The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License (the "License").
    6  * You may not use this file except in compliance with the License.
    7  *
    8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
    9  * or http://www.opensolaris.org/os/licensing.
   10  * See the License for the specific language governing permissions
   11  * and limitations under the License.
   12  *
   13  * When distributing Covered Code, include this CDDL HEADER in each
   14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   15  * If applicable, add the following below this CDDL HEADER, with the
   16  * fields enclosed by brackets "[]" replaced with your own identifying
   17  * information: Portions Copyright [yyyy] [name of copyright owner]
   18  *
   19  * CDDL HEADER END
   20  *
   21  * $FreeBSD$
   22  */
   23 
   24 /*
   25  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
   26  * Use is subject to license terms.
   27  */
   28 
   29 /*
   30  * Copyright 2016 Joyent, Inc.
   31  * Copyright (c) 2012 by Delphix. All rights reserved.
   32  */
   33 
   34 #ifndef _SYS_DTRACE_IMPL_H
   35 #define _SYS_DTRACE_IMPL_H
   36 
   37 #ifdef  __cplusplus
   38 extern "C" {
   39 #endif
   40 
   41 /*
   42  * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
   43  *
   44  * Note: The contents of this file are private to the implementation of the
   45  * Solaris system and DTrace subsystem and are subject to change at any time
   46  * without notice.  Applications and drivers using these interfaces will fail
   47  * to run on future releases.  These interfaces should not be used for any
   48  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
   49  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
   50  */
   51 
   52 #include <sys/dtrace.h>
   53 #include <sys/file.h>
   54 
   55 #ifndef illumos
   56 #ifdef __sparcv9
   57 typedef uint32_t                pc_t;
   58 #else
   59 typedef uintptr_t               pc_t;
   60 #endif
   61 typedef u_long                  greg_t;
   62 #endif
   63 
   64 /*
   65  * DTrace Implementation Constants and Typedefs
   66  */
   67 #define DTRACE_MAXPROPLEN               128
   68 #define DTRACE_DYNVAR_CHUNKSIZE         256
   69 
   70 #ifdef __FreeBSD__
   71 #define NCPU            MAXCPU
   72 #endif /* __FreeBSD__ */
   73 
   74 struct dtrace_probe;
   75 struct dtrace_ecb;
   76 struct dtrace_predicate;
   77 struct dtrace_action;
   78 struct dtrace_provider;
   79 struct dtrace_state;
   80 
   81 typedef struct dtrace_probe dtrace_probe_t;
   82 typedef struct dtrace_ecb dtrace_ecb_t;
   83 typedef struct dtrace_predicate dtrace_predicate_t;
   84 typedef struct dtrace_action dtrace_action_t;
   85 typedef struct dtrace_provider dtrace_provider_t;
   86 typedef struct dtrace_meta dtrace_meta_t;
   87 typedef struct dtrace_state dtrace_state_t;
   88 typedef uint32_t dtrace_optid_t;
   89 typedef uint32_t dtrace_specid_t;
   90 typedef uint64_t dtrace_genid_t;
   91 
   92 /*
   93  * DTrace Probes
   94  *
   95  * The probe is the fundamental unit of the DTrace architecture.  Probes are
   96  * created by DTrace providers, and managed by the DTrace framework.  A probe
   97  * is identified by a unique <provider, module, function, name> tuple, and has
   98  * a unique probe identifier assigned to it.  (Some probes are not associated
   99  * with a specific point in text; these are called _unanchored probes_ and have
  100  * no module or function associated with them.)  Probes are represented as a
  101  * dtrace_probe structure.  To allow quick lookups based on each element of the
  102  * probe tuple, probes are hashed by each of provider, module, function and
  103  * name.  (If a lookup is performed based on a regular expression, a
  104  * dtrace_probekey is prepared, and a linear search is performed.) Each probe
  105  * is additionally pointed to by a linear array indexed by its identifier.  The
  106  * identifier is the provider's mechanism for indicating to the DTrace
  107  * framework that a probe has fired:  the identifier is passed as the first
  108  * argument to dtrace_probe(), where it is then mapped into the corresponding
  109  * dtrace_probe structure.  From the dtrace_probe structure, dtrace_probe() can
  110  * iterate over the probe's list of enabling control blocks; see "DTrace
  111  * Enabling Control Blocks", below.)
  112  */
  113 struct dtrace_probe {
  114         dtrace_id_t dtpr_id;                    /* probe identifier */
  115         dtrace_ecb_t *dtpr_ecb;                 /* ECB list; see below */
  116         dtrace_ecb_t *dtpr_ecb_last;            /* last ECB in list */
  117         void *dtpr_arg;                         /* provider argument */
  118         dtrace_cacheid_t dtpr_predcache;        /* predicate cache ID */
  119         int dtpr_aframes;                       /* artificial frames */
  120         dtrace_provider_t *dtpr_provider;       /* pointer to provider */
  121         char *dtpr_mod;                         /* probe's module name */
  122         char *dtpr_func;                        /* probe's function name */
  123         char *dtpr_name;                        /* probe's name */
  124         dtrace_probe_t *dtpr_nextmod;           /* next in module hash */
  125         dtrace_probe_t *dtpr_prevmod;           /* previous in module hash */
  126         dtrace_probe_t *dtpr_nextfunc;          /* next in function hash */
  127         dtrace_probe_t *dtpr_prevfunc;          /* previous in function hash */
  128         dtrace_probe_t *dtpr_nextname;          /* next in name hash */
  129         dtrace_probe_t *dtpr_prevname;          /* previous in name hash */
  130         dtrace_genid_t dtpr_gen;                /* probe generation ID */
  131 };
  132 
  133 typedef int dtrace_probekey_f(const char *, const char *, int);
  134 
  135 typedef struct dtrace_probekey {
  136         char *dtpk_prov;                        /* provider name to match */
  137         dtrace_probekey_f *dtpk_pmatch;         /* provider matching function */
  138         char *dtpk_mod;                         /* module name to match */
  139         dtrace_probekey_f *dtpk_mmatch;         /* module matching function */
  140         char *dtpk_func;                        /* func name to match */
  141         dtrace_probekey_f *dtpk_fmatch;         /* func matching function */
  142         char *dtpk_name;                        /* name to match */
  143         dtrace_probekey_f *dtpk_nmatch;         /* name matching function */
  144         dtrace_id_t dtpk_id;                    /* identifier to match */
  145 } dtrace_probekey_t;
  146 
  147 typedef struct dtrace_hashbucket {
  148         struct dtrace_hashbucket *dthb_next;    /* next on hash chain */
  149         dtrace_probe_t *dthb_chain;             /* chain of probes */
  150         int dthb_len;                           /* number of probes here */
  151 } dtrace_hashbucket_t;
  152 
  153 typedef struct dtrace_hash {
  154         dtrace_hashbucket_t **dth_tab;          /* hash table */
  155         int dth_size;                           /* size of hash table */
  156         int dth_mask;                           /* mask to index into table */
  157         int dth_nbuckets;                       /* total number of buckets */
  158         uintptr_t dth_nextoffs;                 /* offset of next in probe */
  159         uintptr_t dth_prevoffs;                 /* offset of prev in probe */
  160         uintptr_t dth_stroffs;                  /* offset of str in probe */
  161 } dtrace_hash_t;
  162 
  163 /*
  164  * DTrace Enabling Control Blocks
  165  *
  166  * When a provider wishes to fire a probe, it calls into dtrace_probe(),
  167  * passing the probe identifier as the first argument.  As described above,
  168  * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
  169  * structure.  This structure contains information about the probe, and a
  170  * pointer to the list of Enabling Control Blocks (ECBs).  Each ECB points to
  171  * DTrace consumer state, and contains an optional predicate, and a list of
  172  * actions.  (Shown schematically below.)  The ECB abstraction allows a single
  173  * probe to be multiplexed across disjoint consumers, or across disjoint
  174  * enablings of a single probe within one consumer.
  175  *
  176  *   Enabling Control Block
  177  *        dtrace_ecb_t
  178  * +------------------------+
  179  * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
  180  * | dtrace_state_t * ------+--------------> State associated with this ECB
  181  * | dtrace_predicate_t * --+---------+
  182  * | dtrace_action_t * -----+----+    |
  183  * | dtrace_ecb_t * ---+    |    |    |       Predicate (if any)
  184  * +-------------------+----+    |    |       dtrace_predicate_t
  185  *                     |         |    +---> +--------------------+
  186  *                     |         |          | dtrace_difo_t * ---+----> DIFO
  187  *                     |         |          +--------------------+
  188  *                     |         |
  189  *            Next ECB |         |           Action
  190  *            (if any) |         |       dtrace_action_t
  191  *                     :         +--> +-------------------+
  192  *                     :              | dtrace_actkind_t -+------> kind
  193  *                     v              | dtrace_difo_t * --+------> DIFO (if any)
  194  *                                    | dtrace_recdesc_t -+------> record descr.
  195  *                                    | dtrace_action_t * +------+
  196  *                                    +-------------------+      |
  197  *                                                               | Next action
  198  *                               +-------------------------------+  (if any)
  199  *                               |
  200  *                               |           Action
  201  *                               |       dtrace_action_t
  202  *                               +--> +-------------------+
  203  *                                    | dtrace_actkind_t -+------> kind
  204  *                                    | dtrace_difo_t * --+------> DIFO (if any)
  205  *                                    | dtrace_action_t * +------+
  206  *                                    +-------------------+      |
  207  *                                                               | Next action
  208  *                               +-------------------------------+  (if any)
  209  *                               |
  210  *                               :
  211  *                               v
  212  *
  213  *
  214  * dtrace_probe() iterates over the ECB list.  If the ECB needs less space
  215  * than is available in the principal buffer, the ECB is processed:  if the
  216  * predicate is non-NULL, the DIF object is executed.  If the result is
  217  * non-zero, the action list is processed, with each action being executed
  218  * accordingly.  When the action list has been completely executed, processing
  219  * advances to the next ECB. The ECB abstraction allows disjoint consumers
  220  * to multiplex on single probes.
  221  *
  222  * Execution of the ECB results in consuming dte_size bytes in the buffer
  223  * to record data.  During execution, dte_needed bytes must be available in
  224  * the buffer.  This space is used for both recorded data and tuple data.
  225  */
  226 struct dtrace_ecb {
  227         dtrace_epid_t dte_epid;                 /* enabled probe ID */
  228         uint32_t dte_alignment;                 /* required alignment */
  229         size_t dte_needed;                      /* space needed for execution */
  230         size_t dte_size;                        /* size of recorded payload */
  231         dtrace_predicate_t *dte_predicate;      /* predicate, if any */
  232         dtrace_action_t *dte_action;            /* actions, if any */
  233         dtrace_ecb_t *dte_next;                 /* next ECB on probe */
  234         dtrace_state_t *dte_state;              /* pointer to state */
  235         uint32_t dte_cond;                      /* security condition */
  236         dtrace_probe_t *dte_probe;              /* pointer to probe */
  237         dtrace_action_t *dte_action_last;       /* last action on ECB */
  238         uint64_t dte_uarg;                      /* library argument */
  239 };
  240 
  241 struct dtrace_predicate {
  242         dtrace_difo_t *dtp_difo;                /* DIF object */
  243         dtrace_cacheid_t dtp_cacheid;           /* cache identifier */
  244         int dtp_refcnt;                         /* reference count */
  245 };
  246 
  247 struct dtrace_action {
  248         dtrace_actkind_t dta_kind;              /* kind of action */
  249         uint16_t dta_intuple;                   /* boolean:  in aggregation */
  250         uint32_t dta_refcnt;                    /* reference count */
  251         dtrace_difo_t *dta_difo;                /* pointer to DIFO */
  252         dtrace_recdesc_t dta_rec;               /* record description */
  253         dtrace_action_t *dta_prev;              /* previous action */
  254         dtrace_action_t *dta_next;              /* next action */
  255 };
  256 
  257 typedef struct dtrace_aggregation {
  258         dtrace_action_t dtag_action;            /* action; must be first */
  259         dtrace_aggid_t dtag_id;                 /* identifier */
  260         dtrace_ecb_t *dtag_ecb;                 /* corresponding ECB */
  261         dtrace_action_t *dtag_first;            /* first action in tuple */
  262         uint32_t dtag_base;                     /* base of aggregation */
  263         uint8_t dtag_hasarg;                    /* boolean:  has argument */
  264         uint64_t dtag_initial;                  /* initial value */
  265         void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
  266 } dtrace_aggregation_t;
  267 
  268 /*
  269  * DTrace Buffers
  270  *
  271  * Principal buffers, aggregation buffers, and speculative buffers are all
  272  * managed with the dtrace_buffer structure.  By default, this structure
  273  * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
  274  * active and passive buffers, respectively.  For speculative buffers,
  275  * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
  276  * to a scratch buffer.  For all buffer types, the dtrace_buffer structure is
  277  * always allocated on a per-CPU basis; a single dtrace_buffer structure is
  278  * never shared among CPUs.  (That is, there is never true sharing of the
  279  * dtrace_buffer structure; to prevent false sharing of the structure, it must
  280  * always be aligned to the coherence granularity -- generally 64 bytes.)
  281  *
  282  * One of the critical design decisions of DTrace is that a given ECB always
  283  * stores the same quantity and type of data.  This is done to assure that the
  284  * only metadata required for an ECB's traced data is the EPID.  That is, from
  285  * the EPID, the consumer can determine the data layout.  (The data buffer
  286  * layout is shown schematically below.)  By assuring that one can determine
  287  * data layout from the EPID, the metadata stream can be separated from the
  288  * data stream -- simplifying the data stream enormously.  The ECB always
  289  * proceeds the recorded data as part of the dtrace_rechdr_t structure that
  290  * includes the EPID and a high-resolution timestamp used for output ordering
  291  * consistency.
  292  *
  293  *      base of data buffer --->  +--------+--------------------+--------+
  294  *                                | rechdr | data               | rechdr |
  295  *                                +--------+------+--------+----+--------+
  296  *                                | data          | rechdr | data        |
  297  *                                +---------------+--------+-------------+
  298  *                                | data, cont.                          |
  299  *                                +--------+--------------------+--------+
  300  *                                | rechdr | data               |        |
  301  *                                +--------+--------------------+        |
  302  *                                |                ||                    |
  303  *                                |                ||                    |
  304  *                                |                \/                    |
  305  *                                :                                      :
  306  *                                .                                      .
  307  *                                .                                      .
  308  *                                .                                      .
  309  *                                :                                      :
  310  *                                |                                      |
  311  *     limit of data buffer --->  +--------------------------------------+
  312  *
  313  * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
  314  * principal buffer (both scratch and payload) exceed the available space.  If
  315  * the ECB's needs exceed available space (and if the principal buffer policy
  316  * is the default "switch" policy), the ECB is dropped, the buffer's drop count
  317  * is incremented, and processing advances to the next ECB.  If the ECB's needs
  318  * can be met with the available space, the ECB is processed, but the offset in
  319  * the principal buffer is only advanced if the ECB completes processing
  320  * without error.
  321  *
  322  * When a buffer is to be switched (either because the buffer is the principal
  323  * buffer with a "switch" policy or because it is an aggregation buffer), a
  324  * cross call is issued to the CPU associated with the buffer.  In the cross
  325  * call context, interrupts are disabled, and the active and the inactive
  326  * buffers are atomically switched.  This involves switching the data pointers,
  327  * copying the various state fields (offset, drops, errors, etc.) into their
  328  * inactive equivalents, and clearing the state fields.  Because interrupts are
  329  * disabled during this procedure, the switch is guaranteed to appear atomic to
  330  * dtrace_probe().
  331  *
  332  * DTrace Ring Buffering
  333  *
  334  * To process a ring buffer correctly, one must know the oldest valid record.
  335  * Processing starts at the oldest record in the buffer and continues until
  336  * the end of the buffer is reached.  Processing then resumes starting with
  337  * the record stored at offset 0 in the buffer, and continues until the
  338  * youngest record is processed.  If trace records are of a fixed-length,
  339  * determining the oldest record is trivial:
  340  *
  341  *   - If the ring buffer has not wrapped, the oldest record is the record
  342  *     stored at offset 0.
  343  *
  344  *   - If the ring buffer has wrapped, the oldest record is the record stored
  345  *     at the current offset.
  346  *
  347  * With variable length records, however, just knowing the current offset
  348  * doesn't suffice for determining the oldest valid record:  assuming that one
  349  * allows for arbitrary data, one has no way of searching forward from the
  350  * current offset to find the oldest valid record.  (That is, one has no way
  351  * of separating data from metadata.) It would be possible to simply refuse to
  352  * process any data in the ring buffer between the current offset and the
  353  * limit, but this leaves (potentially) an enormous amount of otherwise valid
  354  * data unprocessed.
  355  *
  356  * To effect ring buffering, we track two offsets in the buffer:  the current
  357  * offset and the _wrapped_ offset.  If a request is made to reserve some
  358  * amount of data, and the buffer has wrapped, the wrapped offset is
  359  * incremented until the wrapped offset minus the current offset is greater
  360  * than or equal to the reserve request.  This is done by repeatedly looking
  361  * up the ECB corresponding to the EPID at the current wrapped offset, and
  362  * incrementing the wrapped offset by the size of the data payload
  363  * corresponding to that ECB.  If this offset is greater than or equal to the
  364  * limit of the data buffer, the wrapped offset is set to 0.  Thus, the
  365  * current offset effectively "chases" the wrapped offset around the buffer.
  366  * Schematically:
  367  *
  368  *      base of data buffer --->  +------+--------------------+------+
  369  *                                | EPID | data               | EPID |
  370  *                                +------+--------+------+----+------+
  371  *                                | data          | EPID | data      |
  372  *                                +---------------+------+-----------+
  373  *                                | data, cont.                      |
  374  *                                +------+---------------------------+
  375  *                                | EPID | data                      |
  376  *           current offset --->  +------+---------------------------+
  377  *                                | invalid data                     |
  378  *           wrapped offset --->  +------+--------------------+------+
  379  *                                | EPID | data               | EPID |
  380  *                                +------+--------+------+----+------+
  381  *                                | data          | EPID | data      |
  382  *                                +---------------+------+-----------+
  383  *                                :                                  :
  384  *                                .                                  .
  385  *                                .        ... valid data ...        .
  386  *                                .                                  .
  387  *                                :                                  :
  388  *                                +------+-------------+------+------+
  389  *                                | EPID | data        | EPID | data |
  390  *                                +------+------------++------+------+
  391  *                                | data, cont.       | leftover     |
  392  *     limit of data buffer --->  +-------------------+--------------+
  393  *
  394  * If the amount of requested buffer space exceeds the amount of space
  395  * available between the current offset and the end of the buffer:
  396  *
  397  *  (1)  all words in the data buffer between the current offset and the limit
  398  *       of the data buffer (marked "leftover", above) are set to
  399  *       DTRACE_EPIDNONE
  400  *
  401  *  (2)  the wrapped offset is set to zero
  402  *
  403  *  (3)  the iteration process described above occurs until the wrapped offset
  404  *       is greater than the amount of desired space.
  405  *
  406  * The wrapped offset is implemented by (re-)using the inactive offset.
  407  * In a "switch" buffer policy, the inactive offset stores the offset in
  408  * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
  409  * offset.
  410  *
  411  * DTrace Scratch Buffering
  412  *
  413  * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
  414  * To accommodate such requests easily, scratch memory may be allocated in
  415  * the buffer beyond the current offset plus the needed memory of the current
  416  * ECB.  If there isn't sufficient room in the buffer for the requested amount
  417  * of scratch space, the allocation fails and an error is generated.  Scratch
  418  * memory is tracked in the dtrace_mstate_t and is automatically freed when
  419  * the ECB ceases processing.  Note that ring buffers cannot allocate their
  420  * scratch from the principal buffer -- lest they needlessly overwrite older,
  421  * valid data.  Ring buffers therefore have their own dedicated scratch buffer
  422  * from which scratch is allocated.
  423  */
  424 #define DTRACEBUF_RING          0x0001          /* bufpolicy set to "ring" */
  425 #define DTRACEBUF_FILL          0x0002          /* bufpolicy set to "fill" */
  426 #define DTRACEBUF_NOSWITCH      0x0004          /* do not switch buffer */
  427 #define DTRACEBUF_WRAPPED       0x0008          /* ring buffer has wrapped */
  428 #define DTRACEBUF_DROPPED       0x0010          /* drops occurred */
  429 #define DTRACEBUF_ERROR         0x0020          /* errors occurred */
  430 #define DTRACEBUF_FULL          0x0040          /* "fill" buffer is full */
  431 #define DTRACEBUF_CONSUMED      0x0080          /* buffer has been consumed */
  432 #define DTRACEBUF_INACTIVE      0x0100          /* buffer is not yet active */
  433 
  434 typedef struct dtrace_buffer {
  435         uint64_t dtb_offset;                    /* current offset in buffer */
  436         uint64_t dtb_size;                      /* size of buffer */
  437         uint32_t dtb_flags;                     /* flags */
  438         uint32_t dtb_drops;                     /* number of drops */
  439         caddr_t dtb_tomax;                      /* active buffer */
  440         caddr_t dtb_xamot;                      /* inactive buffer */
  441         uint32_t dtb_xamot_flags;               /* inactive flags */
  442         uint32_t dtb_xamot_drops;               /* drops in inactive buffer */
  443         uint64_t dtb_xamot_offset;              /* offset in inactive buffer */
  444         uint32_t dtb_errors;                    /* number of errors */
  445         uint32_t dtb_xamot_errors;              /* errors in inactive buffer */
  446 #ifndef _LP64
  447         uint64_t dtb_pad1;                      /* pad out to 64 bytes */
  448 #endif
  449         uint64_t dtb_switched;                  /* time of last switch */
  450         uint64_t dtb_interval;                  /* observed switch interval */
  451         uint64_t dtb_pad2[6];                   /* pad to avoid false sharing */
  452 } dtrace_buffer_t;
  453 
  454 /*
  455  * DTrace Aggregation Buffers
  456  *
  457  * Aggregation buffers use much of the same mechanism as described above
  458  * ("DTrace Buffers").  However, because an aggregation is fundamentally a
  459  * hash, there exists dynamic metadata associated with an aggregation buffer
  460  * that is not associated with other kinds of buffers.  This aggregation
  461  * metadata is _only_ relevant for the in-kernel implementation of
  462  * aggregations; it is not actually relevant to user-level consumers.  To do
  463  * this, we allocate dynamic aggregation data (hash keys and hash buckets)
  464  * starting below the _limit_ of the buffer, and we allocate data from the
  465  * _base_ of the buffer.  When the aggregation buffer is copied out, _only_ the
  466  * data is copied out; the metadata is simply discarded.  Schematically,
  467  * aggregation buffers look like:
  468  *
  469  *      base of data buffer --->  +-------+------+-----------+-------+
  470  *                                | aggid | key  | value     | aggid |
  471  *                                +-------+------+-----------+-------+
  472  *                                | key                              |
  473  *                                +-------+-------+-----+------------+
  474  *                                | value | aggid | key | value      |
  475  *                                +-------+------++-----+------+-----+
  476  *                                | aggid | key  | value       |     |
  477  *                                +-------+------+-------------+     |
  478  *                                |                ||                |
  479  *                                |                ||                |
  480  *                                |                \/                |
  481  *                                :                                  :
  482  *                                .                                  .
  483  *                                .                                  .
  484  *                                .                                  .
  485  *                                :                                  :
  486  *                                |                /\                |
  487  *                                |                ||   +------------+
  488  *                                |                ||   |            |
  489  *                                +---------------------+            |
  490  *                                | hash keys                        |
  491  *                                | (dtrace_aggkey structures)       |
  492  *                                |                                  |
  493  *                                +----------------------------------+
  494  *                                | hash buckets                     |
  495  *                                | (dtrace_aggbuffer structure)     |
  496  *                                |                                  |
  497  *     limit of data buffer --->  +----------------------------------+
  498  *
  499  *
  500  * As implied above, just as we assure that ECBs always store a constant
  501  * amount of data, we assure that a given aggregation -- identified by its
  502  * aggregation ID -- always stores data of a constant quantity and type.
  503  * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
  504  * given record.
  505  *
  506  * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
  507  * aligned.  (If this the structure changes such that this becomes false, an
  508  * assertion will fail in dtrace_aggregate().)
  509  */
  510 typedef struct dtrace_aggkey {
  511         uint32_t dtak_hashval;                  /* hash value */
  512         uint32_t dtak_action:4;                 /* action -- 4 bits */
  513         uint32_t dtak_size:28;                  /* size -- 28 bits */
  514         caddr_t dtak_data;                      /* data pointer */
  515         struct dtrace_aggkey *dtak_next;        /* next in hash chain */
  516 } dtrace_aggkey_t;
  517 
  518 typedef struct dtrace_aggbuffer {
  519         uintptr_t dtagb_hashsize;               /* number of buckets */
  520         uintptr_t dtagb_free;                   /* free list of keys */
  521         dtrace_aggkey_t **dtagb_hash;           /* hash table */
  522 } dtrace_aggbuffer_t;
  523 
  524 /*
  525  * DTrace Speculations
  526  *
  527  * Speculations have a per-CPU buffer and a global state.  Once a speculation
  528  * buffer has been comitted or discarded, it cannot be reused until all CPUs
  529  * have taken the same action (commit or discard) on their respective
  530  * speculative buffer.  However, because DTrace probes may execute in arbitrary
  531  * context, other CPUs cannot simply be cross-called at probe firing time to
  532  * perform the necessary commit or discard.  The speculation states thus
  533  * optimize for the case that a speculative buffer is only active on one CPU at
  534  * the time of a commit() or discard() -- for if this is the case, other CPUs
  535  * need not take action, and the speculation is immediately available for
  536  * reuse.  If the speculation is active on multiple CPUs, it must be
  537  * asynchronously cleaned -- potentially leading to a higher rate of dirty
  538  * speculative drops.  The speculation states are as follows:
  539  *
  540  *  DTRACESPEC_INACTIVE       <= Initial state; inactive speculation
  541  *  DTRACESPEC_ACTIVE         <= Allocated, but not yet speculatively traced to
  542  *  DTRACESPEC_ACTIVEONE      <= Speculatively traced to on one CPU
  543  *  DTRACESPEC_ACTIVEMANY     <= Speculatively traced to on more than one CPU
  544  *  DTRACESPEC_COMMITTING     <= Currently being commited on one CPU
  545  *  DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
  546  *  DTRACESPEC_DISCARDING     <= Currently being discarded on many CPUs
  547  *
  548  * The state transition diagram is as follows:
  549  *
  550  *     +----------------------------------------------------------+
  551  *     |                                                          |
  552  *     |                      +------------+                      |
  553  *     |  +-------------------| COMMITTING |<-----------------+   |
  554  *     |  |                   +------------+                  |   |
  555  *     |  | copied spec.            ^             commit() on |   | discard() on
  556  *     |  | into principal          |              active CPU |   | active CPU
  557  *     |  |                         | commit()                |   |
  558  *     V  V                         |                         |   |
  559  * +----------+                 +--------+                +-----------+
  560  * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
  561  * +----------+  speculation()  +--------+  speculate()   +-----------+
  562  *     ^  ^                         |                         |   |
  563  *     |  |                         | discard()               |   |
  564  *     |  | asynchronously          |            discard() on |   | speculate()
  565  *     |  | cleaned                 V            inactive CPU |   | on inactive
  566  *     |  |                   +------------+                  |   | CPU
  567  *     |  +-------------------| DISCARDING |<-----------------+   |
  568  *     |                      +------------+                      |
  569  *     | asynchronously             ^                             |
  570  *     | copied spec.               |       discard()             |
  571  *     | into principal             +------------------------+    |
  572  *     |                                                     |    V
  573  *  +----------------+             commit()              +------------+
  574  *  | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
  575  *  +----------------+                                   +------------+
  576  */
  577 typedef enum dtrace_speculation_state {
  578         DTRACESPEC_INACTIVE = 0,
  579         DTRACESPEC_ACTIVE,
  580         DTRACESPEC_ACTIVEONE,
  581         DTRACESPEC_ACTIVEMANY,
  582         DTRACESPEC_COMMITTING,
  583         DTRACESPEC_COMMITTINGMANY,
  584         DTRACESPEC_DISCARDING
  585 } dtrace_speculation_state_t;
  586 
  587 typedef struct dtrace_speculation {
  588         dtrace_speculation_state_t dtsp_state;  /* current speculation state */
  589         int dtsp_cleaning;                      /* non-zero if being cleaned */
  590         dtrace_buffer_t *dtsp_buffer;           /* speculative buffer */
  591 } dtrace_speculation_t;
  592 
  593 /*
  594  * DTrace Dynamic Variables
  595  *
  596  * The dynamic variable problem is obviously decomposed into two subproblems:
  597  * allocating new dynamic storage, and freeing old dynamic storage.  The
  598  * presence of the second problem makes the first much more complicated -- or
  599  * rather, the absence of the second renders the first trivial.  This is the
  600  * case with aggregations, for which there is effectively no deallocation of
  601  * dynamic storage.  (Or more accurately, all dynamic storage is deallocated
  602  * when a snapshot is taken of the aggregation.)  As DTrace dynamic variables
  603  * allow for both dynamic allocation and dynamic deallocation, the
  604  * implementation of dynamic variables is quite a bit more complicated than
  605  * that of their aggregation kin.
  606  *
  607  * We observe that allocating new dynamic storage is tricky only because the
  608  * size can vary -- the allocation problem is much easier if allocation sizes
  609  * are uniform.  We further observe that in D, the size of dynamic variables is
  610  * actually _not_ dynamic -- dynamic variable sizes may be determined by static
  611  * analysis of DIF text.  (This is true even of putatively dynamically-sized
  612  * objects like strings and stacks, the sizes of which are dictated by the
  613  * "stringsize" and "stackframes" variables, respectively.)  We exploit this by
  614  * performing this analysis on all DIF before enabling any probes.  For each
  615  * dynamic load or store, we calculate the dynamically-allocated size plus the
  616  * size of the dtrace_dynvar structure plus the storage required to key the
  617  * data.  For all DIF, we take the largest value and dub it the _chunksize_.
  618  * We then divide dynamic memory into two parts:  a hash table that is wide
  619  * enough to have every chunk in its own bucket, and a larger region of equal
  620  * chunksize units.  Whenever we wish to dynamically allocate a variable, we
  621  * always allocate a single chunk of memory.  Depending on the uniformity of
  622  * allocation, this will waste some amount of memory -- but it eliminates the
  623  * non-determinism inherent in traditional heap fragmentation.
  624  *
  625  * Dynamic objects are allocated by storing a non-zero value to them; they are
  626  * deallocated by storing a zero value to them.  Dynamic variables are
  627  * complicated enormously by being shared between CPUs.  In particular,
  628  * consider the following scenario:
  629  *
  630  *                 CPU A                                 CPU B
  631  *  +---------------------------------+   +---------------------------------+
  632  *  |                                 |   |                                 |
  633  *  | allocates dynamic object a[123] |   |                                 |
  634  *  | by storing the value 345 to it  |   |                                 |
  635  *  |                               --------->                              |
  636  *  |                                 |   | wishing to load from object     |
  637  *  |                                 |   | a[123], performs lookup in      |
  638  *  |                                 |   | dynamic variable space          |
  639  *  |                               <---------                              |
  640  *  | deallocates object a[123] by    |   |                                 |
  641  *  | storing 0 to it                 |   |                                 |
  642  *  |                                 |   |                                 |
  643  *  | allocates dynamic object b[567] |   | performs load from a[123]       |
  644  *  | by storing the value 789 to it  |   |                                 |
  645  *  :                                 :   :                                 :
  646  *  .                                 .   .                                 .
  647  *
  648  * This is obviously a race in the D program, but there are nonetheless only
  649  * two valid values for CPU B's load from a[123]:  345 or 0.  Most importantly,
  650  * CPU B may _not_ see the value 789 for a[123].
  651  *
  652  * There are essentially two ways to deal with this:
  653  *
  654  *  (1)  Explicitly spin-lock variables.  That is, if CPU B wishes to load
  655  *       from a[123], it needs to lock a[123] and hold the lock for the
  656  *       duration that it wishes to manipulate it.
  657  *
  658  *  (2)  Avoid reusing freed chunks until it is known that no CPU is referring
  659  *       to them.
  660  *
  661  * The implementation of (1) is rife with complexity, because it requires the
  662  * user of a dynamic variable to explicitly decree when they are done using it.
  663  * Were all variables by value, this perhaps wouldn't be debilitating -- but
  664  * dynamic variables of non-scalar types are tracked by reference.  That is, if
  665  * a dynamic variable is, say, a string, and that variable is to be traced to,
  666  * say, the principal buffer, the DIF emulation code returns to the main
  667  * dtrace_probe() loop a pointer to the underlying storage, not the contents of
  668  * the storage.  Further, code calling on DIF emulation would have to be aware
  669  * that the DIF emulation has returned a reference to a dynamic variable that
  670  * has been potentially locked.  The variable would have to be unlocked after
  671  * the main dtrace_probe() loop is finished with the variable, and the main
  672  * dtrace_probe() loop would have to be careful to not call any further DIF
  673  * emulation while the variable is locked to avoid deadlock.  More generally,
  674  * if one were to implement (1), DIF emulation code dealing with dynamic
  675  * variables could only deal with one dynamic variable at a time (lest deadlock
  676  * result).  To sum, (1) exports too much subtlety to the users of dynamic
  677  * variables -- increasing maintenance burden and imposing serious constraints
  678  * on future DTrace development.
  679  *
  680  * The implementation of (2) is also complex, but the complexity is more
  681  * manageable.  We need to be sure that when a variable is deallocated, it is
  682  * not placed on a traditional free list, but rather on a _dirty_ list.  Once a
  683  * variable is on a dirty list, it cannot be found by CPUs performing a
  684  * subsequent lookup of the variable -- but it may still be in use by other
  685  * CPUs.  To assure that all CPUs that may be seeing the old variable have
  686  * cleared out of probe context, a dtrace_sync() can be issued.  Once the
  687  * dtrace_sync() has completed, it can be known that all CPUs are done
  688  * manipulating the dynamic variable -- the dirty list can be atomically
  689  * appended to the free list.  Unfortunately, there's a slight hiccup in this
  690  * mechanism:  dtrace_sync() may not be issued from probe context.  The
  691  * dtrace_sync() must be therefore issued asynchronously from non-probe
  692  * context.  For this we rely on the DTrace cleaner, a cyclic that runs at the
  693  * "cleanrate" frequency.  To ease this implementation, we define several chunk
  694  * lists:
  695  *
  696  *   - Dirty.  Deallocated chunks, not yet cleaned.  Not available.
  697  *
  698  *   - Rinsing.  Formerly dirty chunks that are currently being asynchronously
  699  *     cleaned.  Not available, but will be shortly.  Dynamic variable
  700  *     allocation may not spin or block for availability, however.
  701  *
  702  *   - Clean.  Clean chunks, ready for allocation -- but not on the free list.
  703  *
  704  *   - Free.  Available for allocation.
  705  *
  706  * Moreover, to avoid absurd contention, _each_ of these lists is implemented
  707  * on a per-CPU basis.  This is only for performance, not correctness; chunks
  708  * may be allocated from another CPU's free list.  The algorithm for allocation
  709  * then is this:
  710  *
  711  *   (1)  Attempt to atomically allocate from current CPU's free list.  If list
  712  *        is non-empty and allocation is successful, allocation is complete.
  713  *
  714  *   (2)  If the clean list is non-empty, atomically move it to the free list,
  715  *        and reattempt (1).
  716  *
  717  *   (3)  If the dynamic variable space is in the CLEAN state, look for free
  718  *        and clean lists on other CPUs by setting the current CPU to the next
  719  *        CPU, and reattempting (1).  If the next CPU is the current CPU (that
  720  *        is, if all CPUs have been checked), atomically switch the state of
  721  *        the dynamic variable space based on the following:
  722  *
  723  *        - If no free chunks were found and no dirty chunks were found,
  724  *          atomically set the state to EMPTY.
  725  *
  726  *        - If dirty chunks were found, atomically set the state to DIRTY.
  727  *
  728  *        - If rinsing chunks were found, atomically set the state to RINSING.
  729  *
  730  *   (4)  Based on state of dynamic variable space state, increment appropriate
  731  *        counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
  732  *        dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
  733  *        RINSING state).  Fail the allocation.
  734  *
  735  * The cleaning cyclic operates with the following algorithm:  for all CPUs
  736  * with a non-empty dirty list, atomically move the dirty list to the rinsing
  737  * list.  Perform a dtrace_sync().  For all CPUs with a non-empty rinsing list,
  738  * atomically move the rinsing list to the clean list.  Perform another
  739  * dtrace_sync().  By this point, all CPUs have seen the new clean list; the
  740  * state of the dynamic variable space can be restored to CLEAN.
  741  *
  742  * There exist two final races that merit explanation.  The first is a simple
  743  * allocation race:
  744  *
  745  *                 CPU A                                 CPU B
  746  *  +---------------------------------+   +---------------------------------+
  747  *  |                                 |   |                                 |
  748  *  | allocates dynamic object a[123] |   | allocates dynamic object a[123] |
  749  *  | by storing the value 345 to it  |   | by storing the value 567 to it  |
  750  *  |                                 |   |                                 |
  751  *  :                                 :   :                                 :
  752  *  .                                 .   .                                 .
  753  *
  754  * Again, this is a race in the D program.  It can be resolved by having a[123]
  755  * hold the value 345 or a[123] hold the value 567 -- but it must be true that
  756  * a[123] have only _one_ of these values.  (That is, the racing CPUs may not
  757  * put the same element twice on the same hash chain.)  This is resolved
  758  * simply:  before the allocation is undertaken, the start of the new chunk's
  759  * hash chain is noted.  Later, after the allocation is complete, the hash
  760  * chain is atomically switched to point to the new element.  If this fails
  761  * (because of either concurrent allocations or an allocation concurrent with a
  762  * deletion), the newly allocated chunk is deallocated to the dirty list, and
  763  * the whole process of looking up (and potentially allocating) the dynamic
  764  * variable is reattempted.
  765  *
  766  * The final race is a simple deallocation race:
  767  *
  768  *                 CPU A                                 CPU B
  769  *  +---------------------------------+   +---------------------------------+
  770  *  |                                 |   |                                 |
  771  *  | deallocates dynamic object      |   | deallocates dynamic object      |
  772  *  | a[123] by storing the value 0   |   | a[123] by storing the value 0   |
  773  *  | to it                           |   | to it                           |
  774  *  |                                 |   |                                 |
  775  *  :                                 :   :                                 :
  776  *  .                                 .   .                                 .
  777  *
  778  * Once again, this is a race in the D program, but it is one that we must
  779  * handle without corrupting the underlying data structures.  Because
  780  * deallocations require the deletion of a chunk from the middle of a hash
  781  * chain, we cannot use a single-word atomic operation to remove it.  For this,
  782  * we add a spin lock to the hash buckets that is _only_ used for deallocations
  783  * (allocation races are handled as above).  Further, this spin lock is _only_
  784  * held for the duration of the delete; before control is returned to the DIF
  785  * emulation code, the hash bucket is unlocked.
  786  */
  787 typedef struct dtrace_key {
  788         uint64_t dttk_value;                    /* data value or data pointer */
  789         uint64_t dttk_size;                     /* 0 if by-val, >0 if by-ref */
  790 } dtrace_key_t;
  791 
  792 typedef struct dtrace_tuple {
  793         uint32_t dtt_nkeys;                     /* number of keys in tuple */
  794         uint32_t dtt_pad;                       /* padding */
  795         dtrace_key_t dtt_key[1];                /* array of tuple keys */
  796 } dtrace_tuple_t;
  797 
  798 typedef struct dtrace_dynvar {
  799         uint64_t dtdv_hashval;                  /* hash value -- 0 if free */
  800         struct dtrace_dynvar *dtdv_next;        /* next on list or hash chain */
  801         void *dtdv_data;                        /* pointer to data */
  802         dtrace_tuple_t dtdv_tuple;              /* tuple key */
  803 } dtrace_dynvar_t;
  804 
  805 typedef enum dtrace_dynvar_op {
  806         DTRACE_DYNVAR_ALLOC,
  807         DTRACE_DYNVAR_NOALLOC,
  808         DTRACE_DYNVAR_DEALLOC
  809 } dtrace_dynvar_op_t;
  810 
  811 typedef struct dtrace_dynhash {
  812         dtrace_dynvar_t *dtdh_chain;            /* hash chain for this bucket */
  813         uintptr_t dtdh_lock;                    /* deallocation lock */
  814 #ifdef _LP64
  815         uintptr_t dtdh_pad[6];                  /* pad to avoid false sharing */
  816 #else
  817         uintptr_t dtdh_pad[14];                 /* pad to avoid false sharing */
  818 #endif
  819 } dtrace_dynhash_t;
  820 
  821 typedef struct dtrace_dstate_percpu {
  822         dtrace_dynvar_t *dtdsc_free;            /* free list for this CPU */
  823         dtrace_dynvar_t *dtdsc_dirty;           /* dirty list for this CPU */
  824         dtrace_dynvar_t *dtdsc_rinsing;         /* rinsing list for this CPU */
  825         dtrace_dynvar_t *dtdsc_clean;           /* clean list for this CPU */
  826         uint64_t dtdsc_drops;                   /* number of capacity drops */
  827         uint64_t dtdsc_dirty_drops;             /* number of dirty drops */
  828         uint64_t dtdsc_rinsing_drops;           /* number of rinsing drops */
  829 #ifdef _LP64
  830         uint64_t dtdsc_pad;                     /* pad to avoid false sharing */
  831 #else
  832         uint64_t dtdsc_pad[2];                  /* pad to avoid false sharing */
  833 #endif
  834 } dtrace_dstate_percpu_t;
  835 
  836 typedef enum dtrace_dstate_state {
  837         DTRACE_DSTATE_CLEAN = 0,
  838         DTRACE_DSTATE_EMPTY,
  839         DTRACE_DSTATE_DIRTY,
  840         DTRACE_DSTATE_RINSING
  841 } dtrace_dstate_state_t;
  842 
  843 typedef struct dtrace_dstate {
  844         void *dtds_base;                        /* base of dynamic var. space */
  845         size_t dtds_size;                       /* size of dynamic var. space */
  846         size_t dtds_hashsize;                   /* number of buckets in hash */
  847         size_t dtds_chunksize;                  /* size of each chunk */
  848         dtrace_dynhash_t *dtds_hash;            /* pointer to hash table */
  849         dtrace_dstate_state_t dtds_state;       /* current dynamic var. state */
  850         dtrace_dstate_percpu_t *dtds_percpu;    /* per-CPU dyn. var. state */
  851 } dtrace_dstate_t;
  852 
  853 /*
  854  * DTrace Variable State
  855  *
  856  * The DTrace variable state tracks user-defined variables in its dtrace_vstate
  857  * structure.  Each DTrace consumer has exactly one dtrace_vstate structure,
  858  * but some dtrace_vstate structures may exist without a corresponding DTrace
  859  * consumer (see "DTrace Helpers", below).  As described in <sys/dtrace.h>,
  860  * user-defined variables can have one of three scopes:
  861  *
  862  *  DIFV_SCOPE_GLOBAL  =>  global scope
  863  *  DIFV_SCOPE_THREAD  =>  thread-local scope (i.e. "self->" variables)
  864  *  DIFV_SCOPE_LOCAL   =>  clause-local scope (i.e. "this->" variables)
  865  *
  866  * The variable state tracks variables by both their scope and their allocation
  867  * type:
  868  *
  869  *  - The dtvs_globals and dtvs_locals members each point to an array of
  870  *    dtrace_statvar structures.  These structures contain both the variable
  871  *    metadata (dtrace_difv structures) and the underlying storage for all
  872  *    statically allocated variables, including statically allocated
  873  *    DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
  874  *
  875  *  - The dtvs_tlocals member points to an array of dtrace_difv structures for
  876  *    DIFV_SCOPE_THREAD variables.  As such, this array tracks _only_ the
  877  *    variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
  878  *    is allocated out of the dynamic variable space.
  879  *
  880  *  - The dtvs_dynvars member is the dynamic variable state associated with the
  881  *    variable state.  The dynamic variable state (described in "DTrace Dynamic
  882  *    Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
  883  *    dynamically-allocated DIFV_SCOPE_GLOBAL variables.
  884  */
  885 typedef struct dtrace_statvar {
  886         uint64_t dtsv_data;                     /* data or pointer to it */
  887         size_t dtsv_size;                       /* size of pointed-to data */
  888         int dtsv_refcnt;                        /* reference count */
  889         dtrace_difv_t dtsv_var;                 /* variable metadata */
  890 } dtrace_statvar_t;
  891 
  892 typedef struct dtrace_vstate {
  893         dtrace_state_t *dtvs_state;             /* back pointer to state */
  894         dtrace_statvar_t **dtvs_globals;        /* statically-allocated glbls */
  895         int dtvs_nglobals;                      /* number of globals */
  896         dtrace_difv_t *dtvs_tlocals;            /* thread-local metadata */
  897         int dtvs_ntlocals;                      /* number of thread-locals */
  898         dtrace_statvar_t **dtvs_locals;         /* clause-local data */
  899         int dtvs_nlocals;                       /* number of clause-locals */
  900         dtrace_dstate_t dtvs_dynvars;           /* dynamic variable state */
  901 } dtrace_vstate_t;
  902 
  903 /*
  904  * DTrace Machine State
  905  *
  906  * In the process of processing a fired probe, DTrace needs to track and/or
  907  * cache some per-CPU state associated with that particular firing.  This is
  908  * state that is always discarded after the probe firing has completed, and
  909  * much of it is not specific to any DTrace consumer, remaining valid across
  910  * all ECBs.  This state is tracked in the dtrace_mstate structure.
  911  */
  912 #define DTRACE_MSTATE_ARGS              0x00000001
  913 #define DTRACE_MSTATE_PROBE             0x00000002
  914 #define DTRACE_MSTATE_EPID              0x00000004
  915 #define DTRACE_MSTATE_TIMESTAMP         0x00000008
  916 #define DTRACE_MSTATE_STACKDEPTH        0x00000010
  917 #define DTRACE_MSTATE_CALLER            0x00000020
  918 #define DTRACE_MSTATE_IPL               0x00000040
  919 #define DTRACE_MSTATE_FLTOFFS           0x00000080
  920 #define DTRACE_MSTATE_WALLTIMESTAMP     0x00000100
  921 #define DTRACE_MSTATE_USTACKDEPTH       0x00000200
  922 #define DTRACE_MSTATE_UCALLER           0x00000400
  923 
  924 typedef struct dtrace_mstate {
  925         uintptr_t dtms_scratch_base;            /* base of scratch space */
  926         uintptr_t dtms_scratch_ptr;             /* current scratch pointer */
  927         size_t dtms_scratch_size;               /* scratch size */
  928         uint32_t dtms_present;                  /* variables that are present */
  929         uint64_t dtms_arg[5];                   /* cached arguments */
  930         dtrace_epid_t dtms_epid;                /* current EPID */
  931         uint64_t dtms_timestamp;                /* cached timestamp */
  932         hrtime_t dtms_walltimestamp;            /* cached wall timestamp */
  933         int dtms_stackdepth;                    /* cached stackdepth */
  934         int dtms_ustackdepth;                   /* cached ustackdepth */
  935         struct dtrace_probe *dtms_probe;        /* current probe */
  936         uintptr_t dtms_caller;                  /* cached caller */
  937         uint64_t dtms_ucaller;                  /* cached user-level caller */
  938         int dtms_ipl;                           /* cached interrupt pri lev */
  939         int dtms_fltoffs;                       /* faulting DIFO offset */
  940         uintptr_t dtms_strtok;                  /* saved strtok() pointer */
  941         uintptr_t dtms_strtok_limit;            /* upper bound of strtok ptr */
  942         uint32_t dtms_access;                   /* memory access rights */
  943         dtrace_difo_t *dtms_difo;               /* current dif object */
  944         file_t *dtms_getf;                      /* cached rval of getf() */
  945 } dtrace_mstate_t;
  946 
  947 #define DTRACE_COND_OWNER       0x1
  948 #define DTRACE_COND_USERMODE    0x2
  949 #define DTRACE_COND_ZONEOWNER   0x4
  950 
  951 #define DTRACE_PROBEKEY_MAXDEPTH        8       /* max glob recursion depth */
  952 
  953 /*
  954  * Access flag used by dtrace_mstate.dtms_access.
  955  */
  956 #define DTRACE_ACCESS_KERNEL    0x1             /* the priv to read kmem */
  957 
  958 
  959 /*
  960  * DTrace Activity
  961  *
  962  * Each DTrace consumer is in one of several states, which (for purposes of
  963  * avoiding yet-another overloading of the noun "state") we call the current
  964  * _activity_.  The activity transitions on dtrace_go() (from DTRACIOCGO), on
  965  * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action.  Activities may
  966  * only transition in one direction; the activity transition diagram is a
  967  * directed acyclic graph.  The activity transition diagram is as follows:
  968  *
  969  *
  970  * +----------+                   +--------+                   +--------+
  971  * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
  972  * +----------+   dtrace_go(),    +--------+   dtrace_go(),    +--------+
  973  *                before BEGIN        |        after BEGIN       |  |  |
  974  *                                    |                          |  |  |
  975  *                      exit() action |                          |  |  |
  976  *                     from BEGIN ECB |                          |  |  |
  977  *                                    |                          |  |  |
  978  *                                    v                          |  |  |
  979  *                               +----------+     exit() action  |  |  |
  980  * +-----------------------------| DRAINING |<-------------------+  |  |
  981  * |                             +----------+                       |  |
  982  * |                                  |                             |  |
  983  * |                   dtrace_stop(), |                             |  |
  984  * |                     before END   |                             |  |
  985  * |                                  |                             |  |
  986  * |                                  v                             |  |
  987  * | +---------+                 +----------+                       |  |
  988  * | | STOPPED |<----------------| COOLDOWN |<----------------------+  |
  989  * | +---------+  dtrace_stop(), +----------+     dtrace_stop(),       |
  990  * |                after END                       before END         |
  991  * |                                                                   |
  992  * |                              +--------+                           |
  993  * +----------------------------->| KILLED |<--------------------------+
  994  *       deadman timeout or       +--------+     deadman timeout or
  995  *        killed consumer                         killed consumer
  996  *
  997  * Note that once a DTrace consumer has stopped tracing, there is no way to
  998  * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
  999  * the DTrace pseudodevice.
 1000  */
 1001 typedef enum dtrace_activity {
 1002         DTRACE_ACTIVITY_INACTIVE = 0,           /* not yet running */
 1003         DTRACE_ACTIVITY_WARMUP,                 /* while starting */
 1004         DTRACE_ACTIVITY_ACTIVE,                 /* running */
 1005         DTRACE_ACTIVITY_DRAINING,               /* before stopping */
 1006         DTRACE_ACTIVITY_COOLDOWN,               /* while stopping */
 1007         DTRACE_ACTIVITY_STOPPED,                /* after stopping */
 1008         DTRACE_ACTIVITY_KILLED                  /* killed */
 1009 } dtrace_activity_t;
 1010 
 1011 /*
 1012  * DTrace Helper Implementation
 1013  *
 1014  * A description of the helper architecture may be found in <sys/dtrace.h>.
 1015  * Each process contains a pointer to its helpers in its p_dtrace_helpers
 1016  * member.  This is a pointer to a dtrace_helpers structure, which contains an
 1017  * array of pointers to dtrace_helper structures, helper variable state (shared
 1018  * among a process's helpers) and a generation count.  (The generation count is
 1019  * used to provide an identifier when a helper is added so that it may be
 1020  * subsequently removed.)  The dtrace_helper structure is self-explanatory,
 1021  * containing pointers to the objects needed to execute the helper.  Note that
 1022  * helpers are _duplicated_ across fork(2), and destroyed on exec(2).  No more
 1023  * than dtrace_helpers_max are allowed per-process.
 1024  */
 1025 #define DTRACE_HELPER_ACTION_USTACK     0
 1026 #define DTRACE_NHELPER_ACTIONS          1
 1027 
 1028 typedef struct dtrace_helper_action {
 1029         int dtha_generation;                    /* helper action generation */
 1030         int dtha_nactions;                      /* number of actions */
 1031         dtrace_difo_t *dtha_predicate;          /* helper action predicate */
 1032         dtrace_difo_t **dtha_actions;           /* array of actions */
 1033         struct dtrace_helper_action *dtha_next; /* next helper action */
 1034 } dtrace_helper_action_t;
 1035 
 1036 typedef struct dtrace_helper_provider {
 1037         int dthp_generation;                    /* helper provider generation */
 1038         uint32_t dthp_ref;                      /* reference count */
 1039         dof_helper_t dthp_prov;                 /* DOF w/ provider and probes */
 1040 } dtrace_helper_provider_t;
 1041 
 1042 typedef struct dtrace_helpers {
 1043         dtrace_helper_action_t **dthps_actions; /* array of helper actions */
 1044         dtrace_vstate_t dthps_vstate;           /* helper action var. state */
 1045         dtrace_helper_provider_t **dthps_provs; /* array of providers */
 1046         uint_t dthps_nprovs;                    /* count of providers */
 1047         uint_t dthps_maxprovs;                  /* provider array size */
 1048         int dthps_generation;                   /* current generation */
 1049         pid_t dthps_pid;                        /* pid of associated proc */
 1050         int dthps_deferred;                     /* helper in deferred list */
 1051         struct dtrace_helpers *dthps_next;      /* next pointer */
 1052         struct dtrace_helpers *dthps_prev;      /* prev pointer */
 1053 } dtrace_helpers_t;
 1054 
 1055 /*
 1056  * DTrace Helper Action Tracing
 1057  *
 1058  * Debugging helper actions can be arduous.  To ease the development and
 1059  * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
 1060  * framework: helper tracing.  If dtrace_helptrace_enabled is non-zero (which
 1061  * it is by default on DEBUG kernels), all helper activity will be traced to a
 1062  * global, in-kernel ring buffer.  Each entry includes a pointer to the specific
 1063  * helper, the location within the helper, and a trace of all local variables.
 1064  * The ring buffer may be displayed in a human-readable format with the
 1065  * ::dtrace_helptrace mdb(1) dcmd.
 1066  */
 1067 #define DTRACE_HELPTRACE_NEXT   (-1)
 1068 #define DTRACE_HELPTRACE_DONE   (-2)
 1069 #define DTRACE_HELPTRACE_ERR    (-3)
 1070 
 1071 typedef struct dtrace_helptrace {
 1072         dtrace_helper_action_t  *dtht_helper;   /* helper action */
 1073         int dtht_where;                         /* where in helper action */
 1074         int dtht_nlocals;                       /* number of locals */
 1075         int dtht_fault;                         /* type of fault (if any) */
 1076         int dtht_fltoffs;                       /* DIF offset */
 1077         uint64_t dtht_illval;                   /* faulting value */
 1078         uint64_t dtht_locals[1];                /* local variables */
 1079 } dtrace_helptrace_t;
 1080 
 1081 /*
 1082  * DTrace Credentials
 1083  *
 1084  * In probe context, we have limited flexibility to examine the credentials
 1085  * of the DTrace consumer that created a particular enabling.  We use
 1086  * the Least Privilege interfaces to cache the consumer's cred pointer and
 1087  * some facts about that credential in a dtrace_cred_t structure. These
 1088  * can limit the consumer's breadth of visibility and what actions the
 1089  * consumer may take.
 1090  */
 1091 #define DTRACE_CRV_ALLPROC              0x01
 1092 #define DTRACE_CRV_KERNEL               0x02
 1093 #define DTRACE_CRV_ALLZONE              0x04
 1094 
 1095 #define DTRACE_CRV_ALL          (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
 1096         DTRACE_CRV_ALLZONE)
 1097 
 1098 #define DTRACE_CRA_PROC                         0x0001
 1099 #define DTRACE_CRA_PROC_CONTROL                 0x0002
 1100 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER     0x0004
 1101 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE     0x0008
 1102 #define DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG     0x0010
 1103 #define DTRACE_CRA_KERNEL                       0x0020
 1104 #define DTRACE_CRA_KERNEL_DESTRUCTIVE           0x0040
 1105 
 1106 #define DTRACE_CRA_ALL          (DTRACE_CRA_PROC | \
 1107         DTRACE_CRA_PROC_CONTROL | \
 1108         DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
 1109         DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
 1110         DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
 1111         DTRACE_CRA_KERNEL | \
 1112         DTRACE_CRA_KERNEL_DESTRUCTIVE)
 1113 
 1114 typedef struct dtrace_cred {
 1115         cred_t                  *dcr_cred;
 1116         uint8_t                 dcr_destructive;
 1117         uint8_t                 dcr_visible;
 1118         uint16_t                dcr_action;
 1119 } dtrace_cred_t;
 1120 
 1121 /*
 1122  * DTrace Consumer State
 1123  *
 1124  * Each DTrace consumer has an associated dtrace_state structure that contains
 1125  * its in-kernel DTrace state -- including options, credentials, statistics and
 1126  * pointers to ECBs, buffers, speculations and formats.  A dtrace_state
 1127  * structure is also allocated for anonymous enablings.  When anonymous state
 1128  * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
 1129  * dtrace_state structure.
 1130  */
 1131 struct dtrace_state {
 1132 #ifdef illumos
 1133         dev_t dts_dev;                          /* device */
 1134 #else
 1135         struct cdev *dts_dev;                   /* device */
 1136 #endif
 1137         int dts_necbs;                          /* total number of ECBs */
 1138         dtrace_ecb_t **dts_ecbs;                /* array of ECBs */
 1139         dtrace_epid_t dts_epid;                 /* next EPID to allocate */
 1140         size_t dts_needed;                      /* greatest needed space */
 1141         struct dtrace_state *dts_anon;          /* anon. state, if grabbed */
 1142         dtrace_activity_t dts_activity;         /* current activity */
 1143         dtrace_vstate_t dts_vstate;             /* variable state */
 1144         dtrace_buffer_t *dts_buffer;            /* principal buffer */
 1145         dtrace_buffer_t *dts_aggbuffer;         /* aggregation buffer */
 1146         dtrace_speculation_t *dts_speculations; /* speculation array */
 1147         int dts_nspeculations;                  /* number of speculations */
 1148         int dts_naggregations;                  /* number of aggregations */
 1149         dtrace_aggregation_t **dts_aggregations; /* aggregation array */
 1150 #ifdef illumos
 1151         vmem_t *dts_aggid_arena;                /* arena for aggregation IDs */
 1152 #else
 1153         struct unrhdr *dts_aggid_arena;         /* arena for aggregation IDs */
 1154 #endif
 1155         uint64_t dts_errors;                    /* total number of errors */
 1156         uint32_t dts_speculations_busy;         /* number of spec. busy */
 1157         uint32_t dts_speculations_unavail;      /* number of spec unavail */
 1158         uint32_t dts_stkstroverflows;           /* stack string tab overflows */
 1159         uint32_t dts_dblerrors;                 /* errors in ERROR probes */
 1160         uint32_t dts_reserve;                   /* space reserved for END */
 1161         hrtime_t dts_laststatus;                /* time of last status */
 1162 #ifdef illumos
 1163         cyclic_id_t dts_cleaner;                /* cleaning cyclic */
 1164         cyclic_id_t dts_deadman;                /* deadman cyclic */
 1165 #else
 1166         struct callout dts_cleaner;             /* Cleaning callout. */
 1167         struct callout dts_deadman;             /* Deadman callout. */
 1168 #endif
 1169         hrtime_t dts_alive;                     /* time last alive */
 1170         char dts_speculates;                    /* boolean: has speculations */
 1171         char dts_destructive;                   /* boolean: has dest. actions */
 1172         int dts_nformats;                       /* number of formats */
 1173         char **dts_formats;                     /* format string array */
 1174         dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
 1175         dtrace_cred_t dts_cred;                 /* credentials */
 1176         size_t dts_nretained;                   /* number of retained enabs */
 1177         int dts_getf;                           /* number of getf() calls */
 1178         uint64_t dts_rstate[NCPU][2];           /* per-CPU random state */
 1179 };
 1180 
 1181 struct dtrace_provider {
 1182         dtrace_pattr_t dtpv_attr;               /* provider attributes */
 1183         dtrace_ppriv_t dtpv_priv;               /* provider privileges */
 1184         dtrace_pops_t dtpv_pops;                /* provider operations */
 1185         char *dtpv_name;                        /* provider name */
 1186         void *dtpv_arg;                         /* provider argument */
 1187         hrtime_t dtpv_defunct;                  /* when made defunct */
 1188         struct dtrace_provider *dtpv_next;      /* next provider */
 1189 };
 1190 
 1191 struct dtrace_meta {
 1192         dtrace_mops_t dtm_mops;                 /* meta provider operations */
 1193         char *dtm_name;                         /* meta provider name */
 1194         void *dtm_arg;                          /* meta provider user arg */
 1195         uint64_t dtm_count;                     /* no. of associated provs. */
 1196 };
 1197 
 1198 /*
 1199  * DTrace Enablings
 1200  *
 1201  * A dtrace_enabling structure is used to track a collection of ECB
 1202  * descriptions -- before they have been turned into actual ECBs.  This is
 1203  * created as a result of DOF processing, and is generally used to generate
 1204  * ECBs immediately thereafter.  However, enablings are also generally
 1205  * retained should the probes they describe be created at a later time; as
 1206  * each new module or provider registers with the framework, the retained
 1207  * enablings are reevaluated, with any new match resulting in new ECBs.  To
 1208  * prevent probes from being matched more than once, the enabling tracks the
 1209  * last probe generation matched, and only matches probes from subsequent
 1210  * generations.
 1211  */
 1212 typedef struct dtrace_enabling {
 1213         dtrace_ecbdesc_t **dten_desc;           /* all ECB descriptions */
 1214         int dten_ndesc;                         /* number of ECB descriptions */
 1215         int dten_maxdesc;                       /* size of ECB array */
 1216         dtrace_vstate_t *dten_vstate;           /* associated variable state */
 1217         dtrace_genid_t dten_probegen;           /* matched probe generation */
 1218         dtrace_ecbdesc_t *dten_current;         /* current ECB description */
 1219         int dten_error;                         /* current error value */
 1220         int dten_primed;                        /* boolean: set if primed */
 1221         struct dtrace_enabling *dten_prev;      /* previous enabling */
 1222         struct dtrace_enabling *dten_next;      /* next enabling */
 1223 } dtrace_enabling_t;
 1224 
 1225 /*
 1226  * DTrace Anonymous Enablings
 1227  *
 1228  * Anonymous enablings are DTrace enablings that are not associated with a
 1229  * controlling process, but rather derive their enabling from DOF stored as
 1230  * properties in the dtrace.conf file.  If there is an anonymous enabling, a
 1231  * DTrace consumer state and enabling are created on attach.  The state may be
 1232  * subsequently grabbed by the first consumer specifying the "grabanon"
 1233  * option.  As long as an anonymous DTrace enabling exists, dtrace(7D) will
 1234  * refuse to unload.
 1235  */
 1236 typedef struct dtrace_anon {
 1237         dtrace_state_t *dta_state;              /* DTrace consumer state */
 1238         dtrace_enabling_t *dta_enabling;        /* pointer to enabling */
 1239         processorid_t dta_beganon;              /* which CPU BEGIN ran on */
 1240 } dtrace_anon_t;
 1241 
 1242 /*
 1243  * DTrace Error Debugging
 1244  */
 1245 #ifdef DEBUG
 1246 #define DTRACE_ERRDEBUG
 1247 #endif
 1248 
 1249 #ifdef DTRACE_ERRDEBUG
 1250 
 1251 typedef struct dtrace_errhash {
 1252         const char      *dter_msg;      /* error message */
 1253         int             dter_count;     /* number of times seen */
 1254 } dtrace_errhash_t;
 1255 
 1256 #define DTRACE_ERRHASHSZ        256     /* must be > number of err msgs */
 1257 
 1258 #endif  /* DTRACE_ERRDEBUG */
 1259 
 1260 /*
 1261  * DTrace Toxic Ranges
 1262  *
 1263  * DTrace supports safe loads from probe context; if the address turns out to
 1264  * be invalid, a bit will be set by the kernel indicating that DTrace
 1265  * encountered a memory error, and DTrace will propagate the error to the user
 1266  * accordingly.  However, there may exist some regions of memory in which an
 1267  * arbitrary load can change system state, and from which it is impossible to
 1268  * recover from such a load after it has been attempted.  Examples of this may
 1269  * include memory in which programmable I/O registers are mapped (for which a
 1270  * read may have some implications for the device) or (in the specific case of
 1271  * UltraSPARC-I and -II) the virtual address hole.  The platform is required
 1272  * to make DTrace aware of these toxic ranges; DTrace will then check that
 1273  * target addresses are not in a toxic range before attempting to issue a
 1274  * safe load.
 1275  */
 1276 typedef struct dtrace_toxrange {
 1277         uintptr_t       dtt_base;               /* base of toxic range */
 1278         uintptr_t       dtt_limit;              /* limit of toxic range */
 1279 } dtrace_toxrange_t;
 1280 
 1281 #ifdef illumos
 1282 extern uint64_t dtrace_getarg(int, int);
 1283 #else
 1284 extern uint64_t __noinline dtrace_getarg(int, int);
 1285 #endif
 1286 extern greg_t dtrace_getfp(void);
 1287 extern int dtrace_getipl(void);
 1288 extern uintptr_t dtrace_caller(int);
 1289 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
 1290 extern void *dtrace_casptr(volatile void *, volatile void *, volatile void *);
 1291 extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
 1292 extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
 1293 extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
 1294 extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
 1295     volatile uint16_t *);
 1296 extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
 1297 extern ulong_t dtrace_getreg(struct trapframe *, uint_t);
 1298 extern int dtrace_getstackdepth(int);
 1299 extern void dtrace_getupcstack(uint64_t *, int);
 1300 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
 1301 extern int dtrace_getustackdepth(void);
 1302 extern uintptr_t dtrace_fulword(void *);
 1303 extern uint8_t dtrace_fuword8(void *);
 1304 extern uint16_t dtrace_fuword16(void *);
 1305 extern uint32_t dtrace_fuword32(void *);
 1306 extern uint64_t dtrace_fuword64(void *);
 1307 extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
 1308     int, uintptr_t);
 1309 extern int dtrace_assfail(const char *, const char *, int);
 1310 extern int dtrace_attached(void);
 1311 #ifdef illumos
 1312 extern hrtime_t dtrace_gethrestime(void);
 1313 #endif
 1314 
 1315 #ifdef __sparc
 1316 extern void dtrace_flush_windows(void);
 1317 extern void dtrace_flush_user_windows(void);
 1318 extern uint_t dtrace_getotherwin(void);
 1319 extern uint_t dtrace_getfprs(void);
 1320 #else
 1321 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
 1322 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
 1323 #endif
 1324 
 1325 /*
 1326  * DTrace Assertions
 1327  *
 1328  * DTrace calls ASSERT and VERIFY from probe context.  To assure that a failed
 1329  * ASSERT or VERIFY does not induce a markedly more catastrophic failure (e.g.,
 1330  * one from which a dump cannot be gleaned), DTrace must define its own ASSERT
 1331  * and VERIFY macros to be ones that may safely be called from probe context.
 1332  * This header file must thus be included by any DTrace component that calls
 1333  * ASSERT and/or VERIFY from probe context, and _only_ by those components.
 1334  * (The only exception to this is kernel debugging infrastructure at user-level
 1335  * that doesn't depend on calling ASSERT.)
 1336  */
 1337 #undef ASSERT
 1338 #undef VERIFY
 1339 #define VERIFY(EX)      ((void)((EX) || \
 1340                         dtrace_assfail(#EX, __FILE__, __LINE__)))
 1341 #ifdef DEBUG
 1342 #define ASSERT(EX)      ((void)((EX) || \
 1343                         dtrace_assfail(#EX, __FILE__, __LINE__)))
 1344 #else
 1345 #define ASSERT(X)       ((void)0)
 1346 #endif
 1347 
 1348 #ifdef  __cplusplus
 1349 }
 1350 #endif
 1351 
 1352 #endif /* _SYS_DTRACE_IMPL_H */

Cache object: ef18d5a563a9653d3732fe36ebf97b7d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.