The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/cddl/dev/dtrace/powerpc/dtrace_subr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * CDDL HEADER START
    3  *
    4  * The contents of this file are subject to the terms of the
    5  * Common Development and Distribution License, Version 1.0 only
    6  * (the "License").  You may not use this file except in compliance
    7  * with the License.
    8  *
    9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   10  * or http://www.opensolaris.org/os/licensing.
   11  * See the License for the specific language governing permissions
   12  * and limitations under the License.
   13  *
   14  * When distributing Covered Code, include this CDDL HEADER in each
   15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
   16  * If applicable, add the following below this CDDL HEADER, with the
   17  * fields enclosed by brackets "[]" replaced with your own identifying
   18  * information: Portions Copyright [yyyy] [name of copyright owner]
   19  *
   20  * CDDL HEADER END
   21  *
   22  * $FreeBSD$
   23  *
   24  */
   25 /*
   26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
   27  * Use is subject to license terms.
   28  */
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/kernel.h>
   33 #include <sys/malloc.h>
   34 #include <sys/kmem.h>
   35 #include <sys/proc.h>
   36 #include <sys/smp.h>
   37 #include <sys/dtrace_impl.h>
   38 #include <sys/dtrace_bsd.h>
   39 #include <cddl/dev/dtrace/dtrace_cddl.h>
   40 #include <machine/clock.h>
   41 #include <machine/frame.h>
   42 #include <machine/trap.h>
   43 #include <vm/pmap.h>
   44 
   45 #define DELAYBRANCH(x)  ((int)(x) < 0)
   46                 
   47 extern dtrace_id_t      dtrace_probeid_error;
   48 extern int (*dtrace_invop_jump_addr)(struct trapframe *);
   49 
   50 extern void dtrace_getnanotime(struct timespec *tsp);
   51 
   52 int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t);
   53 void dtrace_invop_init(void);
   54 void dtrace_invop_uninit(void);
   55 
   56 typedef struct dtrace_invop_hdlr {
   57         int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
   58         struct dtrace_invop_hdlr *dtih_next;
   59 } dtrace_invop_hdlr_t;
   60 
   61 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
   62 
   63 int
   64 dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t arg0)
   65 {
   66         struct thread *td;
   67         dtrace_invop_hdlr_t *hdlr;
   68         int rval;
   69 
   70         rval = 0;
   71         td = curthread;
   72         td->t_dtrace_trapframe = frame;
   73         for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
   74                 if ((rval = hdlr->dtih_func(addr, frame, arg0)) != 0)
   75                         break;
   76         td->t_dtrace_trapframe = NULL;
   77         return (rval);
   78 }
   79 
   80 void
   81 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
   82 {
   83         dtrace_invop_hdlr_t *hdlr;
   84 
   85         hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
   86         hdlr->dtih_func = func;
   87         hdlr->dtih_next = dtrace_invop_hdlr;
   88         dtrace_invop_hdlr = hdlr;
   89 }
   90 
   91 void
   92 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
   93 {
   94         dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
   95 
   96         for (;;) {
   97                 if (hdlr == NULL)
   98                         panic("attempt to remove non-existent invop handler");
   99 
  100                 if (hdlr->dtih_func == func)
  101                         break;
  102 
  103                 prev = hdlr;
  104                 hdlr = hdlr->dtih_next;
  105         }
  106 
  107         if (prev == NULL) {
  108                 ASSERT(dtrace_invop_hdlr == hdlr);
  109                 dtrace_invop_hdlr = hdlr->dtih_next;
  110         } else {
  111                 ASSERT(dtrace_invop_hdlr != hdlr);
  112                 prev->dtih_next = hdlr->dtih_next;
  113         }
  114 
  115         kmem_free(hdlr, 0);
  116 }
  117 
  118 
  119 /*ARGSUSED*/
  120 void
  121 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
  122 {
  123         /*
  124          * No toxic regions?
  125          */
  126 }
  127 
  128 void
  129 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
  130 {
  131         cpuset_t cpus;
  132 
  133         if (cpu == DTRACE_CPUALL)
  134                 cpus = all_cpus;
  135         else
  136                 CPU_SETOF(cpu, &cpus);
  137 
  138         smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
  139                         smp_no_rendezvous_barrier, arg);
  140 }
  141 
  142 static void
  143 dtrace_sync_func(void)
  144 {
  145 }
  146 
  147 void
  148 dtrace_sync(void)
  149 {
  150         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
  151 }
  152 
  153 static int64_t  tgt_cpu_tsc;
  154 static int64_t  hst_cpu_tsc;
  155 static int64_t  timebase_skew[MAXCPU];
  156 static uint64_t nsec_scale;
  157 
  158 /* See below for the explanation of this macro. */
  159 /* This is taken from the amd64 dtrace_subr, to provide a synchronized timer
  160  * between multiple processors in dtrace.  Since PowerPC Timebases can be much
  161  * lower than x86, the scale shift is 26 instead of 28, allowing for a 15.63MHz
  162  * timebase.
  163  */
  164 #define SCALE_SHIFT     26
  165 
  166 static void
  167 dtrace_gethrtime_init_cpu(void *arg)
  168 {
  169         uintptr_t cpu = (uintptr_t) arg;
  170 
  171         if (cpu == curcpu)
  172                 tgt_cpu_tsc = mftb();
  173         else
  174                 hst_cpu_tsc = mftb();
  175 }
  176 
  177 static void
  178 dtrace_gethrtime_init(void *arg)
  179 {
  180         struct pcpu *pc;
  181         uint64_t tb_f;
  182         cpuset_t map;
  183         int i;
  184 
  185         tb_f = cpu_tickrate();
  186 
  187         /*
  188          * The following line checks that nsec_scale calculated below
  189          * doesn't overflow 32-bit unsigned integer, so that it can multiply
  190          * another 32-bit integer without overflowing 64-bit.
  191          * Thus minimum supported Timebase frequency is 15.63MHz.
  192          */
  193         KASSERT(tb_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("Timebase frequency is too low"));
  194 
  195         /*
  196          * We scale up NANOSEC/tb_f ratio to preserve as much precision
  197          * as possible.
  198          * 2^26 factor was chosen quite arbitrarily from practical
  199          * considerations:
  200          * - it supports TSC frequencies as low as 15.63MHz (see above);
  201          */
  202         nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tb_f;
  203 
  204         /* The current CPU is the reference one. */
  205         sched_pin();
  206         timebase_skew[curcpu] = 0;
  207         CPU_FOREACH(i) {
  208                 if (i == curcpu)
  209                         continue;
  210 
  211                 pc = pcpu_find(i);
  212                 CPU_SETOF(PCPU_GET(cpuid), &map);
  213                 CPU_SET(pc->pc_cpuid, &map);
  214 
  215                 smp_rendezvous_cpus(map, NULL,
  216                     dtrace_gethrtime_init_cpu,
  217                     smp_no_rendezvous_barrier, (void *)(uintptr_t) i);
  218 
  219                 timebase_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
  220         }
  221         sched_unpin();
  222 }
  223 #ifdef EARLY_AP_STARTUP
  224 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
  225     dtrace_gethrtime_init, NULL);
  226 #else
  227 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init,
  228     NULL);
  229 #endif
  230 
  231 /*
  232  * DTrace needs a high resolution time function which can
  233  * be called from a probe context and guaranteed not to have
  234  * instrumented with probes itself.
  235  *
  236  * Returns nanoseconds since boot.
  237  */
  238 uint64_t
  239 dtrace_gethrtime(void)
  240 {
  241         uint64_t timebase;
  242         uint32_t lo;
  243         uint32_t hi;
  244 
  245         /*
  246          * We split timebase value into lower and higher 32-bit halves and separately
  247          * scale them with nsec_scale, then we scale them down by 2^28
  248          * (see nsec_scale calculations) taking into account 32-bit shift of
  249          * the higher half and finally add.
  250          */
  251         timebase = mftb() - timebase_skew[curcpu];
  252         lo = timebase;
  253         hi = timebase >> 32;
  254         return (((lo * nsec_scale) >> SCALE_SHIFT) +
  255             ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
  256 }
  257 
  258 uint64_t
  259 dtrace_gethrestime(void)
  260 {
  261         struct      timespec curtime;
  262 
  263         dtrace_getnanotime(&curtime);
  264 
  265         return (curtime.tv_sec * 1000000000UL + curtime.tv_nsec);
  266 }
  267 
  268 /* Function to handle DTrace traps during probes. See powerpc/powerpc/trap.c */
  269 int
  270 dtrace_trap(struct trapframe *frame, u_int type)
  271 {
  272         uint16_t nofault;
  273 
  274         /*
  275          * A trap can occur while DTrace executes a probe. Before
  276          * executing the probe, DTrace blocks re-scheduling and sets
  277          * a flag in its per-cpu flags to indicate that it doesn't
  278          * want to fault. On returning from the probe, the no-fault
  279          * flag is cleared and finally re-scheduling is enabled.
  280          *
  281          * Check if DTrace has enabled 'no-fault' mode:
  282          */
  283         sched_pin();
  284         nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
  285         sched_unpin();
  286         if (nofault) {
  287                 KASSERT((frame->srr1 & PSL_EE) == 0, ("interrupts enabled"));
  288                 /*
  289                  * There are only a couple of trap types that are expected.
  290                  * All the rest will be handled in the usual way.
  291                  */
  292                 switch (type) {
  293                 /* Page fault. */
  294                 case EXC_DSI:
  295                 case EXC_DSE:
  296                         /* Flag a bad address. */
  297                         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
  298                         cpu_core[curcpu].cpuc_dtrace_illval = frame->dar;
  299 
  300                         /*
  301                          * Offset the instruction pointer to the instruction
  302                          * following the one causing the fault.
  303                          */
  304                         frame->srr0 += sizeof(int);
  305                         return (1);
  306                 case EXC_ISI:
  307                 case EXC_ISE:
  308                         /* Flag a bad address. */
  309                         cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
  310                         cpu_core[curcpu].cpuc_dtrace_illval = frame->srr0;
  311 
  312                         /*
  313                          * Offset the instruction pointer to the instruction
  314                          * following the one causing the fault.
  315                          */
  316                         frame->srr0 += sizeof(int);
  317                         return (1);
  318                 default:
  319                         /* Handle all other traps in the usual way. */
  320                         break;
  321                 }
  322         }
  323 
  324         /* Handle the trap in the usual way. */
  325         return (0);
  326 }
  327 
  328 void
  329 dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which,
  330     int fault, int fltoffs, uintptr_t illval)
  331 {
  332 
  333         dtrace_probe(dtrace_probeid_error, (uint64_t)(uintptr_t)state,
  334             (uintptr_t)epid,
  335             (uintptr_t)which, (uintptr_t)fault, (uintptr_t)fltoffs);
  336 }
  337 
  338 static int
  339 dtrace_invop_start(struct trapframe *frame)
  340 {
  341 
  342         switch (dtrace_invop(frame->srr0, frame, frame->fixreg[3])) {
  343         case DTRACE_INVOP_JUMP:
  344                 break;
  345         case DTRACE_INVOP_BCTR:
  346                 frame->srr0 = frame->ctr;
  347                 break;
  348         case DTRACE_INVOP_BLR:
  349                 frame->srr0 = frame->lr;
  350                 break;
  351         case DTRACE_INVOP_MFLR_R0:
  352                 frame->fixreg[0] = frame->lr;
  353                 frame->srr0 = frame->srr0 + 4;
  354                 break;
  355         default:
  356                 return (-1);
  357         }
  358         return (0);
  359 }
  360 
  361 void dtrace_invop_init(void)
  362 {
  363         dtrace_invop_jump_addr = dtrace_invop_start;
  364 }
  365 
  366 void dtrace_invop_uninit(void)
  367 {
  368         dtrace_invop_jump_addr = 0;
  369 }

Cache object: 4d42ef1820643df29d9d4cb4a35c1bc5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.