (error);
1672 }
1673
1674 static int
1675 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
1676 {
1677 struct pass_softc *softc;
1678 int error;
1679 int i;
1680
1681 error = 0;
1682 softc = (struct pass_softc *)periph->softc;
1683
1684 switch (io_req->data_flags) {
1685 case CAM_DATA_VADDR:
1686 /*
1687 * Copy back to the user buffer if this was a read.
1688 */
1689 for (i = 0; i < io_req->num_bufs; i++) {
1690 if (io_req->dirs[i] != CAM_DIR_IN)
1691 continue;
1692
1693 error = copyout(io_req->kern_bufs[i],
1694 io_req->user_bufs[i], io_req->lengths[i]);
1695 if (error != 0) {
1696 xpt_print(periph->path, "Unable to copy %u "
1697 "bytes from %p to user address %p\n",
1698 io_req->lengths[i],
1699 io_req->kern_bufs[i],
1700 io_req->user_bufs[i]);
1701 goto bailout;
1702 }
1703 }
1704 break;
1705 case CAM_DATA_PADDR:
1706 /* Do nothing. The pointer is a physical address already */
1707 break;
1708 case CAM_DATA_SG:
1709 /*
1710 * Copy back to the user buffer if this was a read.
1711 * Restore the user's S/G list buffer pointer.
1712 */
1713 if (io_req->dirs[0] == CAM_DIR_IN)
1714 error = passcopysglist(periph, io_req, io_req->dirs[0]);
1715 break;
1716 case CAM_DATA_SG_PADDR:
1717 /*
1718 * Restore the user's S/G list buffer pointer. No need to
1719 * copy.
1720 */
1721 break;
1722 default:
1723 case CAM_DATA_BIO:
1724 error = EINVAL;
1725 break;
1726 }
1727
1728 bailout:
1729 /*
1730 * Reset the user's pointers to their original values and free
1731 * allocated memory.
1732 */
1733 passiocleanup(softc, io_req);
1734
1735 return (error);
1736 }
1737
1738 static int
1739 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1740 {
1741 int error;
1742
1743 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
1744 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl);
1745 }
1746 return (error);
1747 }
1748
1749 static int
1750 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1751 {
1752 struct cam_periph *periph;
1753 struct pass_softc *softc;
1754 int error;
1755 uint32_t priority;
1756
1757 periph = (struct cam_periph *)dev->si_drv1;
1758 cam_periph_lock(periph);
1759 softc = (struct pass_softc *)periph->softc;
1760
1761 error = 0;
1762
1763 switch (cmd) {
1764 case CAMIOCOMMAND:
1765 {
1766 union ccb *inccb;
1767 union ccb *ccb;
1768 int ccb_malloced;
1769
1770 inccb = (union ccb *)addr;
1771 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1772 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
1773 inccb->csio.bio = NULL;
1774 #endif
1775
1776 if (inccb->ccb_h.flags & CAM_UNLOCKED) {
1777 error = EINVAL;
1778 break;
1779 }
1780
1781 /*
1782 * Some CCB types, like scan bus and scan lun can only go
1783 * through the transport layer device.
1784 */
1785 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1786 xpt_print(periph->path, "CCB function code %#x is "
1787 "restricted to the XPT device\n",
1788 inccb->ccb_h.func_code);
1789 error = ENODEV;
1790 break;
1791 }
1792
1793 /* Compatibility for RL/priority-unaware code. */
1794 priority = inccb->ccb_h.pinfo.priority;
1795 if (priority <= CAM_PRIORITY_OOB)
1796 priority += CAM_PRIORITY_OOB + 1;
1797
1798 /*
1799 * Non-immediate CCBs need a CCB from the per-device pool
1800 * of CCBs, which is scheduled by the transport layer.
1801 * Immediate CCBs and user-supplied CCBs should just be
1802 * malloced.
1803 */
1804 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED)
1805 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) {
1806 ccb = cam_periph_getccb(periph, priority);
1807 ccb_malloced = 0;
1808 } else {
1809 ccb = xpt_alloc_ccb_nowait();
1810
1811 if (ccb != NULL)
1812 xpt_setup_ccb(&ccb->ccb_h, periph->path,
1813 priority);
1814 ccb_malloced = 1;
1815 }
1816
1817 if (ccb == NULL) {
1818 xpt_print(periph->path, "unable to allocate CCB\n");
1819 error = ENOMEM;
1820 break;
1821 }
1822
1823 error = passsendccb(periph, ccb, inccb);
1824
1825 if (ccb_malloced)
1826 xpt_free_ccb(ccb);
1827 else
1828 xpt_release_ccb(ccb);
1829
1830 break;
1831 }
1832 case CAMIOQUEUE:
1833 {
1834 struct pass_io_req *io_req;
1835 union ccb **user_ccb, *ccb;
1836 xpt_opcode fc;
1837
1838 #ifdef COMPAT_FREEBSD32
1839 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1840 error = ENOTTY;
1841 goto bailout;
1842 }
1843 #endif
1844 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
1845 error = passcreatezone(periph);
1846 if (error != 0)
1847 goto bailout;
1848 }
1849
1850 /*
1851 * We're going to do a blocking allocation for this I/O
1852 * request, so we have to drop the lock.
1853 */
1854 cam_periph_unlock(periph);
1855
1856 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
1857 ccb = &io_req->ccb;
1858 user_ccb = (union ccb **)addr;
1859
1860 /*
1861 * Unlike the CAMIOCOMMAND ioctl above, we only have a
1862 * pointer to the user's CCB, so we have to copy the whole
1863 * thing in to a buffer we have allocated (above) instead
1864 * of allowing the ioctl code to malloc a buffer and copy
1865 * it in.
1866 *
1867 * This is an advantage for this asynchronous interface,
1868 * since we don't want the memory to get freed while the
1869 * CCB is outstanding.
1870 */
1871 #if 0
1872 xpt_print(periph->path, "Copying user CCB %p to "
1873 "kernel address %p\n", *user_ccb, ccb);
1874 #endif
1875 error = copyin(*user_ccb, ccb, sizeof(*ccb));
1876 if (error != 0) {
1877 xpt_print(periph->path, "Copy of user CCB %p to "
1878 "kernel address %p failed with error %d\n",
1879 *user_ccb, ccb, error);
1880 goto camioqueue_error;
1881 }
1882 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
1883 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
1884 ccb->csio.bio = NULL;
1885 #endif
1886
1887 if (ccb->ccb_h.flags & CAM_UNLOCKED) {
1888 error = EINVAL;
1889 goto camioqueue_error;
1890 }
1891
1892 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
1893 if (ccb->csio.cdb_len > IOCDBLEN) {
1894 error = EINVAL;
1895 goto camioqueue_error;
1896 }
1897 error = copyin(ccb->csio.cdb_io.cdb_ptr,
1898 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len);
1899 if (error != 0)
1900 goto camioqueue_error;
1901 ccb->ccb_h.flags &= ~CAM_CDB_POINTER;
1902 }
1903
1904 /*
1905 * Some CCB types, like scan bus and scan lun can only go
1906 * through the transport layer device.
1907 */
1908 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
1909 xpt_print(periph->path, "CCB function code %#x is "
1910 "restricted to the XPT device\n",
1911 ccb->ccb_h.func_code);
1912 error = ENODEV;
1913 goto camioqueue_error;
1914 }
1915
1916 /*
1917 * Save the user's CCB pointer as well as his linked list
1918 * pointers and peripheral private area so that we can
1919 * restore these later.
1920 */
1921 io_req->user_ccb_ptr = *user_ccb;
1922 io_req->user_periph_links = ccb->ccb_h.periph_links;
1923 io_req->user_periph_priv = ccb->ccb_h.periph_priv;
1924
1925 /*
1926 * Now that we've saved the user's values, we can set our
1927 * own peripheral private entry.
1928 */
1929 ccb->ccb_h.ccb_ioreq = io_req;
1930
1931 /* Compatibility for RL/priority-unaware code. */
1932 priority = ccb->ccb_h.pinfo.priority;
1933 if (priority <= CAM_PRIORITY_OOB)
1934 priority += CAM_PRIORITY_OOB + 1;
1935
1936 /*
1937 * Setup fields in the CCB like the path and the priority.
1938 * The path in particular cannot be done in userland, since
1939 * it is a pointer to a kernel data structure.
1940 */
1941 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
1942 ccb->ccb_h.flags);
1943
1944 /*
1945 * Setup our done routine. There is no way for the user to
1946 * have a valid pointer here.
1947 */
1948 ccb->ccb_h.cbfcnp = passdone;
1949
1950 fc = ccb->ccb_h.func_code;
1951 /*
1952 * If this function code has memory that can be mapped in
1953 * or out, we need to call passmemsetup().
1954 */
1955 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
1956 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
1957 || (fc == XPT_DEV_ADVINFO)
1958 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
1959 error = passmemsetup(periph, io_req);
1960 if (error != 0)
1961 goto camioqueue_error;
1962 } else
1963 io_req->mapinfo.num_bufs_used = 0;
1964
1965 cam_periph_lock(periph);
1966
1967 /*
1968 * Everything goes on the incoming queue initially.
1969 */
1970 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
1971
1972 /*
1973 * If the CCB is queued, and is not a user CCB, then
1974 * we need to allocate a slot for it. Call xpt_schedule()
1975 * so that our start routine will get called when a CCB is
1976 * available.
1977 */
1978 if ((fc & XPT_FC_QUEUED)
1979 && ((fc & XPT_FC_USER_CCB) == 0)) {
1980 xpt_schedule(periph, priority);
1981 break;
1982 }
1983
1984 /*
1985 * At this point, the CCB in question is either an
1986 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
1987 * and therefore should be malloced, not allocated via a slot.
1988 * Remove the CCB from the incoming queue and add it to the
1989 * active queue.
1990 */
1991 TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
1992 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
1993
1994 xpt_action(ccb);
1995
1996 /*
1997 * If this is not a queued CCB (i.e. it is an immediate CCB),
1998 * then it is already done. We need to put it on the done
1999 * queue for the user to fetch.
2000 */
2001 if ((fc & XPT_FC_QUEUED) == 0) {
2002 TAILQ_REMOVE(&softc->active_queue, io_req, links);
2003 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
2004 }
2005 break;
2006
2007 camioqueue_error:
2008 uma_zfree(softc->pass_zone, io_req);
2009 cam_periph_lock(periph);
2010 break;
2011 }
2012 case CAMIOGET:
2013 {
2014 union ccb **user_ccb;
2015 struct pass_io_req *io_req;
2016 int old_error;
2017
2018 #ifdef COMPAT_FREEBSD32
2019 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
2020 error = ENOTTY;
2021 goto bailout;
2022 }
2023 #endif
2024 user_ccb = (union ccb **)addr;
2025 old_error = 0;
2026
2027 io_req = TAILQ_FIRST(&softc->done_queue);
2028 if (io_req == NULL) {
2029 error = ENOENT;
2030 break;
2031 }
2032
2033 /*
2034 * Remove the I/O from the done queue.
2035 */
2036 TAILQ_REMOVE(&softc->done_queue, io_req, links);
2037
2038 /*
2039 * We have to drop the lock during the copyout because the
2040 * copyout can result in VM faults that require sleeping.
2041 */
2042 cam_periph_unlock(periph);
2043
2044 /*
2045 * Do any needed copies (e.g. for reads) and revert the
2046 * pointers in the CCB back to the user's pointers.
2047 */
2048 error = passmemdone(periph, io_req);
2049
2050 old_error = error;
2051
2052 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
2053 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
2054
2055 #if 0
2056 xpt_print(periph->path, "Copying to user CCB %p from "
2057 "kernel address %p\n", *user_ccb, &io_req->ccb);
2058 #endif
2059
2060 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
2061 if (error != 0) {
2062 xpt_print(periph->path, "Copy to user CCB %p from "
2063 "kernel address %p failed with error %d\n",
2064 *user_ccb, &io_req->ccb, error);
2065 }
2066
2067 /*
2068 * Prefer the first error we got back, and make sure we
2069 * don't overwrite bad status with good.
2070 */
2071 if (old_error != 0)
2072 error = old_error;
2073
2074 cam_periph_lock(periph);
2075
2076 /*
2077 * At this point, if there was an error, we could potentially
2078 * re-queue the I/O and try again. But why? The error
2079 * would almost certainly happen again. We might as well
2080 * not leak memory.
2081 */
2082 uma_zfree(softc->pass_zone, io_req);
2083 break;
2084 }
2085 default:
2086 error = cam_periph_ioctl(periph, cmd, addr, passerror);
2087 break;
2088 }
2089
2090 bailout:
2091 cam_periph_unlock(periph);
2092
2093 return(error);
2094 }
2095
2096 static int
2097 passpoll(struct cdev *dev, int poll_events, struct thread *td)
2098 {
2099 struct cam_periph *periph;
2100 struct pass_softc *softc;
2101 int revents;
2102
2103 periph = (struct cam_periph *)dev->si_drv1;
2104 softc = (struct pass_softc *)periph->softc;
2105
2106 revents = poll_events & (POLLOUT | POLLWRNORM);
2107 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
2108 cam_periph_lock(periph);
2109
2110 if (!TAILQ_EMPTY(&softc->done_queue)) {
2111 revents |= poll_events & (POLLIN | POLLRDNORM);
2112 }
2113 cam_periph_unlock(periph);
2114 if (revents == 0)
2115 selrecord(td, &softc->read_select);
2116 }
2117
2118 return (revents);
2119 }
2120
2121 static int
2122 passkqfilter(struct cdev *dev, struct knote *kn)
2123 {
2124 struct cam_periph *periph;
2125 struct pass_softc *softc;
2126
2127 periph = (struct cam_periph *)dev->si_drv1;
2128 softc = (struct pass_softc *)periph->softc;
2129
2130 kn->kn_hook = (caddr_t)periph;
2131 kn->kn_fop = &passread_filtops;
2132 knlist_add(&softc->read_select.si_note, kn, 0);
2133
2134 return (0);
2135 }
2136
2137 static void
2138 passreadfiltdetach(struct knote *kn)
2139 {
2140 struct cam_periph *periph;
2141 struct pass_softc *softc;
2142
2143 periph = (struct cam_periph *)kn->kn_hook;
2144 softc = (struct pass_softc *)periph->softc;
2145
2146 knlist_remove(&softc->read_select.si_note, kn, 0);
2147 }
2148
2149 static int
2150 passreadfilt(struct knote *kn, long hint)
2151 {
2152 struct cam_periph *periph;
2153 struct pass_softc *softc;
2154 int retval;
2155
2156 periph = (struct cam_periph *)kn->kn_hook;
2157 softc = (struct pass_softc *)periph->softc;
2158
2159 cam_periph_assert(periph, MA_OWNED);
2160
2161 if (TAILQ_EMPTY(&softc->done_queue))
2162 retval = 0;
2163 else
2164 retval = 1;
2165
2166 return (retval);
2167 }
2168
2169 /*
2170 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb"
2171 * should be the CCB that is copied in from the user.
2172 */
2173 static int
2174 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
2175 {
2176 struct pass_softc *softc;
2177 struct cam_periph_map_info mapinfo;
2178 uint8_t *cmd;
2179 xpt_opcode fc;
2180 int error;
2181
2182 softc = (struct pass_softc *)periph->softc;
2183
2184 /*
2185 * There are some fields in the CCB header that need to be
2186 * preserved, the rest we get from the user.
2187 */
2188 xpt_merge_ccb(ccb, inccb);
2189
2190 if (ccb->ccb_h.flags & CAM_CDB_POINTER) {
2191 cmd = __builtin_alloca(ccb->csio.cdb_len);
2192 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len);
2193 if (error)
2194 return (error);
2195 ccb->csio.cdb_io.cdb_ptr = cmd;
2196 }
2197
2198 /*
2199 * Let cam_periph_mapmem do a sanity check on the data pointer format.
2200 * Even if no data transfer is needed, it's a cheap check and it
2201 * simplifies the code.
2202 */
2203 fc = ccb->ccb_h.func_code;
2204 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO)
2205 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO)
2206 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) {
2207 bzero(&mapinfo, sizeof(mapinfo));
2208
2209 /*
2210 * cam_periph_mapmem calls into proc and vm functions that can
2211 * sleep as well as trigger I/O, so we can't hold the lock.
2212 * Dropping it here is reasonably safe.
2213 */
2214 cam_periph_unlock(periph);
2215 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio);
2216 cam_periph_lock(periph);
2217
2218 /*
2219 * cam_periph_mapmem returned an error, we can't continue.
2220 * Return the error to the user.
2221 */
2222 if (error)
2223 return(error);
2224 } else
2225 /* Ensure that the unmap call later on is a no-op. */
2226 mapinfo.num_bufs_used = 0;
2227
2228 /*
2229 * If the user wants us to perform any error recovery, then honor
2230 * that request. Otherwise, it's up to the user to perform any
2231 * error recovery.
2232 */
2233 cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ?
2234 passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO,
2235 /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT,
2236 softc->device_stats);
2237
2238 cam_periph_unlock(periph);
2239 cam_periph_unmapmem(ccb, &mapinfo);
2240 cam_periph_lock(periph);
2241
2242 ccb->ccb_h.cbfcnp = NULL;
2243 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv;
2244 bcopy(ccb, inccb, sizeof(union ccb));
2245
2246 return(0);
2247 }
2248
2249 static int
2250 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
2251 {
2252
2253 return(cam_periph_error(ccb, cam_flags, sense_flags));
2254 }
Cache object: 01a032cb212852aaa36da273fc8a30ea
|